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Spatial transcriptomics reveal neuron-
astrocyte synergy inlong-term memory
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Memory encodes past experiences, thereby enabling future plans. The basolateral
amygdalais a centre of salience networks that underlie emotional experiences and
thus has akey role in long-term fear memory formation'. Here we used spatial and
single-cell transcriptomics to illuminate the cellular and molecular architecture of the

role of the basolateral amygdalain long-term memory. We identified transcriptional
signatures in subpopulations of neurons and astrocytes that were memory-specific
and persisted for weeks. These transcriptional signatures implicate neuropeptide
and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and
synaptic connectivity as key components of long-term memory. Notably, upon
long-term memory formation, aneuronal subpopulation defined by increased Penk
and decreased Tac expression constituted the most prominent component of the
memory engram of the basolateral amygdala. These transcriptional changes were
observed both with single-cell RNA sequencing and with single-molecule spatial
transcriptomicsinintactslices, thereby providing a rich spatial map of amemory
engram. The spatial data enabled us to determine that this neuronal subpopulation
interacts with adjacent astrocytes, and functional experiments show that neurons
require interactions with astrocytes to encode long-term memory.

Consolidation of newly acquired memories into long-term memories
andreconsolidation of long-term memory during recall requires tran-
scription and translation, as shown by extensive studies of the role of
gene expression duringlearningand memory?>. Althoughkey transcrip-
tion factors in learning and short-term memory, such as CREB*, have
beenidentified, the overall nature of long-term memories, which can
persist for alifetime, remains unknown. Gene-expression changes are
known to be essential for long-term memory, but the cell types and the
nature of the transcriptional programmes involved are incompletely
understood. Moreover, multiple brainregions have beenimplicatedin
long-term memory formation and storage but it is unknown whether
similar transcriptional processes are used in different regions of the
brain.

Here, we performed high-resolution spatial and single-cell tran-
scriptomics to comprehensively analyse the changesinthe transcrip-
tomic landscape during long-term memory formation in mice. We
identified memory-specific gene-expression changes in the amyg-
dala, acomplex brain region within which the basolateral amygdala
(BLA) is implicated in short- and long-term memories associated
with salient experiences, such as fear. Lesions of the BLA abolish
both short-term and long-term fear memory?®. In fear learning par-
adigms, suppressing RNA transcription in the BLA before training
attenuates fear memory consolidation without affecting the freez-
ing response to a foot shock®. Inhibiting protein synthesis in the
BLA immediately after training’ or after reactivation® also impairs

long-term memory consolidation, but does not affect short-term
memory recall®,

Our results show that neurons and astrocytes in the BLA exhibit
memory-specific persistent transcriptional signatures that correspond
to multiple signalling pathways but are highly specific to asmall subset
of cells that represent engram cells. We identified a subpopulation of
neurons withincreased Penk and decreased Tac expression (P*T neu-
rons) that constitute the most prominent part of the long-term memory
engram. Using spatial transcriptomics, we discovered a population of
astrocytesthatareadjacentto P*T neurons, undergo gene-expression
changes in forminglong-termmemory, and arerequired for long-term
memory consolidation. Finally, integration of these results with previ-
ous data’® onlong-term contextual fear memory in the medial prefron-
tal cortex enabled us to examine region-specific versus general gene
expression changes. This integration revealed that similar molecular
programmes and cell types are used inlong-term fear memories across
bothregions of the brain.

Persistent changes during fear memory recall

In TRAP2 mice, cellular activation induces expression of tamoxifen-
dependent Cre-ERT2 recombinase embedded in the Fos gene. As a
result, TRAP2 mice crossed to Ail4 tdTomato (tdT) reporter mice
express tdT only if they are both stimulated and exposed to tamox-
ifen, although a stochastic background activation always remains'.
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Fig.1|Spatial transcriptomics resolves the engram assembly and
memory-associated genes. a, Experimental scheme for tracing engram cells
inafear conditioningmodel. Active cells during the return phase were
permanently tagged with tdTomato and used for differential analyses of
engram cells. 4-OHT, 4-hydroxytamoxifen. b, Freezing rate during the recall
phase.n=5mice; dataaremean +s.e.m.; unpaired two-tailed Student’s t-test,
P=2.4x107°c-j, Multiplexed error-robust fluorescence in situ hybridization
(MERFISH) data. ¢, Engram cells (tdTomato®) in BLA revealed by MERFISH.
FR:n=8sections, NF:n=7sections; dataaremean + s.e.m.; unpaired two-tailed

We trained TRAP2 mice crossed to Ail4 mice by fear conditioning on
day 0 and triggered recall of long-term fear memories by returning
the mice to the training context 16 days later with simultaneous injec-
tion of tamoxifen. We then analysed the mouse amygdala on day 25,
nine days after recall, by spatial transcriptomics and full-length deep
single-cell RNA sequencing (scRNA-seq) (Fig. 1). As controls for this
‘fear training and recall’ (FR) condition, we used ‘home cage’ (HC) mice
that were leftin their home cage, and ‘no fear’ (NF) and ‘no recall’ (NR)
mice that were exposed to all manipulations except that they received
either no electrical shock during training (NF) or were not subjected
to therecall condition (NR). The goal of this experimental design was
to mark engram cells that are activated during the recall and become
tdT", enabling us to identify fear-specific memory genes that are dif-
ferentially expressed in these engram cells and are not induced by
salience only’ (the NF condition).

A spatially resolved ensemble of engram cells

To visualize the gene-expression patterns of sparsely distributed
engram cells, we performed spatial transcriptomic analyses with

Student’s t-test.d, Unbiased clustering of all neurons. e, Neuronal markers and
cell-type annotations resolved in space. f, Unbiased clustering of neurons
within BLA. g, Marker genes of BLA neuronal subtypes. Avg., average; exp.,
expression. h, Neuronal markers and cell-type annotations of BLA. i, Fear
memory-induced gene expressioninexcitatory engram neurons of BLA.
P<0.05,unadjusted Pvalue by Mann-Whitney-Wilcoxon test. FC, fold change;
NS, notsignificant. j, Fear memory-induced gene expressionininhibitory
engram neurons of BLA. P< 0.05, unadjusted Pvalue by Mann-Whitney-
Wilcoxon test.

single-molecule resolution®, which enabled us to study TRAPed
(tdT") ‘engram’ cells in situ (Fig. 1c and Extended Data Fig. 1a,b). Fear
memory consolidationin FR miceincreased the number of tdT" engram
neurons compared with NF mice, especially inthe BLA, paraventricular
nucleus of the thalamus (PVT), ventral posterior complex of thalamus
(VP) and zona incerta (ZI) (Extended Data Fig. 1c-i). The slice-based
analysis we used provides spatialinformation and preserves the native
cellulararchitecture of the tissue, avoiding a potential dissociation bias.
Using acustomized panel of 158 genes derived from scRNA-seq data, we
observed 10 major classes from more than 2.3 million cells (Extended
Data Fig. 1j-m), including more than 1.2 million neurons that formed
at least 23 types (Fig. 1d,e and Extended Data Fig. 2a,b) and 9 major
non-neuronal cell types (Extended Data Fig. 1j-m). Consistent with a
previous study®, neurons accounted for 53.5% of the cells.

Within the BLA, we identified astrocytes, microglia, oligodendro-
cytes, oligodendrocyte precursor cells (OPCs), endothelial cells,
pericytes (Extended Data Fig. 2e,f) and eight types of neurons (two
excitatory and six inhibitory) (Fig. 1f-h). The neuron types express
distinctive marker genes, including Dkkl1 and Tshz2for excitatory neu-
rons, and Npy, Htr3a, Pvalb, Sst, Baiap3 and Six3for inhibitory neurons
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(Fig. 1f-h). Differentially activated tdT" neurons in the FR condition
presumably correspond to engram cells that are part of a persistent
memory signature, since we are instituting the memory recall two weeks
after training and are analysing gene expression after a further nine
days. However, the handling of the mice in the three control conditions,
especially during the NF condition, may also activate gene expression
that is unrelated to memory. Because of this circumstance and pos-
sibly owing to non-specific background activation, some tdT" cells
are detected evenin the control conditions. Therefore, we computed
differentially expressed genes (DEGs) between the tdT* cells in the NF
and FR conditions. Since these DEGs were monitored nine days after
memory recall, the DEGs are likely to represent genes whose expression
isinduced during the recall as afunction of the previous fear memory
training and are persistently expressed after being induced. Among
15,441 neurons inthe BLA, 358 (3.23%) tdT* neurons were identified
in the FR condition versus 166 (2.06%) neurons in the NF condition
(Fig. 1c). Differential gene-expression analysis in excitatory neurons
identified that early response genes (Duspl and Fos) and the neuro-
peptide gene Penk were upregulated in the FR condition over the NF
condition (Fig. 1i). Genes associated with synaptic vesicles (such as Sv2c)
and Penkwere upregulated in the FR condition over the NF conditionin
inhibitory engramneurons, whereas the neuropeptide gene tachykinin
2 (Tac2) was down-regulated (Fig. 1j). A similar Penk-to-Tac2 shift was
not observed in total neurons (Extended Data Fig. 2j-1).

