Oxygen-evolving photosystem II structures during $S_{1}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}$ transitions

https://doi.org/10.1038/s41586-023-06987-5
Received: 29 June 2023
Accepted: 15 December 2023
Published online: 31 January 2024

Open access

Check for updates

Hongjie Li ${ }^{1,12}$, Yoshiki Nakajima ${ }^{1,12}$, Eriko Nango ${ }^{2,3}$, Shigeki Owada ${ }^{4}$, Daichi Yamada ${ }^{5}$, Kana Hashimoto ${ }^{1}$, Fangjia Luo ${ }^{4}$, Rie Tanaka ${ }^{3,6}$, Fusamichi Akita ${ }^{1}$, Koji Kato ${ }^{1}$, Jungmin Kang ${ }^{3}$, Yasunori Saitoh ${ }^{1}$, Shunpei Kishi', Huaxin Yu ${ }^{1}$, Naoki Matsubara', Hajime Fujii', Michihiro Sugahara ${ }^{4}$, Mamoru Suzuki ${ }^{7}$, Tetsuya Masuda ${ }^{8}$, Tetsunari Kimura ${ }^{9}$, Tran Nguyen Thao ${ }^{1}$, Shinichiro Yonekura ${ }^{1}$, Long-Jiang Yu ${ }^{1,10}$, Takehiko Tosha ${ }^{3}$, Kensuke Tono ${ }^{4}$, Yasumasa Joti ${ }^{4}$, Takaki Hatsui ${ }^{4}$, Makina Yabashi ${ }^{4}$, Minoru Kubo ${ }^{5}$, So Iwata ${ }^{3,6}$, Hiroshi Isobe ${ }^{1}$, Kizashi Yamaguchi ${ }^{11}$, Michihiro Suga ${ }^{1 \otimes}$ \& Jian-Ren Shen ${ }^{1 \boxtimes}$

Abstract

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of S_{i} states ($i=0-4$) at the $\mathrm{Mn}_{4} \mathrm{CaO}_{5}$ cluster ${ }^{1-3}$, during which an extra oxygen (O) is incorporated at the S_{3} state to form a possible dioxygen ${ }^{4-7}$. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). Y_{Z}, a tyrosine residue that connects the reaction centre P 680 and the $\mathrm{Mn}_{4} \mathrm{CaO}_{5}$ cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca^{2+} ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the $\mathrm{O} 1, \mathrm{O} 4$ and $\mathrm{Cl}-1$ channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as $\mathrm{O}-\mathrm{O}$ bond formation.

Photosystem II (PSII) produces dioxygen by extracting electrons and protons from water, which takes place at the oxygen-evolving complex (OEC), an oxo-bridged $\mathrm{Mn}_{4} \mathrm{CaO}_{5}$ cluster with a shape that resembles a distorted chair ${ }^{2,3,8}$. The Mn atoms in the OEC accumulate oxidative power through a four-step cycle of S_{i} states $(i=0-4)$ that is initiated by the light-driven excitation of P 680 , a reaction centre that is a complex of chlorophyll a molecules 1 (Extended Data Fig. 1a) ${ }^{1}$. This is followed by a rapid charge separation that produces a pair of positive and negative charges on $\mathrm{P} 680^{++} /$pheophytin $^{--}$(Pheo ${ }^{--}$) on a picosecond timescale ${ }^{9,10}$. The electron is transferred from Pheo- to the primary and secondary plastoquinones Q_{A} and Q_{B} (Extended Data Fig. 1b). The P680 ${ }^{++}$is then reduced by a tyrosine residue ($\mathrm{D} 1-\mathrm{Y} 161 ; \mathrm{Y}_{\mathrm{z}}$) located between P 680 and the OEC, which is re-reduced by the OEC, pushing the OEC to a higher S_{i} state 11. In conjunction with the oxidation of the OEC, protons are released in a 1:0:1:2 stoichiometry for the $\mathrm{S}_{0}-\mathrm{S}_{1}, \mathrm{~S}_{1}-\mathrm{S}_{2}, \mathrm{~S}_{2}-\mathrm{S}_{3}$ and $\mathrm{S}_{3}-$ $\left(\mathrm{S}_{4}\right)-\mathrm{S}_{0}$ transitions ${ }^{12-14}$, and two water molecules are split to produce a
dioxygen in the $\mathrm{S}_{3}-\left(\mathrm{S}_{4}\right)-\mathrm{S}_{0}$ transition, after which the OEC returns to its most reduced S_{0} state.

The water-splitting reaction requires a constant replenishment of water from the lumen, as well as the prompt elimination of the generated protons into the lumen. There are extensive hydrogen-bonding networks connecting the OEC with the lumen, and among these, the $\mathrm{O} 1, \mathrm{O} 4$ and $\mathrm{Cl}-1$ channels are proposed to have essential roles in the water-splitting reaction ${ }^{6,15-18}$ (Extended Data Fig. 1c). (Note that the first 56 water molecules are named following a previous report ${ }^{18}$, and other water molecules are newly numbered; see Supplementary Table 1 for corresponding numbers in other studies). The O1 channel is a wide channel starting from a five-water cluster (W10, W20, W21, W22 and W 23) that is located near O1 of the OEC (OEC-O1). This channel travels across a narrow area and ends at a giant cavity in which two glycerol molecules are found in the crystal structure ${ }^{2,3}$ (Extended Data Fig. 1c). The wide O1 channel might give a high mobility of water within it, and is

[^0]therefore considered as a potential water inlet pathway ${ }^{6,17}$. By contrast, the 04 channel is a shorter channel that starts at OEC-O4 and ends at a four- or five-water cluster (Extended Data Fig. 1c). The $\mathrm{Cl}-1$ channel refers to a hydrogen-bonding network mediated by $\mathrm{Cl}-1$, which spans from W1 to W4, continues through D1-D61 and further extends to an ionic gate comprising D1-E65, D1-R334 and D2-E312 (Extended Data Fig. 1c). Cl^{-}ions are essential for the progression of PSII beyond the S_{2} state ${ }^{19-21}$, and the $\mathrm{Cl}-1$ channel is thought to serve as a proton-release pathway in the $S_{2}-S_{3}$ transition ${ }^{17,22,23}$.

Pump-probe time-resolved femtosecond crystallography (TR-SFX) has provided a lot of information about the intermediate S-state structures of PSII (refs. 4-7,17,24,25). However, time-resolved structures at shorter timescales during the $\mathrm{S}_{1}-\mathrm{S}_{2}$ and $\mathrm{S}_{2}-\mathrm{S}_{3}$ transitions are lacking, and thus the sequence of OEC oxidation, proton release, electron transfer and water delivery before O 6 incorporation is unclear. Here we investigate the structural dynamics during the $S_{1}-S_{2}$ and $S_{2}-S_{3}$ transitions using the pump-probe TR-SFX method at delay times (Δt) of 20 ns to 5 ms (Extended Data Fig.1d). We identify structural changes associated with electron transfer, proton release and water delivery at various regions, including $\mathrm{Q}_{A}-\mathrm{Q}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{Z}}$, the OEC and the $\mathrm{O} 1, \mathrm{O} 4$ and $\mathrm{Cl}-1$ channels. Notably, we observe the presence of a water molecule close to Ca at initial stages of the $\mathrm{S}_{2}-\mathrm{S}_{3}$ transition. This water molecule subsequently disappears with the concomitant increase of the 06 electron density, suggesting that it is the origin of O 6 . Our findings provide spatial and time-resolved snapshots of the $\mathrm{S}_{1}-\mathrm{S}_{2}-\mathrm{S}_{3}$ state transitions, which are important for the mechanism of $\mathrm{O}-\mathrm{O}$ bond formation.

Data quality

We obtained 14 datasets at resolutions ranging from 2.15 to $2.30 \AA$, with redundancy values higher than 100 even at the highest-resolution shells, after 1F or $2 F$ (Extended Data Table 1). For all datasets, we calculated the $F_{\text {obs }}(1 \mathrm{~F}(\Delta t 1))-F_{\text {obs }}($ Dark $)$ and $F_{\text {obs }}(2 \mathrm{~F}(\Delta t 2))-F_{\text {obs }}(1 \mathrm{~F})$ isomorphous-difference density maps at $2.3-\AA$ resolution. The $R_{\text {iso }}$ values between the intermediate and ground states ranged from 6\% to 11% (Supplementary Table 2)-sufficiently low to allow the confident detection of subtle structural changes during S_{i}-state transitions. We observed substantial difference densities in the $Q_{A}-Q_{B}$ and OEC regions and in the proton and water channels at the electron donor side; their intensities are listed in Supplementary Table 3.

Structural changes in the $\mathbf{Q}_{A}-\mathbf{F e}-\mathbf{Q}_{\mathrm{B}}$ area

Q_{A} and Q_{B} are linked to the non-haem iron through hydrogen bonds with D2-H214 and D1-H215, forming an iron-quinone complex. The carbonyl oxygens of the Q_{A} and Q_{B} heads are also hydrogen-bonded to D2-F261 and to D1-F265/D1-S264, respectively (Fig. 1).

