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Room-temperature quantum optomechanics 
using an ultralow noise cavity

Guanhao Huang1,2,4, Alberto Beccari1,2,4, Nils J. Engelsen1,2,3 ✉ & Tobias J. Kippenberg1,2 ✉

At room temperature, mechanical motion driven by the quantum backaction of  
light has been observed only in pioneering experiments in which an optical restoring  
force controls the oscillator stiffness1,2. For solid-state mechanical resonators in  
which oscillations are controlled by the material rigidity, the observation of these 
effects has been hindered by low mechanical quality factors, optical cavity frequency 
fluctuations3, thermal intermodulation noise4,5 and photothermal instabilities. Here 
we overcome these challenges with a phononic-engineered membrane-in-the-middle 
system. By using phononic-crystal-patterned cavity mirrors, we reduce the cavity 
frequency noise by more than 700-fold. In this ultralow noise cavity, we insert a 
membrane resonator with high thermal conductance and a quality factor (Q) of  
180 million, engineered using recently developed soft-clamping techniques6,7. These 
advances enable the operation of the system within a factor of 2.5 of the Heisenberg 
limit for displacement sensing8, leading to the squeezing of the probe laser by 
1.09(1) dB below the vacuum fluctuations. Moreover, the long thermal decoherence 
time of the membrane oscillator (30 vibrational periods) enables us to prepare 
conditional displaced thermal states of motion with an occupation of 0.97(2) 
phonons using a multimode Kalman filter. Our work extends the quantum control  
of solid-state macroscopic oscillators to room temperature.

The fragile nature of quantum systems renders them susceptible to 
the influence of the thermal environment9. This presents a substan-
tial challenge for quantum science and technology, which is espe-
cially hard to overcome for solid-state systems. Nevertheless, over 
the past decade, quantum control has been extended to solid-state 
mechanical resonators, both with radiation pressure optomechani-
cal coupling8 and piezoelectric coupling with superconducting 
qubits10,11. Cavity optomechanics, in which the mechanical oscilla-
tor is dispersively coupled to an optical cavity, has enabled numer-
ous advances, including ground state cooling12,13, optomechanical 
squeezing of light14–19 and entanglement of separate mechanical 
oscillators20–22. Yet, all these advances necessitate cryogenic cool-
ing to reduce thermal fluctuations. Room-temperature operation is 
beneficial to the accessibility and widespread adoption of technol-
ogy, as witnessed in other branches of physical science23–25. Devel-
oping room-temperature quantum optomechanical systems would 
imply a drastic reduction in experimental complexity by removing 
the limitations imposed by cryocoolers such as poor thermalization, 
excess acoustic noise and limited optical access. Room-temperature 
operation could stimulate applications such as coupling to atomic 
systems26, force microscopy27 and variational displacement  
measurements18.

To enter the quantum regime of optomechanics, the product 
between the total force noise S FF

tot (including environment thermal 
force S FF

th as well as measurement-induced backaction S FF
ba) and the 

displacement measurement imprecision S xx
imp must approach the limit 

S S ħ≥ /2xx
imp

FF
tot  set by the Heisenberg uncertainty principle8. A neces-

sary condition imposed by this limit is that the quantum backaction 
(QBA) rate from the light field Γ x S ħ= /qba zpf

2
FF
qba 2 (where xzpf is the zero- 

point displacement fluctuation amplitude of the oscillator) must 
exceed the thermal decoherence rate Γ x S ħ= /th zpf

2
FF
th 2 of the mechanical 

oscillator, which is determined by the bath temperature T and by the 
quality factor Q as Γth = kBT/(ħQ). This condition is characterized by the 
quantum cooperativity Γ Γ= /q qba thC  of the system.

Over the past decade, several approaches have been made to reach 
the ultralow mechanical dissipation required to enter the quantum 
regime at room temperature, including levitated nanoparticles28 and 
micromechanical objects whose rigidity is controlled by an optical 
field1,29. These methods enhance the mechanical Q by optical trap-
ping and resulted in the recent observations of quantum backaction1, 
optomechanical squeezing of light17,30 and ground state cooling2. Yet, 
room-temperature quantum optomechanical phenomena have not 
been accessible with engineered solid-state mechanical resonators3,4,31 
because of thermal intermodulation noise4, vibrations of the cavity  
mirror substrates3 and optical heating-induced instability32. These 
thermal effects result in excess imprecision and backaction noise, pre-
venting their product from reaching the Heisenberg limit.