A memory engram gene signature inthe BLA

To study engram cells in depth, we used full-length deep scRNA-seq
experiments® with an average transcript detection of 9,144 genes
per neuron. We analysed the transcriptome of 6,361 cells of the BLA,
whichenabled identification of allmajor cell types, including neurons
(Rbfox3"), astrocytes (Slc1a3"), microglia (Ctss*), oligodendrocytes
(PIpI"), OPCs (Cspg4*), endothelial cells (Cldn5*) and ependymal cells
(Kcnj13") (Fig. 2a,b and Extended Data Fig. 3a). Consistent with previ-
ous reports™?, our scRNA-seq results are highly correlated with spa-
tial transcriptomic analyses (Supplemental Fig. 1a-d). The relative
abundance of cell types was conserved among fear memory training
conditions (Extended Data Fig. 3b), suggesting that long-term fear
memory formation does notalter the cellular architecture of the BLA.

Subclustering of 2,137 neurons (456 of which were tdT*) revealed
7 subtypes (Extended Data Fig. 3d-h) characterized by distinctive
marker genes. These subtypes were consistently observed in the four
training conditions (Extended Data Fig. 3e) and validated by spatial
transcriptomic data (Fig. 1f,g and Extended Data Fig. 3f,g). All subtypes
contained tdT" cells, suggesting that all subtypes were activated during
recall (Extended Data Fig. 3f).

We then analysed which genes characterize tdT" cells. In addition to
tdT, genes encoding neuropeptides (for example, vasoactive intesti-
nal peptide (Vip) and Tac2) and the immediate-early gene Nr4al were
enriched in tdT" neurons. These genes were consistently observed in
boththe FRand NF conditions (Fig. 2c), but notinthe HC and NR condi-
tions (Fig. 2d and Extended Data Fig. 3i-I), suggesting that the salient
experience of placing the mice into the fear conditioning chamber in
the NF condition is sufficient to induce a long-lasting change in gene
expression. Of note, in line with our observation that Vip is the most
prominently induced gene in tdT" neurons, it has been reported that
Vipinterneurons are activated by salient cuesinthe BLA and that such
activation is required for learning'®. However, given that Vip was also
induced in the NF condition, it clearly is not a fear engram gene.

Memory-associated gene expression

Three of the seven types of BLA neurons are glutamatergic (BLA.
EX.DkkI1, BLA.EX.Syt6 and BLA.EX.Lpl) and four are GABAergic (BLA.
Int.Gpr88, BLA.Int.Vip, BLA.Int.Crhbp and BLA.Int.Pvalb) (Extended
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DataFig.4a). Notably, the FR condition recruited asignificantly higher
number of tdT" neurons than the NF condition withinthe BLA.Int.Gpr88
population (Extended Data Fig. 4b), whichis marked by the expression
of Gpr88, synaptic vesicle glycoprotein 2C (Sv2c) and agene encoding
an AMPA-receptor associated protein (Cacng5) (Extended DataFig. 3h).
To identify transcriptional changes that are specifically induced by
remote memory recall in engram neurons, we screened for DEGs in
TRAPed tdT" neurons of FR mice versus NF mice. Single-cell resolution
enables acomparison of neurons of the same type and full-length mRNA
sequencing provides high-sensitivity identification of genes that are
specifically associated with memory consolidation and recall. Strict
criteriawere applied to remove non-specific DEGs. First, DEGs that were
also differentially expressed between non-TRAPed cellsin FR versus NF
mice were removed, which minimized the effect of basal activation.
Second, only DEGs that were differentially expressed when FR cellsare
compared toNRand HC controls wereincluded, ensuring that DEGs are
notjustaconsequence of afear experience. Finally, each DEG had to be
expressed inatleast one-quarter of cells and with afold change of at least
1.75. These stringent criteriaidentified 107 ‘remote-memory-associated
DEGs’in 6 types of neurons (Fig. 2e and Extended Data Fig. 4c-g).
Inhibitory neuronsinthe BLA are knownto regulate fear memory con-
solidation " inacell-type-specific manner'®?°. Of note, the GABAergic
inhibitory neurons BLA.Int.Gpr88 and BLA.Int.Crhbp exhibited more dif-
ferentially expressed genes than the other neurons (Fig. 2e and Extended
Data Fig. 4c-g), suggesting that inhibitory neurons in BLA are more
activelyinvolved inmemory consolidation. The largest effect of remote
memory recall was observed with two neuropeptide genes that were
different from those detected in salience-activated gene-expression
changes: Tacl, whose expression was suppressed more than sixfold, and
Penk, whose expression was increased more than fourfold in BLA.Int.
Gpr88neurons (P*T neurons) (Fig. 2e). Asaresult, tdT" engram neurons
inthe FR condition showed amuch higher ratio of Penkto TacithantdT*
neuronsinthe NF conditionin BLA.Int.Gpr88 neurons (Extended Data
Fig.4h,i).Inaddition, we found a strong enrichment of genes involved
in MAPK pathways (Dusp1, Dupsé6, Nefl, Lamtor3, Jun, Junb and Map2k2)
(Fig. 2e and Extended Data Fig. 4c-g). Thisresultis consistent with the
implication of MAPK pathways in memory consolidation in a variety
of learning paradigms?, including fear memory consolidation in the
amygdala?. Genes related to signalling in general, in particular BDNF
signalling (Egr1, Vsnll, Duspl, Hnrnphl, Id2, Rampl, ler2 and Hspala)
(Fig.2e and Extended DataFig. 4c-g), were also found to be differentially
regulated by fear memory. In the amygdala, BDNF signalling has been
reported to be essential for fear memory consolidation?, fear memory
extinction®, episodic memory formation® and long-term potentia-
tion?. Notably, BDNF and MAPK have been shown to relay signalling
cascades and enhance stress-induced contextual fear memory?.
Because inhibitory neurons in the BLA exhibited engram-specific
gene-expression changes, we further subclustered these inhibitory
neurons whichrevealed five subtypes: Blaln.Sst, BlaIn.Vip, BlaIn.Gpr88,
Blaln.Calm1 and Blaln.Pvalb (Extended Data Fig. 5a—e). Differential
analysis of these TRAPed tdT" inhibitory neuron subtypes between FR
and NF uncovered 159 genes that were associated with memory consoli-
dation (Fig. 2f and Extended DataFig. 5f-h). Transcription factor enrich-
mentanalysis® of the FR-induced genes revealed a strong enrichment
of target genes of CREB (Extended Data Fig. 5j). The CREB signalling
pathway is widely implicated in long-term memory consolidation®.
Although immediate-early genes (IEGs) have been widely associ-
ated with synaptic plasticity, a subset of IEGs was also regulated by
long-term fear memory consolidation in addition to those induced by
salience alone, including the early immediate-early response 2 (/er2),
early growth response1(Egrl),Jun,Junb, dual specificity phosphatase
1 (DuspI) and neuronal PAS domain protein 4 (Npas4) genes (Fig. 2f
and Extended Data Fig. 5f-h). In particular, Egrl was reported to be
requiredinlateralamygdalafor long-term fear memory consolidation
withoutimpairingacquisition or short-term memory>’. Npas4 encodes
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Fig.2|Memory consolidation evokes cell-type-specific transcriptional
programmes. a-e,scRNA-seqdata. a, Clustering of all cellsin BLA using
Smartseq3 sequencing. b, Distinct markers for each cluster of neurons. ¢, DEGs
of TRAPed neurons over non-TRAPed neuronsin the FR (x axis) and NF (y axis)
condition, red denotes significant DEGs (P < 0.05inboth conditions (axes),
two-sided Mann-Whitney-Wilcoxon test). d, Quantification of genes enriched
inTRAPed neurons. Gene expressionis mostly conserved between FRand NF,

aCa” influx-dependent protein that regulates synapse developmentin
inhibitory neurons®, marks a subset of fear induced engram neurons
in parallel with FOS engrams™, and is required for both short-term and
long-term contextual fear memory*. Previous work in hippocampus
showed that Penk, Dusp1, CREB, Npas4 are alsoinvolved in fear memory™.

Wefoundthat several genes associated with neuropeptides were reg-
ulated during fear memory consolidation: secretogranin 2 (5cg2) and
Penkwere upregulated, whereas tachykinin1(7acI) was down-regulated
in BlaIn.Gpr88 neurons (P'T™ neurons) (Fig. 2f). Scg2 was recently
shown to perform an instructive role in establishing the network of
Fos-activated neurons®, Similarly, Penk was upregulated in both Blaln.
Sst and Blaln.Calm1 neurons, in which the neuropeptides cocaine-
and amphetamine-regulated transcript protein (CART, encoded by
Cartpt) and Tacl were down-regulated, respectively (Extended Data
Fig. 5f,h).InVip neurons, Tac2 and Vip were down-regulated (Extended
Data Fig. 5g). Pcskin (which encodes the neuroendocrine precursor
peptidase ProSAAS) was upregulated in both Blaln.Sst and Blaln.Vip
neurons (Extended Data Fig. 5f,g); Pcskin has been reported to con-
trol prohormone processing and to be required for fear memory>®.
Together, these datashow that engram neurons switch the production
of neuropeptides during memory consolidation, implicating neu-
ropeptides as key agents in long-term memory formation. Neurons
often express multiple neuropeptides that are released upon neuronal
activation® and stimulate diverse signalling pathways in target cells by
bindingto G-protein-coupled receptorsto control neural activity and
synaptic plasticity, processes that are essential for memory formation
and emotional behaviour. Itis thus plausible that neuropeptides are
important in fear memory, which suggests that they might control
cell signalling beyond activation of engram neurons. Moreover, more

0 0.8 2

log,fold change

whereas genes expressedin FRand NR are mostly distinct. e, Volcano plot
showing DEGsin FRversus NF of TRAPed BLA.Int.Gpr88 neurons, atype of P'T
neuron. P<0.05, unadjusted Pvalue by Mann-Whitney-Wilcoxon test. f, DEGs
inFRversus NF of TRAPed BlaIn.Gpr88 neurons, atype of P'T neuron. Each
columnrepresentsone cell. EC, endothelial; MG, microglia; oligo,
oligodendrocyte.

than half of the DEGs associated with remote memory have links to
neuronal disorders such as dementia, mental retardation, epilepsy,
schizophrenia and Charcot-Marie-Tooth disease types I and II. This
indicates a potential correlation between the functional role of these
genesinregulating remote memory and theirinvolvementinthe devel-
opment of neurological disorders.

Therole of astrocyte remodelling

Neuron-glia interactions are thought to have an essential role in
memory consolidation®. Moreover, astrocytes respond to neuronal
activity with neuronal activity-dependent sharp tuning®. We found
that neurotensin (Nts) isinduced during memory formation in engram
neurons and that the neurotensin receptor gene Nt¢sr2is primarily—and
perhaps exclusively—expressed in astrocytes (Extended Data Fig. 6a),
suggesting that long-term memory formation may alsoinvolve induced
persistent gene-expression changes in astrocytes. Indeed, among
non-neuronal cells, only astrocytes exhibited consistent transcrip-
tional changes associated with remote memory consolidation (Fig. 3).
Unbiased clustering of 1,637 astrocytes identified 5 cell states that might
be considered astrocyte subtypes (Astro_1-Astro_5) (Extended Data
Fig. 6b-d). Cellular trajectory analyses based on RNA dynamics*® and
gene-expression patterns* suggested a cellular pathway connecting
these subtypes (Fig. 3a and Extended Data Fig. 6e).

Astrocytes engageinlocalinteractions with neurons and other types
of glia. These interactions are increasingly recognized for sensing and
modulating neural circuit activity and for contributing to information
processingin the brain, including memory consolidation***, Astro_4
cells,andtoalesser extent Astro_1and Astro_5 cells, exhibited relatively
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DAPI Aldh111
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Fig.3|Remote memory consolidation activates astrocytes. a, Cellular
trajectory estimation for BLA astrocytes, based on RNA maturation from
scRNA-seq data. b, Fosexpression of FRand NF astrocytes from scRNA-seq

high expression levels of Fos, suggesting that the final astrocyte cell
stateis an active state (Extended Data Fig. 6f,g). Of note, Astro_4 cells
also express the GABA (y-aminobutyric acid) transporter gene Slc6a6
and the glutamine transporter gene Slc38al (Extended Data Fig. 6d,i),
consistent with functional rolesin regulating neurotransmitter levels.
Notably, memory consolidation promoted the transition from Astro_2
to Astro_5 cells and reduced the proportion of Astro_1 cells (Fig. 3a
and Extended Data Fig. 6e,h). Astro_1cells are significantly less active,
whereas Astro_5are moreactive, inthe FR thanin the NF condition sug-
gesting that memory consolidation shifted active astrocytes from the
Astro_1to the Astro_5 state (Fig. 3b). Arecent study using in vivo fibre
photometry showed that astrocytes in the BLA are activated during
acquisition and expression of contextual fear memory**, consistent
with our observation that the astrocyte cell types are remodelled by
fear memory consolidation (Fig. 3a and Extended Data Fig. 6e-h).

The expression of Synel in astrocytes is relatively low in BLA under
basal conditions (Fig. 3c and Extended Data Fig. 6j,k) but was induced
inthe FR condition (Fig.3cand Extended Data Fig. 6i,k). Inagreement
with the scRNA-seq data, we also found in the spatial transcriptomics
dataasubcluster of astrocytes that were induced by the FR condition
(Extended Data Fig. 6a-d). This subcluster expresses high levels of
Synel, Utp14b and Flt1 (Extended Data Fig. 6d). Notably, FitI is a vas-
cularendothelial growth factor receptor thatis expressedinactivated
astrocytes®, may induce angiogenesis*, and could facilitate synap-
togenesis*®. An astrocyte subtype marked by SON, MACFI and SYNE1
was recently identifiedin the human anterior cingulate cortex*. Utp14b
was found to be upregulated inastrocytes of the neocortexin stressed
mice*®, Humans with Synel mutant are more likely to develop autism*
and bipolar disorder®®. In activated Astro_4 cells in the FR condition,
glutathione-independent prostaglandin D synthase (Ptgds) and mito-
chondrial glutathione transporter (Slc25a39) genes were significantly
induced (Extended DataFig. 60), suggesting that prostaglandin D may
alsobeinvolvedin memory consolidation. Meanwhile genes associated
with glutamate transport (SlcIa2 and Slc1a3) and glutamine synthe-
sis (Glul) were upregulated in FR compared with NF in Astro_3 cells
(Extended DataFig. 6n).

To functionally assess whether activation of astrocytes contributes
to memory formation, we selectively inhibited astrocyte activation
in the BLA during fear memory formation using expression of the
plasma membrane Ca*" ATPase CalEx, which removes calcium from
astrocytes® (Fig. 4a,b). After fear conditioning training, mice were
bilaterally injected with adeno-associated viruses (AAVs) expressing
CalEx under control of the astrocyte-specific GfaABC,D promoter,
usingmCherry asamarker and tdTomato-only expression as a control.
Twenty-one days later, mice were subjected to contextual memory
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testsinthe original and then an altered context, followed by acued fear
conditioning test and open field measurements (Fig. 4a). We found that
both contextual and cued fear conditioning memory wereimpaired by
the suppression of astrocyte activation, whereas the response to the
altered context remained unchanged and low (Fig. 4b). No change in
the open field test was detected (Extended Data Fig. 7k-n). Previous
studies have shown that activating astrocytesinthe BLA promotes fear
memory formation®, that activating CAlastrocytes enhances memory
allocation with increased neuronal activity inlearning®, that astrocyte
activationin the hippocampusis required for long-term memory>*, and
that CAlastrocyte activationisinvolved inencoding reward location®.
This evidence further supports the notion that the activity of astrocytes
is functionally linked to memory formation.

Astrocyte-neuroninteractions

Engram neurons are thought to be randomly distributed in the amyg-
dala and other brain regions. However, some spatial structures are
critical for memory formation and retrieval. Perineuronal nets are
thought to modulate neuronal electrical activity by acting as a physical
barrier. Perineuronal nets have been proposed to be the code book of
long-term memory*®, to be required for memory precision by allocat-
ing sparse engram cells”, and to contribute to memory stabilization
for remote retrieval®. We tested whether a particular spatial cellular
environment may be associated with engram neurons. By analys-
ing the cells surrounding tdT" neurons in the BLA (within a radius of
30 um) (Fig. 4c), we detected enriched expression of /gfbp2 (encod-
inginsulin-like growth factor binding protein 2) in peri-engram astro-
cytes, whereas gene-expression patternsin peri-engram neurons were
indistinguishable from those of other neurons (Fig. 4d and Extended
Data Fig. 8a—c). IGFBP2, an astrocytic secreted protein, has multiple
effects on neurons, including changes in synaptic transmission and
excitability®®. We found that peri-engram astrocytes are more likely
tobe Al astrocytes among Al-5 BLA astrocytes revealed by MERFISH
(Extended DataFigs. 6band 8d) and the expression of igfbp2is enriched
in Aland Astro_1 astrocytes (Extended data Fig. 8f,g). We found that
peri-engram astrocytes exhibited a higher Fos activationin the FR than
inthe NF condition (Fig. 4€). Consistent with this findinginthe BLA, we
observed that /gfbp2is also enriched in the peri-engram astrocytesin
medial prefrontal cortex (mPFC) (Extended Data Fig. 9a-1). Our spatial
transcriptomic data not only localized the sparse engram cells and
identified the signatures of cells in close vicinity to engram cells, but
alsorecapitulated the scRNA-seq-defined cellular structure and gene
expression of engram, and the activation of astrocytes by memory
consolidation.
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Fig.4|Astrocyticactivation modulates long term memory consolidation.
a, Experimental scheme. AAV expression constructs GfaABC,D-mCherry-CalEx
(or GfaABC,D-tdTomato) were injected bilaterally into BLA C57B/6 mice12h
after fear conditioning training. Mice were subjected to the context test,
altered context tone testand open field test at the indicated times. b, Mice
expressing CalEx exhibited reduced freezing compared with the tdT control
groupinthe context test (tdTomato: n=10 mice, CalEx: n =9 mice), both
groups exhibited comparable freezingin altered context but CalEx showed
reduced freezingin the tone test thantdT control group (n =10 mice).
Dataare mean *s.e.m.; two-tailed Student’s t-test. ¢, MERFISH analysis shows
spatially resolved peri-engram cells surrounding tdT" neurons. d, Igfbp2
expressionisenrichedinastrocytes surrounding tdT' neurons. MERFISH data;

Toascertain the functional significance of theincreased expression
of Igfbp2in peri-engram astrocytes for memory formation, we deleted
Igfbp2inthe BLA prior to fear memory induction. We bilaterally injected
AAVs encoding a control or an Igfbp2-specific gRNA into the BLA of
mice expressing Cas9 seven days before fear training (Fig. 4f). Three
weeks post-training, we assessed these mice in contextual memory
paradigms, using both the original and an altered context, followed by
acued fear conditioning test and an open field test (Fig. 4f). The Igfbp2
knockoutinthe BLAled to pronounced deficits inboth contextual and
cued fear conditioning (Fig. 4g). However, responses to the altered
context remained consistently low and unchanged (Fig. 4g). The open
field test did not indicate any behavioural alterations following the
deletionof Igfbp2inthe BLA (Extended Data Fig. 8k-n). Of note, arecent
study demonstrated that a peptide derived from Igfbp2 could enhance
neuroplasticity and ameliorate the phenotypic deficits observed in a
mouse model of Phelan-McDermid syndrome®®.

A memory link between PFCand amygdala

Although fear memory formation is orchestrated by the convergent
contributions of many brain regions, the mPFC and amygdala are
recognized as a key signalling axis in the process. We used our earlier
deep scRNA-seq data from the mPFC’® (Extended Data Fig.10a-g) foran
integrated analysis of neurons fromthe BLA and mPFCto test whether
acommon gene-expression signature connects long-term memory
formationin these two regions.

Deep scRNA-seq datafrom aset of 4,603 neurons from the mPFC and
BLAwereusedto cluster the neuronsinto 7 populations with clear mark-
ersforeach celltype (Extended DataFig.12a-d). Of note, six of the seven
types of neurons were found in both the BLA and mPFC; only Gpr88
neurons were specific to the BLA (Fig. 5a,b and Extended Data Fig.12b).
EX.Znt3,EX.Syt6 and EX.Tshz2 cells are excitatory neurons that express

Altered context and  Open field Context test Altered context Tone test

tone test
two-sided Mann-Whitney-Wilcoxon test. e, Analysis of MERFISH data shows
that Fosexpressionisinduced in peri-engramastrocytes in the FR condition
relative to the NF condition. Two-sided Mann-Whitney-Wilcoxon test.
f, Experimental scheme. AAV constructs for expression of U6-1gfbp2 guide
RNA (gRNA) (or U6-negative control (NC) gRNA) were bilaterally injected to
CAG-Cas9 mice, seven days before fear conditioning training. Mice were
subjected to the context test, altered context tone test and open field test at
theindicated times. g, Mice expressing Igfbp2 gRNA showed reduced freezing
compared with the control group in the context test, altered context test and
reduced freezinginthe tonetest. NCgRNA: n=8mice, Igfbp2 gRNA:n=10
mice; dataare mean + s.e.m.; unpaired two-tailed Student’s t-test.

the vesicular glutamate transporter 2 (vGlut2) gene (Slc17a7), whereas
the other clusters are Gadl" inhibitory neurons (Extended Data Fig.12c).
Among all neuron types, relatively more TRAPed tdT" neurons were
found inthe mPFC than the BLA (Extended Data Fig. 12e).

Next, we examined the FR-induced transcriptional changes within
the TRAPed neurons of each type of neuron. Integrated differential
expression analysis identified 1,673 genes that were significantly
changedinboth the BLAand mPFC (Fig. 5c and Extended Data Fig. 12f).
Unexpectedly, 1,587 (94.9%) of the DEGs were co-regulated in the
same direction (Fig. 5d). This suggests that memory consolidation
drives a conserved transcriptional programme in engram neurons
across multiple brain regions. Consistent with the above analyses,
DEGs associated with vesicle exocytosis and synapse formation were
upregulated. Furthermore, within the engram cells of the three most
abundant neuron types (EX.Znt3, Int.Vip and EX.Syt6) we found 32
genes whose expression was consistently modulated by long-term fear
memory in both the BLA and mPFC (Fig. 5e). Among the top upregu-
lated genes, Polo-like kinase 2 (Plk2) is a transcriptional target of NPAS4
that modulates synapse formation and contextual fear memory®, and
Trim32 (whichencodes the E3 ubiquitin ligase TRIM32), Ub[3 and Ubc
are involved in protein ubiquitination, which is involved in synaptic
plasticity®® and fear memory formation in the hippocampus® and
amygdala®. Mal2 encodes an integral membrane constituent of syn-
aptic vesicles associated with vGlutl-positive nerve terminals®. These
datasuggest thatengram neuronsin the prefrontal cortex (PFC) and
BLA share overlapping transcriptional signatures mediating memory
consolidation.

Conserved neuron-to-astrocyte interaction

Inaddition to these conserved mechanisms, we found that neuroten-
sin, which modulates associative memory in the paraventricular
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Fig.5|Engram neuronsin mPFC and BLA share transcriptional machinery
inconsolidating remote memory. a-g, Analysis of scRNA-seq data. a, Cellular
composition of BLAand mPFC. b, Integrated clustering of BLAand mPFC
neurons, coloured by region. ¢, DEGs of TRAPed cells of EX.Znt3 (left), Int.Vip
(middle) and EXT.Syt6 (right). The x axis shows fold change of FRover NFin BLA
and the y axis shows the fold change of mPFC. Significant DEGs are shown in

thalamus-to-BLA circuit®, was expressed in TRAPed Syt6-positive
excitatory neurons of both the mPFC and the BLA (Extended Data
Fig.12h) and induced by fear memory consolidation in BLA but notin
PFC engram neurons (Fig. 5f and Extended Data Fig. 12i). This further
validates the notion that neuropeptides, including neurotensin, secre-
togranin, tachykinin, proenkephalin, ProSAAS and CART, areinvolved
inmemory consolidationin BLA engram cells. Inaddition, neurotensin
receptor 2 (Ntsr2) is dominantly expressed by astrocytes in the BLA
(Fig. 5g), whereas neurotensin receptor 1(Ntsrl) is virtually undetect-
ableintheBLA (Extended Data Fig.12j). Ntsr2is essential for contextual
fear memory®. The bidirectional communications between neurons
and astrocytes are intricate and exhibit both cell-type-specific and
circuit-specific characteristics®®. Our data substantiate this dynamic by
revealing thatengram neuronsinthe BLA engage in multifaceted inter-
actions with astrocytes during the process of memory consolidation.
In particular, Igfbp2released from peri-engram astrocytes influences
neurons, whereas neurotensin secreted by neurons acts on astrocytes
during memory consolidation.

An atlas of astrocytes across brain regions has demonstrated the
molecular heterogeneity of astrocytes®. To further understand astro-
cyteremodelling inmemory consolidation, we clustered the integrated
datafrom2,278 BLA and mPFC astrocytesinto four subtypes, in which
B-P.Al cells express thyroid hormone transporter (SlcolcI) and amino
acid transporter (Slc7a10), B-P.A2 and B-P.A3 cells express calmodulin
1(Calm1) and sphingosine-1-phosphate receptor1(SIpri), B-P.A4 cells
express myocilin (Myoc) and Vim, and B-P.A5 cells express synaptic
nuclear envelope protein1(Synel), SON DNA and RNA binding protein
(Son) and Utp14b (Extended Data Fig.13a-f). B-P.Al, B-P.A2, B-P.A3 and
B-P.A4 astrocytes were present in the mPFC and BLA, whereas B-P.A5
astrocytes were specific to BLA (Extended Data Fig. 13a,g). Fear con-
ditioning remodelled the distribution of astrocyte subtypes, in which
fear recallinduced B-P.A5 in BLA and B-P.Alin the mPFC (Extended
Data Fig. 13g). Of interest, astrocytes from all training conditions in
both the mPFC and BLA exhibited consistent Fos expression in B-P.
A4, but varied Fos expression in B-P.Al and B-P.AS (Extended Data
Fig.13b). These active B-P.A4 astrocytes encompass the majority of
Astro_4 cells derived from the BLA (Extended Data Fig. 13a), exhibit
unique expression of Fxyd6 (which encodes FXYD domain containing
ion transport regulator 6), AssI (which encodes argininosuccinate
synthetase), Slc6a6 and Slc38al, which suggests a potential role of
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orange. P<0.05 for both conditions (axes); two-sided Mann-Whitney—
Wilcoxon test.d, Quantification of significant DEGs in neuron clusters 1-3.

e, DEGs (FR over NF, TRAPed cells) from BLA and mPFC among B-P.EX.Znt3, B-P.
Int.Vip, and B-P.EX.Syt6 neurons. f, Ntsexpression in tdT' B-P.EX.Syt6 neurons
from BLA. Two-sided Mann-Whitney-Wilcoxon test. g, N¢tsr2 expressioninall
cellsfromBLA, Ntsr2expressionis highly enriched inastrocytes.

these astrocytes in modulating ion balance as well as scavenging and
synthesis of neuronal transmitters in both mPFC and BLA (Extended
DataFig.13d).

Summary

Upon acquisition, information is initially stored as recent memory
and becomes long-term memory through consolidation. Using
activity-dependent cell trapping, spatial and single-cell transcriptom-
ics, and in vivo perturbations, we identified: (1) a memory-induced
activating trajectory of astrocytes; (2) a persistent gene-expression
programme induced by memory consolidation, independent of salient
experience, thatinvolves neuropeptide signalling, the MAPK pathway,
CREB-mediated gene expression, BDNF signalling and genes mediat-
ing neuronal synapse assembly; (3) fear memory-induced Penk and
reduced Tacl expression in BLA specific Gpr88* neurons; and (4) a
spatially resolved ensemble of engram cells. Moreover, we revealed
a population of peri-engram astrocytes that also exhibit persistent
gene-expression changes suggesting that they are ‘engramastrocytes’,
and showed that at least one of the astrocyte engram genes, Igfbp2, is
essential for long-term memory formation. These data help dissect
the network of engram cells that consolidate short-term memory to
long-term memory and characterize the persistent gene-expression
programme that mediates this consolidation.
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Methods

Mice

All animal experiments were conducted following protocols
approved by the Administrative Panel on Laboratory Animal Care at
Stanford University. The TRAP2:Ail4 mouse line was a gift from the
Luo laboratory at Stanford. TRAP2'° mice were heterozygous for the
Fos**r*fR g]lele, and homozygous for Ail4 in the C57BL/6 background.
Gt(ROSA)26Sor ™ 1(CAGcas>" EGFPIFezh)] mjce were acquired from Jackson
Laboratory. Mice were group-housed (maximum 5 mice per cage) on
al2 hlight:dark cycle (07:00 t019:00, light) with food and water freely
available. Mice were kept with ambient temperature at 21.1+1.1°C
and humidity at 55 + 5%. Male mice 49-56 days of age were used for all
the experiments. Mice were handled daily for 3 days before their first
behavioural experiment. The animal protocol no. 20787 was approved
by Stanford University APLAC and IACUC. All surgeries were performed
under avertin anaesthesia and carprofen analgesia, and every effort
was made to minimize suffering, pain and distress.

Genotyping

The following primers: TCCTGGGCATTGCCTACAAC (forward),
CTTCACTCTGATTCTGGCAATTTCG (reverse) and ACCCTGCTGCG
CATTG (reporter) were used for genotyping of the Fos R g[lele;
CTGAGCTCACCCACGCT (forward), GGCTGCCTTGCCTTCTCT
(reverse), ACTGCTCACAGGGCCAG (reporter) for wild-type allele;
CGGCATGGACGAGCTGTA (forward), CAGGGCCGGCCTTGTA (reverse)
and AATTGTGTTGCACTTAACG (reporter) were used for genotyping
of the Rosa-Ail4 allele; TTCCCTCGTGATCTGCAACTC (forward), CTT
TAAGCCTGCCCAGAAGACT (reverse) and CCGCCCATCTTCTAGAAAG
(reporter) for Rosawild-type allele.

Fear conditioning

The fear conditioning training was conducted according to previously
described methods®. Each mouse was placed individually in the fear
conditioning chamber (Coulbourn Instruments), which was positioned
atthe centre of asound-attenuating cubicle. Prior to each session, the
chamber was cleaned with10% ethanol to provide abackground odour,
while aventilation fan generated background noise ataround 55 dB. The
training began with a 2-min exploration period, after which the mice
received three tone-foot shock pairings separated by 1-min intervals.
Eachtone, an 85 dB 2-kHzsound, lasted for 30 s, and was followed by a
2-sfootshock of 0.75 mA, with both ending simultaneously. Following
each pairing, the mice remained in the chamber for anadditional 60 s
before being returned to their home cages. For contextrecall, the mice
were reintroduced to the original conditioning chamber for 5 min, 16
days after the training. Injections of 4-hydroxytamoxifen injections
were administered immediately prior to the recall experiments, within
30 min.Inthe HCand NR groups, 4-hydroxytamoxifen was injected at
asimilar time to the other two groups during the recall. The behaviour
of the mice was recorded and analysed using FreezeFrame software
(version 4; Coulbourn Instruments), with motionless bouts lasting
over1sbeing considered as freezing.

Brain tissue dissociation and flow cytometry

Basolateral amygdala was microdissected from live sections cut by a
vibratome (300 pm thick). Tissue pieces were enzymatically dissociated
using a papain-based digestion system (LKO03150, Worthington). In
brief, tissue chunks were incubated with papain (containing L-cysteine),
DNasel, and kynurenicacid for1 hat37 °Cand 5% CO,. After incubation,
tissues were triturated with 300 um glass pipette tips, then 200 pm
glass pipette tips,and 100 pm glass pipette tips. Cell suspensions were
then centrifuged at 350gfor 10 min at room temperature, resuspended
in1ml EBSS with 10% v/v ovomucoid inhibitor, 4.5% v/v Dnase I, and
0.1% v/v kynurenic acid, and centrifuged again. The supernatant was
removed, and1 ml artificial cerebrospinal fluid (ACSF) wasadded to the

cells. ACSF contained 2.5 mM KCI, 7 mM MgCl2, 0.5 mM CacCl,, 1.3 mM
NaH,PO,, 110 mM choline chloride, 24 mM NaHCO,, 1.3 mM sodium
ascorbate, 20 mM glucose, and 3 mM sodium pyruvate, 2 mMthiourea,
and 13.2 mM trehalose. Cells were then passed through a 70 pm cell
strainer to remove debris. Hoechst stain (1:2,000; H3570, Life Technolo-
gies) was added and incubated in the dark at 4 °C for 10 min. Samples
were centrifuged (350g for 8 minat4 °C) and resuspended in 0.5 ml of
ACSF and kept onice for flow cytometry. Live cells were sorted using
the BD Vulcan into 384-well plates (Bio-Rad) directly into lysis buffer,
oligodT, and layered with mineral oil. After sorting, the plates were
immediately snap frozen until reverse transcription.

Sequencing

TheSmartseq3 protocol was used for whole-cell lysis, first-strand syn-
thesis and cDNA synthesis, as previously described with modifications.
Following cDNA amplification (23 cycles), the concentration of cDNA
was determined via Pico Green quantitation assay (384-well format)
and normalized to 0.4 ng pl™ using the TPP Labtech Mosquito HTS
and Mantis (Formulatrix) robotic platforms. In-house Tn5 were used
for cDNA tagmentation. Libraries were amplified using Kapa HiFi. The
libraries were thensequenced onaNovaseq (illumina), using 2 x 100-bp
paired-end reads and 2 x 12-bp index reads, with an average of 2 million
reads per cell.

Bioinformatics and data analysis for scRNA-seq

Sequences from Nextseq or Novaseq were demultiplexed using
bcl2fastq, and reads were aligned to the mm10 genome augmented
with ERCC (External RNA Controls Consortium) sequences, using STAR-
solo 2.7.9a. We applied standard algorithms for cell filtration, feature
selection and dimensionality reduction. In brief, genes that appearedin
fewer than five cells, samples with fewer than 2,000 genes and samples
with less than 50,000 reads were excluded from the analysis. Out of
these cells, those with more than 10% of reads as ERCC or more than
20% mitochondrial were also excluded from analysis. Counts were
log-normalized and then scaled where appropriate. Canonical correla-
tion analysis (CCA) function from the Seurat’ package was used to align
raw datafrom multiple experiments. The top 20 canonical components
were used. After alignment, relevant features were selected by filtering
expressed genes to a set of 2,000 with the highest positive and nega-
tive pairwise correlations. Genes were then projected into principal
component space using the robust principal component analysis. DEG
analysis was done by applying the Mann-Whitney-Wilcoxon test on
various cell populations.

To find memory-induced genes in each type of neurons, series of
strict criteria were applied. First, we removed the background activa-
tion by excluding the DEGs resulted from FR versus NF among tdT
negative neurons. This guarantees their specificity that DEGs are
activity-dependent, rather than a general increase in all cells caused
by experience. Second, DEGs must be differentially expressed when
FR TRAPed cells are compared to NR and HC controls, ensuring that
the DEGs were unique to neuronal ensembles associated with memory
recall, and not a result of baseline activity (HC) or activity remaining
from the initial fear learning (NR). Finally, each DEG had to meet the
criteria of being expressed in a quater of cells and exhibiting at least a
1.75-fold change. By adhering to these standards, a total of 107 DEGs
were recognized as ‘remote-memory-associated DEGs’ across 6 dis-
tinct neurontypes, BLA.Int.Pvalbwas notincludedinthe analysis due
to insufficient numbers of cells. EnrichR was used for GO, KEGG and
REACTOME pathway analysis and classification of enriched genes
(log,FC>0.5and P< 0.05) in each subpopulation.

scRNA-seq datafrom mPFC cells were mapped to mm10 genome with
full-length tdTomato construct (including Woodchuck Hepatitis Virus
Posttranscriptional sequence included in Ail4 line”), whichimproved
the sensitivity in calling tdT* cells. Data from BLA and mPFC cells were
integrated using CCA. TRAPed neurons from the each integrated



population were analysed, except B-P.Int.Pvalb and B-P.Int.Gpr88
neurons, due to limited cell number. DEGs with P < 0.05 (Mann-Whit-
ney-Wilcoxon test) were considered as significant DEGs (highlighted
in orange in Fig. 5d and Extended Data Fig. 12f).

After unbiased clustering astrocytes, RNA velocyto*® and Monocle3*
were applied to infer astrocytic trajectory. DEGs between FR and NF
conditions were estimated using Mann-Whitney-Wilcoxontest oneach
astrocyte population. R, RStudio, Python were used for data analysis.

RNAscope

The RNAscope multiplex fluorescent reagentkit v2 (323100, ACD) and
RNAscope 4-Plex probes were used to conduct the RNAscope experi-
mentaccordingtothe manufacturer’s guidelines. The probes employed
were either obtained from available stocks or specially created by ACD.

Gene selection for MERFISH measurements

We used a combination of single-cell RNA sequencing data and lit-
erature to select genes for MERFISH. Our selection criteria involved
identifying cell-type-marker genes for a particular cell population
using a one-vs-all approach. To do this, we performed a Mann-
Whitney-Wilcoxon test for each gene between the cells within the cell
population and all other cells not in that population, and corrected
the resulting P values for multiple hypothesis testing to obtain false
discovery rate-adjusted P values. A gene was considered a cell-type
marker for a specific cell population if it met the following criteria:
(1) it was expressed in at least 30% of cells within the specified popu-
lation; (2) the false discovery rate-adjusted P value < 0.001; (3) gene
expression in the specified population was at least fourfold higher
than the average expression in all cells not in that population; and
(4) expressed in a fraction of cells within the specified population
that was at least 2 times higher than any other population of cells. We
then sorted the marker genes for each population by fold change in
expressionrelative to cells outside the population, and saved the top
five marker genes for each population to use for marker selection. In
addition to these markers, known genes related to microglia, astro-
cytes and OPCs from the literature and included. Finally, DEGs from
remote memory-associated genes were added to the panel with atotal
number of 158 genes.

Tissue processing for MERFISH and RNAscope

Braintissue samples were processed using a fixed-frozen protocol for
both MERFISH and RNAscope. In brief, mice were euthanized using
CO, and perfused with cold 4% paraformaldehyde. Brain tissue was
dissected and followed by incubationat4 °Cin 4% paraformaldehyde
overnight, 15% sucrose for12 h,and 30% sucrose until sink. Brain tissue
was frozen in OCT using dry ice and stored at —80 °C until sectioning.
Sectioning was performed onacryostat at—18 °C. Slices were removed
and discarded until BLA region was reached.

Slices with 10 pmin thickness were captured onto Superfrost slides
for RNAscope and MERSCOPE slides for MERFISH. The same anatomical
region was identified for imaging post hoc after sample preparation,
before the start of RNAscope or MERFISH imaging.

Sample preparation and MERFISH imaging

Slides with tissue sections were processed according to MERSCOPE
protocol (Vizgen). In brief, slides with tissue sections were washed
three times in PBS, and then stored in 70% ethanol at 4 °C for 18 h to
permeabilize the tissue. Tissue slices from the same mouse were cut at
the same time and distributed onto four coverslips. After permeabili-
zation, the samples were removed from 70% ethanol and washed with
Sample Prep Wash Buffer (PN20300001), thenincubated with Forma-
mide Wash Buffer (PN20300002) at 37 °C for 30 min. Gene Panel Mix
(RNA probes) wasincubated for 48 hat 37 °C. After hybridization, the
samples were washed in Formamide Wash Buffer for 30 min at47 °C for
atotal of 2times to remove excess encoding probes and polyA-anchor

probes. Tissue samples were then cleared to remove lipids and proteins
that contribute fluorescence background. In brief, the samples were
embeddedinathin4% polyacrylamide gel and were then treated with
Clearing Premix (PN 20300003) for 36 h at 37 °C. After digestion, the
coverslips were washed in Sample Prep Wash Buffer 2 times and stain
with DAPI/PolyT mix for 15 min. Slides were washed with Formamide
Wash Buffer followed by Sample Prep Wash Buffer before imaging.
Finally, slides were loaded to MERSCOPE Flow Chamber and imaged
atboth 20x and 63x magnification.

MERFISH data processing

MERFISH imaging data were processed with MERIin? pipeline with cell
segmentation using CellPose”, a deep learning-based cell segmenta-
tionalgorithm based on DAPI staining. Decoding molecules were then
assigned to the segmented nuclei to produce a cell-by-gene matrix
that list the number of molecules decoded for each gene in each cell.
The MERFISH expression matrix for each sample was concatenated
with the normalized, log-transformed with Scanpy™ and integrated
using Harmony” and Leiden’ clustering was applied to separate the
cellsinto distinct clusters. TRAPed neurons were assigned based on
tdTomato expression. DEGs from a comparison of FR-TRAPed and
NF-TRAPed conditions were estimated using Mann-Whitney-Wilcoxon
test. Peri-engram cells were computed as follows: for each engram cell
(tdT"), its peri-engram cells were counted within a radius of 30 pm.

CalEx injection and behavioural experiments

AAVs carrying CalEx® or tdTomato were generated by Addgene based
onthe vector pZac2.1-GfaABC,D-mCherry-hPMCA2w/b (AAV5, Addgene
111568) or pZac2.1gfaABC,D-tdTomato (AAVS5, Addgene 44332). Stere-
otaxic procedure of viral microinjection has been described previ-
ously. In brief, mice with fear training (within 12 h or after 24 h) were
anaesthetized and placed onto astereotaxic frame (model 1900, KOPF).
Mice were injected with Carprofen (5 mg kg™) subcutaneously before
and after surgery. AAVs carrying hPMCA2w/b (CalEx) or control (tdTo-
mato) viruses were loaded via a glass pipette connected with a 10 pl
Hamilton syringe (Hamilton, 80308) on a syringe injection pump
(WPI, SP101I) Bevelled glass pipettes (1B100-4; World Precision Instru-
ments) filled with viruses were placed into the BLA (1.3 mm posterior
tothe bregma, 3.4 mmlateral and to the midline, and 4.6 mm from the
pial surface). Either 0.3 pl of AAV5 GfaABC,D mCherry-hPMCA2w/b
(7 x 102 viral genomes (vg) per ml) or 0.3 pl AAV5 GfaABC,D tdTomato
(7 x10? vg ml™") were injected at 100 nl min™. Glass pipettes were with-
drawn after 10 min and scalps were cleaned and sutured with sterile
surgical sutures. Mice were allowed to recover in clean cages for 7 days.
behavioural experiments (recall) were performed three weeks after
surgeries. Schematicillustrations (Figs.laand 4a,f and Extended Data
Fig. 7h,0) created with BioRender.com.

Openfield

Mice were placedin the centre of 40 x 40 cm white box and allowed to
freely explore for 15 min. Videos were recorded and analysed by BIOB-
SERVE Il software. The 20 x 20 cmregionin the centre was defined as
the central zone. The total distance travelled and the activity explor-
ing the centre area were analysed to evaluate the subject’s locomotor
ability and anxiety levels.

Oligos and antibodies

For quantitative PCR analysis, specific primers were designed to amplify
the Igfbp2 gene: Igfbp2 FW (GTCTACATCCCGCGCTG) and Igfbp2 RV
(GTCTCTTTTCACAGGTACCCG). Additionally, for CRISPR-Cas9 gene
editing, six gRNAs (/gfbp2 guides 1-6) were selected to target dis-
tinct regions of the /gfbp2 gene. These gRNAs were designed based
on predicted specificity and efficiency: Igfbp2 guide 1 (CTACGCT
GCTATCCCAACCCQ), Igfbp2 guide 2 (GCCAGACGCTCGGGCGT
GCA), Igfbp2 guide 3 (AGAAGGTCAATGAACAGCAC), Igfbp2 guide 4
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(GCCCTCCTGCCGTGCGCACA), Igfbp2guide 5 (CTCTCGCACCAGCTCG
GCGC), and Igfbp2 guide 6 (CGTAGCGTCTGGGCGCAGCG).

Antibodies targeting mCherry (Thermo Fisher M11217) and cFOS
(Synaptic Systems 226308) were applied forimmunostaining following
manufacturers’ manuals.
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Extended DataFig.2|Spatial transcriptomics resolves memory associated
genes. a) Marker genes expression of neuronal cell types. Neurons grouped by
HC, FR, and NF conditions. b) Differentially gene expression analysis of peri-
engram neurons (neurons withinaradius of 30 um to engram neurons) other
neurons. c) Genes enriched in peri-engramneurons over other neurons,
unadjusted Pvalue by Mann Whitney Wilcoxon test.d) Engram neurons and
peri-engram neurons resolved insitu. e) Unbiased clustering of all cells from
BLA.f) Marker genes expression of major celltypesinthe BLA.g) Fear memory

induced gene expressioninexcitatory engramneurons of BLA, FRvs. HC.

h) Fear memoryinduced gene expressionininhibitory engram neurons of BLA,
FRvs.HC.i) BLAneurons grouped by FR and NF conditions. j) Penk to Tac2ratio
ofallneuronsin BLA. k) Penkto Tac2ratio of TRAPed neuronsin BLA, one-way
ANOVA and two-sided Mann Whitney Wilcoxon test. I) Penk to Tac2 ratio of
TRAPed inhibitory neuronsin BLA, one-way ANOVA and two-sided Mann
Whitney Wilcoxon test. AIlMERFISH data.
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Extended DataFig. 4 |Single-cell transcriptomics resolves the memory
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Extended DataFig. 6 |Single-cell transcriptomics resolves the memory
associated genesinastrocytes. a) Ntsr2expressionis enrichedin astrocytes
amongall cellsin BLA. b) Cluster of astrocytes from BLA. ¢) Expression level of
astrocyte pan markers (Slcla2, Aldoc, and Sicla3).d) Heatmap of top marker
genes of BLA astrocyte clusters. e) Cellular trajectory estimation of BLA
astrocytes, based ongene expression. f) Fos expression of BLA astrocytes.

g) Fosexpression of astrocyte clusters h) Astrocyte composition separated by
training conditions. i) Distinct markers for each astrocyte cluster from BLA.
j)Synelexpression data, retrieved from Allen Atlas. k) RNAscopeinsitu
stanning of Synel and tdTomatoin BLA of NF and FR conditions. I-p) DEGs of FR
vs.NFinAstro_1-5,unadjusted Pvalue by Mann Whitney Wilcoxon test. All
scRNAseqdata, exceptiandj.
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Extended DataFig.7|Spatial transcriptomics resolves the memory
associated genesinastrocytes. a) Spatialembedding of all BLA cell types
from MERFISH data. b) Clustering of astrocytes in BLA from MERFISH data.

¢) Clustering of astrocytes in BLA from MERFISH data, separated by training
conditions. d) Fosexpressionin BLA astrocyte subtypes separated by conditions.
e) Flt1expressionin BLA astrocyte subtypesfrom MERFISH data.f) Synel, Utpi4b,
Fos, tdTomato level in A4 astrocytes from BLA in FR, MERFISH data. g) Slcla3,
Aldhll1, and Fitlinsitu datafrom MERFISH. h) Scheme, adeno-associated virus
conveying GfaABC,D-mCherry-CalEx were unilaterally injected to BLA C57B/6
mice. Mice were subjected to fear conditioning training at time indicated in the
scheme. i) Immunostaining of Fos and mCherry inanimalsinjected with
GfaABC,D-mCherry-CalEx, n; = 4 mice, n = 3 mice, nyo = 4 mice. j) Freezing

timeintraining, n =8 mice, average +/- SEM. k) Representative tracks in open
field test.1-n) Total distance (I), center visits (m), and center duration (n) in
openfieldtest,n=8mice, average +/-SEM, two-tailed student T-test. 0) Scheme,
adeno-associated virus conveying GfaABC,D-mCherry-CalEx (or GfaABC,
D-mCherry) were bilaterally injected to BLA C57B/6 mice, 24 h after fear
conditioningtraining. Mice were subjected to context test, altered context
tonetest, and open field test at timeindicated in the scheme. p) Freezing time
intraining, N ygromato) = 7 MiC€, N caex24n = S Mice, average +/- SEM. q) Mice with
CalExshowed reduced freezing than tdTomato control group in context test
and altered context but reduced freezing in tone test, N ;gromaco) = 7 Mice,

N caex24n = S Mice, mean +/-S.E.M, two tailed student T-test. a-g are MERFISH
data.
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Extended DataFig. 8 |Spatial transcriptomics resolves the memory
associated genesin periengram astrocytes. a) Spatial distribution of
astrocytesin BLA.b) Genes differentially expressedin peri-engramastrocytes
inBLAinaVolcano plot, unadjusted Pvalue by Mann Whitney Wilcoxon test.

c) Genes differentially expressed in peri-engram neuronsin BLAinaVolcano
plot, unadjusted Pvalue by Mann Whitney Wilcoxon test. d) Peri-engram
astrocytes percentage in eachastrocyte population, n = 7 sections, on-way
ANOVAtest, F 4 50 =3.296. ) Igfbp2 expression in each astrocyte population
inBLA, MERFISH.f) Spatial distribution of astrocytes and engram neurons in

BLA.g) Igfbp2expressionineach astrocyte population, scRNAseq data.

h) Immunostaining of mCherry in animals injected with AAV convey Igfbp2
guide RNA or negative control guide RNA, n =4 mice. i) Relative level of Igfbp2
RNAinBLA of animals withguide RNA injection, n ¢ guide) = 8 MiC€, N 5052 guide) = 7
mice, mean+/-S.E.M, unpaired two-tailed student t-test. j) Freezing timein
training, n e guide = 8 MICE, N gppaguice; = 10 Mice, mean +/- SEM. K) Representative
tracksinopen field test.I-n) Total distance (I), center visits (m), and center
duration (n) in open field test, N (ycgyideg = 8 MICE, N 12 guide) = 10 Mice,

average +/- SEM, two-tailed student T-test. a-fare MERFISH data.
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Extended DataFig. 9 |Spatial transcriptomics resolves the memory
associated genesinastrocytes of mPFC. a) Spatial embedding of allmPFC cell
types from MERFISH data. b) Clustering of astrocytesin mPFC from MERFISH
data. c) Fosexpressionin mPFC astrocyte subtypes separated by conditions,
two-sided Mann Whitney Wilcoxon test. d) FltI expressionin mPFC astrocyte
subtypes from MERFISH data. e) Spatial resolved peri-engram cells surrounding
tdT+neuronsinmPFC, MERFISH data. f) Peri-engram astrocytes percentagein
eachastrocyte population, one-way ANOVAF (2,33) =5.598,n =12 mice.

g) Igfbp2 expressionineachastrocyte populationin mPFC, MERFISH

h) Igfbp2expressionis enriched in peri-engram astrocytesinmPFC (Mann

Whitney Wilcoxon test, MERFISH data). i) Fos expressionis enriched in FR
condition than NF conditionamong peri-engram astrocytesin mPFC (Mann
Whitney Wilcoxon test, MERFISH data).j) Genes differentially expressedin
peri-engramneuronsin mPFCina Volcano plot, unadjusted Pvalue by Mann
Whitney Wilcoxon test. k) Genes differentially expressedin peri-engram
astrocytesinmPFCinaVolcano plot, unadjusted Pvalue by Mann Whitney
Wilcoxon test.l) Genes differentially expressed in peri-engram astrocytesin
mPFC and BLA, unadjusted Pvalue by Mann Whitney Wilcoxon test. Al MERFISH
data.
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Extended DataFig.10 | (reanalysis of scRNAseqdata of mPFCneurons,
Chenetal., 2020) Single-cell transcriptomics resolves the memory

associated genesin mPFC. a) Cluster of mPFC neurons b) Distinct markers for

each cluster of mPFC neurons. ¢) SlcI7a7 and Gadl expression of mPFC

Log, fold change

neurons. d) Heatmap of top marker genes of mPFC neurons. e) tdTomato
expression of mPFC neurons. f) DEGs of TRAPed cells from PFC.1, unadjusted
Pvalue by Mann Whitney Wilcoxon test. g) DEGs of TRAPed cells from PFC.2,
unadjusted Pvalue by Mann Whitney Wilcoxon test. AllscRNAseq data.
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Extended DataFig.11|Spatial transcriptomics resolves the memory
associated genesinneurons of mPFC. a) Clustering of neurons in mPFC from
MERFISH data. b) Spatial embedding of mPFC neurons. ¢) mPFC neurons grouped
by training conditions. d) Marker genes of mPFC neurons. e) Quantification of

tdTomato+ neuronsinmPFC, n=4 mice, mean +/-S.E.M, unpaired two-tailed

student t-test. f-m) DEGs of FRvs NFin TRAPed Rprm neurons (f), Dkkl1 neurons
(g), Crymneurons (h), Otof neurons (i), Sst neurons (j), Pvalb neurons (k), Vip
neurons (1), and Tshz2 neurons (m), unadjusted P value by Mann Whitney
Wilcoxon test. Al MERFISH data.
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Extended DataFig.12|Single-cell transcriptomics resolves the memory
associated genesinmPFCand BLA neurons. a) Integrated clustering of BLA
and mPFC neurons. b) Integrated clustering of BLAand mPFC neurons
separated by regions. ¢) Distinct markers and SicI7a7 and Gadl expression for
eachcluster of integrated BLA and mPFC clusters. d) Heatmap of top marker
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integrated BLA and mPFC clusters. f) DEGs (FR over NF, TRAPed cells) from BLA
and mPFC among B-P.Int.Crhbp and B-P.EX.Tshz2 neurons. g) Quantification of
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of BLA. AllscRNAseq data.
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sequencing experiment, 4-5 mice per group were sequenced. For merfish sequencing experiment, 4-5 mice per group were imaged.

For transcriptomics experiments, sample size were based on work in previous publication (pmid 33177708).

Data exclusions  All data were included

Replication All replicates reproduced the phenotypes. At least three independent cohorts were performed. The total number of animals and cells is
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Randomization  Animals were randomized by cage prior to surgeries or behavior trainings.

Blinding Behavioral experiment were performed blind of AAV injection groups. Transcriptomics experiments and sequencing were performed blind of
training conditions.
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Plants
Antibodies
Antibodies used mCherry (Thermo Fisher M11217) and cFOS (Synaptic System 226308)
Validation Antibodies have been validated by manufacturers.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Fos2A-iCreER and Ail4 in the C57BL/6 background. C57BL/6J (Jax stock #: 00064) and Gt(ROSA)26Sortm1.1(CAG-cas9*,-EGFP)Fezh/J
(Jax stock #024858) mice were directly purchased from The Jackson Laboratory. Mice were housed in groups with up to five mice per
cage and on 12-hour light-dark cycles (7 am to 7 pm, light), before behavior experiments took place. Animals are kept with ambient
temperature at 70 +/- 2 F and humidity at 55% +/- 5%. Male mice 49-56 days of age were used for all the experiments.

Wild animals No wild animals were used in the study.

Reporting on sex Only male mice were included

Field-collected samples  No field collected samples were used in the study.

Ethics oversight The animal protocol #20787 was approved by Stanford University APLAC and IACUC

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks No plants were involved in this study.

Novel plant genotypes  No plants were involved in this study.

Authentication No plants were involved in this study.
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Methodology

Sample preparation Flow Cytometry was applied to distribute individual cells to 384 plates.

Basal lateral amygdala was microdissected using a live vibratome sections (300 um thick). Tissue pieces were enzymatically
dissociated using a papain-based digestion system (LKO03150, Worthington). Briefly, tissue chunks were incubated with
papain (containing L-cysteine), DNase |, and kynurenic acid for 1 hour at 37°C and 5% CO2. After incubation, tissues were
triturated with 300 um glass pipette tips, then 200 um glass pipette tips, and 100 um glass pipette tips. Cell suspensions were
then centrifuged at 350g for 10 minutes at room temperature, resuspended in 1 ml EBSS with 10% v/v ovomucoid inhibitor,
4.5% v/v Dnase |, and 0.1% v/v kynurenic acid, and centrifuged again. The supernatant was removed, and 1 ml ACSF was
added to the cells. ACSF contained 1 mM KCI, 7 mM MgCl2, 0.5 mM CaCl2, 1.3 mM NaH2P04, 110 mM choline chloride, 24
mM NaHCO3, 1.3 mM Na ascorbate, 20 mM glucose, and 0.6 mM sodium pyruvate. Cells were then passed through a 70-pum
cell strainer to remove debris. Hoechst stain (1:2,000; H3570, Life Technologies) was added and incubated in the dark at 4°C
for 10 minutes. Samples were centrifuged (350g for 8 minutes at 4°C) and resuspended in 0.5 ml of ACSF and kept on ice for
flow cytometry. Live cells were sorted using the BD Vulcan into 384-well plates (Bio-Rad) directly into lysis buffer, oligodT,
and layered with mineral oil. After sorting, the plates were immediately snap frozen until reverse transcription.

>
Q
—
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<

Instrument BD Vulcan

Software BD Vulcan

Cell population abundance Intact cells were sorted out of debris and dead cells

Gating strategy | first identify the population of events that contain cells in the forward vs. side scatter area plot. Next, | selected hoechst+

cells based on hoechst intensity and the cell morphology. Finally, | collected the cells in 384-well plates.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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