Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated lithium niobate microwave photonic processing engine


Integrated microwave photonics (MWP) is an intriguing technology for the generation, transmission and manipulation of microwave signals in chip-scale optical systems1,2. In particular, ultrafast processing of analogue signals in the optical domain with high fidelity and low latency could enable a variety of applications such as MWP filters3,4,5, microwave signal processing6,7,8,9 and image recognition10,11. An ideal integrated MWP processing platform should have both an efficient and high-speed electro-optic modulation block to faithfully perform microwave–optic conversion at low power and also a low-loss functional photonic network to implement various signal-processing tasks. Moreover, large-scale, low-cost manufacturability is required to monolithically integrate the two building blocks on the same chip. Here we demonstrate such an integrated MWP processing engine based on a 4 inch wafer-scale thin-film lithium niobate platform. It can perform multipurpose tasks with processing bandwidths of up to 67 GHz at complementary metal–oxide–semiconductor (CMOS)-compatible voltages. We achieve ultrafast analogue computation, namely temporal integration and differentiation, at sampling rates of up to 256 giga samples per second, and deploy these functions to showcase three proof-of-concept applications: solving ordinary differential equations, generating ultra-wideband signals and detecting edges in images. We further leverage the image edge detector to realize a photonic-assisted image segmentation model that can effectively outline the boundaries of melanoma lesion in medical diagnostic images. Our ultrafast lithium niobate MWP engine could provide compact, low-latency and cost-effective solutions for future wireless communications, high-resolution radar and photonic artificial intelligence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wafer-scale LN-based MWP signal-processing engine and its building blocks.
Fig. 2: High-speed MWP temporal integrator.
Fig. 3: High-speed MWP temporal differentiator.
Fig. 4: High-speed photonic-assisted medical image segmentation.

Similar content being viewed by others

Data availability

The data used to produce the plots within this paper are available from Zenodo at (ref. 66).

Code availability

The code used to produce the plots within this paper is available from Zenodo at (ref. 67).


  1. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    Article  Google Scholar 

  2. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).

    Article  ADS  Google Scholar 

  5. Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012).

    Article  ADS  PubMed  Google Scholar 

  6. Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

    Article  ADS  CAS  Google Scholar 

  7. Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 406 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, W. & Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9, 1396 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ilderem, V. The technology underpinning 5G. Nat. Electron. 3, 5–6 (2020).

    Article  Google Scholar 

  13. Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).

    Article  ADS  CAS  Google Scholar 

  14. Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhu, C. et al. Silicon integrated microwave photonic beamformer. Optica 7, 1162–1170 (2020).

    Article  ADS  CAS  Google Scholar 

  16. Tao, Y. et al. Fully on-chip microwave photonic instantaneous frequency measurement system. Laser Photonics Rev., 16, 2200158 (2022).

  17. Rahim, A. et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photonics 3, 024003 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

    Article  ADS  PubMed  Google Scholar 

  19. Zhuang, L., Roeloffzen, C. G., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    Article  ADS  Google Scholar 

  20. Dong, J. et al. Compact, flexible and versatile photonic differentiator using silicon Mach–Zehnder interferometers. Opt. Express 21, 7014–7024 (2013).

    Article  ADS  PubMed  Google Scholar 

  21. Liu, W., Zhang, W. & Yao, J. Silicon-based integrated tunable fractional order photonic temporal differentiators. J. Lightwave Technol. 35, 2487–2493 (2017).

    Article  ADS  CAS  Google Scholar 

  22. Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).

    Article  ADS  PubMed  Google Scholar 

  23. Xu, X. et al. Microcomb-based photonic RF signal processing. IEEE Photonic Technol. Lett. 31, 1854–1857 (2019).

    Article  ADS  CAS  Google Scholar 

  24. Minasian, R. A., Chan, E. & Yi, X. Microwave photonic signal processing. Opt. Express 21, 22918–22936 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Park, Y., Azaña, J. & Slavík, R. Ultrafast all-optical first-and higher-order differentiators based on interferometers. Opt. Lett. 32, 710–712 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zheng, A. et al. Tunable fractional-order differentiator using an electrically tuned silicon-on-isolator Mach–Zehnder interferometer. Opt. Express 22, 18232–18237 (2014).