Here we overcome these challenges and demonstrate optome-
chanical squeezing of light at room temperature using a phononic- 
engineered membrane-in-the-middle (MIM) system. Furthermore, 
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through efficient measurement of mechanical motion, we prepare 
displaced thermal states with single-phonon occupation. This 
implies that the measurement efficiency is sufficient to implement 
measurement-based quantum state preparation protocols, for exam-
ple, feedback cooling to the ground state33.

Ultralow noise optomechanical cavity
To achieve Heisenberg-limited operation, we adopt a modular approach 
and use the MIM architecture34 using an optical Fabry–Pérot cavity 
(Fig. 1a–c). The high-finesse cavity (F ≈ 104) enables operation at high 
Cq while keeping the optical probe power below 1 mW, at which the 
probe laser is quantum-limited in phase and amplitude noise. 
Heisenberg-limited operation further requires low displacement meas-
urement imprecision, that is, S x Γ< /xx

imp
zpf
2

th. This is particularly chal-
lenging at room temperature, as the required imprecision scales 
inversely with temperature. For our device, we estimate the bound to 
be 10−35 m2 Hz−1. The cavity frequency noise is thus required to be 
extremely small and should satisfy S f g Γ( ) < ( /2π) /νν 0

2
th (where g0 is 

the vacuum optomechanical coupling rate) to enable ground state 
cooling35 and significant optomechanical squeezing. This bound is 
well below the typical thermal fluctuations of the cavity mirrors, even 
with state-of-the-art mechanical resonators. Suppression of the driven 
response of the mirror has been achieved with phononic shielding3, 

but a significant reduction of thermomechanical cavity mirror noise 
has remained elusive.

We overcome this challenge by engineering the vibrational spectra 
of the cavity mirrors with phononic crystal structures (PNC) (Fig. 2d,f). 
A precision circular saw is used to pattern the phononic structure on 
glass mirror substrates endowed with high-reflectivity dielectric coat-
ings. The phononic unit cell dimensions (Supplementary Information) 
are chosen such that mirror motion in the frequency band of 0.87–
1.2 MHz is prohibited (Fig. 2c,e). The thermomechanical noise density 
S f( )νν  in this band is reduced by a factor of more than 700 as shown in 
Fig. 2a (measurement limited by laser noise). This noise reduction 
greatly relaxes the requirements to observe quantum optomechani-
cal effects at room temperature. The phononic crystal patterning did 
not result in significant excess optical losses, as the membrane-loaded 
cavity linewidths are consistent with the ideal unpatterned cavity 
linewidths (Fig. 2b), thereby maintaining high cavity out-coupling 
efficiency ηcav. We use the optical mode at 819 nm for the experiment, 
which has ηcav > 80% with an optical linewidth of κ/2π = 34.2 MHz.

A suitable ultracoherent membrane resonator is vital for the opera-
tion of the MIM system at room temperature. To this end, phononic 
density-modulated membranes are promising7 as they maintain higher 
material stress and thereby show enhanced dissipation dilution com-
pared with stress-modulated, perforated membranes6. Furthermore, 
unperforated membranes benefit from increased heat dissipation, 
diminishing thermal effects due to optical absorption. However, after 
reproducing the design as in ref. 7, we found that the membrane had 
high optical absorption, which led to strong cavity bistability36 and 
mechanical instability32. We, therefore, developed a fabrication pro-
cess that minimizes optical absorption, such that the photothermal 
effects are absent for the optical mode and optical powers used in 
this experiment.

The mechanical resonator (Fig. 1e–g) consists of an Si3N4 membrane 
patterned with aSi-HfO2 nanopillars (700-nm diameter) much smaller 
than the acoustic wavelength, implementing phononic density modu-
lation7. The periodic density modulation creates a mechanical bandgap 
that spectrally isolates a 7-ng high-Q soft-clamped defect mode with 
a mechanical frequency of Ωm/2π = 1.16 MHz and a damping rate of 
Γm/2π = 6.41 mHz, corresponding to a room-temperature thermal occu-
pancy of n = 5.3 × 10th

6  and zero-point fluctuations of xzpf = 1.0 fm.  
A ringdown measurement of mechanical Q = 1.8 × 108 is shown in Fig. 1d. 
More details on the device fabrication are given in the Methods. By 
clamping the density-modulated membrane chip in between the pho-
nonic crystal mirrors, we construct an MIM system with g0/2π = 160 Hz 
and cavity frequency noise satisfying the S f( ) < 0.11 Hz Hzνν

2 −1   
requirement, which enables high quantum cooperativity operation 
with quantum-noise-limited measurement imprecision and backaction.