Large difference densities appear on the Q_{A} side at $\Delta t 1=20 \mathrm{~ns}$ and $\Delta t 1=200 \mathrm{~ns}$, become weak at $\Delta t 1=1 \mu \mathrm{~s}$ to $\Delta t 1=200 \mu \mathrm{~s}$ and vanish at $\Delta t 1=5 \mathrm{~ms}$ (Fig. 1a and Supplementary Video 1). These changes correspond to the formation of $\mathrm{Q}_{\mathrm{A}}{ }^{-}$, the oxidation of $\mathrm{Q}_{\mathrm{A}}{ }^{-}$to Q_{A} and the completion of $Q_{A}{ }^{-}$oxidation, respectively. The formation of $Q_{A}{ }^{-}$causes the counterclockwise rotation of its head group, concomitant with similar rotations or movements of D2-F261, D2-W253 and D2-H214, which surround Q_{A} (Fig. 1a and Supplementary Video1). The formation of $Q_{A}{ }^{-}$also induces a shift of the non-haem iron by about $0.2 \AA$ towards Q_{A}. The pair of positive and negative difference densities around the non-haem iron is strongest at $\Delta t 1=20 \mathrm{~ns}$ and $\Delta t 1=200 \mathrm{~ns}$, which is much faster than the time needed for the reduction of Fe^{3+} by $\mathrm{Q}_{\mathrm{A}}{ }^{-}(7 \mu \mathrm{~s}$ in refs. 26,27), indicating that the movement of the non-haem iron is caused not by its reduction but rather by the attraction of electropositive Fe^{3+} to $\mathrm{Q}_{\mathrm{A}}{ }^{-}$. The diminishing difference densities around Q_{A} and the non-haem iron at $\Delta t 1=1 \mu$ s to $\Delta t 1=200 \mu$ s suggest that the attraction between the non-haem iron and $Q_{A}{ }^{-}$is decreased and that the electron on $Q_{A}{ }^{-}$is transferred to the non-haem iron (Fig. 1a and Supplementary Video 1).

Fig. $1 \mid$ Structural dynamics in the $Q_{A}-Q_{B}$ area during $S_{1}-S_{2}-S_{3}$ transitions. \mathbf{a}, \mathbf{b}, Structures of PSII in the $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{B}}$ area are superposed with $F_{\text {obs }}(1 \mathrm{~F})-F_{\text {obs }}($ Dark) (a) and $F_{\text {obs }}(2 \mathrm{~F})-F_{\text {obs }}(1 \mathrm{~F})(\mathbf{b})$ difference density maps contoured at $+3.5 \sigma$ (green) and -3.5σ (orange) from 20 ns to 5 ms . Ground-state models (dark in a and 1F in b) are depicted ingrey, and the D1 and D2 proteins in the intermediate structures are shown in yellow and cyan, respectively. Residues of D1 and D2 are depicted without and with underlines, respectively. Hydrogen bonds are shown by black dotted lines. Black solid lines link the cofactors in PSII and their ligands. Black arrows indicate structural changes based on the refined models. The ordered and disordered atoms (non-haem iron in this figure and water molecules in the other figures) in the intermediate structures are encircled by cyan- and reddotted lines, respectively. These nomenclature, hydrogen bonds, ligands of cofactors and black arrows are used in the other figures, unless otherwise stated.

By $\Delta t 1=5 \mathrm{~ms}$, these difference densities disappear entirely, indicating the completion of the electron transfer together with the restoration of Q_{A} and the non-haem iron.

The distances from two carbonyl oxygens of bicarbonate (BCT; BCT-O1 and BCT-O2) to the non-haem iron increase from $2.16 \AA$ and $2.28 \AA$ in the dark state to $2.43 \AA$ and $2.44 \AA$ after 5 ms of 1 F (Fig. 1a, Extended Data Table 2 and Supplementary Video 1). These increases most likely reflect changes in the binding environment of BCT owing to the reduction of the non-haem iron. At $\Delta t 1=5 \mathrm{~ms}$, a large positive difference density appears between BCT and D1-Y246 (Fig. 1a and Supplementary Video 1), consistent with our previous discovery ${ }^{25}$, and
the distance between D1-Y246 and BCT-O1 decreases from 3.21 Å to $2.82 \AA$ At At $\Delta t 1=200 \mu \mathrm{~s}$ to $\Delta t 1=5 \mathrm{~ms}$, the Q_{B} head shifts slightly, which might be a result of the movement of BCT or the partial reduction of Q_{B} by $\mathrm{Q}_{\mathrm{A}}{ }^{-}$(ref. 28).

From $\Delta t 2=20 \mathrm{~ns}$ to $\Delta t 2=30 \mu \mathrm{~s}$, the Q_{A} head rotated in a counterclockwise direction, and this was accompanied by a movement of the non-haem iron towards $Q_{A}-$ structural changes similar to those observed after 1F. However, the difference densities associated with these structural changes were much weaker after 2 F (Fig. 1 and Supplementary Video 2). The non-haem iron remains Fe^{2+} at 5 ms after photoreduction by 1F, because its re-oxidation by ferricyanide takes 20 s (ref. 27) (Extended Data Fig. 1d). For this reason, the electron of $Q_{A}{ }^{-}$does not travel to the non-haem iron, but rather travels directly to Q_{B} after $2 F$, resulting in the absence of difference density on BCT and the appearance of positive difference density on the Q_{B} head at $\Delta t 2=5 \mathrm{~ms}$ (ref.4) (Fig. 1b and Supplementary Video 2). The non-haem iron becomes disordered at $\Delta t 2=200 \mu \mathrm{~s}$ but ordered by $\Delta t 2=5 \mathrm{~ms}$, which is presumably related to electron transfer from $Q_{A}{ }^{-}$to Q_{B} during this time.

Structural changes around Y_{Z}

D1-V157, D1-F186, D1-I192 and D1-I290 lie between Y_{Z} and $\mathrm{P}_{\mathrm{D} 1}$ (P680 at the D1 side) (Extended Data Figs. 1b and 2), and Y_{Z} is connected to the $O 1$ channel through W4 and D1-Q165, to the $\mathrm{Cl}-1$ channel through W 7 and to the OEC through W3, W4 and W7 (Extended Data Fig. 1c). Y_{Z} forms a short (low-barrier) hydrogen bond with D1-H190 (2.44 Å in the Protein Data Bank (PDB) under accession code 3WU2; ref. 2), through which the phenolic proton of $\mathrm{Y}_{\mathrm{Z}}{ }^{+}$migrates to D1-H190, forming $\mathrm{Y}_{\mathrm{Z}}{ }^{-}$-D1- $\mathrm{H} 190^{+}$during the S_{i}-state transitions ${ }^{11,29-31}$. At $\Delta t 1=20 \mathrm{~ns}$, two negative difference densities first appear adjacent to D1-Q165 and Y_{Z}, and at $\Delta t 1=200 \mathrm{~ns}$, pairs of positive and negative difference densities appear over D1-Q165, Y_{Z} and D1-F186, indicating their correlated movements towards P680 (Fig. 2a and Extended Data Fig. 2a,b). These movements might be in preparation for the subsequent electron transfer from Y_{z} to P 680 . Simultaneously with these movements, a positive difference density appears on the Mg atom of $\mathrm{P}_{\mathrm{D} 1}$ (Fig. 2 a and Supplementary Table 3), which might reflect the re-reduction of $\mathrm{P}^{2} 80^{+}$by Y_{z}.

D1-H190 moves away from Y_{Z} at $\Delta t 1=200 \mathrm{~ns}$, which, together with the movement of Y_{Z} toward P680, causes the elongation of the hydrogen bond between Y_{Z} and D1-H190 from 2.51 Å to $2.80 \AA$ at $\Delta t 1=200 \mathrm{~ns}$ (Fig. 2a, Extended Data Fig. 3 and Supplementary Video 3). These changes suggest that Y_{Z} is first oxidized by $\mathrm{P}_{680^{+}}$and subsequently deprotonated, forming a $\mathrm{Y}_{\mathrm{Z}}{ }^{\circ} / \mathrm{D} 1-\mathrm{H} 190^{+}$species, with the time constant of Y_{Z} oxidation consistent with that reported for $\mathrm{P}_{680^{+}}$reduction in the $\mathrm{S}_{1}-\mathrm{S}_{2}$ transition ${ }^{31,32}$. At $\Delta t 1=1 \mu \mathrm{~s}$ and $\Delta t 1=30 \mu \mathrm{~s}$, difference densities on D1-Q165, Y_{Z} and D1-H190 decrease, indicating that they have moved to their original locations. In addition, a strong negative difference density appears on W 7 , suggesting that W 7 is disordered during this period (Fig. 2a and Supplementary Video 3). By $\Delta t 1=200 \mu \mathrm{~s}$, all difference densities vanish at the Y_{Z} area, indicating the restoration of all residues and water, and the $\mathrm{Y}_{\mathrm{Z}}-\mathrm{D} 1-\mathrm{H} 190$ distance returns to $2.53 \AA$ (Fig. 2a, Extended Data Fig. 3, Extended Data Table 2 and Supplementary Video 3). The trajectories of the Y_{Z} area at $\Delta t 1=1 \mu \mathrm{~s}$ and $\Delta t 1=30 \mu \mathrm{~s}$ correspond to the re-reduction and re-protonation of $\mathrm{Y}_{\mathrm{Z}}{ }^{\circ}$ to Y_{Z}, which completes by $\Delta t 1=200 \mu \mathrm{~s}$, consistent with the $55-85-\mu$ s half-life of $\mathrm{Y}_{\mathrm{Z}}{ }^{++}$ re-reduction by the OEC in the $\mathrm{S}_{1}-\mathrm{S}_{2}$ transition ${ }^{33,34}$.

After 2F, difference densities start to appear only after $\Delta t 2=200 \mathrm{~ns}$ (Fig. 2b and Supplementary Movie 4). These lagged difference densities likely correspond to the slower and biphasic $50-\mathrm{ns}$ and $280-\mathrm{ns}$ components of the $\mathrm{P}_{680^{+}}$decay in the $\mathrm{S}_{2}-\mathrm{S}_{3}$ transition ${ }^{31,32}$. This delay might arise from the reduced rate of electron transfer to $\mathrm{P} 680^{+}$owing to the accumulation of a positive charge on the OEC. Difference densities on Y_{Z} and D1-Q165 increase at $\Delta t 2=1 \mu \mathrm{~s}$, and the $\mathrm{Y}_{\mathrm{Z}}-\mathrm{D} 1-\mathrm{H} 190$ distance increases slightly from $\Delta t 2=0$ to $\Delta t 2=1 \mu \mathrm{~s}$ (Extended Data Fig. 3, Extended Data Table 2 and Supplementary Video 4). These

Fig. 2 | Structural dynamics in the \mathbf{Y}_{Z} area during $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}$ transitions. \mathbf{a}, \mathbf{b}, Structures of PSII in the Y_{Z} area are superposed with $F_{\text {obs }}(1 \mathrm{~F})-F_{\text {obs }}($ Dark) (a) and $F_{\text {obs }}(2 \mathrm{~F})-F_{\text {obs }}(1 \mathrm{~F})$ (b) difference density maps contoured at $+4.0 \sigma$ (green) and -4.0σ (orange), with delay times from 20 ns to 5 ms . Water molecules at ground and intermediate states are depicted by red and cyan spheres, respectively. The Mg atom in P_{DI} is shown as a grey sphere for the ground structure and a violet sphere for the intermediate structure. O6* and O6 (in the other figures) are depicted in magenta, and the Ca ion of the OEC is in blue. The same colour scheme is used in other figures, unless otherwise stated.
findings suggest the oxidation of Y_{Z} and a potential proton transfer from Y_{Z} to D1-H190 at $\Delta t 2=1 \mu \mathrm{~s}$, which is similar to that observed at $\Delta t 1=20 \mathrm{~ns}-200 \mathrm{~ns}$. At $\Delta t 2=30 \mu \mathrm{~s}$, difference densities on Y_{Z} and D1-Q165 decrease, indicating the re-reduction of Y_{z} by the OEC. The difference density on Y_{Z} becomes even weaker at $\Delta t 2=200 \mu \mathrm{~s}$, but is still present (Fig. 2b and Supplementary Video 4), indicating that the reduction of Y_{Z} is not yet complete, which is compatible with the half-life of $140-90 \mu$ s of Y_{Z} reduction ${ }^{33,34} . Y_{Z}$ reduction is completed by 5 ms , and difference densities disappear at the Y_{Z} area and all residues and water molecules are restored (Fig. 2b and Supplementary Video 4). The time-resolved redox states of Y_{Z} after 1 F and 2 F that are described above are summarized in Extended Data Fig. 2c.

Oxidation of the OEC during the $S_{1}-S_{\mathbf{2}}$ transition

Notable positive difference densities first appear on Mn4 and subsequently cover all four Mn and one Ca ions at $\Delta t 1=20 \mathrm{~ns}-200 \mathrm{~ns}$ before OEC oxidation (Fig. 3a and Supplementary Video 3). Nevertheless,
metal-metal distances remain largely unchanged (Extended Data Fig. 3 and Extended Data Table 2), suggesting a possible charge rearrangement on the OEC triggered by the electrostatic effect of the oxidized $Y_{Z}{ }^{++} / Y_{Z}$. At $\Delta t 1=1 \mu \mathrm{~s}$, difference densities on $\mathrm{Mn} 1-\mathrm{Mn} 3$ and Ca vanish, whereas that on Mn4 continues (Fig. 3a and Supplementary Video 3). At $\Delta t 1=30 \mu \mathrm{~s}$, paired negative and positive difference densities appear on two sides of Ca , indicating that Mn 4 and Ca move outwards from the OEC, causing an increase in the Mn4-Ca distance from $3.83 \AA$ at $\Delta t 1=200$ ns to $3.96 \AA$ at $\Delta t 1=30 \mu \mathrm{~s}$. By $\Delta t 1=200 \mu \mathrm{~s}$, the difference densities in the Y_{Z} area vanish completely, whereas those surrounding Mn4 and Ca increase, and the Mn4-Ca distance further extends to $4.10 \AA$ (Fig. 3a, Extended Data Fig. 3, Extended Data Table 2 and Supplementary Video 3). The results suggest that Mn4(III) of the OEC donates one electron to $Y_{Z}{ }^{\circ}$ at $\Delta t 1=1 \mu \mathrm{~s}$ to $\Delta t 1=200 \mu \mathrm{~s}$. At the completion of Mn 4 oxidation by $\Delta t 1=200 \mu \mathrm{~s}$, a negative difference density emerges on 05 , suggesting its instability, which is subsequently stabilized at $\Delta t 1=5 \mathrm{~ms}$. In addition, at $\Delta t 1=5 \mathrm{~ms}$, a positive difference density appears near Mn1 but outside of the OEC, suggesting the movement of Mn1 away from the OEC. These structural changes might stabilize the positive charge on the OEC.

In correlation with the outward movement of Ca from $\Delta t 1=30 \mu \mathrm{~s}$ to $\Delta t 1=5 \mathrm{~ms}$, one of the carboxyl oxygens of D1-E189 located close to Ca shifts slightly away from Ca. Because the movement of Ca is larger than that of D1-E189, the Ca-D1-E189 distance decreases from $3.02 \AA$ $(\Delta t 1=1 \mu \mathrm{~s})$ to $2.86 \AA(\Delta t 1=5 \mathrm{~ms})$ (Fig. 3a, Extended Data Fig. 3, Extended Data Table 2 and Supplementary Video 3). In addition, W10, which is located in the proximity of D1-E189, becomes disordered in the same time range, and this correlates with the motion of Ca and D1-E189.

Insertion of 06 in the $S_{2}-\mathbf{S}_{\mathbf{3}}$ transition

No difference density appears on the OEC at $\Delta t 2 \leq 200 \mathrm{~ns}$, suggesting that no structural changes to the OEC occur in this time range (Fig. 3b and Supplementary Video 4). One notable positive difference densitydesignated as $\mathrm{O6}^{*}-$ emerges approximately $2.2 \AA$ away from Ca during $\Delta t 2=1 \mu \mathrm{~s}$ to $\Delta t 2=200 \mu \mathrm{~s}$, and disappears by $\Delta t 2=5 \mathrm{~ms}$, with the concomitant increase of the 06 density from $\Delta t 2=200 \mu \mathrm{~s}$ to $\Delta t 2=5 \mathrm{~ms}$ (Fig. 3b, Extended Data Fig. 4a, Supplementary Table 3 and Supplementary Video 4). These observations suggest that $\mathrm{O6}^{*}$ is the origin of O 6 , and that O^{*} binds to Ca at $\Delta t 2=1 \mu \mathrm{~s}$ to $\Delta t 2=30 \mu \mathrm{~s}$, translocates to 06 at $\Delta t 2=200 \mu \mathrm{~s}$ and completes its translocation by $\Delta t 2=5 \mathrm{~ms}$.

At $\Delta t 2 \leq 1 \mu \mathrm{~s}$, there are no difference densities among the neighbouring water molecules of 06^{*}, indicating that 06^{*} does not originate from any stable water molecules nearby. Instead, it is likely to be derived from an aqueous water-specifically, W10-located $2.5 \AA$ away from O6* in the S_{1} state, and becomes disordered at $\Delta t 1=30 \mu \mathrm{~s}-5 \mathrm{~ms}$ (Fig. 3 and Supplementary Video 3). The 2.2-Å distance between O^{*} and Ca indicates that $\mathrm{O6}^{*}$ could be a hydroxide ion $\left(\mathrm{OH}^{-}\right)$rather than a water molecule, because water molecules W3 and W4 bind to Ca at distances ranging from 2.4 to $2.6 \AA$. Indeed, theoretical calculations indicate that an OH^{-}ion positioned close to $\mathrm{O6}^{*}$ in the S_{2} state (Extended Data Fig. 5a,b) exhibits low energy and high stability, whereas the placement of a water molecule is not feasible. The deprotonation of water most likely occurs at $\Delta t 2=200 \mathrm{~ns}-1 \mu \mathrm{~s}$, during which time the simultaneous existence of $\mathrm{Y}_{\mathrm{Z}}{ }^{+} / \mathrm{Y}_{\mathrm{Z}}{ }^{\circ}$ and OEC^{+}might collectively promote the deprotonation of the Ob^{*} precursor. Consequently, the resulting OH^{-}ion binds to Ca , neutralizing the positively charged OEC^{+}. The achievement of a neutral OEC is crucial for the donation of an electron from the OEC to $\mathrm{Y}_{\mathrm{Z}}{ }^{\text {, }}$, because it is energetically unfavourable for the OEC^{+}to continuously lose one more electron to Y_{Z} and transform into OEC^{2+}. The subsequent transfer of one electron from the OEC to Y_{Z}^{*}, occurring at $\Delta t 2=30 \mu \mathrm{~s}$ and $\Delta t 2=200 \mu \mathrm{~s}$, leads to a decrease in the difference densities at the Y_{Z} region and a simultaneous increase in the difference densities on the OEC (Fig. 3b, Supplementary Table 3 and Supplementary Video 4). The presence of paired positive and negative difference densities on both sides of Mn1 and Mn4 indicates outward movements of Mn1 and