    Article  ADS  PubMed  Google Scholar 

  27. Ferrera, M. et al. On-chip CMOS-compatible all-optical integrator. Nat. Commun. 1, 29 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Li, M., Jeong, H.-S., Azaña, J. & Ahn, T.-J. 25-terahertz-bandwidth all-optical temporal differentiator. Opt. Express 20, 28273–28280 (2012).

    Article  ADS  PubMed  Google Scholar 

  29. Morton, P. A. et al. High-power, high-linearity, heterogeneously integrated III–V on Si MZI modulators for RF photonics systems. IEEE Photonics J. 11, 1–10 (2019).

    Article  Google Scholar 

  30. Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, 4396 (2023).

    Article  ADS  Google Scholar 

  33. Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021).

    Article  ADS  Google Scholar 

  34. Zhang, Y. et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate. Photonics Res. 10, 2380–2387 (2022).

    Article  CAS  Google Scholar 

  35. Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 26, 14810–14816 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Ahmed, A. N. R. et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett. 45, 1112–1115 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366–2373 (2022).

    Article  Google Scholar 

  40. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  CAS  Google Scholar 

  41. Escalé, M. R., Pohl, D., Sergeyev, A. & Grange, R. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett. 43, 1515–1518 (2018).

    Article  ADS  PubMed  Google Scholar 

  42. Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhou, J. et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett. 37, 084201 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28, 24452–24458 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, M., Yu, F., Zhao, J., Zhang, L. & Li, Q. BEFD: boundary enhancement and feature denoising for vessel segmentation. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Martel, A. L. et al.) 775–785 (Springer, 2020).

  47. Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357–363 (2021).

    Article  ADS  Google Scholar 

  48. Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Tan, S. et al. High-order all-optical differential equation solver based on microring resonators. Opt. Lett. 38, 3735–3738 (2013).

    Article  ADS  PubMed  Google Scholar 

  50. Pan, S. & Yao, J. UWB-over-fiber communications: modulation and transmission. J. Lightwave Technol. 28, 2445–2455 (2010).

    Article  ADS  Google Scholar 

  51. Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017).

    Article  ADS  Google Scholar 

  52. Wen, H. et al. Few-mode fibre-optic microwave photonic links. Light: Sci. Appl. 6, 17021 (2017).

    Article  Google Scholar 

  53. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Ye, K. et al. Surface acoustic wave stimulated Brillouin scattering in thin-film lithium niobate waveguides. Preprint at (2023).

  55. Rodrigues, C. C. et al. On-chip backward stimulated Brillouin scattering in lithium niobate waveguides. Preprint at (2023).

  56. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (eds Bajcsy, R. et al.) 770–778 (IEEE, 2016).

  57. Chen, L., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proc. European Conference on Computer Vision (eds Ferrari, V. et al.) 801–818 (Springer, 2018).

  58. Milletari, F., Navab, N. & Ahmadi, S. A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In Proc. International Conference on 3D Vision 565–571 (IEEE, 2016).

  59. Codella, N. C. et al. Skin lesion analysis toward melanoma detection. In Proc. International Symposium on Biomedical Imaging 168–172 (IEEE, 2018).

  60. Wang, B., de Lima, T. F., Shastri, B. J., Prucnal, P. R. & Huang, C. Multi-wavelength photonic neuromorphic computing for intra and interchannel distortion compensations in WDM optical communication systems. IEEE J. Sel. Top. Quantum Electron. 29, 7400212 (2022).

    Google Scholar 

  61. Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

    Article  CAS  Google Scholar 

  62. Huang, C. et al. High-capacity space-division multiplexing communications with silicon photonic blind source separation. J. Lightwave Technol. 40, 1617–1632 (2022).