Optomechanical squeezing of light
To demonstrate that the system operates in the quantum regime at 
room temperature, we generate optomechanical squeezing—the quan-
tum signature most robust against calibration errors. In the textbook 
description of cavity optomechanics, the mechanical motion is driven 
by the vacuum fluctuations of the laser amplitude and transduced by 
the linear response of the cavity into phase fluctuations of the light 
field. The induced phase–amplitude correlation of the light field 
manifests as a noise reduction below the shot noise level (squeez-
ing). However, the nonlinear transduction response of the cavity pro-
duces mixing products at the sum and difference frequencies of the 
mechanical modes, giving rise to excess nonlinear noise that does not 
naturally fit in the linear framework of optical quadratures. Owing to 
the high number of modes and their large Brownian motions at room 
temperature, the mixing products manifest as broadband noise, 
termed thermal intermodulation noise (TIN)4. TIN results in intracav-
ity photon number fluctuations that have significant power even at 
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Fig. 1 | Ultralow noise phononic-engineered membrane cavity. a, Photograph 
of the membrane-in-the-middle assembly. b, Optical microscope image of  
the MIM assembly from the top, showing the overlapping square unit cells of 
the top and bottom phononic crystal mirrors and the density-modulated 
membrane. c, Setup schematic. d, Mechanical ringdown measurement of the 
quality factor of the soft-clamped mode of the pillar membrane. The ringdown 
was acquired with the membrane installed in the MIM cavity. e–g, Overview 
images and details of a pillar membrane sample at different length scales.  
Scale bars, 3 mm (a); 2 mm (b,e); 25 μm (f); and 1 μm (g).
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frequencies within the mechanical bandgap, thereby degrading the 
measurement signal-to-noise ratio, and inducing additional mechanical  
decoherence5.

To eliminate TIN intracavity photon number fluctuations, we pump 
the cavity with the laser detuned by Δ κ2 / = − 1/ 3  (magic detuning; 
where Δ is the laser detuning from cavity resonance), in which the quad-
ratic term of the cavity response vanishes. This operation has the addi-
tional effect of cooling the defect mode to an occupancy n ≈ 20eff  
phonons, by dynamical backaction cooling8 (a lower effective phonon 
occupancy of n ≈ 5.7eff  was achieved with a narrower-linewidth cavity 
mode at 862 nm; Supplementary Information). To eliminate TIN in the 
optical detection, we deploy a specialized homodyne detection scheme 
using only one detector (Fig. 3a). Instead of balanced homodyne detec-
tion, a single detector offers the required photodetection nonlinearity4 
to eliminate TIN at arbitrary optical quadrature angles, by carefully 
selecting the local oscillator power for each quadrature angle. A 
detailed description is provided in the Methods.

We measure the noise of the cavity output field at optical quadrature 
angles ranging from −33° to 33° (Fig. 3c), where the 0° quadrature is 
defined as the one with no mechanical displacement information. 
Depending on the quadrature angle, we observed optical squeezing 
(up to 50 kHz bandwidth) on either side of the defect mode, the extent 
of which is limited by the membrane modes at the edge of the bandgap 
(see Fig. 3b for a representative spectrum). For the three frequency 
bands that are devoid of parasitic modes, we compute the average 
intensity noise over a bandwidth of 5 kHz at different quadrature angles 
(Fig. 3d) and observe a maximum squeezing of 22.2(3)% (1.09(1) dB) 

below the shot noise level. More details on the shot noise calibration 
are described in the Supplementary Information.

Conditional quantum state preparation
The observation of optomechanical squeezing demonstrates that  
we can conduct quantum measurements with high efficiency. With 
quantum-limited detection, the maximum squeezing equals the  
measurement efficiency ηmeas = Γmeas/(Γth + Γqba) of the system, with 
Γ x S= /(4 )xxmeas zpf

2 imp  being the measurement rate37, which also quantifies  
how far the measurement is from the Heisenberg uncertainty limit: 

S S ħ η= /(2 )xx
imp

FF
tot

meas
. Measurement efficiency is likewise crucial 

for measurement-based quantum control of mechanical motion13 and 
determines the purity of the prepared mechanical states. We prepare 
conditional mechanical states by measuring the mechanical resonator 
at a rate close to its decoherence rate, demonstrating that our system 
is in a parameter regime in which quantum control of mechanical 
motion is possible at room temperature.

We proceed by stabilizing the laser at the magic detuning and adjust-
ing the single-detector homodyne to measure the mechanical motion 
at the quadrature angle θ ≈ −90°, maximizing the readout efficiency 
of mechanical motion. We digitize the measurement signal at a 14-MHz 
rate over 2 s for state preparation in post-processing. By fitting the 
measured noise spectrum with our model, we extract a total detection 
efficiency of ηd = 31% and C = 0.93q  (Supplementary Information).  
These parameters correspond to a measurement rate of Γmeas =  
ηdΓqba = 2π × 11 kHz, approaching the thermal decoherence rate of  
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Fig. 2 | Suppression of cavity frequency noise in the phononic bandgap.  
a, Cavity frequency noise comparison between regular mirror assembly and 
phononic crystal mirror assembly, showing a 700-fold total noise reduction in 
the blue-shaded region. The noise is measured with a silicon spacer chip in 
place of the membrane chip inside the cavity. The vertical axis is calibrated  
in cavity frequency noise units (left) and in equivalent mirror mechanical 
displacement units (right). b, MIM cavity optical linewidth as a function of 
wavelength. The blue circles indicate measured optical cavity linewidths.  

The red circle indicates the optical mode used for experiments. The modulation 
of the cavity linewidth is because of the presence of the membrane in the cavity. 
The dashed grey line indicates the ideal empty cavity linewidth based on the 
measured mirror transmission after the deposition of the high-reflectivity 
coating but before the definition of the PNC. c,d, Band diagram and photograph 
of the top phononic crystal mirror. e,f, Band diagram and photograph of the 
bottom phononic crystal mirror. Scale bar, 3 mm (d,f).
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Γth = 2π × 34 kHz and resulting in a measurement efficiency of ηmeas = 16%. 
This efficiency corresponds to an imprecision-force noise product  
2.5 times the Heisenberg uncertainty limit. The degradation of the 
measurement efficiency compared with the condition for maximum 
squeezing mainly comes from the lower homodyne efficiency at a 
quadrature angle of θ ≈ −90°.

As is shown in Fig. 4a, the mechanical mode is initially in a thermal 
state with phase-space variance determined by both thermal decoher-
ence and QBA decoherence. Based on the continuous measurement 
record, optimal state estimation predicts both the most probable  
values of the mechanical quadratures rp = (Xp, Yp) and the correspond-
ing uncertainties in time. However, as there are parasitic modes near 
the mode of interest, single-mode state estimation2,38 underestimates 
the conditional occupancy. We, therefore, conduct multimode Kalman 
filtering based on the quantum master equations of the system that 
include the nine nearest modes (details of calibration are provided in 
the Supplementary Information). Using this method, we can isolate the 
mechanical motion of the defect mode (Fig. 4b) and mitigate spectral 
contamination between different modes.

To estimate the quadrature variances VX,Y, we follow a retrodiction 
procedure39,40 (Methods), using the measurement records in the ‘future’ 
relative to the time of state conditioning as a separate result rr (Fig. 4c). 
The quadrature variance between the prediction and retrodiction 
results is exactly ⟨⟨∥rr − rp‖2⟩⟩ = 4VX,Y, where ⟨⟨⋯⟩⟩ is the statistical aver-
age over the dataset. We retrieved a thermal occupation n =cond
V − 1/2 = 1.43(3)X Y,  of the prepared state, with only a 3% deviation from 
the theoretical value. This multimode estimation result shows a 63% 
increased thermal occupancy compared with the idealized single-mode 
estimation. The degradation stems from the fact that mechanical 
modes cannot be fully distinguished from each other because of finite 
spectral overlap. This results in strong cross-correlations between 
mechanical modes, because of which collective modes with enhanced 
measurement rates can be defined41. From the reconstructed multi-
mode covariance matrix C, we can define a set of uncorrelated 
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collective modes that diagonalizes C through a symplectic transforma-
tion (for details see the Methods). We conduct a similar prediction–
retrodiction procedure with the collective modes, and plot the 
quadrature differences rr − rp in Fig. 4d. We find a modified defect mode 
thermal occupancy of n = 0.97(2)cond,col  in the new collective mode 
bases, with a corresponding state purity of 34.0(5)%.

Discussion
Using an ultralow noise cavity in conjunction with a PNC density- 
modulated membrane, we have been able to operate in the quan-
tum regime of cavity optomechanics at room temperature. With a 
single-detector homodyne scheme countering TIN, we demonstrate 
optomechanical squeezing and conditional state preparation of  
displaced thermal states with single-phonon occupation, which is a pre-
requisite for real-time quantum control of this macroscopic mechanical 
resonator.

With a reasonable improvement of the mechanical quality fac-
tor and a wider mechanical bandgap7, together with a real-time 
digital feedback using the studied optimal Kalman filters, we expect 
measurement-based feedback cooling to the ground state to be feasible 
with continuous2,13 or gated20 feedback. Non-Gaussian states at room 
temperature can also be prepared using nonlinear measurements, for 
example, photon counting42, which is inherently compatible with our 
nonlinear noise cancellation scheme.

In the long term, the ability to observe optomechanical squeezing 
at room temperature is advantageous for hybrid quantum systems43, 
with, for example, atomic ensembles26,44 and solid-state spins45,46, by 
obviating the need to operate experiments inside cryostats that have 
limited optical access and low thermal budget. Quantum control of 
macroscopic systems at room temperature may establish paths for 
practical applications in real-world scenarios47,48.
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Methods

Fabrication of density-modulated membranes
We use the soft clamping6,49–53 technique to realize ultrahigh mechanical 
quality factors. Our membrane design is inspired by those pioneered in 
ref. 7, but we use a different material for the nanopillars and a different 
fabrication process (see Supplementary Information for more details). 
We fabricated density-modulated PNC membranes by patterning amor-
phous silicon (aSi) nanopillars on a high aspect ratio Si3N4 membrane. 
In our PNC membranes, we fabricated pillars with diameters dpil = 300–
800 nm, thickness of about 600 nm and nearest-neighbour distances 
apil = 1.0–2.0 μm. Amorphous silicon is grown with plasma-enhanced 
chemical vapour deposition (PECVD) at a temperature of 300 °C. 
Electron-beam lithography (FOx16 electron-beam resist) and dry etch-
ing (using a plasma of SF6 and C4F8) are used to pattern pillar arrays in 
aSi. Dry etching is stopped on a 6-nm layer of HfO2 (hafnium oxide) 
grown with atomic layer deposition (ALD) directly on top of Si3N4. HfO2 
is used as an etch-stop layer because it is quite resistant to hydrofluoric 
acid (HF) etching, and the undercut created at the pillar base in the fol-
lowing process steps is limited. Undercut minimization is important to 
control the added dissipation induced by pillar motion (Supplementary 
Information). We remove the FOx mask and the residual etch-stop layer 
by dipping the wafer in HF 1% for about 3.5 min.

After patterning the pillars, we encapsulate them in a PECVD SixNy  
layer to protect them during the silicon deep etching step. We first 
grow a thin (about 20 nm), protective layer of Al2O3 with ALD, to 
shield the membrane layer from plasma bombardment during 
PECVD. Then, approximately 125 nm of SixNy is grown at 300 °C, with 
40 W of radio-frequency power exciting the plasma during deposi-
tion. This SixNy layer has been characterized to have a tensile stress 
of around +300 MPa at room temperature. The layer perfectly seals 
the nanopillars during immersion in hot KOH, without significant  
consumption.

After patterning the pillars on the wafer frontside film, a thick (about 
3 μm) layer of positive tone photoresist is spun on top for protection 
during the backside lithography process, which we perform with an 
MLA150 laser writer (Heidelberg Instruments). Optical lithography is 
followed by Si3N4 dry etching with a plasma of CHF3 and SF6. After the 
resist mask and protection layer removal with N-methyl-2-pyrrolidone 
(NMP) and O2 plasma, we deep-etch with KOH from the membrane win-
dows while keeping the frontside protected, by installing the wafer in a 
watertight PEEK holder in which only the backside is exposed6. KOH 40% 
at 70 °C is used, and the etch is interrupted when about 30–40 μm of 
silicon remains. The wafer is then rinsed and cleaned with hot HCl of the 
residues formed during KOH etching. Then, the wafer is separated into 
individual dies with a dicing saw, and the process continues chipwise. 
Chips are again cleaned with NMP and O2 plasma, and the deep-etch is 
concluded with a second immersion in KOH 40% at a lower temperature 
of 55 °C, followed by cleaning in HCl. From the end of the KOH etching 
step, the composite membranes are suspended, and great care must 
be taken while displacing and immersing the samples in liquid. We 
dry the samples by moving them to an ultrapure isopropyl alcohol 
bath after water rinsing. Isopropyl alcohol has a high vapour pressure, 
and quickly evaporates from the chip interfaces, with few residues  
left behind.

Finally, the PECVD nitride and Al2O3 layers can be removed selec-
tively with wet etching in buffered HF. The chips are loaded in a Teflon 
carrier in which they are vertically mounted and immersed for about 
3 min 20 s in BHF 7:1. It is crucial not to etch more than necessary to 
fully remove the encapsulation films: membranes become extremely 
fragile and the survival yield drops sharply when their thickness is 
reduced below around 15 nm. The membranes are then carefully 
rinsed, transferred in an ethanol bath and dried in a critical point 
dryer, in which the liquids can be evacuated gently and with little  
contamination.

Fabrication and simulation of phononic-crystal-patterned 
mirrors
The top and bottom mirror substrates are, respectively, fused silica 
and borosilicate glass, with a high-reflection coating sputtered on 
one face and an anti-reflection layer coating the other face. No layer 
for the protection of the optical coating is applied before machining. 
We use a dicing saw for glass machining to pattern a regular array of 
lines into the mirror substrates. The blade is continuously cooled by a 
pressurized water jet during the patterning process. The maximum cut 
depth allowed for our blade is 2.5 mm, and we constrain the designed 
PNC accordingly. We cut the flat bottom mirror from only one side  
(its thickness is only 1 mm), and the top mirror is patterned symmetri-
cally with parallel cuts from both sides, as it is 4 mm thick. The relatively 
deep cuts in the top mirror need to be patterned over several passes, 
with gradually increasing depths. After patterning one mirror side, 
the piece is flipped and the other side is patterned after aligning to the 
first cuts, visible through the glass substrate. The lines are arranged 
in a square lattice for simplicity, although more complex patterns can 
be machined with the dicing saw. After the dicing process, the mirrors 
are subject to ultrasonic cleaning, while immersing first in acetone and 
then in isopropanol.

We simulate the band diagrams of the unit cells of both the top 
and the bottom mirrors in COMSOL Multiphysics with the Structural 
Mechanics module. We optimized the lattice constant and cut depths 
to maximize the bandgap width, while centring the bandgap around 
1 MHz and making sure that the remaining glass thickness is sufficient 
to maintain a reasonable level of structural stiffness. Details of the PNC 
dimensions are shown in the Supplementary Information. Owing to the 
finite size of the mirrors, we expect to observe edge modes within the 
mechanical bandgap frequency range. The thermal vibrations of these 
modes penetrate into the PNC structure with exponentially decaying 
amplitudes. To account for their noise contributions, we simulated the 
frequency noise spectrum of the MIM assembly (details shown in the 
Supplementary Information). The eigenfrequency solution confirmed 
the existence of edge modes with frequencies within the mechanical 
bandgap, but did not predict any significant contribution to the cavity 
frequency noise: the PNC is sufficiently large to reduce their amplitude 
at the cavity mode position.

After patterning the PNC structures on the mirrors, we assembled a 
cavity with a spacer chip in place of a membrane and observed that the 
TE00 linewidth with the diced mirrors is identical to that of the origi-
nal cavity. This indicates that our fabrication process does not cause 
measurable excess roughness or damage to the mirror surfaces. By 
contrast, when the assembly was clamped too tightly, excess cavity loss 
occurred because of significant deformation of the PNC mirrors, with 
a reduced stiffness. We mitigate this detrimental effect in the experi-
ment by gently clamping the MIM cavity, with a spring compression 
sufficient to guarantee the structural stability of the assembly. We also 
ensure that the cavity mode is well-centred on the bottom mirror, to 
reduce the thermal noise contribution of the upper band-edge modes. 
For the MIM experiment discussed in the main text, we did not observe 
any mirror modes within the mechanical bandgap of the membrane 
chip. We can distinguish membrane modes from mirror modes by 
exploiting the fact that the coupling rates of membrane modes vary 
between different cavity resonances, whereas this is not the case for 
mirror modes.

Nonlinear noise cancellation scheme
At room temperature, the large thermal noise of the cavity, combined 
with the nonlinear cavity transduction response, results in a nonlin-
ear mixing noise (TIN). This noise could lead to excess intracavity 
photon fluctuations and also to excess noise in optical detection. In 
the following, we discuss the strategy to cancel these effects in the 
fast-cavity limit (ω ≪ κ). Theoretical derivations and a discussion 
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of the effect of a finite ω/κ ratio can be found in the Supplementary 
Information.

In the experiment, we pump the cavity at the magic detuning, 
Δ κ2 / = − 1/ 3, in which the nonlinear photon number noise is cancelled, 

to prevent excess oscillator heating due to nonlinear classical radiation 
pressure noise. To show the quantum correlations leading to optom-
echanical squeezing and conduct measurement-based state prepara-
tion, we need to perform measurements at arbitrary optical quadrature 
angles. Balanced homodyne detection provides the possibility of tun-
ing the optical quadrature, but it does not offer enough degrees  
of freedom to cancel the nonlinear noise in detection. However,  
if the local oscillator is injected from a highly asymmetric beam  
splitter with a very small reflectivity (r ≪ 1) and the combined field is  
detected on a single photodiode, the photodetection nonlinearity is 
maintained and offers enough degrees of freedom to cancel the  
nonlinear noise in detection4 (for a derivation, see Supplementary  
Information). Specifically, simultaneous tuning of local oscillator 
amplitude and phase enables nonlinear mixing noise cancellation at 
arbitrary quadrature angles. In the fast-cavity limit, the cancellation  
condition is
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where a a ra≈ +hom sig LO is the coherent combination of the signal field 
asig and the local oscillator field aLO (defined as the field before the 
beam splitter), θ = θhom − θsig is the quadrature rotation angle and 
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−1 is the cavity d.c. optical susceptibility.
In the experiment, to detect a certain quadrature angle while  

cancelling nonlinear noise, we lock the homodyne power at the  
corresponding combined field level I a=hom hom

2. We then continu-
ously vary the local oscillator power using a tunable neutral density 
filter until the noise in the mechanical bandgap is perfectly cancelled. 
The level of mixing noise is very sensitive to the local oscillator  
power, and therefore the cancellation point can serve as a good indi-
cator of the measured quadrature angle θ. Knowing the field ampli-
tudes  ∣ ∣ ∣ ∣a a,hom sig  and that Δ κ= − /(2 3 ), we can reconstruct the 
measured quadrature angle as the one satisfying the cancellation  
condition.

A detailed characterization of the nonlinear mixing noise and an 
analysis of single-detector homodyne efficiency can be found in the 
Supplementary Information.

Multimode Kalman filter
The continuous position measurement of an oscillator at frequency 
Ωm can be viewed as a form of heterodyne measurement of two orthog-
onal mechanical quadratures of motion X ̂ and ̂Y  that rotate with fre-
quency Ωm. IQ demodulation can then be carried out at the mechanical 
frequency Ωm. This results in two independent measurement channels 
of two orthogonal mechanical quadratures with independent measure-
ment noise.

We work in a parameter regime in which the measurement rate is 
significantly smaller than the frequency of the mechanical mode, such 
that we can perform IQ demodulation of the mechanical motion at Ωm 
to obtain the slowly varying X Y,̂ ̂  quadratures. Their evolution is 
described by decoupled quantum master equations33. In this param-
eter regime, only thermal coherent states are prepared through the 
measurement process. These states are essentially thermal states dis-
placed from the origin of the phase space and belong to the larger 
group of Gaussian states.

We operate in the fast-cavity limit Ωm ≪ κ, so the cavity dynamics are 
simplified in our modelling. After IQ demodulation, the normalized 
photocurrent signal is described by
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defined in terms of an ideal unit Gaussian white noise process 
ξ t ξ t δ t t⟨ ( ) ( ′)⟩ = ( − ′).

As the measurement is purely linear, the system remains in a 
Gaussian state54, and the dynamics are completely captured by the 
expectation values of the quadratures ⟨Xi⟩, ⟨Yi⟩ and their covariance 
matrix C. We derive the time evolution of the quadrature expectation  
values as
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where M̂ and N̂  are the canonical conjugate observables of M̂  and ̂N.
Equations (1)–(3) form a closed set of update equations given the 

measurement record i(t), and enable quadrature estimations of an 
arbitrary number of modes and their correlations. The thermal occu-
pancy n icond,  of a specific mechanical mode is determined by the quad-
rature phase-space variances ̂ ̂ ̂V C=X X Xi i i

 and ̂ ̂ ̂V C=Y Y Yi i i
, which are both 

equal to n + 1/2icond, .
We record the voltage output from the photodetector using an UHFLI 

lock-in amplifier (Zurich Instruments), digitizing the signal at a 14-MHz 
sampling rate for a total duration of 2 s, and we store the data digitally 
for post-processing. The noise power spectrum density of the digitized 
signal is compared with that simultaneously measured on a real-time 
spectrum analyser, to rule out signal-to-noise ratio degradation from 
the digitization noise. Details of an additional filtering step are dis-
cussed in the Supplementary Information. After filtering, only the 10 
mechanical modes around the defect mode frequency Ωm are kept for 
the multimode state estimation study.

To perform the multimode state estimation, we extract the required 
system parameters of the nearest 10 mechanical modes around Ωm by 
fitting the measured spectral noise density. We demodulate the signal 



at Ωm and feed the time-series signal i(t) to the discretized version of 
the update equation (2),
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to compensate for the influence of discretization on the state estima-
tion performance compared with an ideal continuous one.

The evolution of the matrix Bi, involving 210 independent covari-
ance matrix elements, can be computed independently from the 
sampled time-domain data. Therefore, we calculate it following 
equation (3), with an update rate of 140 MHz to mitigate the discre-
tization effect, which is then used for the update equation (4) at the 
sampling rate of 14 MHz. The verification of the correct implementa-
tion of the multimode Kalman filter is shown in the Supplementary  
Information.

To experimentally reconstruct the covariance matrix from the esti-
mated quadrature data, we use the retrodiction method. The retrodic-
tion method uses the measurement record in the future as a separate 
state estimation result. We derived the retrodiction update equations39 
and found that they are identical to the prediction update equations, 
except with negative mechanical frequencies. As a result, we have the 
following relations between covariance matrix elements estimated 
by prediction and retrodiction (respectively identified by the super-
scripts p and r):
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For each time trace slice (1 ms), we calculate the difference between 
the prediction and retrodiction results r r⟨ ⟩ − ⟨ ⟩r p̂ ̂ , and calculate the 
covariance matrix as
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1
2
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where ⟨⟨⋯⟩⟩ is the statistical average over all the time trace slices, and 
r ̂ ⋯ ̂ ̂ ⋯X Y= [ , , , ]i i . The symbolT indicates the transposed vector.

For a system consisting of several mechanical modes that are not 
sufficiently separated in frequency (∣Ωi − Ωj∣ not significantly faster 
than any other rates in the system), cross-correlations between differ-
ent mechanical modes emerge because of common measurement 
imprecision noise and common quantum backaction force. This gen-
erally leads to higher quadrature variance because of the effectively 

reduced measurement efficiency of individual modes. To decouple 
the mechanical oscillators that are interacting because of the spectral 
overlap and the measurement process, we define a new set of collective 
motional modes through a symplectic (canonical) transformation of 
quadrature basis U that diagonalizes the covariance matrix U†CU = V 
(ref. 55). As the covariance matrix is real and symmetric, the elements 
of U are always real, which is required for real observables. The trans-
formation can be understood as a normal mode decomposition of the 
collective Gaussian state that preserves the commutation relations, 
as opposed to conventional diagonalization using unitary matrices. 
This is represented by the requirement of the symplectic transforma-

tion UΩU† = Ω, where 
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 is the N-mode symplectic form and 

IN is the N × N identity matrix. We find that in the new quadrature basis 
based on the diagonalized covariance matrix, the defect mode is only 
weakly modified. The transformation coefficients for the defect mode 
are shown in the Supplementary Information.
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