Fig. $3 \mid$ Structural dynamics of the $O E C$ during $S_{1}-S_{2}-S_{3}$ transitions. \mathbf{a}, \mathbf{b}, Structures of PSII in the OEC area are superposed with $F_{\text {obs }}(1 \mathrm{~F})-F_{\text {obs }}($ Dark $)(\mathbf{a})$ and $F_{\text {obs }}(2 \mathrm{~F})-F_{\text {obs }}(1 \mathrm{~F})(\mathbf{b})$ difference density maps contoured at $+4.0 \sigma$ (green) and -4.0σ (orange), with delay times from 20 ns to 5 ms . Residues of CP43 (a subunit of PSII) are shown in magenta and encircled by rectangles. The oxooxygen in the OEC and ligand waters are linked to the metal ions by black solid lines. The colour scheme used for other residues and atoms is the same as in Figs. 1 and 2.

Mn4 in the OEC (Fig. 3b and Supplementary Video 4), which results in an increase in the Mn1-Mn4 distance from $4.94 \AA(\Delta t 2=30 \mu \mathrm{~s})$ to $5.22 \AA(\Delta t 2=200 \mu \mathrm{~s})$, as well as an increase in the Mn1-Mn3 distance from $3.16 \AA(\Delta t 2=30 \mu \mathrm{~s})$ to $3.38 \mathrm{~A}(\Delta t 2=200 \mu \mathrm{~s})$ (Extended Data Fig. 3 and Extended Data Table 2). In addition, the single negative difference density on Ca suggests the disorder of Ca (Fig. 3b and Supplementary Video 4). Of note, at $\Delta t 2=200 \mu \mathrm{~s}$, while O^{*} is still present, a positive difference density emerges in the location of O 6 , indicating that O 6 is incorporated into the OEC. The structural changes to the OEC at $\Delta t 2=30 \mu \mathrm{~s}$ and $\Delta t 2=200 \mu \mathrm{~s}$ can be explained as follows: Mn1 undergoes oxidation from Mn1(III) to Mn1(IV), thereby attracting the negatively charged 06^{*}, resulting in its translocation to the 06 position and the disorder of Ca. Simultaneously, Mn1 and Mn4 move outwards to create
room for O 6 (the outward movement of Mn1 might also be triggered by its own oxidation). At $\Delta t 2=200 \mu \mathrm{~s}$, the translocation of 06^{*} is not yet complete, resulting in simultaneous observations of both O^{*} and O 6.

We observed no apparent difference density on W3 at all time points (Fig. 3b, Supplementary Table 3 and Supplementary Video 4), which is inconsistent with a role of W 3 as the entry point for the origin of O 6 (refs. $7,35,36$). W4 also seems an unlikely candidate for an entry point owing to spatial constraints, because W4 needs to pass through W3 to reach the 06 position (Extended Data Fig. 4b). The remaining potential pathway is a direct translocation of O6* to the 06 site (Extended Data Fig. 4b). Although the 3.08-Å distance between D1-E189 and Ca might not allow the passage of 06^{*}, this distance represents the average distance observed both in PSII molecules that have successfully completed the O6* translocation and in those that have not, but not in PSII in which O6* is being translocated. Therefore, this distance might transiently extend when O^{*} is passing. Furthermore, an OH^{-}ion is smaller than a water molecule, so the direct translocation of $\mathrm{O6}^{*}\left(\mathrm{OH}^{-}\right)$is possible. By $\Delta t 2=5 \mathrm{~ms}$, the translocation is completed, and 06 becomes the eighth ligand to Ca and the sixth ligand to Mn1 (Fig. 3b and Supplementary Video 4). The negative difference density near Ca indicates the inward movement of Ca towards the centre of the OEC. By contrast, Mn1 and Mn4 move further outwards from the OEC, which further opens the OEC (Fig. 3b, Extended Data Fig. 3, Extended Data Table 2 and Supplementary Video 4).

Determining the accurate positions of O 5 and 06 using electron density alone at the current $2.25-\AA$ resolution is challenging, owing to the influence of mixed populations of different S_{i} states and the presence of neighbouring electron-rich metal ions. To refine the structures of OEC at $\Delta t 2=200 \mu \mathrm{~s}$ and $\Delta t 2=5 \mathrm{~ms}$, we chose three $05-06$ distances of $1.9 \AA, 2.4 \AA$ and $2.2 \AA$, respectively, corresponding to oxyl/oxo, hydroxyl/ oxo and deprotonated hydroxyl/oxo coupling species ${ }^{37}$. The optimal positions of O 5 and O 6 were determined with the smallest residual densities in the $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ map, which showed an O5-O6 distance of $1.9 \AA$ at $\Delta t 2=200 \mu \mathrm{~s}$, whereas the residual densities at $\Delta t 2=5 \mathrm{~ms}$ were almost comparable for the O5-06 distances of 1.9-2.4 \AA (Extended Data Fig. 6). This suggests the existence of a mixed species at room temperature-different from what is observed at low temperature ${ }^{6}$. To maintain consistency, we set the O5-O6 distance at $1.9 \AA$ for both $\Delta t 2=200 \mu \mathrm{~s}$ and $\Delta t 2=5 \mathrm{~ms}$. We note that the OEC at $\Delta t 2=5 \mathrm{~ms}$ is more open as compared with the structure predicted by theoretical calculations and the OEC structure solved at cryo-temperature ${ }^{6,37}$, as evidenced by the lengthened Mn1-Mn3 distance of 3.5 Å observed here. This might leave some room for a hydroxyl/oxo coupling mechanism, and there is a crystallographic debate regarding the existence of $06 / 0 x$ in the S_{3} structure ${ }^{38}$ (Supplementary Fig. 1 and Supplementary Discussion).

Water inlet from the 01 channel

We observed previously that 1 F leads to the disorder of two water mol-ecules-one in the 01 channel and the other in the 04 channel ${ }^{6,25}$. The current study reveals the dynamic behaviour of the water molecules in these channels. At $\Delta t 1=30 \mu \mathrm{~s}$ to 5 ms , disorder of W 10 and the concomitant movement of D1-D342 were observed, consistent with the previously solved structure of the S_{2} state 25 (Extended Data Fig. 7a). At $\Delta t 1 \leq 200 \mu \mathrm{~s}$, dynamic difference densities appear in the 01 channel. These span from a five-water cluster located near the OEC to the PsbU-K104-D2-R348 (PsbU is a subunit of PSII) salt bridge near the lumen(Extended Data Fig. 7a). Difference densities appear at $\Delta t 1=20 \mathrm{~ns}$ on W20, W22 and the nearby D1-D342 main chain; these are likely to be induced by correlated movements of the neighbouring Y_{Z} and D1-Q165 (Extended Data Fig. 7a). As Y_{Z} and D1-Q165 move to a greater extent at $\Delta t 1=200 \mathrm{~ns}$ and $\Delta t 1=1 \mu \mathrm{~s}$, the positive electron density on W22 increases and spreads to cover W21 and W22. Subsequently, Y_{Z} and D1-Q165 move backwards at $\Delta t 1=30 \mu \mathrm{~s}$ to $\Delta t 1=5 \mathrm{~ms}$, and the difference densities vanish (Extended Data Fig. 7a; see Fig. 3a for a closer view). By
contrast, the difference densities near the main chain of D1-D342 persist from $\Delta t 1=20 \mathrm{~ns}$ to $\Delta t 1=5 \mathrm{~ms}$, indicating its shift throughout the $\mathrm{S}_{1}-\mathrm{S}_{2}$ transition. Furthermore, during $\Delta t 1=20 \mathrm{~ns}$ to $\Delta t 1=200 \mu \mathrm{~s}$, movement of the D1-D342 main chain induces disorders or shifts of W20, W24, W52 and D1-E329, which are connected to D1-D342 by hydrogen bonds. At $\Delta t 1=30-200 \mu \mathrm{~s}$, a negative difference density arises on $\mathrm{W} 53^{\prime}$, which is located in the cavity surrounded by OEC-O1, D1-E189, D1-E329, D1-H332 and D1-D342 (Extended Data Fig. 7a), indicating that W53' becomes further disordered. Here, W53 in the S_{1} state is only observable under cryo-temperature conditions (PDB codes: 3WU2 (ref. 2) and 4UB6 (ref. 3)) but is not detectable at room temperature (PDB codes: 5WS5 (ref. 4) and 7CJI (ref. 25)). Therefore, we denote this invisible water as W53' (Extended Data Fig. 1c and Extended Data Fig. 7a).