    Article  ADS  CAS  Google Scholar 

  63. Gao, J., Han, X., Lei, X. & Yu, Y. TEC power consumption in laser array packaging. Opt. Quantum Electron. 49, 1–13 (2017).

    Article  Google Scholar 

  64. Desurvire, E. & Zervas, M. N. Erbium-doped fiber amplifiers: principles and applications. Phys. Today 48, 56–58 (1995).

    Article  Google Scholar 

  65. Siew, S. Y. et al. Review of silicon photonics technology and platform development. J. Lightwave Technol. 39, 4374–4389 (2021).

    Article  ADS  CAS  Google Scholar 

  66. Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Zenodo (2024).

  67. Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Zenodo (2024).

Download references


We thank H. K. Tsang for the use of the high-speed measurement equipment. We thank C. F. Yeung, S. Y. Lao, C. W. Lai and L. Ho at the Nanosystem Fabrication Facility at the Hong Kong University of Science and Technology for technical support with the stepper lithography and plasma-enhanced chemical vapour deposition process. We thank W. H. Wong and K. Shum at CityU for their help in device fabrication and measurement. This work is supported by the National Natural Science Foundation of China (grant no. 61922092), the Research Grants Council, University Grants Committee (grant nos. CityU 11204820, CityU 21208219, N_CityU113/20 and C1002-22Y), the Croucher Foundation (grant no. 9509005), the Innovation and Technology Fund (grant no. ITS/226/21FP) and the City University of Hong Kong (grant nos. 9610402 and 9610455).

Author information

Authors and Affiliations



H.F. and C.W. conceived the idea. H.F. designed and fabricated the wafer with the help of Z.C., Y.Z., K.Z. and W.S. T.G. and X.G. performed the numerical simulations. H.F., T.G. and B.W. carried out the high-speed measurements and analysed the data with the help of X.G., S.Z. and Y.Z. H.F. prepared the manuscript with contributions from all authors. C.H., Y.Y. and C.W. supervised the project. H.F. and T.G. contributed equally to this work.

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jose Azana, Andreas Boes and David Marpaung for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Analog signal processing bandwidth analysis based on sawtooth signal.

a Time- and frequency- domain representations of sawtooth signal. b Analog bandwidth limitations of various components in our experiment. c Measured temporal differentiation results (solid) of sawtooth signals at fundamental frequencies of 20, 22, and 24 GHz, in comparison with simulated data (dashed) taking into consideration the first three harmonics. d Measured optical spectra of the differentiated signals, in comparison with the simulated results (red). e Measured (blue dots) optical power of the third-harmonic component of differentiated sawtooth signals at frequencies from 57 to 72 GHz, together with inferred on-chip performances after de-embedding equipment responses (red circles) and simulation results (red curve). Osc., oscilloscope. Lim., limitation. Sim., simulation.

Extended Data Fig. 2 Error analysis under various practical limitations.

ad, Simulated output signals (red) are shown in comparison with the ideal response (blue) when considering the limitation of equipment bandwidth (a), drifting of device operation point (b), as well as the processing bandwidth limitations of the MZI-based differentiator (c) and the ring-based integrator (d). F.R., frequency response of the devices.

Extended Data Fig. 3 Simulated and measured mean absolute errors as functions of the cut-off frequency of Sinc pulse for the temporal differentiator


Extended Data Fig. 4 Edge-detection results of a representative melanoma lesion image.

a. Raw image. bd. Edge-extracted images using convolution (b) and simple differentiation (c) algorithms in electronic computers, and our photonic-assisted edge detector (d). e. Ground truth.

Extended Data Table 1 Performance comparison with traditional electronics-based algorithms
Extended Data Table 2 Estimated energy consumption of the photonic-assisted image edge detector
Extended Data Table 3 Performance comparison with previous MWP demonstrations

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Ge, T., Guo, X. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing