
Nature | Vol 626 | 22 February 2024 | 819

Article

Transforming a head direction signal into a 
goal-oriented steering command

Elena A. Westeinde1, Emily Kellogg1, Paul M. Dawson1, Jenny Lu1, Lydia Hamburg2,3, 
Benjamin Midler2,3, Shaul Druckmann2,3 & Rachel I. Wilson1 ✉

To navigate, we must continuously estimate the direction we are headed in, and  
we must correct deviations from our goal1. Direction estimation is accomplished  
by ring attractor networks in the head direction system2,3. However, we do not  
fully understand how the sense of direction is used to guide action. Drosophila 
connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that 
connect the head direction system to the locomotor system. Here we use imaging, 
electrophysiology and chemogenetic stimulation during navigation to show how 
these populations function. Each population receives a shifted copy of the head 
direction vector, such that their three reference frames are shifted approximately 
120° relative to each other. Each cell type then compares its own head direction vector 
with a common goal vector; specifically, it evaluates the congruence of these vectors 
via a nonlinear transformation. The output of all three cell populations is then 
combined to generate locomotor commands. PFL3R cells are recruited when the fly is 
oriented to the left of its goal, and their activity drives rightward turning; the reverse is 
true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when 
the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of 
steering as directional error increases, effectively managing the tradeoff between 
speed and accuracy. Together, our results show how a map of space in the brain can be 
combined with an internal goal to generate action commands, via a transformation 
from world-centric coordinates to body-centric coordinates.

Accurate navigation requires us to fix a goal direction and then maintain 
our orientation towards that goal in the face of perturbations. This is 
also a basic problem in mechanical engineering: how can we keep the 
angle of some device directed at a target6? One solution to this problem 
is to use a resolver servomechanism to measure the discrepancy or 
error between the current angle and the goal angle. This produces a 
rotational velocity command that varies sinusoidally with error (Fig. 1a). 
Specifically, the mechanism drives leftward rotation when the device 
is positioned to the right of the goal, and vice versa. The stable fixed 
point of this system is the angle where the rotational velocity command 
crosses zero with negative slope (Fig. 1a).

Sixty years ago, Mittelstaedt suggested that a similar process might 
be implemented in the brain’s navigation centres to control an organ-
ism’s heading and thus its path through the environment7. Since then, 
Webb and colleagues have proposed neural network implementations 
of this idea8–11, which have been extended by other investigators4,5,12–14. 
All these models exploit the notion that an angle or vector can be repre-
sented as a sinusoidal spatial pattern of activity across a neural popula-
tion15,16 (Extended Data Fig. 1). These sinusoids can then be combined 
to produce a directional control signal9.

Data from locusts17, zebrafish18 and Drosophila19 show that head 
direction is in fact encoded as a sinusoidal spatial pattern of activity 
(Fig. 1b). The Drosophila brain contains a cell type (PFL3) that is ana-
tomically positioned to receive shifted copies of this head direction 

representation while also making direct lateralized connections onto 
descending neurons involved in steering4,5 (Fig. 1c). This ‘copy-and-shift’ 
architecture9,20 is reminiscent of the design of a resolver servomotor 
(Extended Data Fig. 1). PFL3 cells also receive anatomical input from the 
fan-shaped body, a brain region where goals might be stored (Fig. 1d). 
Notably, almost all the inputs to PFL3 cells are shared by another cell 
type, PFL2 (refs. 5,21). Individual PFL2 cells make bilateral connec-
tions onto descending neurons (Fig. 1c), implying that they do not 
guide steering. Their function is enigmatic, but proposals suggest they 
increase forward walking speed5,13.

In short, both PFL2 and PFL3 cells are anatomically positioned to 
integrate head direction information with stored goal information 
for navigation control. These cells stand out because they form a link 
between an allocentric map of space and an egocentric system of motor 
control. Encouragingly, recordings from analogous cells in other insects 
have confirmed that they receive topographic input from the head 
direction system17,22,23. However, there have been no functional studies 
of these cells in Drosophila, and recent models have made conflicting 
predictions about their roles in motor control4,5,11–13.

Comparing model predictions with behaviour
To begin, we describe an updated computational model that differs 
from previous models in several key ways (Methods). In this model, 
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direction is represented as a sinusoid24 whose phase rotates as direc-
tion changes, relative to a flexible and arbitrary offset19. We divide PFL3 
cells into two populations (PFL3R and PFL3L) that converge onto right 
or left descending neurons, respectively (Fig. 1c). Each population 
extracts a copy of the head direction representation, with phase shifts 
of ±67.5°, relative to the original head direction representation. Mean-
while, PFL2 cells extract a head direction representation with a phase 
shift of 180° (Fig. 1c).

These three PFL populations are aligned within the fan-shaped body, 
where they share inputs from orderly arrays of cells5 which could rep-
resent the goal angle, θg. We model the goal representation as a spatial 

sinusoid whose phase represents θg (Fig. 1d). The firing rate of each 
model PFL cell is the sum of its head direction input and its goal input, 
passed through a nonlinearity (Fig. 1d).

These sinusoids should be understood as representations of vectors 
(Extended Data Fig. 1): the two PFL3 populations extract shifted copies 
of the head direction vector, and the goal vector is added to each copy. 
The resulting vector with the larger magnitude dictates the direction 
the fly should rotate to reach its goal. This model predicts that PFL3R 
should be most active when the fly is facing to the left of its goal—in 
other words, when there is a negative directional error (θ − θg) (Fig. 1e), 
with the reverse situation holding for PFL3L.

L

b

PFL3R
cells

PFL3L
cells

R
Descending neurons

PFL2
cells

L R
Descending neurons

c

i

Turn left Turn right Turn faster

PFL2

PFL3RPFL3L

a

–180° +180°

0

Directional error (  – g)

Rotational
velocity
d /dt

R

L

Goal
angle ( g)

Rotational
velocity
(d /dt)

Current angle ( )

0°

Head direction cells Head direction cells

= 90°

e

g

Rotational
speed
|d /dt|
(° s–1)

–180° +180°

Directional error (  – g)

0°

80

115

= 0°

Head direction cells

f

–90° +90°

180°

0°

d

Goal
input

Neural space
Head

direction
input to
PFL3R/L

+ +

Nonlinearity

 = g  = g + 90°

Resulting 
activity

 in PFL3R/L

Goal
input

Head
direction
input to
PFL2

Resulting 
activity
 in PFL2

= g = g + 90° = g + 180°
ΣPFL3R ΣPFL3L

ΣPFL3R – ΣPFL3L

ΣPFL2

–180° +180°

Directional error (  – g)

0°

0

Jump

Inferred goal direction

Goal vectors h

Nonlinearity

Stable �xed point

Fig. 1 | Comparing model predictions with behaviour. a, A rotational 
servomechanism works to keep the angle θ of some device close to a goal value 
θg. The output is a rotational velocity command that depends on the system’s 
error (θ − θg). Rotational velocity is close to zero around the goal (θ = θg) and the 
anti-goal (θ = θg + 180°). Whereas the goal is a stable fixed point, the anti-goal is 
an unstable fixed point. b, In the Drosophila brain, head direction is represented 
in Δ7 cells as a sinusoid over two spatial cycles. c, PFL3L, PFL3R and PFL2 
populations extract spatially shifted copies of the head direction representation. 
These three populations are aligned in the fan-shaped body, where they share 
inputs from putative goal cells (Extended Data Fig. 1c). d, Model: each PFL 
population adds its head direction input with a shared input from goal cells. 
This is passed through a nonlinearity and then integrated over space. e, Model: 
activity of each PFL population versus directional error. f, Data: path of a fly in a 

virtual environment with a visual head direction cue (a bright bar). Dots 
indicate 90° and 180° jumps of the environment; here the fly is correcting for 
all these jumps with rapid turns. g, Mean head direction θ in 10 min epochs with 
periodic jumps. Radial length denotes the consistency of head direction over 
time ρ, which ranges here from 0 to 0.8 in n = 56 epochs from 56 flies; 0° is 
towards the cue. h, Data: mean rotational speed versus directional error, the 
s.e.m. across flies (n = 46 flies). i, Model: PFL populations have shifted head 
direction inputs that tile the space of compass directions. Each population 
detects overlap between its shifted head direction vectors and a shared goal 
vector. The PFL3L population drives left turning, whereas the PFL3R 
population drives right turning and PFL2 drives increased rotational speed. 
Scale bar (f), 30 mm.
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If we neglect the contribution of PFL2 cells, then we would predict 
that the system’s rotational velocity commands should just resemble 
the right–left difference in PFL3 activity (ΣPFL3R − ΣPFL3L), which 
varies sinusoidally as a function of directional error (Fig. 1e). In other 
words, the system would behave like a classical resolver servomecha-
nism (Fig. 1a). In this sort of mechanism, rotational velocity is nearly 
zero around the goal and also opposite the goal; engineers call this 
‘false nulling’ because it can allow the servomechanism to settle at an 
angle opposite the goal (Extended Data Fig. 1). To seek this phenom-
enon in fly behaviour, we placed flies in a virtual-reality environment 
with a single prominent visual head direction cue; this environment 
rotated in closed loop with the fly’s rotational velocity on a spherical 
treadmill (Fig. 1f). The fly’s head was rigidly coupled to its body, so that 
heading and head direction are identical. In this type of environment, 
flies often follow straight paths towards a goal (Fig. 1f), with differ-
ent flies adopting different goal directions (Fig. 1g); this behaviour 
requires an intact head direction system25–27. During these epochs of 
straight walking, we could infer the fly’s goal direction from its behav-
ioural orientation. Every minute, we jumped the virtual environment 
by 90° or 180°; this often caused the fly to turn back towards its goal, 
implying that these jumps are perceived by the brain as head direction 
changes4,25. In agreement with our model predictions, we found that the 
fly’s rotational speed was generally low when it was oriented towards 
its goal (Fig. 1h). However, contrary to predictions, the fly’s rotational 
speed was high—not low—around its anti-goal, and 180° jumps evoked 
rotational speeds that were no lower than those evoked by 90° jumps 
(Extended Data Fig. 3). A model that considers only PFL3 cells cannot 
explain these behavioural results (Fig. 1e), suggesting an additional 
mechanism is recruited around the anti-goal to increase rotational 
speed. PFL2 cells are good candidates for this mechanism, because 
their population amplitude should be highest when the fly is oriented 
towards its anti-goal (Fig. 1e). If PFL2 cells promote high rotational 
speeds around the anti-goal, this would mitigate the false-nulling prob-
lem: in essence, the anti-goal is already an unstable fixed point of the 
system, and a mechanism that specifically increased rotational speed 
around the anti-goal would further destabilize that unstable fixed point, 
ensuring that the system could not settle there.

To summarize, we can think of these three cell populations (PFL2, 
PFL3R, PFL3L) as dividing the range of compass angles into three differ-
ent sectors (Fig. 1i), reflecting the different shifts in their head direction 
inputs. Each population detects the congruence between its shifted 
head direction vector and a goal vector. Congruence detection is imple-
mented by a nonlinear transformation that produces maximal output in 
response to maximal congruence. These outputs are then combined to 
generate steering commands with the appropriate direction and speed, 
so that small deviations from the goal are corrected with slower turns, 
whereas large deviations from the goal are corrected with faster turns.

Dynamics around the anti-goal
To test the predictions of this model, we constructed split-Gal4 lines 
to target PFL2 and PFL3 cells. We were able to generate a selective PFL2 
line, as well as a line targeting PFL2 and PFL3 together. We validated 
these lines by using genetic mosaic analysis to identify single-cell clones 
and then comparing these clones to morphologies from connectome 
data (Extended Data Fig. 2). We will focus initially on our results for 
PFL2 cells, as this line was the more specific line.

First, to directly activate PFL2 cells, we used a chemogenetic 
approach: we expressed ATP-gated ion channels (P2X2 receptors) in 
these cells, and we activated them specifically using iontophoresis of 
ATP into the protocerebral bridge, where their dendrites are located 
(Fig. 2a and Extended Data Fig. 4). We made a whole-cell recording 
from a PFL2 cell in every experiment to confirm the effects of ATP 
(Fig. 2a,b). At the same time, we monitored the fly’s behaviour on a 
spherical treadmill, again in a virtual-reality environment with a visual 

cue. We found that stimulating PFL2 cells generally produced turning, 
although the direction of the turn was often unpredictable (Fig. 2a,b). 
Moreover, if the fly was walking forward at the time of the stimulus, it 
consistently reversed direction and stepped backward (Fig. 2a,b). This 
response may be related to the fact that bidirectional excitation in 
some steering-related descending neurons is correlated with slowing 
or backward walking4. In short, PFL2 cells drive an increase in rotational 
movement, accompanied by a decrease in forward velocity.

Next, we used our selective PFL2 line to drive expression of GCaMP7b, 
and we imaged the activity of these cells with a two-photon microscope. 
We saw that activity in PFL2 dendrites generally formed a sinusoidal spa-
tial pattern across the horizontal axis of the fan-shaped body (Fig. 2c). 
We fit a sinusoid to this pattern and extracted its phase and amplitude; 
we call this the ‘bump phase’ and ‘bump amplitude’. We found that 
the bump phase generally moved left as the fly rotated to the right 
(Fig. 2c,d), as expected from the anatomical inputs to PFL2 cells from 
the head direction system. Notably, we found that bump amplitude was 
minimal when the fly was oriented towards its goal and maximal around 
the anti-goal (Fig. 2e). Moreover, we found that high bump amplitude 
correlated with high rotational speed (Fig. 2f) and low forward velocity 
(Fig. 2g). Taken together with our chemogenetic simulation results, 
these data argue that PFL2 cells are recruited when the fly is facing its 
anti-goal, driving an increase in rotational speed, accompanied by a 
decrease in forward velocity. Thus, these cells provide a solution to the 
‘false nulling’ problem that characterizes a classical servomechanism: 
they function to further destabilize the unstable fixed point in the 
steering control system, so that it cannot come to rest at the anti-goal.

Dynamics around the goal
Next, we imaged GCaMP7b expressed under the control of the mixed 
split-Gal4 line that targets both PFL2 and PFL3 cells (Extended Data 
Fig. 2). Here, rather than imaging the dendritic arbours, we focused 
on the lateral accessory lobes, where PFL2 and PFL3 axons terminate, 
in order to separate PFL3L from PFL3R. PFL2 and PFL3 axon terminals 
are intermingled in the lateral accessory lobes, but we found that cal-
cium signals in the mixed line were quite different from the signals we 
observed in PFL2 cells. In the PFL2-specific line, calcium signals in the 
lateral accessory lobes were generally maximal around the anti-goal 
(Fig. 3a), as we would expect from our imaging data from their dendritic 
arbours (Fig. 2e). However, in the mixed line, we saw the opposite: 
calcium signals in the lateral accessory lobes were generally maxi-
mal around the goal (Fig. 3b); this is what the model predicts for the 
PFL3 populations, and it implies that the signals in the mixed line are 
dominated by PFL3 rather than PFL2. This could be due to stronger Gal4 
expression in PFL3 versus PFL2, or other differences between these cell 
types. Regardless, this result implies that we can treat the right and left 
lateral accessory lobe signals as a readout of the summed activity of 
each PFL3 population (ΣPFL3R and ΣPFL3L).

In agreement with model predictions, we found that ΣPFL3R is high-
est when the fly is just to the left of its goal, and vice versa for ΣPFL3L 
(Fig. 3c).The right–left difference between these signals is a roughly 
sinusoidal function of the fly’s orientation relative to its goal, support-
ing the predictions of the model (Fig. 3d). Moreover, we found that 
the right–left difference was predictive of the fly’s rotational velocity, 
again consistent with the model (Fig. 3e) and consistent with the idea 
that these cells drive rotational velocity changes. This differs from 
what we see in our PFL2-specific line, where axonal projections are 
symmetrically active regardless of head direction, as we would predict 
based on PFL2 anatomy (Extended Data Fig. 5).

In summary, our data argue that PFL3 cells drive directional steer-
ing manoeuvres that correct small deviations from the fly’s intended 
path. PFL3R cells are most active when the fly is oriented just to the left 
of its goal, and the reverse is true for PFL3L. Finally, right–left differ-
ences in PFL3 activity are predictive of rotational velocity, consistent 
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with the direct excitatory projections of these cells to steering-related 
descending neurons.

Mechanisms underlying network dynamics
Next, to understand the inputs to PFL2 and PFL3 cells, we performed 
genetically targeted in vivo patch-clamp recordings. In line with 
model predictions, we found that individual PFL2 and PFL3 cells are 
often strongly tuned to head direction (Fig. 4a), with different cells 
having different preferred directions (θp). Connectome data indicate 
that PFL2 and PFL3 cells receive some direct synaptic input from pri-
mary head direction cells (EPG cells) but that they receive most of 
their head direction input (about 80%) from secondary head direc-
tion cells, called Δ7 cells5. Because Δ7 cells are glutamatergic, and 
because glutamate is largely an inhibitory neurotransmitter in the 
Drosophila brain28,29, we would expect that the majority of the head 
direction input to PFL2 and PFL3 cells would arrive in the form of syn-
aptic inhibition (Fig. 4b). Indeed, we found that PFL2 and PFL3 cells 
are bombarded by inhibitory postsynaptic potentials (IPSPs) whose 
frequency depends on head direction (θ). Jumping the virtual environ-
ment around the fly often evoked an abrupt change in IPSP frequency 
(Fig. 4c), with IPSP frequency increasing if the jump brought θ away 
from θp and IPSP frequency decreasing if the jump brought θ towards 

θp (Fig. 4d). These results support the conclusion that head direction 
tuning in PFL2 and PFL3 cells arises largely from Δ7 cells, which is 
important because Δ7 cells reformat the head direction signal as a  
spatial sinusoid5,24.

In the model, each PFL2 or PFL3 cell adds its head direction input 
with goal input, and the result is passed through a nonlinearity. From 
the perspective of a single PFL2 or PFL3 cell, goal input is simply a fixed 
bias. This bias pushes the cell’s total input up or down the nonlinearity, 
thereby changing the amplitude of the head direction tuning curve 
(Fig. 4e). In the model PFL2 population, the goal input that each cell 
receives increases as the cell’s preferred head direction θp moves away 
from the goal direction θg (Fig. 1d), and so cells with θp near the anti-goal 
have the largest-amplitude head direction tuning curves; indeed, our 
electrophysiological data confirm this prediction (Fig. 4f). Conversely, 
in the model PFL3 population, goal input is largest for cells whose pre-
ferred head direction θp is shifted just counterclockwise or clockwise 
from θg (for PFL3R or PFL3L, respectively; Fig. 1d). These should be the 
cells with the largest-amplitude head direction tuning curves, and again 
our data confirm this prediction (Fig. 4g); an independent study of PFL3 
cells reached a similar conclusion30. Interestingly, we only find these 
effects at the level of spike rate; we do not see these trends at the level 
of the cell’s membrane potential (Fig. 4f,g and Extended Data Fig. 6); 
this finding implies that the nonlinearity in the model is implemented 
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Fig. 2 | Dynamics around the anti-goal. a, Example experiment. ATP (red 
shading) depolarizes PFL2 cells expressing P2X2 (top), evoking an increase in 
the absolute value of rotational velocity, that is, rotational speed (middle). It 
also evokes a decrease in forward velocity (bottom). This fly turns right in 
response to the first two pulses but left in response to the last two pulses.  
b, Summary data for flies where PFL2 cells expressed P2X2 and genetic controls 
(mean ± s.e.m. across flies, n = 12 P2X2+ flies and 11 control flies). Results are 
shown for two ATP pulse durations (100 ms and 500 ms). See also Extended 
Data Fig. 4. c, PFL2 activity (ΔF/F) across the horizontal axis of the fan-shaped 
body over time. During this epoch, the fly is walking relatively straight. The fly’s 
mean head direction is taken as its goal (θg). After the environment is jumped by 

180° (blue arrowhead), the fly makes a compensatory turn to reorient towards 
θg. We fit a sinusoid to ΔF/F at each time point to extract bump phase and 
amplitude. d, Change in PFL2 bump phase versus change in directional error. 
The phase of PFL2 activity moves right when the fly turns left. Each symbol 
denotes one time point (Pearson’s r = −0.63, P = 9 × 10−13), with the line of unity 
in grey. Shown here are data for one example fly; Extended Data Fig. 9 shows 
two other examples and shows the effect of z-scoring ΔF/F. e, PFL2 bump 
amplitude versus directional error (mean ± s.e.m. across flies, n = 33 flies).  
f, PFL2 bump amplitude versus the fly’s rotational velocity (mean ± s.e.m. 
across flies, n = 33 flies). g, PFL2 bump amplitude versus the fly’s forward 
velocity (mean ± s.e.m. across flies, n = 33 flies). Scale bars, 5 s (b), 10 s (a,c).
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by the voltage-gated conductances that transform membrane potential 
to spiking.

Modulating the scale of network activity
Our data indicate that PFL2 cells specifically boost steering gain around 
the anti-goal. But why would it be useful for this boost to be restricted 
to head directions around the anti-goal? Why not steer with high gain 
at all times?

To develop an intuition for this issue, we modelled the relationship 
between PFL2 and PFL3 activity and steering. PFL3 cells synapse directly 
onto descending neurons (DNa02; Fig. 5a), and the right–left differ-
ence in DNa02 activity is linearly proportional to the fly’s subsequent 
rotational velocity4. Meanwhile, PFL3 cells also synapse onto DNa03, 
which is one of the strongest inputs to DNa02 in the brain4,5,31,32; we 
call this the ‘indirect pathway’ (Fig. 5a). Each DNa03 cell also receives 
input from every PFL2 cell. In the model, DNa03 sums PFL3 and PFL2 
input and then passes this sum through a nonlinear activation function 
(Fig. 5b). Note that each PFL2 axon projects bilaterally, but it can still 
influence steering in our model, because it creates an excitatory drive 
that pushes DNa03 output towards the steeper part of its nonlinear 
activation function, amplifying the right–left asymmetry that DNa03 
inherits from PFL3. DNa02 then sums PFL3 and DNa03 input (from the 
direct and indirect pathway, respectively), and this sum is again passed 
through the same nonlinearity. We add a small random component to 
the steering signal, to account for noise and other factors influencing 
steering, and we feed the resulting steering commands back into the 
head direction system, thereby closing the loop for feedback control.

A free parameter in this model is the scalar value (S) that controls the 
overall magnitude of the synaptic input to PFL2 and PFL3 cells (Fig. 5a), 
and thus the strength of the downstream steering commands evoked 
by any given head direction (Fig. 5c). If S is too low, feedback is slow 

to correct deviations from the goal. Conversely, if S is too high, the 
system overshoots the goal and tends to oscillate. With the direct path-
way alone, S must be tuned within a narrow range of values to avoid 
these outcomes, but with the indirect pathway, there is a wider range 
of acceptable values (Fig. 5d) because the indirect pathway has high 
gain around the anti-goal but low gain around the goal (Fig. 5c). In short, 
the indirect pathway in general and PFL2 cells in particular function to 
manage the tradeoff between speed and accuracy, favouring speed for 
large errors, but accuracy for small errors.

This model illustrates how variations in S can produce variations in 
the vigour of goal-directed steering. In fact, in our data, we noticed 
variations in the vigour of goal-directed steering: we observed vigorous 
corrective steering after some jumps of the virtual environment, but 
no corrective steering after other jumps. Jumps that triggered correc-
tive steering during epochs of high head direction consistency (high 
ρ) produced larger changes in PFL2 and PFL3 membrane potential, as 
compared to uncorrected jumps that occurred during epochs of low 
head direction consistency (low ρ, Fig. 5e–g). This observation suggests 
that the brain regulates the scale of the synaptic inputs to PFL2 and 
PFL3 cells as a way to modulate the strength of goal-directed steering. 
Importantly, jump-evoked changes in membrane potential preceded 
steering (Fig. 5h and Extended Data Fig. 7), supporting the idea that 
PFL2 and PFL3 cells are causal for steering.

We also quantified head direction consistency (ρ) over long time 
epochs (Fig. 5i). During epochs of high ρ, our imaging data revealed 
that the amplitude of the PFL2 bump depended strongly on head direc-
tion, and indeed our model predicts this as a consequence of high S 
(Fig. 5j,k). Conversely, during epochs of low ρ, the amplitude of the 
PFL2 bump depended only weakly on head direction, and again our 
model predicts this as a consequence of low S (Fig. 5j,k). These find-
ings further support the idea that the brain can modulate the strength 
of goal-directed steering by scaling the inputs to PFL2 and PFL3 cells.
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Fig. 3 | Dynamics around the goal. a, ΣPFL2 activity (ΔF/F) versus directional 
error (mean ± s.e.m. across flies, n = 33 flies). Shown here is the summed 
activity of the right and left PFL2 axons, where they terminate near DNa03 
dendrites in the lateral accessory lobe. Model prediction is shown for 
comparison. b, ΣPFL3 activity (ΔF/F) versus directional error (mean ± s.e.m. 
across flies, n = 23 flies). As in a, the activity is summed across the right and left 
lateral accessory lobe, where PFL3 cells terminate onto DNa03 and DNa02. 
Here we used a mixed split-Gal4 line that targets PFL2 and PFL3 cells together; 
because our results are opposite for what we observe for PFL2 cells alone, and 
because our results match the predictions of our PFL3 model (shown below), 

we treat this as measurement of PFL3 activity (Extended Data Fig. 5). c, ΣPFL3R 
and ΣPFL3L activity in the right and left lateral accessory lobe, respectively, 
plotted versus directional error (mean ± s.e.m. across flies, n = 23 flies). Signals 
are imaged from our mixed split-Gal4 line but are likely dominated by PFL3, as 
noted above. Model predictions are shown for comparison. d, Right–left 
difference in PFL3 activity versus directional error (mean ± s.e.m. across flies, 
n = 23 flies) and model prediction. e, Right–left difference in PFL3 activity 
versus the fly’s rotational velocity (mean ± s.e.m. across flies, n = 23 flies) and 
model prediction.



824 | Nature | Vol 626 | 22 February 2024

Article

Discussion
Whereas the brain’s maps of space are allocentric (referenced to 
objects in the world), motor commands are egocentric. This poses a 
coordinate transformation problem. Here we describe a network that 
solves this problem. This network creates two opponent copies of the 
allocentric head direction representation, with equal and opposite 
shifts (θ ± shift). Each copy is then separately compared with an allo-
centric goal representation, to measure congruence with the goal. The 
difference between the two opponent congruence values becomes 
an egocentric motor command. Elements of this scheme have been 
predicted in algorithmic models7 and network models4,5,8–14. Our data 
demonstrate that these theoretical predictions are largely correct, and 
we show that the two opponent copies are represented by the PFL3R 
and PFL3L populations; this conclusion is supported by an independ-
ent companion paper30.

At the same time, our results highlight the unexpected role of PFL2 
cells. These cells provide a solution to a classic problem—namely, the 

fundamental tradeoff between speed and accuracy. High feedback gain 
allows a system to converge quickly towards its goal, and so it makes 
sense that gain should be high when error is large, that is, when there 
is a large discrepancy between the system’s current state and its goal. 
However, high gain can cause overshooting of the goal, especially when 
error is already small. We show that PFL2 cells effectively adjust the 
system’s gain, depending on the magnitude of the system’s current 
error. Specifically, PFL2 cells selectively increase the gain of steering 
commands around the anti-goal, where error is maximal. This allows 
gain to be lower around the goal, which should minimize overshooting. 
In this manner, PFL2 cells dynamically adjust feedback gain to match the 
needs of the system, a concept known as adaptive control33. Notably, 
the adaptive control exerted by PFL2 cells occurs only in the ‘indirect’ 
pathway, where PFL2 signals converge with PFL3 signals (Fig. 5a); the 
function of the ‘direct’ pathway is less clear, but it may help to initiate 
steering manoeuvres with minimal delay.

It is likely that there are multiple sites of adaptive gain control 
in this network. In particular, our data suggest that the inputs to 
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sinusoidally with head direction. c, Whole-cell recordings from PFL2 and PFL3 
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time points when the fly was standing still, because this makes individual IPSPs 
more clearly detectable. e, Model: a nonlinearity transforms Vm into firing rate 

for each model cell. Each cell receives head direction input that is cosine tuned 
to (θ − θp). The goal cell input to each cell represents a bias that does not change 
with head direction. This bias moves the cell’s input along the nonlinear 
function, changing the amplitude of the firing rate tuning curve. f, PFL2 cells 
are divided into bins based on (θp − θg). For each cell, we subtract the minimum 
y-axis value in the tuning curve, then we compute the mean of cells in the bin, 
for both firing rate and Vm. Model output (top) is compared with data (bottom, 
n = 11 cells, mean ± s.e.m. across cells). g, Same but for PFL3 neurons (n = 15 
cells, mean ± s.e.m. across cells). Here we combine results from PFL3R and 
PFL3L (after reversing the left–right order of the five bins for the PFL3L cells, so 
that the model outputs are identical for R and L). Scale bar, 2 s.
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PFL2 and PFL3 cells change in scale over time (which we model as 
changes in the parameter S); this may provide a way to modulate the 
organism’s commitment to remembered or internalized goals. For 
example, S might increase when the organism needs to be moving 
vigorously towards a high-value remembered goal; conversely, S might 
decrease when the organism needs to be more open to exploration 
of the local environment. Mechanistically, this modulation could be 

implemented by inhibitory tangential cell inputs to the fan-shaped 
body that are well-positioned to shunt the inputs to PFL2 and PFL3 
dendrites, and it could explain why, in other insect species, these 
cells sometimes show unusually weak responses to head direction 
changes22. Alternatively, the strength of goal-directed steering could 
be altered by modulating the amplitude of goal cell output (Extended  
Data Fig. 8).
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minimum.



826 | Nature | Vol 626 | 22 February 2024

Article
In the future, it will be interesting to investigate how and where goals 

are written into memory. The companion paper to this study identi-
fies one goal cell population30, but there are dozens of candidate goal 
cell types in the fan-shaped body with the appropriate anatomy to 
represent a goal as a spatial sinusoid5,9,12,13. In principle, multiple goals 
could be stored as spatial patterns of persistent activity or synaptic  
weights.

This network also suggests a solution to the problem of representa-
tional drift34–36. As the phase of the head direction representation drifts 
over time during spatial learning37–39, the same process that first initial-
ized the goal representation could continually update that representa-
tion, to keep it aligned with the coordinate frame of the head direction 
system. As a result, motor commands would be protected from drift, 
which might explain why representational drift is less obvious in cells 
more strongly correlated with motor performance40.

In summary, our results reveal how the sense of direction can be used 
to generate locomotor commands with adaptive gain that manages the 
tradeoff between speed and accuracy. Our conclusions generate test-
able predictions for how goals could be stored in memory, retrieved on 
demand, modulated by context and protected from drift. Because the 
basic problems of navigation are fundamental problems of geometry 
and information retrieval, the solutions we describe here may have 
general relevance for other systems.
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Methods

Flies
Unless otherwise specified, flies were raised on cornmeal-molasses 
food (Archon Scientific) in an incubator on a 12 h:12 h light:dark cycle 
at 25 °C at 50–70% relative humidity. Experimenters were not blinded 
to fly genotype. For iontophoresis stimulus experiments (Fig. 2a,b) flies 
were grouped for analysis based on genotype. Sample sizes were cho-
sen based on conventions in our field for standard sample sizes; these 
sample sizes are conventionally determined on the basis of the expected 
magnitude of animal-to-animal variability, given published results and 
pilot data. All experiments used flies with at least one wild-type copy 
of the white (w) gene. Genotypes used in each figure are as follows.

Fig. 1:
PFL2 and PFL3 calcium imaging, w/+;P{VT033284-p65AD}attP40/

20XUAS-IVS-cyRFP{VK00037}; P{y[+t7.7];w[+mC]=VT044709-GAL4.
DBD}attP2/PBac{y[+t7.7] w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

PFL2 calcium imaging, w/+;P{VT033284-p65AD}attP40/20XUAS- 
IVS-cyRFP{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/
PBac{y[+t7.7] w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

Fig. 2:
PFL2 cells expressing P2X2, w/+;P{VT033284-p65AD}attP40/

P{w[+mC]=UAS-Rnor\P2rx2.L}4/;P{VT007338-Gal4DBD}
attP2/20XUAS-mCD8::GFP {attP2}.

Empty split control,
w/+;P{y[+t7.7] w[+mC]=p65.AD.Uw}attP40/P{w[+mC]=UAS-Rnor\

P2rx2.L}4;P{y[+t7.7] w[+mC]=GAL4.DBD.Uw}attP2/20XUAS-mCD8::GFP 
{attP2}.

PFL2 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP

{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

Fig. 3:
PFL2 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP

{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

PFL2 and PFL3 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP{VK00037}; 

P{y[+t7.7];w[+mC]=VT044709-GAL4.DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

Fig. 4:
w/+;P{VT033284-p65AD}attP40/P{20XUAS-IVS-mCD8::GFP}

attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.DBD}attP2/+.
Fig. 5:
PFL2 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP

{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

PFL2 and PFL3 recordings,
w/+;P{VT033284-p65AD}attP40/P{20XUAS-IVS-mCD8::GFP}

attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.DBD}attP2/+.
Extended Data Fig. 2:
MCFO, w[1118] P{y[+t7.7] w[+mC]=R57C10-FLPG5}su(Hw)attP8; 

PBac{y[+mDint2] w[+mC]=10xUAS(FRT.stop)myr::smGdP-HA}
VK00005 P{y[+t7.7] w[+mC]=10xUAS(FRT.stop)myr::smGdP-V5-THS-
10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1.

PFL2 and PFL3 line:
w/+;P{VT033284-p65AD}attP40/P{20XUAS-IVS-mCD8::GFP}

attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.DBD}attP2/+.
PFL2 line:
w/+;P{VT033284-p65AD}attP40/P{20XUAS-IVS-mCD8::GFP}attP40; 

P{y[+t7.7];P{VT007338-Gal4DBD}attP2/+.
Extended Data Fig. 3:
PFL2 calcium imaging,

w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP
{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

PFL2 and PFL3 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP{VK00037}; 

P{y[+t7.7];w[+mC]=VT044709-GAL4.DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

Extended Data Fig. 4:
PFL2 cells expressing P2X2, w/+;P{VT033284-p65AD}attP40/

P{w[+mC]=UAS-Rnor\P2rx2.L}4/;P{VT007338-Gal4DBD}
attP2/20XUAS-mCD8::GFP {attP2}.

Empty split control,
w/+;P{y[+t7.7] w[+mC]=p65.AD.Uw}attP40/P{w[+mC]=UAS-Rnor\

P2rx2.L}4;P{y[+t7.7] w[+mC]=GAL4.DBD.Uw}attP2/20XUAS-mCD8::GFP 
{attP2}.

Extended Data Fig. 5:
PFL2 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP

{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

PFL2 and PFL3 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP{VK00037}; 

P{y[+t7.7];w[+mC]=VT044709-GAL4.DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

Extended Data Fig. 6:
w/+;P{VT033284-p65AD}attP40/P{20XUAS-IVS-mCD8::GFP}

attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.DBD}attP2/+.
Extended Data Fig. 7:
w/+;P{VT033284-p65AD}attP40/P{20XUAS-IVS-mCD8::GFP}

attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.DBD}attP2/+.
Extended Data Fig. 8–10:
PFL2 calcium imaging,
w/+;P{VT033284-p65AD}attP40/20XUAS-IVS-cyRFP

{VK00037}; P{y[+t7.7];P{VT007338-Gal4DBD}attP2/PBac{y[+t7.7] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005.

Origins of transgenic stocks
The following stocks were obtained from the Bloomington Dros-
ophila Stock Center (BDSC) and previously published as follows: 
P{y[+t7.7]w[+mC]=VT044709-GAL4.DBD}attP2 (BDSC_75555)41, 
P{y[+t7.7] w[+mC]=p65.AD.Uw}attP40; P{y[+t7.7] w[+mC]=GAL4.
DBD.Uw}attP2 (BDSC_79603), P{w[+mC]=UAS-Rnor\P2rx2.L}4/
CyO (BDSC_91223)42, w[1118] P{y[+t7.7] w[+mC]=R57C10-FLPG5}
su(Hw)attP8; PBac{y[+mDint2] w[+mC]=10xUAS(FRT.stop)
myr::smGdP-HA}VK00005 P{y[+t7.7] w[+mC]=10xUAS(FRT.stop)
myr::smGdP-V5-THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1  
(BDSC_64088)43.

The following stocks were obtained from WellGenetics: 
w[1118];P{VT007338-p65ADZp}attP40/CyO;+ (SWG9178/A), 
w[1118];P{VT033284-p65AD}attP40/CyO;+ (A/SWG8077). Using 
these lines, we constructed a split-Gal4 line whose expression in 
the lateral accessory lobe (LAL) is specific to PFL2 and PFL3 cells 
(+;P{VT033284-p65AD}attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.
DBD}attP2). We validated the expression of this line using immuno-
histochemical anti-GFP staining and also using Multi-Color-Flip-Out 
(MCFO)43 to visualize single-cell morphologies. This line has significant 
non-specific expression throughout the brain but is specific for PFL2  
and PFL3 in the LAL. We also constructed a split-Gal4 line to target PFL2 neu-
rons, +;P{VT033284-p65AD}attP40; P{y[+t7.7];P{VT007338-Gal4DBD}
attP2. We validated the expression of this line using immunohis-
tochemical anti-GFP staining and also using MCFO to visualize 
single-cell morphologies. This line exhibits expression in various 
peripheral neurons but is selective for PFL2 neurons within the cen-
tral complex—specifically, the protocerebral bridge, fan-shaped body  
and LAL.
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Fly preparation and dissection
Flies used for all experiments were isolated the day before the experi-
ment by single-housing on molasses food. For calcium imaging experi-
ments we used female flies 20–72 h posteclosion. For electrophysiology 
experiments, including the iontophoresis experiments, we used female 
flies 16–30 h posteclosion. No circadian restriction was imposed for 
the time of experiments.

Manual dissections in preparation for experiments were as follows. 
Flies were briefly cold-anaesthetized and inserted using fine forceps 
(Fine Science Tools) into a custom platform machined from black Del-
rin (Autotiv or Protolabs). The platform was shaped like an inverted 
pyramid to minimize occlusion of the fly’s eyes. The head was pitched 
slightly forward, so the posterior surface was more accessible to the 
microscope objective. The wings were removed, then the fly head and 
thorax were secured to the holder using UV-curable glue (Loctite AA 
3972) with a brief pulse of ultraviolet light (LED-200, Electro-Lite Co.). 
To prevent large brain movements, the proboscis was glued in place 
using a small amount of the same UV-curable glue. Using fine forceps 
in extracellular Drosophila saline, a window was opened in the head 
cuticle, and tracheoles and fat were removed to expose the brain. To 
further reduce brain movement, muscle 16 was stretched by gently 
tugging the oesophagus, or else it was removed by clipping the muscle 
anteriorly. For electrophysiology and iontophoresis experiments only, 
the perineural sheath was minimally removed with fine forceps over the 
brain region of interest. For all experiments, saline was continuously 
superfused over the brain. Drosophila extracellular saline composition 
was: 103 mM NaCl, 3 mM KCl, 5 mM TES, 8 mM trehalose, 10 mM glu-
cose, 26 mM NaHCO3, 1 mM NaH2PO4, 1.5 mM CaCl2 and 4 mM MgCl2 
(osmolarity 270–275 mOsm). Saline was oxygenated by bubbling with 
carbogen (95% O2, 5% CO2) and reached a final pH of about 7.3.

Two-photon calcium imaging
We used a two-photon microscope equipped with a galvo-galvo-resonant 
scanhead (Thorlabs Bergamo II GGR) and ×25, 1.10 numerical aperture 
(NA) objective (Nikon CFI APO LWD; Thorlabs, WDN25X-APO-MP). For 
volumetric imaging, we used a fast piezoelectric objective scanner 
(Thorlabs PFM450E). To excite GCaMP we used a wavelength-tunable 
femtosecond laser with dispersion compensation (Mai Tai DeepSee, 
Spectra Physics) set to 920 nm. GCaMP fluorescence signals were col-
lected using GaAsP PMTs (PMT2100, Thorlabs) through a 405–488 nm 
band-pass filter (Thorlabs). All image acquisition and microscope con-
trol was conducted in MATLAB 2021a (MathWorks Inc), using ScanImage 
2021 Premium with vDAQ hardware (Vidrio Technologies LLC) and cus-
tom MATLAB scripts for further experimental control. The region for 
imaging the fan-shaped body and protocerebral bridge was 150 × 250 
pixels, whereas the region for imaging the LAL was 150 × 400 pixels. 
We acquired 10–12 slices in the z axis for each volume (4 µm per slice), 
resulting in 6–8 Hz volumetric scanning rate. For experiments using the 
selective PFL2 split-Gal4 line, we imaged in the protocerebral bridge, 
fan-shaped body, or LAL for different trials. For experiments imaging 
the mixed PFL2 and PFL3 split-Gal4 line, we only imaged in the LAL.

Patch-clamp recordings
Patch pipettes were pulled from filamented borosilicate capillary 
glass (outer diameter: 1.5 mm, inner diameter 0.86 mm; BF150-86-
7.5HP, Sutter Instrument Company), using a horizontal pipette puller 
(P-97, Sutter Instrument Company) to a resistance range of 9–13 MΩ. 
Pipettes were filled with an internal solution44 consisting of 140 mM 
KOH, 140 mM aspartic acid, 1 mM KCl, 10 mM HEPES, 1 mM EGTA, 4 mM 
MgATP, 0.5 mM Na3GTP and 15 mM neurobiotin citrate, filtered twice 
through a 0.22 µm PVDF filter (Millipore).

All electrophysiology experiments used a semicustom upright micro-
scope consisting of a motorized base (Thorlabs Cerna), with conven-
tional collection and epifluorescence attachment (Olympus BX51), 

but no substage optics in order to better fit the virtual-reality system. 
The microscope was equipped with a ×40 water immersion objective 
(LUMPlanFLN 40×W, Olympus) and CCD Monochrome Camera (Retiga 
ELECTRO; 01-ELECTRO-M-14-C Teledyne). For GFP excitation and detec-
tion, we used a 100 W Hg arc lamp (Olympus U-LH100HG) and an eGFP 
long-pass filter cube (Olympus F-EGFP LP). The fly was illuminated from 
below using a fibre optic coupled LED (M740F2, Thorlabs) coupled to 
a ferrule-terminated patch cable (200 µM core, 0.22 NA, Thorlabs) 
attached to a fibre optic cannula (200 µM core, 0.22, Thorlabs). The 
cannula was glued to the ventral side of the holder and positioned 
approximately 135° from the front of the fly to be unobtrusive to the 
fly’s visual field. Throughout the experiment, saline bubbled with 95% 
O2 and 5% CO2 was superfused over the fly using a gravity fed pump at 
a rate of 2 ml min−1. Whole-cell current-clamp recordings were per-
formed using an Axopatch 200B amplifier with a CV-203BU headstage 
(Molecular Devices). Data from the amplifier were low-pass filtered 
using a 4-pole Bessel low-pass filter with a 5 kHz corner frequency, 
then acquired on a data acquisition card at 20 kHz (NiDAQ PCIe-6363, 
National Instruments). The liquid junction potential was corrected 
by subtracting 13 mV from recorded voltages45. Membrane potential 
data was then resampled to a rate of 1 kHz for ease of use and compat-
ibility with behavioural data. To estimate baseline membrane voltage 
(Fig. 5e–g), we removed spikes from voltage traces by median filtering 
using a 50 ms window and lightly smoothed using the smoothdata func-
tion in MATLAB (loess method, 20 ms window). For all electrophysiol-
ogy experiments in the mixed PFL2 and PFL3 line, we recorded from 
only one cell per fly. During recordings the cell was filled using internal 
solution containing neurobiotin citrate, so that we could visualize the 
cell morphology in order to determine its identity, using the protocol 
described in the ‘Immunohistochemistry’ section.

Spherical treadmill and locomotion measurement
Experiments used an air-cushioned spherical treadmill and 
machine-vision system to track the intended movement of the ani-
mal. The treadmill consisted of a 9-mm-diameter ball machined from 
foam (FR-4615, General Plastics), sitting in a custom-designed con-
cave hemispherical holder three-dimensionally printed from clear 
acrylic (Autotiv). The ball was floated with medical-grade breathing 
air (Med-Tech) through a tapered hole at the base of the holder using 
a flow meter (Cole Parmer). For machine-vision tracking, the ball was 
painted with a high-contrast black pattern using a black acrylic pen 
and illuminated with an IR LED (880 nm for two-photon experiments; 
M880L3, Thorlabs, or 780 nm for electrophysiology experiments; 
M780L3, Thorlabs). Ball movement was captured online at 60 Hz 
using a CMOS camera (CM3-U3-13Y3M-CS for two-photon imaging, 
or CM3-U3-13Y3C-CS for electrophysiology, Teledyne FLIR) fitted with 
a macro zoom lens InfiniStix (68 mm ×0.66 for two-photon, InfiniStix 
94 mm ×0.5 for electrophysiology). The camera faced the ball from 
behind the fly (at 180°). Machine vision software (FicTrac v.2.1) was 
used to track the position of the ball43 in real time. We used a custom 
Python script to output the forward axis ball displacement, yaw axis ball 
displacement, forward ball displacement and gain-modified yaw ball 
displacement to an analogue output device (Phidget Analog 4-Output 
1002_0B) and recorded these signals along with other experimental 
timeseries data on a data acquisition card (NiDAQ PCIe-6363) card at 
20 kHz. The gain-modified yaw ball displacement voltage signal was 
also used to update the azimuthal position of the visual cues displayed 
by the visual panorama.

Visual panorama and visual stimuli
To display visual stimuli, we used a circular panorama built from modu-
lar square (8 × 8 pixel) LED panels46. The circular arena was twelve panels 
in circumference and two panels tall. To accommodate the ball-tracking 
camera view and the light source the upper panel 180° behind the fly was 
removed. In all experiments, the modular panels contained blue LEDs 



with peak blue (470 nm) emission; blue LEDs were chosen to reduce 
overlap with the GCaMP emission spectrum. For calcium imaging 
experiments, four layers of gel filters were added in front of the LED 
arena (Rosco, R381) to further reduce overlap in spectra. For electro-
physiology experiments, only two layers of gel filters were used. On top 
of the gel filters in both cases we added a final diffuser layer to prevent 
reflections (SXF-0600, Snow White Light Diffuser, Decorative Films). 
The visual cue was a bright (positive contrast) 2-pixel-wide (7.5°) vertical 
bar. The bar’s height was the full two-panel height of the area (except for 
−165 to +165° behind the fly with a single visual display panel, where the 
bar was half this height). The bar intensity was set at a luminance value 
of 4 with a background luminance of 0 (maximum value 15).

The azimuthal position of the cue was controlled during closed-loop 
experiments by the yaw motion of the ball (see section ‘Spherical tread-
mill and locomotion measurement’). For all experiments, a yaw gain of 
0.7 was used, meaning that the visual cue displacement was 0.7 times 
the ball’s yaw displacement. For calcium imaging and electrophysiology 
experiments the cue was instantaneously jumped every 60 s by ±90° 
or 180°. Immediately following each jump, the cue would continue to 
move in closed loop with the fly’s movements. We recorded the posi-
tion of the cue during experiments using analogue output signals from 
the visual panels along with other experimental timeseries data on a 
data acquisition card at 20 kHz (PCIe-6363, National Instruments). We 
converted analogue signals from the visual panels into cue position in 
pixels during offline analysis. Cue positions were then converted into 
head direction as follows: 0° when the fly was directly facing the cue, 
90° when the fly’s head direction was 90° clockwise to the cue, −90° 
when the fly was 90° counterclockwise and 180° when the fly was facing 
directly away from the cue. These signals were lightly smoothed and 
values above 180° or below −180° were set to ±180°.

Experimental trial structure
Before data collection in each experiment, the fly walked for a mini-
mum of 15 min in closed loop with the visual cue. For calcium imaging 
experiments, data were collected in 10 min trials. In each trial, the fly 
was in closed loop with the cue, and every 60 s the cue jumped to a new 
location relative to its current one, alternating between +90°, 180° and 
−90°, in that order. Between trials during calcium imaging experiments, 
there was 30 s of darkness. Electrophysiology experiments followed 
a similar protocol, though occasionally 20 min trials were collected 
rather than 10 min trials. Additionally, during the intertrial period, 
flies viewed the cue in closed loop. As these experiments were heavily 
dependent on spontaneously performed behaviour, trials were run 
until the fly stopped walking or, in the case of electrophysiology experi-
ments, the cell recording quality significantly decreased.

Iontophoresis stimuli
Pipettes for iontophoresis were pulled from aluminosilicate capillary 
glass (outer diameter 1.5 mm, inner diameter 1.0 mm, Sutter Instrument 
Company) to a resistance of approximately 75 MΩ using a horizontal 
pipette puller (P-97, Sutter Instrument Company). Pipettes were filled 
with a solution47 consisting of 10 mM ATP disodium in extracellular 
saline with 1 mM AlexFluor 555 hydrazine (Thermo Fisher Scientific) 
for visualization. This solution was stored in aliquots at −20 °C, thawed 
fresh daily and kept on ice during the experiment. The tip of the ion-
tophoresis pipette was positioned to be approximately in the medial 
region of the protocerebral bridge every trial. During experimental 
trials, we simultaneously recorded from a PFL2 neuron. During con-
trol trials, we recorded from unidentified neurons with somata in the 
same approximate region as PFL2 somata (medial area dorsal to the 
protocerebral bridge). Pulses of ATP were delivered using a dual current 
generator iontophoresis system (Model 260, World Precision Instru-
ments). Holding current was set to 10 nA to prevent solution leakage, 
and a current of −200 nA was used for ejection. Visual confirmation of 
ATP ejection following current pulses was obtained before and after 

each trial. For the duration of the 10 min trial period, flies viewed a 
visual cue that moved in closed loop with their rotational movements, 
as described above. Throughout the trial, pulses were delivered every 
30 s with lengths of 100, 200, 300 and 500 ms, repeating in that order.

Immunohistochemistry
Brains were dissected from female flies 1–3 days posteclosion in Dros-
ophila external saline and fixed in 4% paraformaldehyde (Electron 
Microscopy Sciences, catalogue no. 15714) in phosphate-buffered 
saline (PBS, Thermo Fisher Scientific, 46-013-CM) for 15 min at room 
temperature. Brains were washed with PBS before adding a blocking 
solution containing 5% normal goat serum (Sigma-Aldrich, catalogue 
no. G9023) in PBS with 0.44% Triton-X (Sigma-Aldrich, catalogue no. 
T8787) for 20 min. Brains were then incubated in primary antibody 
with blocking solution for roughly 24 h at room temperature, washed 
in PBS and incubated in secondary antibody with blocking solution for 
roughly 24 h at room temperature. Primary and secondary antibod-
ies were protocol-specific (see below). Brains were then rinsed with 
PBS and mounted in antifade mounting medium (Vectashield, Vector 
Laboratories, catalogue no. H-1000) for imaging. For MCFO proto-
cols, a tertiary incubation step for about 24 h at room temperature 
and wash with PBS was performed before mounting. Mounted brains 
were imaged on a Leica SPE confocal microscope using a ×40, 1.15 NA 
oil-immersion objective. Image stacks comprised 50 to 200 z-slices at 
a depth of 1 µm per slice. Image resolution was 1,024 × 1,024 pixels. For 
visualizing Gal4 expression patterns, the primary antibody solution 
contained chicken anti-GFP (1:1,000, Abcam, catalogue no. ab13970) 
and mouse anti-Bruchpilot (1:30, Developmental Studies Hybridoma 
Bank, nc82). The secondary antibody solution contained Alexa Fluor 
488 goat anti-chicken (1:250, Invitrogen, catalogue no. A11039) and 
Alexa Fluor 633 goat anti-mouse (1:250, Invitrogen, catalogue no. 
A21050). For visualizing cell fills after whole-cell patch-clamp record-
ings, 1:1,000 streptavidin::Alexa Fluor 568 (Invitrogen, catalogue no. 
S11226) was added to the primary and secondary solutions.

For MCFO48, the primary antibody solution contained mouse 
anti-Bruchpilot (1:30, Developmental Studies Hybridoma Bank, nc82), 
rat anti-Flag (1:200, Novus Biologicals, catalogue no. NBP1-06712B) and 
rabbit anti-HA (1:300, Cell Signaling Technology, catalogue no. 3724S).  
The secondary antibody solution contained Alexa Fluor 488 goat 
anti-rabbit (1:250, Invitrogen, catalogue no. A11039), ATTO 647 goat 
anti-rat (1:400, Rockland, catalogue no. 612-156-120) and Alexa Fluor 
405 goat anti-mouse (1:500, Invitrogen, catalogue no. A31553). The 
tertiary antibody solution contained DyLight 550 mouse anti-V5 (1:500, 
Bio-Rad, catalogue no. MCA1360D550GA).

Processing calcium imaging data
Analysis was performed in either MATLAB 2019 or MATLAB R2021a. 
The calcium imaging dataset comprised 23 flies expressing GCaMP 
under the control of the PFL3 + 2 split-Gal4 line and 33 flies express-
ing GCaMP under the control of the PFL2 split-Gal4 line. Rigid motion 
correction in the x, y and z axes was performed for each trial using the 
NoRMCorre algorithm49. Each region of interest (ROI) was defined 
across the z-stack. For each ROI ΔF/F was calculated with the baseline 
fluorescence (F) defined as the mean of the bottom 10% of fluores-
cence values in a given trial (600 s in length). From this measurement 
a modified z-score was calculated using the median absolute deviation 
(MAD) normalized difference from the median, which we refer to as the 
z-scored ΔF/F (Extended Data Fig. 9):
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For protocerebral bridge imaging, ten ROIs were defined, one for 
each of the ten glomeruli occupied by PFL2 dendrites and defined to 
be approximately the same width and without overlap, constrained 

https://www.ncbi.nlm.nih.gov/nuccore/A11039
https://www.ncbi.nlm.nih.gov/nuccore/A21050
https://www.ncbi.nlm.nih.gov/nuccore/S11226
https://www.ncbi.nlm.nih.gov/nuccore/A11039
https://www.ncbi.nlm.nih.gov/nuccore/A31553
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by estimated anatomical boundaries. For fan-shaped-body imaging, 
nine ROIs were defined for PFL2 neurites corresponding to the nine 
columns spanning the horizontal axis of the fan-shaped body. ROIs 
were approximately the same width without overlap. For LAL imaging, 
two ROIs were defined, one for the left LAL and one for the right. In any 
given 10 min epoch, we imaged either the protocerebral bridge or the 
fan-shaped body, or the LAL, that is, one brain region only. Signals in 
the protocerebral bridge and fan-shaped body had a similar sinusoi-
dal profile, similar bump amplitude and a similar relationship to fly 
behaviour, so we used both protocerebral-bridge-imaging epochs 
and fan-shaped-body-imaging epochs to obtain our measurements of 
bump amplitude, and we pooled these bump amplitude measurements 
without regard to whether they came from the protocerebral bridge or 
fan-shaped body, see Figs. 2e–g, 3a and 5k, and Extended Data Figs. 3 
and 5. The single fly examples shown in Fig. 5j, and Extended Data Figs. 
8 and 9 are from trials where we imaged the protocerebral bridge.

Processing locomotion and visual arena data
The position of the spherical treadmill was computed online using 
machine vision software (Fictrac v.2.1) and output as a voltage signal 
for acquisition. For post hoc analysis, the voltage signal was converted 
into radians and unwrapped. Signals were then low-pass filtered using 
a second-order Butterworth filter with 0.003 corner frequency and 
downsampled to half the ball-tracking update rate.Velocity was calcu-
lated using the MATLAB gradient function. Artefactually large velocity 
values (greater than 20 rad s−1) were set to 20 rad s−1, and timeseries 
were then smoothed using the smooth function in MATLAB (using 
the loess method with an 33 ms window) and resampled to 60 Hz, the 
ball-tracking update rate. Forward and sideways velocities were then 
converted to millimetres per second while yaw (rotational) velocity 
was converted to degrees per second.

During calcium imaging, we acquired a signal from our imaging soft-
ware indicating the end of each volumetric stack on the same acquisi-
tion card as online ball tracking signals. These imaging time points 
were then resampled to the ball-kinematic data update rate of 60 Hz, 
allowing us to align the acquired volumes. Electrophysiology data were 
collected on the same acquisition card as online ball tracking signals, 
so alignment was not required; however, ball-tracking data were resam-
pled to 1 kHz to match the sampling rate of the electrophysiology data.

Computing inferred goal direction and consistency of head 
direction across trials
Head direction (θ) and consistency of head direction (ρ) were calcu-
lated for every datapoint over each entire trial using a 30 s window 
centred on each datapoint index. Here we excluded datapoints where 
the fly’s cumulative speed (forward + sideways + rotational) was less 
than 0.67 rad s−1. At values below this threshold, the fly is essentially 
standing still, so including these time points might result in an over-
estimation of the fly’s internal drive to maintain its head direction. We 
also excluded time points within 5 s after a cue jump; this was to avoid 
underestimating the fly’s internal drive to maintain its head direction, 
as these points represent a forced deviation from the angle the flies 
were attempting to maintain. If no datapoints within the 30 s window 
satisfied these requirements, then the window was excluded from fur-
ther analyses. Head directions were treated as unit vectors and used to 
compute the goal direction θg and the consistency of head direction ρ:

θ θ θ= atan2(Σsin( ), Σcos( )) (2)g w w



















ρ

θ
N

θ
N

=
Σcos( )

+
Σsin( ) (3)

t
w

w

2
w

w

2

In equation (2), θg represents the goal direction associated with time 
point t, θw is a vector consisting of all head directions within the 15 s 

before and after time point t at which the fly was moving, and the atan2 
function is the two-argument arctangent. As each head direction is 
treated as a unit vector we can simply convert each value of θw into 
Cartesian coordinates, calculate the sum of these values along each axis 
and take the arctangent to convert them back to polar coordinates to 
find the average angle the fly travelled at during that window. In equa-
tion (3), ρt represents the ρ value associated with time point t, and Nw 
is the number of data points over which ρ is calculated. Again, we first 
convert each θ value into Cartesian coordinates and find the average 
distance travelled along each axis before calculating ρ, so that ρ ranges 
between 0 and 1. Note that ρ = 1 would indicate that the fly maintained 
the same head direction for the entire window, while ρ = 0 would indi-
cate that the fly uniformly sampled all possible head directions during 
the window. Figure 1g shows mean ρ and θ values from each trial, with 
radial length proportional to ρ.

Path segmentation based on walking straightness
We observed that flies often walked in a straight line for an extended seg-
ment and then switched to a different apparent goal direction (θg) to initi-
ate a new segment (Extended Data Fig. 10). To infer the fly’s goal direction, 
we automatically divided each path into segments. We reasoned that a 
switch in θg, would coincide with a dip in head direction consistency. 
Therefore, we looked for moments when ρ crossed a threshold value, and 
we broke the path into segments at those moments of threshold-crossing. 
The only exception was if ρ fell below threshold only very briefly (less 
than 0.5 s); here we did not count these as segment breaks, but lumped 
those time points together as part of a continuous segment with the pre-
ceding and following time points. We found that a threshold of ρ = 0.88 
matched our commonsense notion of when a new segment should start, 
but varying the threshold value over a wide range (0.70–0.98) did not 
dramatically change the outcome of our segmentation process nor the 
resulting relationships between neural activity and behaviour.

We then calculated the average θ and ρ for each of these segments and 
used the mean θ value as the inferred goal head direction. For all analy-
ses, segments were discarded if ρ was equal to 1, as this indicated the 
panels had not been initiated correctly and that the cue had remained 
in a single location for the duration of the trial. Segments were also 
discarded if the fly was inactive (that is, if the fly’s cumulative velocity 
was not above a threshold of 0.67 rad s−1 for at least 2 s). For population 
analyses shown in Figs. 1h, 2e–g and  3, all remaining segments were 
used regardless of ρ.

For the head direction tuning analysis shown in Fig. 4f,g we used a 
threshold of ρ = 0.7, and we only used data from segments where ρ ≥ 0.7. 
We lowered the threshold on ρ for this analysis because we needed to 
include a larger number of time points in the analysis, to improve the 
resolution for binning the activity of cells into groups defined by θp − θg.

Classifying jumps as ‘corrected, high ρ’ versus ‘uncorrected, low ρ’
To analyse cue jumps (Figs. 1f and  5e–h and Extended Data Figs. 3 and 7),  
we classified jumps as ‘corrected, high ρ’ or ‘uncorrected, low ρ’. 
Here we rejected jumps where the fly was essentially immobile in the 
epoch before the jump (meaning its cumulative speed did not exceed 
0.67 rad s−1 for at least 1 s in the 15 s before the jump). For each jump, we 
measured the original mean head direction (θ) during the 15 s before 
the jump, and we judged jumps as ‘corrected’ if θ returned to within 30° 
of its original value for ±90° jumps, or within 60° for 180° jumps, in the 
10 s after the jump. We classified a jump trial as ‘high ρ’ if the average ρ 
was equal to or greater than 0.88 as calculated over time points within 
the 15 s before the jump, where the fly’s cumulative speed was over 
0.67 rad s−1 and ‘low ρ’ otherwise.

In principle, it is possible that the jumps we categorized as uncor-
rected might have happened (by chance) to produce a smaller abso-
lute change in the distance between a fly’s head direction and a cell’s 
preferred head direction |Δ(θ − θp)|, as compared to the jumps in the 
corrected category. If this sampling artefact existed, it could produce 



an overall smaller absolute change in membrane potential for uncor-
rected jumps, leading us to misinterpret this result. However, we found 
no difference in the variance of ∆(θ − θp) or the mean value of |Δ(θ − θp)| 
for uncorrected versus corrected jumps (Extended Data Fig. 7d).

Computing average response to iontophoresis stimulation
For the plots shown in Fig. 2a,b and Extended Data Fig. 4, data from the 
±10 s period around each ATP pulse were averaged within individual 
flies to get the fly-averaged response to the 100 ms, 200 ms, 300 ms and 
500 ms pulses for the membrane potential, forward velocity, sideways 
velocity and rotational velocity (each condition had at least four repeti-
tions per fly). We then calculated the grand mean and s.e.m. across all 
flies using these per-fly averages.

Computing activity bump parameters
To track the amplitude and phase of PFL2 activity for analyses in 
Figs. 2c–g and 5j,k and Extended Data Figs. 3, 5 and 8, a sinusoid was 
fit independently to each time point of the z-scored ΔF/F activity across 
fan-shaped body and protocerebral bridge imaging trials:

a x u cPFL2 activity = × sin( − ) + (4)

Here, PFL2 activity is a vector of z-scored ΔF/F values at a single time 
point such that it has ten bins if from a protocerebral bridge trial or 
nine if from an fan-shaped body trial, corresponding to the number of 
ROIs specified for each region. Here, u sets the phase of the sinusoid, 
c is the vertical offset term, a represents the bump amplitude, and the 
position in brain space where the peak of the sinusoid is located defines 
the bump phase. A bump phase of +180° represents the rightmost posi-
tion in the protocerebral bridge and fan-shaped body while a phase of 
−180° represents the leftmost position.

Computing change in bump phase versus change in head direction
We calculated the relative changes in PFL2 bump phase and head direc-
tion in 1.5 s bins as shown in Fig. 2d. In each time window, we took the 
difference between start and end points for θ or bump phase. Positive 
differences represent a clockwise shift while a negative difference rep-
resents a counterclockwise shift. The relationship between changes 
in θ and changes in bump phase was strongest when a 200 ms lag was 
implemented, such that changes in bump phase lagged 200 ms behind 
changes in θ. The line of best fit for the relationship between the two 
variables was found with the polyfit and polyval functions. We then 
used the corrcoef function to find the correlation coefficients and P 
value of the relationship. We excluded indices where the adjusted r2 
value of the sinusoidal fit for bump parameters was below 0.1 or the 
fly was not moving.

Computing population activity as a function of behaviour
To determine the relationship between neural activity and various 
behavioural parameters (Figs. 2e–g and 3 and Extended Data Fig. 5) 
we binned conditioned data. Within each segment described above, 
indices with cumulative velocity less than 0.67 rad s−1 were removed, 
and head directions were recalculated to be relative to the inferred goal 
head directions, meaning that a negative value indicated that the fly was 
facing counterclockwise to its goal head direction, and a positive value 
indicated that the fly was facing clockwise to its goal head direction. 
The z-scored ΔF/F was then averaged within bins of 10° s−1 for rotational 
velocity, 1 mm s−1 for forward velocity, or 10° for head direction. For 
Fig. 3d,e and Extended Data Fig. 5, the sum or difference between right 
and left LAL activity was calculated per segment following binning. The 
mean and s.e.m. was then calculated across flies.

Computing preferred head direction
To show preferred cell head direction in Fig. 4a, we divided the esti-
mated baseline membrane voltage (see section ‘Patch-clamping’) into 

20° bins, based on the fly’s head direction. We considered the preferred 
head direction to be the value with the maximum binned membrane 
potential. The amplitude of the preferred head direction was calculated 
by taking the difference between the maximum and minimum binned 
membrane potential values.

Analysis of IPSPs
To detect IPSPs for analyses in Fig. 4d, we focused only on jump trials 
where the fly was essentially immobile, to avoid any confounds associ-
ated with the membrane potential fluctuations in these cells that are 
associated with movement transitions. Action potentials were first 
removed from the voltage trace by median filtering the membrane 
potential with a 25 ms window, then lightly smoothing (smoothdata 
function in MATLAB, window size 20 ms, using the loess method). We 
then calculated the derivative of the membrane potential (gradient 
function in MATLAB) and found local minima corresponding to peri-
ods of rapid decreases in membrane potential (findpeaks function in 
MATLAB, peak distance of 20 ms, threshold determined for each cell). 
We also generated a detrended version of the membrane potential by 
subtracting the median filtered membrane potential (500 ms window) 
and found local minima (findpeaks function in MATLAB, peak distance 
of 20 ms, threshold determined for each cell). We categorized IPSPs 
as indices where a negative peak was detected from the derivative of 
the membrane potential trace within 30 ms before a negative peak in 
the baseline corrected trace.

Computing change in IPSP parameters as a function of the 
change in head direction
To examine changes in IPSP parameters as a function of change in head 
direction, ±5 s windows around cue jumps in which the fly did not move 
for the entire 10 s period were used (Fig. 4c). All jumps fitting this cat-
egory were analysed for 20 of 27 neurons in this dataset; the remaining 
7 neurons were not included, as there were no cue jumps around which 
the fly was stopped for the entire 10 s window around the jump.

Detected IPSP frequency was calculated for the 5 s before or after 
the cue jump. The change in frequency before jump versus after jump 
was then compared to change in head direction relative to the cell’s 
preferred head direction produced by the cue jump. This was deter-
mined by first finding the absolute angular difference between the head 
direction before the jump and the cell’s preferred head direction (see 
section ‘Computing preferred head direction’) and doing the same for 
the new head direction following the cue jump. Then the precue jump 
value was subtracted from the postcue jump value. This means that a 
negative value indicated that the head direction was closer to the cell’s 
preferred head direction following the jump while a positive value 
indicated that the distance between the head direction and the cell’s 
preferred head direction increased following the jump. The change in 
IPSP frequency was then plotted against the change in the distance from 
the cell’s preferred head direction for each jump. MATLAB’s polyfit and 
polyval functions were used to find the line of best fit for the relation-
ship between the two variables, while the corrcoef function was used 
to find the correlation coefficients of the relationship. Additionally, we 
used an unbalanced two-factor ANOVA to determine the significance 
of the relationship between change in frequency and change in head 
direction compared to that with cell identity.

Exploring interactions between goal head direction and 
single-cell head direction tuning curves
To explore how single-cell dynamics lead to the population level rela-
tionships between neural activity and behaviour, we first segmented 
electrophysiology data into groups of continuous data points based on 
their associated goal head directions and ρ values (see section ‘Trial seg-
mentation based on walking straightness and inferred goal direction’). 
For each trial, the cell’s preferred heading was determined (see section 
‘Computing preferred head direction’) and the difference between the 
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preferred heading and goal was found (θg − θp). Segments were assigned 
to 72˚ wide bins based on the θg − θp value and for each segment, the 
head direction tuning curve was recalculated for both firing rate and 
membrane potential, using the data points within the bin. For Fig. 4f,g, 
the minimum value of each tuning curve was calculated and subtracted 
from that tuning curve. Following the subtraction, the mean and s.e.m. 
values were calculated across all tuning curves within each θg − θp bin. 
For Extended Data Fig. 6, the only difference is that the minimum value 
of the tuning curves was not subtracted.

Determining the temporal relationship between neural activity 
and behaviour
The figures shown in Fig. 5h were created using the same method as 
previous jump analyses (see section ‘Classifying jumps as “corrected, 
high ρ“ versus ”uncorrected, low ρ”’) but pooling data across the PFL2 
and PFL3 corrected jumps. For Extended Data Fig. 7e, jumps were cat-
egorized as corrected as done previously, except jumps were deemed 
corrected if within 4 s following the cue jump, the cue was returned to 
within 40˚ for ±90˚ jumps, or within 75˚ for 180˚ jumps. This was done 
to select for jumps where the fly initiated a behavioural response quite 
rapidly following the cue jump, as behavioural response times varied 
across and within flies. For each corrected jump, the mean membrane 
potential was calculated from data in the 4 s preceding the cue jump and 
subtracted from the membrane potential in the 4 s following the cue 
jump, in order to focus on the change in membrane potential. Pearson’s 
linear correlation coefficient was then found between the absolute 
change in membrane potential from the 4 s following the jump and the 
lagged copies of the rotational speed over the same time window using 
MATLAB’s corr function. The mean and s.e.m. for each lag (stepped by 
0.01 s with a maximum and minimum lag of ±1 s) across all individual 
correlations was then calculated.

Examining single-cell responses around cue jumps
For Fig. 5e–g and Extended Data Fig. 7a–d, jumps were categorized as 
either corrected or uncorrected as described previously (see section 
‘Classifying jumps as “corrected, high ρ” versus “uncorrected, low ρ”’). 
For each jump, the difference between the mean membrane potentials 
calculated over the 1 s before and following each jump was found, and 
the distribution of these values is shown for both categories in Fig. 5f,g. 
A two sample Brown–Forsythe test was used to determine whether the 
variance of membrane potential changes was significantly different 
between the two categories.

Examining the relationship between PFL2 activity and 
consistency of head direction
For Fig. 5j,k and Extended Data Fig. 8, we binned data from each ROI 
(protocerebral bridge glomerulus) individually across the entire 
non-segmented trial to obtain the average response of each glomeru-
lus across different values of (θ − θg). Here we inferred θg from neural 
activity rather than behaviour, because we wanted to include epochs 
with low ρ, and it is difficult to infer θg from the fly’s behaviour when ρ is 
low. To infer θg from neural activity, we grouped PFL2 bump amplitude 
data points by θ in 5˚ bins, and we calculated the difference in bump 
amplitude between pairs of bins 180˚ apart. Our model predicts that 
the absolute bump amplitude difference should be largest between the 
bins representing the goal and anti-goal, and so we searched for the pair 
of opposing bins with the largest difference in bump amplitude, and 
we took θg as the value of θ corresponding to the bin with the smaller 
bump amplitude. For Fig. 5k, we plotted the largest bump amplitude 
difference against the trial’s average ρ value, as calculated over the 
entire trial. For the individual brain space plots shown in Fig. 5i,j and 
Extended Data Fig. 8, we used this θg value to calculate the directional 
error (θ − θg) and we binned the z-scored ΔF/F data points from each 
individual ROI into 90˚ bins based on their associated directional error 
value. We then plotted the z-scored ΔF/F within each directional error 

bin against neural space (ROI identity), with the rightmost glomeruli 
represented by an angular position of +180˚ and the leftmost by −180˚.

Note that this analysis assumes that θg does not change very much 
over the course of a trial. If θg did change dramatically, this would result 
in a lower ρ value for the trial and possibly also a reduced bump ampli-
tude range value, despite the fly potentially being in a state of high 
goal fixation strength for the entire trial. Flies that switched between 
periods of very strong and weak goal fixation would be expected to 
result in a similar potential mismatch between ρ and bump amplitude 
range. Therefore, the limitations of the analysis in Fig. 5k should, if 
anything, reduce our ability to detect a relationship between PFL2 
activity and behaviour.

Neurotransmitter predictions
There are 12 complete PFL2 cells, 13 complete PFL3 cells and one nearly 
complete DNa03 cell in the hemibrain connectome, with over 100 pre-
synapses associated with each of these cells. Although the axon terminal 
of DNa03 is not present in the hemibrain dataset, DNa03 makes many 
output synapses in the brain, so there are still many EM images of the 
presynaptic sites within this cell. A recent algorithm50,51 automatically 
infers transmitter identification from electron micrographs in the 
hemibrain dataset, and it predicts that, of these, 12 of 12 PFL2 neu-
rons are cholinergic, 13 of 13 PFL3 neurons are cholinergic and 1 of 1 
DNa03 neuron is cholinergic. This algorithm predicts transmitters on a 
per-synapse basis, with an error rate that varies with cell and transmitter 
type. For PFL2 and PFL3 neurons, 74% of high-confidence presynapses 
(confidence score greater than or equal to 0.5) are predicted as cholin-
ergic; the second most commonly predicted transmitter is glutamate 
(11%). For DNa03, 85.2 % of high-confidence presynapses are predicted 
as cholinergic; the second most commonly predicted neurotransmit-
ter is glutamate (5.6%). This algorithm used 3,094 hemibrain neurons 
in its ground-truth data to train the model and included ground truth 
neurons identified as cholinergic using light microscopy pipelines 
and antibody staining or RNA sequencing. Among this ground-truth 
population, 73% of presynapses are correctly predicted as cholinergic. 
All synapse predictions are available from ref. 51.

Connectome analyses
Cell connectivity data was obtained from the hemibrain connectome 
at https://neuprint.janelia.org/ and analysis of this data was performed 
using the neuprintr natverse 1.1 software package52 available at https://
natverse.org/.

Network model
Our model shares features with several other recent models of central 
complex steering control4,5,11–13. These studies, in turn, built upon the 
existing idea that vectors should be represented as sinusoidal spatial 
patterns of neural activity, so that vector addition can be implemented 
via the addition of sinusoids9,15,16,53,54. Webb and colleagues extended 
this idea to an explicit notion of how rotational velocity commands 
might be generated via vector addition, by using right–left shifted basis 
vectors9. While our model incorporates these previous insights, it also 
takes advantage of new information from the automatic assignment of 
neurotransmitters50, as well as our neurophysiological experiments. For 
these reasons, it differs from previous models in a few important ways, 
as noted below. Most notably, our model shows how this network can 
adaptively control steering gain based on the magnitude of directional 
error (via PFL2 cells). Previous studies did not mention PFL2 cells, or 
else proposed that they have a non-steering-related role (as putative 
positive regulators of forward speed5,13). In contrast, our model gives 
these cells a strong influence over steering, and it shows how they can 
prevent oscillations in the steering system by boosting steering only 
when error is high, while throttling down steering when error is low.

In broad terms, the aim of the model is to understand how steer-
ing signals arise from the head direction system. We take the steering 
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signal as the right–left difference in the activity of DNa02 descending 
neurons, because these neurons have been shown to predict and influ-
ence steering4:

θ t ϵd /d ∝ DNa02R − DNa02L + (5)

where θ is head direction and ε is a random term that accounts for neu-
ral noise and the influence of unmodeled circuits (that is, the influence 
of other brain regions that affect steering and other descending path-
ways4,55,41). Here, ( θ td /d  > 0) denotes rightward (clockwise) steering.

DNa02 receives direct input from central complex output neurons 
(PFL3 cells), as well as indirect input from PFL2 and PFL3 cells via DNa03. 
We model the activity of each DNa02 cell by taking the weighted sum 
of its synaptic inputs and passing this through a nonlinearity:
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where W  denotes an array of synaptic weights and f  represents a non-
linear activation function (see below). We define PFL3R cells as the 
members of the PFL3 cell class that project their axons to the right 
hemisphere; PFL3L cells are the members of the PFL3 cell class that 
project their axons to the left hemisphere. This differs from some pre-
vious work where PFL3 cells were divided according to dendritic loca-
tion rather than their axonal projection5.

We model the activity of each DNa03 cell by taking the weighted 
sum of its synaptic inputs and passing this sum through the same type 
of nonlinearity. Here the relevant inputs to each DNa03 cell are from 
PFL3 cells and PFL2 cells. Each PFL2 axon projects bilaterally to both 
right and left brain hemispheres, and we model these connections as 
right–left symmetric, because we do not find any systematic asymmetry 
in connectome data; thus we use the same weights for PFL2 connections 
onto DNa03R and DNa03L:
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We then combine equations (5)–(7) to obtain an expression that pre-
dicts steering as a function of PFL2 and PFL3 activity. Here we assume 
that DNa03 output is anatomically symmetric in the right and left hemi-
spheres. For compactness, we notate weight arrays using the abbrevia-
tions D2 (DNa02), D3 (DNa03) P2 (PFL2) and P3 (PFL3):
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If the activation function f  is linear, the PFL2 terms will cancel out 
and PFL2 cells will have no effect on steering; therefore, we require f  

to be nonlinear, at least for DNa03 cells. Below we will see that f  must 
also be nonlinear for PFL3 cells. For consistency, we give f  the same 
form for all cells in the model (see below). If f  is an expansive nonlin-
earity and if PFL2 cells are excitatory (as inferred from neurotransmit-
ter predictions, see above), then PFL2 cells will increase the gain of 
steering commands, because they push DNa03 cells up into the steeper 
part of the nonlinearity.

We specify the weight array W  for each connection type based on 
data from the hemibrain 1.2.1 (ref. 5) connectome, following the heu-
ristic that functional weights are roughly proportional to the number 
of synaptic contacts per unitary connection42,45. Connectome data 
imply that PFL3 → DNa03 connections are approximately equal in 
strength to PFL3 → DNa02 connections, on average; all these weights 
are set to 1 in our model. Meanwhile, connectome data imply that 
PFL2 → DNa03 connections are approximately 4-fold stronger than 
PFL3 → DNa02 and PFL3 → DNa03 connections, on average; therefore, 
we set PFL2 → DNa03 weights equal to 4. Finally, connectome data 
imply that DNa03 → DNa02 connections are approximately 12-fold 
stronger than PFL3 → DNa02 and PFL3 → DNa03 connections; therefore, 
we set DNa03 → DNa02 connections to 12. We verified that our conclu-
sions were not altered if we chose somewhat different scaling factors 
for these connections. Within each weight array W , we set all entries 
to the same value; in other words, all connections of the same type 
were given the same weight. All weights were positive, because all the 
presynaptic cells are cholinergic and thus excitatory (see section ‘Neu-
rotransmitter predictions’). Some previous studies assumed that PFL3 
cells are inhibitory5,11, which produces different model behaviour, 
because it aligns the system’s stable fixed point with the point of max-
imum PFL2 activity (not the minimum of PFL2 activity), resulting in 
more oscillatory steering around the goal.

Our model contains 1,000 PFL2 units, 1,000 PFL3R units, 1,000 PFL3L 
units and 1,000 goal cell units. We chose to use a large number of units 
for these cell types, so that model output resembles a quasi-continuous 
function over neural space, because this makes it easier to see how spa-
tial patterns of ensemble neural activity might resemble a sinusoidal 
function. In reality, however, there are only 12 PFL2 cells, 12 PFL3R cells 
and 12 PFL3L cells in the brain, according to the hemibrain 1.2.1 (ref. 5) 
connectome, so activity in the brain is actually more discretized than 
in our model. We verified that discretizing neural activity to match 
these numbers does not alter our conclusions.

In our model, the activity of each PFL cell depends on both head 
direction and goal direction. Δ7 cells provide most of the head direction 
input to PFL2 and PFL3 cells5. Available data indicate that there are two 
complete linearized topographic maps of head direction in Δ7 cells, 
positioned side-by-side and formatted as two cycles of a sinusoidal 
function over neural space5,24,47,56. The spatial phase of the Δ7 activity 
pattern should have an arbitrary offset (θ0) relative to the fly’s head 
direction, with different values of θ0 in different individuals and at 
different times in the same individual, because this is true of EPG cells, 
which provide head direction input to Δ7 (ref. 19). We define the offset 
θ0 as the angular position of the EPG bump at a head direction of 0°. For 
simplicity, we lump the contributions of EPG output and Δ7 cells, and 
we treat their lumped contributions as a sinusoidal function over neural 
space. Specifically, we model their lumped output as cos(θ − θ0 − h), 
where h is a vector with 1,000 entries that uniformly tile the full 360° 
of angular space, representing the preferred head directions of 1,000 
units. As the fly rotates rightward (clockwise), the sinusoidal pattern 
of neural activity moves leftward across the protocerebral bridge47,56.

We define PFL3 cells as R or L depending on whether they project 
to right or left descending neurons, respectively. The head direction 
maps in PFL3 cells are shifted ±67.5° relative to the map in Δ7 cells, 
according to hemibrain connectome data41 (not ±90° as reported pre-
viously5,12,13). Therefore, we model the head direction input to PFL3R 
cells as cos(θ − θ0 − h + 67.5°), and we model the head direction input to 
PFL3L cells as cos(θ − θ0 − h − 67.5°). Meanwhile, PFL2 cells sample one 
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full head direction map from the middle section of the protocerebral 
bridge. Therefore, their head direction map is offset by 180°, relative 
to the map in Δ7 cells. Thus, we model the head direction input to PFL2 
cells as cos(θ − θ0 − h + 180°).

We model the neural representation of the goal direction (θg) as 
another sinusoidal pattern over neural space, which is reasonable, 
because the goal direction can be thought of as just a special head 
direction, and head direction is represented as a sinusoid. Because 
PFL2, PFL3R and PFL3L cells receive almost identical inputs in the 
fan-shaped body, we assume the goal input is the same in the PFL2, 
PFL3R and PFL3L populations. The output of goal cells is modelled as 
A × cos(θg − θ0 − h); note that if there is a shift in the offset of the head 
direction system (θ0), the goal representation will shift accordingly. As 
the goal direction rotates rightward (clockwise), the peak of activity in 
goal cells will move leftward across the fan-shaped body. We use A = 1 
in our model implementations, so that the amplitude of the goal signal 
is equal to the amplitude of the head direction signal, but some of our 
results can be potentially explained by a mechanism that modulates 
A (Extended Data Fig. 8).

To obtain PFL activity levels, we sum head direction inputs and goal 
inputs. We then rescale this sum according to a scaling factor S. Finally, 
we pass the result through a nonlinear activation function f :

(9)

f S θ θ A θ θ

f S θ θ A θ θ

f S θ θ A θ θ

PFL2 = ( × (cos( − − + 180 ) + × cos( − − )))

PFL3R = ( × (cos( − − + 67 . 5 ) + × cos( − − )))

PFL3L = ( × (cos( − − − 67 . 5 ) + × cos( − − )))

g

g

g

0 0

0 0

0 0

h h

h h

h h

∘

∘

∘

Note that the activation function f  must be nonlinear or else the 
goal input will have no influence on the right–left difference in PFL3 
activity (ΣPFL3R − ΣPFL3L). We use S = 1 by default, except in Figs. 5c,d 
and 5j,k, where we investigate the effect of lowering S.

For simplicity, we use the same nonlinear activation function f  for 
all units in this model (meaning all PFL2, PFL3, DNa03 and DNa02 cells). 
Specifically, we use an exponential linear unit or ELU. We chose an ELU 
because it is biologically highly plausible (as a ‘soft’ expansive nonlin-
earity57) and it is a good fit to our data. The input to the ELU is an array 
M that represents the weighted sum of the inputs to each cell, over its 
lifetime, for all values of head direction (θ), goal direction (θg), scaling 
parameter (S) and cell index (j). We rescale M so that min(M) = −1 and 
max(M) = 1. Then, we apply the function

M M M

M M

ELU( ) = for ≥ 0

ELU( ) = e − 1 for < 0
(10)

M

before finally rescaling the resulting array MELU( ) so that it ranges 
from 0 to 1. These rescaling procedures are motivated by the idea that 
a neuron’s inputs are adjusted (over development and/or evolution) 
to fit into some standard dynamic range dictated by the biophysical 
properties of a typical neuron; rescaling in this way is useful because 
it ensures that every cell type has a similar overall level of activity, and 
every cell has an activation function with the same shape. Note that 
from the perspective of a single PFL cell, the goal input is a fixed value 
that does not change as head direction changes, and when this goal 
signal becomes more positive (again, from the perspective of a single 
PFL cell), it pushes the cell’s activity up to a steeper part of the nonlin-
ear function f , effectively amplifying the cell’s head direction tuning. 
This aspect of the model captures our experimental observation that 
head direction tuning is stronger in some cells than in other cells, in a 
way that depends systematically on the distance between the cell’s 
preferred head direction (θp) and the goal direction (θg). Notably, this 
observation emerges only at the level of spike rate, not membrane 
potential (Fig. 4f,g), and this implies that the nonlinearity f  is largely 
due to the voltage-gated conductances that transform total synaptic 
input into spike rate. We verified that the basic conclusions of our model 

are unchanged if we substitute different nonlinear activation functions 
(sigmoid or ReLU rather than ELU); other published models have 
assumed a multiplicative12 or divisive nonlinearity13.

To model steering behaviour over time (Fig. 5d), we closed the loop 
on the brain’s feedback control system for steering: we took the fly’s 
predicted rotational velocity ( θ td /d ) at each time point, and we fed it 
back into the head direction representation at the next time point, in 
order to compute updated PFL2 and PFL3 activity. The simulation was 
updated at a frequency of 10 Hz, and Fig. 5d shows 10 s of simulated 
time. We arbitrarily took 0° as the goal direction, so directional error 
is equal to θ. We drew the random steering component ε (equation (5)) 
from a Gaussian distribution, then we low-pass filtered ε(t) at 2 Hz, 
before rescaling ε(t) to enforce a standard deviation of 10°. This was 
done for different values of S, using the same frozen noise sample ε(t) 
in each case. In Fig. 5k, we used many independent random samples of 
ε(t), each simulation run included 100 s of simulated time, and we swept 
through many values of S, computing PFL2 bump amplitude and the 
consistency of head direction (p) for each run, with p = (one-circular 
variance(θ)). Model code was written and implemented in Python v.3.9.5.
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Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Model predictions. a, A resolver measures the current 
angle of some object (θc, e.g., the angular position of a shaft) and resolves that 
angle into its Cartesian components, xc and yc. The goal angle θg is similarly 
resolved into its Cartesian components, xg and yg. These components are cross-
multiplied, and their difference is used to generate a rotational velocity 
command dθ/dt ∝ xcyg - xgyc. We treat positive velocity values as clockwise  
(CW) rotations. In this example, the current angle is rotated CW relative to the 
goal, meaning a positive directional error. This drives a CCW rotation. But 
because the error at this point (●) is almost 180°, rotational speed will be small. 
Mittelstaedt suggested that a similar process might be implemented in the 
brain’s navigation centres to control an organism’s heading, and thus its path 
through the environment; this is known as “Mittelstaedt ‘s bicomponent 
model” of steering control7. Arrowhead denotes the system’s stable fixed 
point. b, Any vector can be represented as a sinusoidal function whose 
amplitude represents the magnitude of the vector, and whose phase represents 
the angle of the vector. Although it is convenient to represent these sinusoids 
as continuous functions, they can also be discretized into spatial activity 

patterns over neural space15,16. Adding these sinusoids is equivalent to 
performing vector addition. c, Model elements shown in Fig. 1d, here 
schematized as spatial activity patterns over neural space. The horizontal axis 
of this space represents the horizontal axis of the fan-shaped body. d, Model: 
goal input to PFL2&3 cells (left). When this spatial pattern is shifted leftward, 
this produces a clockwise shift in the model’s rotational velocity as a function 
of head direction (right). Arrowheads denote the system’s stable fixed point.  
e, Model: shifts in the spatial phase of goal input to PFL cells produce equal 
shifts in the head direction corresponding to the system’s stable fixed point. 
This is true for all values of S > 0. f, Model: The effect of silencing PFL2 cells on 
rotational velocity is similar to the effect of removing the indirect pathway 
(compare with Fig. 5c). In both cases, the rotational velocity function becomes 
equally steep around the goal and the anti-goal. g, Model: The effect of 
silencing PFL2 cells on steering dynamics is similar to the effect of removing 
the indirect pathway (compare with Fig. 5d). In both cases, the system oscillates 
when S is high.
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Extended Data Fig. 2 | Example images for mixed and PFL2 split-Gal4 lines.  
a, Left panel shows a max z-projection of the mixed PFL2/3 split-Gal4 line 
expressing GFP. Right panel shows a max z-projection from an MCFO clone  
with 3 PFL3 neurons (PFL3 identity confirmed by counting axons) along with 
unidentified neurons outside of the central complex. Across 7 brains, we 
counted 7 PFL3 neurons and 4 PFL2 neurons, no expression from other cell types 
was observed in the region of the lateral accessory lobes where PFL2 and PFL3 
axon terminals are found. b. Example cell fills obtained from electrophysiology 
experiments. The left 3 columns show an example PFL2 cell fill while the right 3 
columns show an example PFL3 cell fill. It was common for the axonal arbors in 
the lateral accessory lobe (LAL) to exhibit bright fluorescence, while the 

dendritic arbors in the protocerebral bridge and fan-shaped body exhibited 
relatively dim fluorescence. The identity (PFL2, PFL3, or other) of every 
recorded cell was confirmed by comparing the morphology of the filled cell to 
the known morphology of PFL2 and PFL3 neurons; of the 30 cells recorded, 12 
were verified in this manner as PFL2 cells, 15 were verified as PFL3 cells, and 3 
were found to represent other cell types. c. Left panel shows a max z-projection 
of the PFL2 split-Gal4 line expressing GFP. The right three panels each show a 
max z-projection for three brains, each containing one PFL2 neuron. The left  
and rightmost of these panels also show an unidentified neuron ventral to the 
central complex. Across 13 brains we counted 15 PFL2 neurons, and 0 other cell 
types in the central complex.
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Extended Data Fig. 3 | Jumps of the virtual environment during imaging 
experiments. a,. PFL2 bump amplitude, forward velocity, and rotational speed 
and behavior for 180˚ jumps and ±90˚ jumps of the virtual environment (mean 
± s.e.m across jumps). b, Absolute difference in right-left PFL3 signals (|ΣPFL3R 
- ΣPFL3L| ), forward velocity, and rotational speed and behavior for 180˚ jumps 

and ±90˚ jumps of the virtual environment (mean ± s.e.m across jumps). c, 
Difference in right-left PFL3 signals (ΣPFL3R - ΣPFL3L) and rotational speed, 
comparing +90˚ and −90˚ jumps. Clockwise (positive) jumps of the virtual 
environment produce higher activity in PFL3R, and rightward (positive) turns, 
as expected (mean ± s.e.m across jumps).



Extended Data Fig. 4 | Additional data on PFL2 chemogenetic stimulation. 
a, Expanded summary data for flies where PFL2 cells expressed P2X2 showing 
PFL2 voltage responses to 100-ms, 200-ms, 300-ms, and 500-ms pulses of  
ATP, as well as simultaneously recorded locomotor activity (mean ± s.e.m 
across jumps). Here we show forward velocity, absolute rotational velocity  

(i.e., rotational speed), and absolute sideways velocity (sideways speed).  
b, Same but for genetic controls where PFL2 cells did not express P2X2 (mean ± 
s.e.m across jumps). c, Response of one example PFL2 cell to all four pulse 
durations over a 120-s period.
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versus directional error, for both the PFL2-specific line and the PFL2&3 mixed 
line (mean ± s.e.m. n = 33 flies and n = 23 flies). b. Right minus left activity in the 
LAL versus rotational velocity, for both the PFL2-specific line and the PFL2&3 
mixed line (mean ± s.e.m. n = 33 flies and n = 23 flies). c. Left panel: summed 

right and left activity in the LAL versus rotational velocity, for both the 
PFL2-specific line and the PFL2&3 mixed line (mean ± s.e.m. n = 33 and n = 23 
flies). The dissimilarity in results for these two lines is further evidence that 
PFL2 cells make a minimal contribution to the mixed line. Therefore, we treat 
the results from the mixed line as a readout of PFL3 activity.
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Extended Data Fig. 6 | Changes in single cell head direction tuning curves 
depending on the distance between the cell’s preferred head direction  
and the goal head direction. a, Tuning curves for PFL2 and PFL3 cells across 
different distances between the cell’s preferred head direction and the goal 
head direction (mean ± s.e.m across jumps). The vertical offset of the cell’s 

head direction tuning curve changes depending on this distance but the 
amplitude of the tuning curves only change at the level of firing rate. b, The 
same as (a) but for model generated output. These are the same results as in 
Fig. 4f, g; the only difference is that we have not subtracted the minimum value 
of each tuning curve.
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Extended Data Fig. 7 | Jumps of the virtual environment during 
electrophysiology experiments. a, PFL2 recordings: absolute change in 
membrane potential, forward velocity, and rotational speed, for 180˚ jumps 
and ±90˚ jumps of the virtual environment (mean ± s.e.m across jumps, N is the 
number of jumps). b, Same but for PFL3. c, As expected, 180˚ jumps produce 
significantly larger changes in membrane potential, as compared to 90˚ jumps 
(PFL2 p = 0.041, PFL3 p = 0.0064, 2-sample, 2-tailed t-tests). d, Change in the 
difference between the fly’s head direction (θ) and the cell’s preferred direction 
(θp) resulting from each cue jump in the corrected and uncorrected categories. 
There was no significant difference in the variance of these values between the 
two categories (PFL2 p = 0.68793, PFL3 p = 0.99764, Brown-Forsythe test). 

There was also no difference between the corrected and uncorrected 
categories in the mean absolute ∆(θ-θp) (PFL2 p = 0.59721, PFL3 p = 0.99723, 
2-sample, 2-tailed t-tests). Thus, we might expect the two types of jumps to 
produce similar changes in membrane potential. The fact that we see a larger 
membrane potential response following a corrected jump suggests that the 
state of the network is different before a corrected jump, and this contributes 
to the behavioral response. e, Correlation between membrane potential and 
rotational speed, as a function of lag time (PFL2: n = 54, PFL3 n = 85, mean ± 
s.e.m across jumps). The maximum correlation is seen when we compare 
membrane potential with rotational speed 150 − 200 ms later. This is what we 
would expect if PFL2&3 cells are exerting a causal influence on behavior.
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Extended Data Fig. 8 | Modeling changes in behavioral state and PFL2 
dynamics. a, Path of three flies in a virtual environment over 10 min, one with 
high consistency of head direction (high ρ) and two with low ρ. The third path is 
shown in an inset with high magnification. The first two paths are reproduced 
from Fig. 5i. b, Same as Fig. 5j, but now including data and model for the third 
(purple) path. Here, to model, the third path, we adjust A rather than S. Whereas 
S scales the total synaptic input to PFL2 and PFL3 cells, A specifically scales the 
amplitude of the goal signal: PFL2 = f (S·(cos(θ-θ0-h + 180°) + A·cos(θg-θ0-h))) 
PFL3R = f (S·(cos(θ-θ0-h + 67.5°) + A·cos(θg-θ0-h))) PFL3L= f (S·(cos(θ-θ0-h-

67.5°) + A·cos(θg-θ0-h))) where f  is a nonlinear function, θ is head direction, θ0 is 
the angular position of the EPG bump at a head direction of 0°, θg is the goal 
angle, and h is a vector with entries that tile the full 360° of angular space 
(equation (9), Methods). Reductions in S decrease the overall scale of PFL2&3 
activity, without changing the dependence of bump amplitude on head 
direction. By contrast, reductions in A cause bump amplitude to become more 
invariant to head direction. The examples shown here suggest that changes in 
behavioral state may arise in some cases from changes in S, and in other cases 
from changes in A.
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Extended Data Fig. 9 | ∆F/F compared to z-scored ∆F/F. a, Left: ∆F/F binned 
into 1-s increments across an entire 10-min trial for a fly that exhibited low goal 
fixation, before and after z-scoring, compared with head direction. Right: ∆F/F 
is divided into 4 bins based on the fly’s head direction relative to the head 
direction associated with the lowest PFL2 bump amplitude. This is done 

separately for raw ∆F/F (top) and z-scored ∆F/F (bottom). Here, z-scoring 
reduces but does not eliminate the difference in bump amplitude across bins. 
b, The same as (a) but for a fly that exhibited high goal fixation during the 
10-min trial. Here, there is a strong variation in bump amplitude that persists 
across bins, even after z-scoring. These data are shown in Fig. 5j.
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Extended Data Fig. 10 | Path segmentation. To obtain an accurate estimate of 
the fly’s current goal direction (θg), and thus an accurate estimate of directional 
error (θ - θg), we needed to identify moments when θg might switch. We reasoned 
that a switch in θg, would coincide with a dip in head direction consistency. 
Therefore, we looked for moments when p crossed a threshold value, and we 
broke the path into segments at those moments of threshold-crossing. This 
allowed us to segment a path into straight segments and to identify points 

where goal direction seemed to have switched. We used a threshold value of 
p = 0.88 because this produced results that corresponded to our visual 
impression of when the fly’s goal direction seemed to have changed, but we 
also confirmed that our conclusions are similar for a range of threshold values. 
Here we show an example path recorded over 10 min. Time points belonging to 
different segments are alternately shaded gray and black. Dotted line shows 
the threshold used to define these segments.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection MATLAB 2019b, R2021a, ScanImage 2021, FicTrac v2.1 (https://github.com/rjdmoore/fictrac), neuprint (https://neuprint.janelia.org/), 
NeuprintR 1.1 (https://github.com/natverse/neuprintr) and natverse 1.1 (https://github.com/natverse/natverse)

Data analysis Motion correction of calcium imaging data was performed using NoRMCorre (https://github.com/flatironinstitute/NoRMCorre). Ball tracking 
was performed using FicTrac v2.1. Computational modeling and analysis of calcium imaging, behavior, and electrophysiology data was 
performed using custom code written in MATLAB (2019b, R2021a) and Python 3.9.5. Code will be deposited in a public repository (e.g., github 
or zenodo) at the time of publication.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The hemibrain v1.2.1 connectome data is available via a publicly accessible website, https://neuprint.janelia.org (also accessible via https://doi.org/10.25378/
janelia.11676099.v2). The datasets generated during the current study are available from the corresponding author on reasonable request. 
 
NOTE TO EDITOR: the datasets we collected are extremely large and have complex and unique metadata structures associated with them, making deposition of the 
data in a public repository impractical but are available from the corresponding author on reasonable request.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All sample sizes were chosen based on conventions in our field for standard sample sizes. These sample sizes are conventionally determined 
on the basis of the expected magnitude of animal-to-animal variability, given published results and pilot data. Statistical analyses were not 
performed until data collection was completed. No formal power calculations were performed due to the expected variability and exploratory 
nature of the dataset. 

Data exclusions We did not exclude any flies from the calcium imaging, iontophoresis, or electrophysiology datasets. Trial segments were excluded from 
analyses shown in Fig 1h, 2e-g, 3, 4d, and Extended Data Fig 5 if the fly only sampled a single heading during the entire segment, as this 
indicated that the visual arena did not initialize properly at the beginning of the segment (a technical problem that occurred rarely but in a 
few trials) . Trial segments were also excluded if the fly's total velocity was not above a set threshold for at least 2 seconds as this provided an 
insufficient time window to measure the fly's likely goal. In Fig 4f,g, and Extended Data Fig 6a data was excluded as described in the methods 
as required by the definition of the analysis to focus on segments with high associated values of rho. Rho threshold values were set 
empirically but we confirmed that small changes in this threshold did not change our conclusions, as described in the methods. 

Replication For all experiments, results were replicated in different individual flies across each dataset, the number of replicates performed are described 
in the figure legends. We did not omit any replicates on the basis of the experimental result. A few trials were excluded due to factors that 
prevented us from analyzing the data; all these cases of data exclusion are noted explicitly above and in the Online Methods

Randomization For PFL2 activation experiments (Fig. 2, Extended data Fig. 5) flies were grouped for analysis based on genotype. Beyond these cases, flies 
were not assigned to treatment groups. For all other experiments allocation of data into different categories is described in the associated 
methods sections. 

Blinding The experimenter was not blind to genotype in this study. This is because the different genotypes in the study were used to target a 
genetically encoded fluorescent indicator to different cell types, and so the genotype of the flies was obvious during the course of the 
experiments, based on the observed pattern of fluorescence.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used chicken anti-GFP (1:1,000, Abcam, # ab13970),  mouse anti-Bruchpilot (1:30, Developmental Studies Hybridoma Bank, nc82), Alexa 

Fluor 488 goat anti-chicken (1:250, Invitrogen, #A11039), Alexa Fluor 633 goat anti-mouse (1:250, Invitrogen, #A21050), 
streptavidin::Alexa Fluor 568 (1:1000, Invitrogen, #S11226) , rat anti-Flag (1:200, Novus Biologicals, #NBP1-06712B), rabbit anti-HA 
(1:300, Cell Signal Technologies, #NBP106712B), Alexa Fluor 488 goat anti-rabbit (1:250, Invitrogen, #A11039), ATTO 647 goat anti-
rat (1:400, Rockland, #612-156-120), Alexa Fluor 405 goat anti-mouse (1:500, Invitrogen, #A31553),  DyLight 550 mouse anti-V5 
(1:500, Bio-Rad, #MCA1360D550GA)

Validation The anti-GFP antibody (Abcam) is the standard antibody used in the field for labeling Green Fluorescent Protein (GFP) in Drosophila, 
note that this protein is not endogenously expressed in the Drosophila genome. Manufacturer's datasheet confirm that this anti-GFP 
antibody has been validated using western blot and immunohistochemistry to have specificity for Green Fluorescent Protein. 
Manufacturer also confirms the use of this antibody for immunolabeling of GFP in Drosophila across 3182 peer-reviewed manuscripts 
(e.g. Sykes et al. 2005 PMID: 16122730). The antibruchpilot antibody (nc82, DSHB) is a standard in the field as a background stain 
that labels presynaptic active zones to provide neuropil labeling for analysis of anatomy. This antibody was originally validated for use 
in Drosophila to label presynaptic active zones using immunohistochemistry and to be specific to Bruchpilot protein (Wagh et al. 
2006). The secondary antibody we used to label GFP expressing cells (Alexa Fluor 488 goat anti-chicken) was verified by us to target 
only those cells which express live GFP fluorescence. The secondary antibody used for background (neuropil) staining (Alexa Fluor 
488 goat anti-chicken, Alexa Fluor goat anti-mouse 633) was verified by us to reproduce the known patterns of neuropil borders 
(nC82 immunoreactivity) in published atlases (VirtualFlyBrain.org).  The streptavidin::Alexa Fluor 568 for visualizing cell fills was 
verified by us to only label a single cell in a given brain, the one filled with neurobiotin citrate during the experiment.  
 
Antibodies used for MCFO immunostaining (rat anti-FLAG, rabbit anti-HA, DyLight 550 mouse anti-V5, AlexaFluor 488 goat anti-
rabbit, ATTO 647 goat anti-rat) are validated in Drosophila melanogaster for this application in Nern et al., 2015. These antibodies 
have also each been validated prior to Nern et al: 
rat anti-FLAG: Manufacturer notes confirms that rat anti-FLAG (Cat#: NBP1-06712B) has also been validated as FLAG-Tag specific 
in Drosophila (PMID: 26573957). Rabbit anti-HA: Manufacturer confirmed rabbit anti-HA antibody has Epitope tag specificity using 
western blot and immunohistochemical analysis comparing untransfected with HA-tag transfected COS cells (https://
www.cellsignal.com/products/primary-antibodies/ha-tag-c29f4-rabbit-mab/3724#validation-data). DyLight 550-conjugated mouse 
anti-V5: Manufacturer notes confirm that the DyLight 550-conjugated-Mouse anti V5-Tag, clone SV5-Pk1 recognizes the sequence, 
IPNPLLGLD, present on the P/V proteins of the paramyxovirus, SV5 (Dunn et al.1999) and can be used to detect recombinant proteins 
labeled with this V5-tag (Randall et al.1993 and Zhao et al. 2005).

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals We used female Drosophila melanogaster flies for all experiments. Newly eclosed flies were collected ~16-24 hrs (electrophysiology) 
or 1-4 days (imaging) before the experiment.  
 
The following stocks were obtained from Well Genetics: w[1118];P{VT007338-p65ADZp}attP40/CyO;+ (A/SWG9178), 
w[1118];P{VT033284-p65AD}attP40/CyO;+ (A/SWG8077).  
 
The following stocks were obtained from the Bloomington Drosophila Stock Center (BDSC) and published previously: 
P{y[+t7.7]w[+mC]=VT044709-GAL4.DBD}attP2 (BDSC_75555), P{y[+t7.7]w[+mC]=p65.AD.Uw}attP40; P{y[+t7.7] 
w[+mC]=GAL4.DBD.Uw}attP2 (BDSC_79603), P{w[+mC]=UAS-Rnor\P2rx2.L}4/CyO (BDSC_91223), w[1118]; PBac{y[+mDint2] 
w[+mC]=20XUAS-IVS-jGCaMP7b}VK00005. w+;20XUAS-cyRFP {VK00037};+ was obtained in house and P{20XUAS-IVS-
mCD8::GFP}attP40 was a gift from Gerry Rubin and has been published previously 
 
We constructed a split-Gal4 line to target PFL2 neurons, w+ ;P{VT033284-p65AD}attP40; P{y[+t7.7];P{VT007338-Gal4DBD}attP2. We 
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validated the expression of this line using immunohistochemical anti-GFP staining, and also using Multi-Color-Flip-Out to 
visualize single-cell morphologies. We also constructed a split-Gal4 line that targets PFL2 & PFL3 neurons in the lateral accessory 
lobes, w+;P{VT033284-p65AD}attP40;P{y[+t7.7] w[+mC]=VT044709-GAL4.DBD}attP2. We validated the expression of this line using 
immunohistochemical anti-GFP staining, and also using Multi-Color-Flip-Out. 
(MCFO) to visualize single-cell morphologies. 

Wild animals No wild animals were used in this study.

Reporting on sex All animals used in this study were female, due to the experimental difficulty presented by the use of male flies (which are smaller).

Field-collected samples No field samples were collected for this study.

Ethics oversight No ethical approval was required because experiments were performed on Drosophila melanogaster.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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