A negative difference density appears on the PsbU-K104 carboxy terminal at the O1-channel entrance during $\Delta t 1=200 \mathrm{~ns}-200 \mu \mathrm{~s}$ and subsequently disappears by $\Delta t 1=5 \mathrm{~ms}$ (Extended Data Fig. 7a). The PsbU-K104-D2-R348 salt bridge might function as a gate for the O1 channel, and the PsbU-K104 disorder implies the breakage or loosening of the salt bridge (Extended Data Fig. 7a), resulting in the opening of the gate and the entry of water into the giant cavity that houses Gol1, W55, W56, W59, W61 and W62 (Extended Data Fig. 7a).

At $\Delta t 2=20 \mathrm{~ns}$ to $\Delta t 2=200 \mathrm{~ns}$, there is no difference density in the O 1 channel (Extended Data Fig. 7b). At $\Delta t 2=1 \mu \mathrm{~s}$, the most noticeable difference density occurs on 06 * (Fig. 4b). When 06 * is being prepared and translocated to 06 at $\Delta t 2=30 \mu$ s to $\Delta t 2=200 \mu \mathrm{~s}$, negative difference densities appear on the main chains of D1-D342, D1-E329, W24, W52, W55 and Gol2, indicating that they are disordered during the O6* translocation. At $\Delta t 2=5 \mathrm{~ms}$, the disordered components become ordered again after the completion of the $\mathrm{O6}^{*}$ translocation. In addition, paired positive and negative difference densities appeared around CP43-V410 (CP43 is a subunit of PSII), suggesting a rotation of the CP43-V410 side chain by 120° rather than a mere shift as proposed previously ${ }^{6}$ (Extended Data Fig. 7b). In conjunction with the CP43-V410 rotation, a partially occupied water designated as W74 emerges in the proximity of the pre-rotation conformation of CP43-V410 (Extended Data Figs. 5c and 7b). Furthermore, two small positive densities appear near Goll and PsbU-K104 at $\Delta t 2=5 \mathrm{~ms}$, which suggests that two new water molecules become ordered at the end of the 01 channel after 06 translocation, similar to the findings of a previous study ${ }^{6}$ (Extended Data Fig. 5c).

Structural changes in the 04 channel

W16 is the second water in the O 4 channel and is disordered after 1 F (Fig. 4a). This disorder is maintained after 2 F , until returning to a stable state after 3F (refs. 5-7). Disorder of W16 initiates at $\Delta t 1=20 \mathrm{~ns}$, increases progressively, and reaches a maximum at $\Delta t 1=200 \mu \mathrm{~s}$ (Fig. 4a and Supplementary Table 3). The W16 disorder is expected to be influenced by the charge rearrangement that occurs at $\Delta t 1=20-200 \mathrm{~ns}$, the oxidation of Mn 4 at $\Delta t 1=1-30 \mu \mathrm{~s}$ and the stabilization of the remaining positive charge on the OEC at $\Delta t 1=200 \mu \mathrm{~s}-5 \mathrm{~ms}$ (Fig. 3a). One potential explanation is that the alternation of Mn4 charge influences W11 through O 4 , leading to the disruption of the hydrogen bond between W11 and W16 and the W16 disorder. The W16 disorder further affects the hydrogen-bonding network at the 04 channel, leading to shifts of W18, W31, W33 and W34 from $\Delta t 1=20 \mathrm{~ns}$ to $\Delta t 1=5 \mathrm{~ms}$ (Fig. 4a). In addition, when the difference densities in the 04 channel are strongest at $\Delta t 1=200 \mu \mathrm{~s}$, the main chains of D1-R334-N335-A336 showed slight shifts towards the OEC. Movement of D1-D61 towards the OEC is also observed at $\Delta t 1=30 \mu \mathrm{~s}-5 \mathrm{~ms}$ (Fig. 4a).

No noticeable difference densities are observed in the 04 channel at $\Delta t 2=20 \mathrm{~ns}-1 \mu \mathrm{~s}$. At $\Delta t 2=30 \mu \mathrm{~s}$, negative difference densities emerge on W11, CP43-E354 and D1-D61 (Fig. 4b), indicating their instability during this period. The nearby CP43-M356 appears to move toward this region (Fig. 4b), possibly to fill the space. At $\Delta t 2=200 \mu \mathrm{~s}$, W11 maintains its disorder, whereas CP43-E354, D1-D61 and CP43-M356 are restabilized

a $1 \mathrm{~F}\left(\mathrm{~S}_{1}-\mathrm{S}_{2}\right)$

b $2 \mathrm{~F}\left(\mathrm{~S}_{2}-\mathrm{S}_{3}\right)$

Fig. $4 \mid$ Structural dynamics at the 04 and $\mathbf{C l}-1$ channels during $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}$ transitions. a,b, Structures of PSII at the O 4 and $\mathrm{Cl}-1$ channels are superposed with $F_{\text {obs }}(1 \mathrm{~F})-F_{\text {obs }}($ Dark $)(\mathbf{a})$ and $F_{\text {obs }}(2 \mathrm{~F})-F_{\text {obs }}(1 \mathrm{~F})(\mathbf{b})$ difference density maps contoured at $+3.5 \sigma$ (green) and -3.5σ (orange) with delay times from 20 ns to

5 ms . The intermediate structures of D1,D2,CP43 and PsbO proteins are depicted in yellow, cyan, magenta and orange, respectively, and the colours of other atoms are the same as those in Figs. 1 and 2.
(Fig. 4b).CP43-R357, which is located at a hydrogen-bonding distance to O4, becomes disordered at $\Delta \mathrm{t} 2=200 \mu \mathrm{~s}$. All of these residues and water molecules become ordered at $\Delta t 2=5 \mathrm{~ms}$ (Fig. 4b). The oxidation of the OEC that takes place at $\Delta t 2=30-200 \mu$ s could potentially contribute to the structural changes on W11, CP43-E354 and CP43-R357; all are directly connected to the OEC.

Roles of $\mathbf{C l}-1$ in the \mathbf{S}-state transitions

Difference densities near $\mathrm{Cl}-1$ are observed at $\Delta t 1=20 \mathrm{~ns}-5 \mathrm{~ms}$;however, they fluctuate over time, in contrast to the nearly continuously growing difference densities observed on W16 (Fig. 4a and Supplementary Table 3). The difference densities near $\mathrm{Cl}-1$ arise at $\Delta t 1=20 \mathrm{~ns}$, reach a maximum at $\Delta t 1=200 \mathrm{~ns}$, decline at $\Delta t 1=1-30 \mu \mathrm{~s}$, increase again at $\Delta t 1=200 \mu \mathrm{~s}$ and finally decrease at $\Delta t 1=5 \mathrm{~ms}$. Considering the dynamics of the Y_{Z} area and the $O E C$ at $\Delta t 1=20 \mathrm{~ns}-5 \mathrm{~ms}$, we hypothesize that
the electrostatic effect of Y_{Z} and the OEC influences $\mathrm{Cl}-1$, causing the fluctuation of the difference densities (Figs. 2a, 3a and 4a and Supplementary Table3). The difference densities near $\mathrm{Cl}-1$ are observed when Y_{Z} is oxidized to $\mathrm{Y}_{\mathrm{Z}}{ }^{+}$at $\Delta t 1=20 \mathrm{~ns}$ (Figs. 2 a and 4a). These difference densities reach their peaks when $\mathrm{Y}_{\mathrm{Z}}{ }^{++}$loses one proton, resulting in the formation of more oxidized $Y_{z}{ }^{\circ}$ at $\Delta t 1=200 \mathrm{~ns}$ (Figs. 2a and 4a). Subsequently, difference densities near $\mathrm{Cl}-1$ decrease during the reduction of $\mathrm{Y}_{\mathrm{Z}}{ }^{\circ}$ at $\Delta t 1=1 \mu \mathrm{~s}$ and $\Delta t 1=30 \mu \mathrm{~s}$. The disruption of the hydrogen-bonding network between Y_{Z} and $\mathrm{Cl}-1$ could also contribute to the decreased signals (Figs. 2a and 4a). As the reduction of Y_{z} is completed and the OEC is oxidized to OEC^{+}at $\Delta t 1=200 \mu \mathrm{~s}$, the difference densities near $\mathrm{Cl}-1$ increase again (Figs. 3a and 4a). The subsequently decreased difference density at $\Delta t 1=5 \mathrm{~ms}$ could be attributable to a stabilization effect of the positive charge on the OEC. On the basis of these observations, $\mathrm{Cl}-1$ might actively contribute to stabilizing the positively charged Y_{Z} and OEC during the $\mathrm{S}_{1}-\mathrm{S}_{2}$ transition.

Fig. $5 \mid$ Schematic of events occurring during $S_{1}-S_{2}-S_{3}$ transitions at the electron donor side. The small orange spheres correspond to O1-O5 and are numbered 1 to 5 in the OEC. O6* and 06 are shown as magenta spheres. The larger green, purple and grey spheres represent Mn1-Mn4 with labels 1 to 4. Specifically, the green spheres correspond to Mn(III), the purple spheres correspond to $\mathrm{Mn}(\mathrm{IV})$ and the grey sphere represents either Mn (III) or Mn (IV). A red outer ring of the spheres signifies that the Mn ion is undergoing oxidation. The $\mathrm{Cl}-1, \mathrm{O} 4$ and O 1 channels are depicted in yellow, light green and cyan backgrounds, respectively. Water molecules are depicted as cyan spheres,
with their corresponding numbers labelled. Disordered water molecules and other disordered atoms are depicted with arched lines, and an orange outer ring of the water molecules indicate that they become ordered. The red arrows indicate the movements of residues and atoms; the length of the arrows roughly represents the travelled distance for Y_{Z} and $\mathrm{Cl}-1$. The purple- and green-dotted arrows indicate the movements of electrons and protons, respectively. The proton transfer from Y_{Z} to D1-H190 takes place between $2 \mathrm{~F}(1 \mu \mathrm{~s})$ and $2 \mathrm{~F}(30 \mu \mathrm{~s})$, which was depicted at $2 \mathrm{~F}(1 \mu \mathrm{~s})$ owing to the absence of time points between $1 \mu \mathrm{~s}$ and $30 \mu \mathrm{~s}$.

Concomitantly, W44 becomes transiently stable, probably as a result of the movement of D1-E65, which is connected to W44 (Extended Data Fig. 8a). Another structural change occurring at $\Delta t 2=1 \mu$ s is the movement of the D1-H332 to D1-A336 backbones towards the OEC, which probably occurs owing to structural changes in the OEC. At $\Delta t 2=30 \mu \mathrm{~s}$, a larger number of water molecules in the hydrogen-bonding network become unstable (W1, W3-W7 and W11), and Cl-1 also starts to become unstable (Extended Data Fig. 8a). These structural changes imply that the proton is transferred to D1-D61 (Extended Data Fig. 8b). The movement of the D1-H332 to D1-A336 backbones is transmitted to the D1-R334 and D1-N335 side chains, leading to a shift of D1-R334 towards the OEC. This results in an instability of W14, and could potentially influence the gate between D1-E65, D2-E312 and D1-R334 (refs.8,17). At $\Delta t 2=200 \mu \mathrm{~s}$, water molecules in the bulk region (W37, W70 and W73) also become unstable, in addition to the unstable water molecules near the OEC and $\mathrm{Cl}-1$ (W1, W3-W5, W7-W9, W11 and W14) (Extended Data Fig. 8a), suggesting a possible proton transfer to the lumen. The instability of $\mathrm{Cl}-1$ further increases at $\Delta t 2=200 \mu \mathrm{~s}$, and D1-R334 also exhibits instability (Extended Data Fig. 8a), presumably reflecting the pass of
the proton ${ }^{39,40}$. By $\Delta t 2=5 \mathrm{~ms}$, the structural changes in the gate area, as well as the high mobilities of water molecules observed at $\Delta t 2=200 \mu \mathrm{~s}$, disappear entirely, and Cl -1becomes ordered and returns to its original position (Extended Data Fig. 8). This indicates that the $\mathrm{Cl}-1$ channel has been restored and reset to the subsequent S -state transition.

In conclusion, our time-resolved SFX experiments reveal the important roles of protein structural dynamics in electron transfer, water insertion, proton release and $\mathrm{O}-\mathrm{O}$ bond formation in PSII. We summarize our results in a model presented in Fig.5, and a detailed discussion is provided in the Supplementary Information.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-023-06987-5.

1. Kok, B., Forbush, B. \& McGloin, M. Cooperation of charges in photosynthetic O_{2} evolution-I. A linear four step mechanism. Photochem. Photobiol. 11, 457-475 (1970).
2. Umena, Y., Kawakami, K., Shen, J.-R. \& Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55-60 (2011).
3. Suga, M. et al. Native structure of photosystem II at $1.95 \AA$ A resolution viewed by femtosecond X-ray pulses. Nature 517, 99-103 (2015).
4. Suga, M. et al. Light-induced structural changes and the site of $\mathrm{O}=\mathrm{O}$ bond formation in PSII caught by XFEL. Nature 543, 131-135 (2017).
5. Kern, J. et al. Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature 563, 421-424 (2018).
6. Suga, M. et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366, 334-338 (2019).
7. Ibrahim, M. et al. Untangling the sequence of events during the $S_{2}->S_{3}$ transition in photosystem II and implications for the water oxidation mechanism. Proc. Natl Acad. Sci. USA 117, 12624-12635 (2020).
8. Shen, J.-R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23-48 (2015).
9. Romero, E. et al. Two different charge separation pathways in photosystem II. Biochemistry 49, 4300-4307 (2010)
10. Cardona, T., Sedoud, A., Cox, N. \& Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta Bioenerg. 1817, 26-43 (2012).
11. Styring, S., Sjöholm, J. \& Mamedov, F. Two tyrosines that changed the world: interfacing the oxidizing power of photochemistry to water splitting in photosystem II. Biochim. Biophys. Acta Bioenerg. 1817, 76-87 (2012).
12. Schlodder, E. \& Witt, H. T. Stoichiometry of proton release from the catalytic center in photosynthetic water oxidation: reexamination by a glass electrode study at $\mathrm{pH} 5.5-7.2$. J. Biol. Chem. 274, 30387-30392 (1999).
13. Suzuki, H., Sugiura, M. \& Noguchi, T. Monitoring proton release during photosynthetic water oxidation in photosystem II by means of isotope-edited infrared spectroscopy. J. Amer. Chem. Soc. 131, 7849-7857 (2009).
14. Klauss, A., Haumann, M. \& Dau, H. Seven steps of alternating electron and proton transfer in photosystem II water oxidation traced by time-resolved photothermal beam deflection at improved sensitivity. J. Phys. Chem. B 119, 2677-2689 (2015).
15. Vassiliev, S., Zaraiskaya, T. \& Bruce, D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim. Biophys. Acta Bioenerg. 1817, 1671-1678 (2012).
16. Sakashita, N., Watanabe, H. C., Ikeda, T., Saito, K. \& Ishikita, H. Origins of water molecules in the photosystem II crystal structure. Biochemistry 56, 3049-3057 (2017).
17. Hussein, R. et al. Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition. Nat. Commun. 12, 6531 (2021)
18. Shoji, M. et al. Large-scale QM/MM calculations of hydrogen bonding networks for proton transfer and water inlet channels for water oxidation-theoretical system models of the oxygen-evolving complex of Photosystem II. Adv. Quant. Chem. 70, 325-413 (2015).
19. Wincencjusz, H., van Gorkom, H. J. \& Yocum, C. F. The photosynthetic oxygen evolving complex requires chloride for its redox state $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{3}$ and $\mathrm{S}_{3} \rightarrow \mathrm{~S}_{0}$ transitions but not for $\mathrm{S}_{0} \rightarrow$ S_{1} or $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$ transitions. Biochemistry 36, 3663-3670 (1997).
20. Okamoto, Y., Shimada, Y., Nagao, R. \& Noguchi, T. Proton and water transfer pathways in the $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{3}$ transition of the water-oxidizing complex in photosystem II: time-resolved
infrared analysis of the effects of D1-N298A mutation and $\mathrm{NO}_{3}{ }^{-}$substitution. J. Phys. Chem. B 125, 6864-6873 (2021).
21. Mandal, M., Saito, K. \& Ishikita, H. Requirement of chloride for the downhill electron transfer pathway from the water-splitting center in natural photosynthesis. J. Phys. Chem. B 126, 123-131 (2021).
22. Bondar, A. N. \& Dau, H. Extended protein/water H-bond networks in photosynthetic water oxidation. Biochim. Biophys. Acta Bioenerg. 1817, 1177-1190 (2012).
23. Pokhrel, R., Service, R. J., Debus, R. J. \& Brudvig, G. W. Mutation of lysine 317 in the D2 subunit of photosystem II alters chloride binding and proton transport. Biochemistry 52, 4758-4773 (2013).
24. Suga, M. et al. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim. Biophys. Acta Gen. Subj. 1864, 129466 (2020).
25. Li, H. et al. Capturing structural changes of the S_{1} to S_{2} transition of photosystem II using time-resolved serial femtosecond crystallography. IUCrJ 8, 431-443 (2021).
26. Diner, B. A. \& Petrouleas, V. Q400, the non-heme iron of the photosystem II iron-quinone complex. A spectroscopic probe of quinone and inhibitor binding to the reaction center. Biochim. Biophys. Acta Rev. Bioenerg. 895, 107-125 (1987).
27. Hienerwadel, R. \& Berthomieu, C. Bicarbonate binding to the non-heme iron of photosystem II, investigated by Fourier transform infrared difference spectroscopy and ${ }^{13} \mathrm{C}$-labeled bicarbonate. Biochemistry 34, 16288-16297 (1995).
28. Noguchi, T., Suzuki, H., Tsuno, M., Sugiura, M. \& Kato, C. Time-resolved infrared detection of the proton and protein dynamics during photosynthetic oxygen evolution. Biochemistry 51, 3205-3214 (2012).
29. Berthomieu, C., Hienerwadel, R., Boussac, A., Breton, J. \& Diner, B. A. Hydrogen bonding of redox-active tyrosine Z of photosystem II probed by FTIR difference spectroscopy. Biochemistry 37, 10547-10554 (1998).
30. Renger, G. Mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim. Biophys. Acta 1817, 1164-1176 (2012).
31. Diner, B. A. \& Britt, R. D. in Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase (eds Wydrzynski, T. J., Satoh, K. \& Freeman, J. A.) 207-233 (Springer, 2005).
32. Brettel, K., Schlodder, E. \& Witt, H. Nanosecond reduction kinetics of photooxidized chlorophyll-all ($\mathrm{P}-680$) in single flashes as a probe for the electron pathway, H^{+}-release and charge accumulation in the O_{2}-evolving complex. Biochim. Biophys. Acta Bioenerg. 766, 403-415 (1984).
33. Rappaport, F., Blanchard-Desce, M. \& Lavergne, J. Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim. Biophys. Acta Bioenerg. 1184, 178-192 (1994).
34. Haumann, M. et al. Photosynthetic O_{2} formation tracked by time-resolved X-ray experiments. Science 310, 1019-1021 (2005).
35. Bovi, D., Narzi, D. \& Guidoni, L. The S_{2} state of the oxygen-evolving complex of photosystem II explored by QM/MM dynamics: spin surfaces and metastable states suggest a reaction path towards the S_{3} state. Angew. Chem. 125, 11960-11965 (2013).
36. Askerka, M., Brudvig, G. W. \& Batista, V. S. The O_{2}-evolving complex of photosystem II: recent insights from quantum mechanics/molecular mechanics (QM/MM), extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray crystallography data. Acc. Chem. Res. 50, 41-48 (2017).
37. Isobe, H., Shoji, M., Suzuki, T., Shen, J.-R. \& Yamaguchi, K. Spin, valence, and structural isomerism in the S_{3} state of the oxygen-evolving complex of photosystem II as a manifestation of multimetallic cooperativity. J. Chem. Theory Comp. 15, 2375-2391 (2019).
38. Wang, J., Armstrong, W. H. \& Batista, V. S. Do crystallographic XFEL data support binding of a water molecule to the oxygen-evolving complex of photosystem II exposed to two flashes of light? Proc. Natl Acad. Sci. USA 118, e32023982118 (2021).
39. Debus, R. J. Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving $\mathrm{Mn}_{4} \mathrm{CaO}_{5}$ cluster of photosystem II. Biochemistry 53, 2941-2955 (2014).
40. Kuroda, H. et al. Proton transfer pathway from the oxygen-evolving complex in photosystem II substantiated by extensive mutagenesis. Biochim. Biophys. Acta Bioenerg. 1862, 148329 (2021).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2024

Methods

Sample preparation

Samples of the PSII microcrystals were prepared as in the previous SFX studies conducted at room temperature ${ }^{4,25}$, with a few minor adjustments. In brief, cells of the thermophilic cyanobacterium Thermosynechococcus vulcanus were grown in a previously described medium ${ }^{41-44}$ in eight $5-\mathrm{I}$ bottles, to a density of $\mathrm{OD}_{730 \mathrm{~nm}}=2.5-3.0$, and collected as described previously ${ }^{41-44}$. The cells were resuspended in a buffer of $40 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}-\mathrm{KOH}(\mathrm{pH} 6.8)$ and 0.4 M mannitol, and treated with $1.21 \mathrm{~g} \mathrm{I}{ }^{-1}$ lysozyme (FUJIFILM Wako Pure Chemical Corporation) at $37^{\circ} \mathrm{C}$ for 90 min with constant shaking. The treated cells were pelleted by centrifugation at $13,700 \mathrm{~g}$ for 15 min , suspended in $25 \%(\mathrm{w} / \mathrm{v})$ glycerol, 20 mM HEPES- NaOH (pH 7.0) and $10 \mathrm{mM} \mathrm{MgCl} \mathrm{I}_{2}$ (buffer A), and stored at $-80^{\circ} \mathrm{C}$ until use.

The frozen cells were thawed, to which ten folds of a buffer containing 30 mM HEPES- NaOH (pH 7.0) and $10 \mathrm{mM} \mathrm{MgCl} \mathrm{I}_{2}$ were added to disrupt the cells by freeze-thawing and osmotic shock. After centrifugation at $13,700 \mathrm{~g}$ for 15 min , pelleted thylakoids were suspended in $5 \%(\mathrm{w} / \mathrm{v})$ glycerol, 20 mM HEPES- NaOH (pH 7.0) and $10 \mathrm{mM} \mathrm{MgCl}_{2}$. Crude PSII particles were obtained from the thylakoids by a two-step solubilization with a detergent N, N-dimethyldodecylamine N-oxide (LDAO) (Sigma-Aldrich, 40236-250ML). In the first step, the thylakoids were treated with $0.16 \%(\mathrm{w} / \mathrm{v})$ LDAO for 5 min on ice, and centrifuged at $43,200 \mathrm{~g}$ for 60 min . The pellet obtained was suspended in buffer A, and treated with $0.27 \%(\mathrm{w} / \mathrm{v})$ LDAO for 5 min again. The mixture was centrifuged at $100,000 \mathrm{~g}$ for 1 h , and the supernatant was recovered. After the addition of $50(\mathrm{w} / \mathrm{v})$ polyethylene glycol (PEG) 1450 to a final concentration of 15%, crude PSII particles were recovered by centrifugation at $100,000 \mathrm{~g}$ for 30 min , and resuspended in buffer A^{41-44}.

The PSII crude particles were treated with $1.0 \% n$-dodecyl- β-Dmaltoside (β-DDM) (FUJIFILM Wako Pure Chemical Corporation, D316) for 5 min , and loaded onto a Q-Sepharose high-performance column (Cytiva) pre-equilibrated with $5 \%(\mathrm{w} / \mathrm{v})$ glycerol, 30 mM MES- NaOH (pH 6.0), $3 \mathrm{mMCaCl}_{2}$ and $0.03 \% \beta$-DDM (buffer B) in a cooled chamber at $6^{\circ} \mathrm{C}$. The column was washed with eight to ten folds of the column volume of buffer B containing 170 mM NaCl , and eluted with a liner gradient of 12.5 folds of the column volume of $170-300 \mathrm{mM} \mathrm{NaCl}$ in buffer B. Elution peaks first appeared for PSII monomer, followed by PSII dimer and PSI monomer, among which PSII dimers were collected. The PSII dimers collected were diluted threefold by buffer B without DDM, and PEG 1450 was added to a final concentration of 13%. The PSII dimers were centrifuged at $100,000 \mathrm{~g}$ for 30 min , and the pellet was suspended in buffer B without DDM and stored in liquid nitrogen until use ${ }^{41-44}$.

To make microcrystals of the PSII dimer, the sample was diluted with 20 mM MES- NaOH (pH 6.0), $40 \mathrm{mM} \mathrm{MgSO} 4,20 \mathrm{mM} \mathrm{NaCl}$ and 10 mM CaCl_{2}, followed by additions of n-heptyl- β-D-thioglucopyranoside (HTG) (FUJIFILM Wako Pure Chemical Corporation, H015) and PEG 1450 to final concentrations of $0.85 \%(\mathrm{w} / \mathrm{v})$ and around $5.50-5.75 \%$ (w / v), respectively, at a final concentration of 2.25 mg chlorophyll per ml (refs. 4,6). Microcrystals were grown in a $2.0-\mathrm{ml}$ glass vial (J.G. Finneran Associates, 9800-1232), and $150 \mu \mathrm{I}$ PSII dimer sample was put into each vial. After standing for $20-30 \mathrm{~min}$ at $20^{\circ} \mathrm{C}$, the solution was mixed gently and left to stand for another 10-30 min to allow the microcrystals to grow. In cases in which microcrystals did not appear or appeared in small numbers, the mixing-and-standing step was repeated until enough microcrystals appeared.

After the microcrystals appeared, they were allowed to grow to a maximum size of $100 \mu \mathrm{~m}$ in length for several hours to overnight, following which $150 \mu \mathrm{l}$ of a crystal storage buffer containing $7 \%(\mathrm{w} / \mathrm{v})$ PEG 1450, 20 mM MES- NaOH (pH 6.0), $20 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{CaCl}_{2}$ and $0.85 \%(\mathrm{w} / \mathrm{v})$ HTG was added to stop the growth of the microcrystals. After collection of the microcrystals, the supernatant was discarded, and the microcrystals were stored in the crystal storage buffer at $20^{\circ} \mathrm{C}$
until the X-ray free electron laser (XFEL) experiments. It is important to store the microcrystals in the crystal storage buffer for more than 24 h to ensure high resolution, and they are stable in the crystal storage buffer for at least three days but not more than seven days ${ }^{4,6}$.

Before conducting the diffraction experiment, a 10 mM potassium ferricyanide solution was added to the PSII microcrystal solution under dim green light, and one pre-flash was given at $20^{\circ} \mathrm{C}$ with a laser at a wavelength of 532 nm and an energy of $52 \mathrm{~mJ} \mathrm{~cm}^{-2}$. The microcrystals were subsequently transferred to 7% (w / v) PEG1450, $20 \mathrm{mMMES}-\mathrm{NaOH}$ (pH 6.0), $20 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mMCaCl}_{2}, 0.85 \%$ (w / v) HTG, 2% dimethyl sulfoxide (DMSO) and 10 mM potassium ferricyanide, and incubated for 10 min at $20^{\circ} \mathrm{C}$. The solution was finally replaced by a cryoprotectant solution containing $10 \%(w / v)$ PEG $1450,10 \%$ (w/v) PEG monomethyl ether $5000,23 \%(\mathrm{w} / \mathrm{v})$ glycerol, $20 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mMCaCl}_{2}, 0.85 \%(\mathrm{w} / \mathrm{v})$ HTG, 2\% DMSO and 10 mM potassium ferricyanide for six steps, with each step for 10 min at $20^{\circ} \mathrm{C}$ (refs. 4,6).

After replacement of the solution with the cryoprotectant solution, PSII microcrystals were gently mixed with a vacuum grease of a nuclear power grade (Super Lube, 42150) ${ }^{45}$. The ratio of grease to microcrystals was 200μ l to $50 \mu \mathrm{l}$ (obtained from $4-5 \mathrm{mg}$ chlorophyll), and to avoid physical damage to the microcrystals, the mixing was conducted gently for 2 min . The mixture was exposed to air at $20^{\circ} \mathrm{C}$ for around $30-60 \mathrm{~min}$ to dehydrate further, before being used for the diffraction experiments at room temperature in darkness ${ }^{4}$. The total time from cryoprotectant replacement to XFEL experiments was one to two hours.

Diffraction experiment

The dark and 1F data, as well as the 1F and 2F time-delayed data, were collected in two independent experiments, resulting in a total of 14 experimental datasets (Extended Data Table 1). Unless otherwise stated, the experimental set-ups were identical for both beamtimes. Diffraction images were obtained using single-shot XFELs collected at the BL2 beamline in the SPring-8 Ångstrom Compact Free Electron Laser (SACLA) ${ }^{46}$. The parameters of the XFEL pulses were as follows: pulse duration 10 fs , energy 10 keV , beam size $3.0 \mu \mathrm{~m}(\mathrm{H}) \times 3.0 \mu \mathrm{~m}(\mathrm{~W})$ and repetition rate 10 Hz (ref.4). The PSII microcrystals were excited using pump lasers with the following parameters: pulse duration 6 ns (FWHM, Gaussian), energy $42 \mathrm{~mJ} \mathrm{~cm}{ }^{-2}$, focused spot size $240 \mu \mathrm{~m}$ (top-hat), wavelength 532 nm and frequency rate 10 Hz (ref. 4). To ensure efficient excitation, one laser beam was split into two beams that focused on the same point of the sample from two different directions separated by an angle of 160° (ref.4).

The injector containing the mixture of PSII microcrystals and grease was carefully inserted into a sample chamber, in which the mixture was ejected from the injector using liquid pressure, ultimately forming a micrometre-sized liquid stream ${ }^{47,48}$.

The sample flow rate is regulated by adjusting the fluid pressure in the injector. For the 'dark' sample, the flow rate is $1.99 \mu \mathrm{~min}^{-1}$, whereas for the 'light' samples, it is $7.80 \mu \mathrm{~min}^{-1}$. As described previously, by maintaining this flow rate, contamination from the prior lasers is effectively avoided ${ }^{25}$. The dark dataset was obtained by directly exposing the sample stream to XFELs, whereas the $1 F$ and 2 F datasets were acquired by illuminating the sample stream with the pump laser first, followed by exposure to the XFELs after a specified delay time Δt. The values of $\Delta t 1$ and $\Delta t 2$ were set to $20 \mathrm{~ns}, 200 \mathrm{~ns}, 1 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, 200 \mu \mathrm{~s}$ and 5 ms , respectively (Extended Data Fig. 1d). In addition, in the 2 F time-delay experiment, the time interval between the first and second flash was set to 5 ms (Extended Data Fig.1d), which is enough to fully transform the S_{1} state to the S_{2} state after 1 F . The focal centres of the lasers and XFELs were the same for data with a Δt of $20 \mathrm{~ns}-200 \mu \mathrm{~s}$, but for data with a Δt of 5 ms , the focal centres of lasers were set $60 \mu \mathrm{~m}$ higher than those of the XFELs to prevent the light-excited microcrystals from escaping the XFEL irradiations after a Δt of 5 ms . Diffraction spots were recorded using a Rayonix MX300-HS detector, which was positioned 240 mm from the sample.

Data processing

During the beamtime, we used Cheetah ${ }^{49}$ (https://github.com/keitaroyam/cheetah) and CrystFEL (v.0.6.3) ${ }^{50,51}$ to observe and analyse the diffraction images. The analyses provide hit rates, the number of indexed images and approximate resolutions for each dataset, which greatly aided us in devising an effective data-collection strategy. For the processing of diffraction images at the beamline, we at first used approximately 10,000 indexed diffraction images from lysozyme crystals to determine the beam centre and camera length accurately. These parameters were then supplied to CrytFEL for processing the PSII diffraction images. The PSII diffraction images were indexed with 'indexamajig', using the Dirax ${ }^{50,51}$ indexing method with unit-cell parameters of $a=124.7 \AA, b=229.89 \AA, c=285.5 \AA, \alpha=\beta=\gamma=90^{\circ}$ adopted from PDB code 5WS5 (ref. 4). The resulting individual intensities were merged using 'process_hkl' and the reflection data were evaluated using 'compare_hkl' (refs. 50,51).
After data collection, 'cctbx.xfel' was used for the indexing and integration of diffraction images, as well as for merging reflections ${ }^{52,53}$. The accuracy of the beam centre and camera length obtained from CrystFEL were verified by using the program 'cspad.cbf_metrology' (refs. 52,53). The PSII diffraction images were indexed and integrated using 'dials.stills_process' (ref. 54), incorporating the determined detector information and targeted unit-cell parameters mentioned above. Individual reflections were merged by the program 'cxi.merge' (refs. 52,53) with the post-refinement rs2 algorithm, and a filter based on the value of $I /$ sigma was not applied so as to include weak signals at high resolutions. The average unit cell, calculated from all of the datasets collected in the same experiment, was used to merge each individual dataset once again. All datasets were processed to a resolution of 2.15-2.30 \AA on the basis of the criteria of $C C_{1 / 2}$ of around 50% (Extended Data Table 1).

Structural refinement for the dark and 1F datasets

Molecular replacement for the dark data was performed using Phaser-MR from PHENIX ${ }^{55}$ with the PSII structure solved at $2.35-\AA$ resolution and at room temperature (PDB code: 5WS5) as the search model, in which water molecules and the OEC were removed ${ }^{4}$. Next, rigid body refinement was applied to the resultant model for one cycle. Subsequently, the B factor was set to 20 for all atoms in the model, and the atomic coordinates and temperature factors of atoms were refined by 'Phenix.refine' in the resolution range of 2.15-20.0 \AA, in conjunction with manual modifications by Coot ${ }^{56}$. We iteratively carried out reciprocal space refinement using 'Phenix.refine' and real-space refinement using Coot until the structures of residues and cofactors were confined. Then, the OEC and water molecules were added to the model. Geometric restraints of the OEC are based on the $\mathrm{Mn}_{4} \mathrm{CaO}_{5}$ cluster solved at 2.15 Å using microcrystals at cryo-temperature (PDB code: 6 JLJ$)^{6}$, with a loose distance restraint of $\sigma=0.06 \AA$ on $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Ca}-\mathrm{O}$ distances, whereas no restraints were provided for the $\mathrm{Mn}-\mathrm{Mn}$ and $\mathrm{Mn}-\mathrm{Ca}$ distances. Any pre-existing water molecules exhibiting negative $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ signals or lacking $2 \mathrm{~m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ signals were removed from the model. New water molecules were constructed at the positions of positive spherical $\mathrm{m} F_{0}-\mathrm{D} F_{\mathrm{c}}$ signals over 4σ, and these water molecules were examined after subsequent rounds of reciprocal and real-space refinements to confirm. Finally, a TLS refinement was applied.

For the refinement of the 1 F model in the two-flash time-delay experiments, we assigned a single conformation to the OEC and ligands, considering that the geometry of the OEC does not differ much between S_{1} and S_{2} states. During the refinement process, the $\mathrm{Mn}-\mathrm{Mn}$ and $\mathrm{Mn}-\mathrm{Ca}$ distances were not restrained, whereas the distances of $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Ca}-\mathrm{O}$ were restrained to the values observed in the 1 F model solved at $2.15 \AA$ (PDB code: 6 JLK$)^{6}$, and refined with a loose restraint ($\sigma=0.06 \AA$). W16 was removed from the model owing to the emergence of a negative $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ signal when W 16 was present, even at low occupancy.

Conversely, W10 was retained because its deletion resulted in a significant positive $\mathrm{m} F_{0}-\mathrm{D} F_{\mathrm{c}}$ signal at the corresponding location.

Difference-map calculations and structural refinement of intermediates

The phases obtained from the well-refined dark and 1F models were used to calculate isomorphous-difference Fourier maps between dark and $1 F$ time-delayed data, and between $1 F$ and $2 F$ time-delayed data, respectively. Substantial difference densities were detected in the $Q_{A}-Q_{B}, P 680, Y_{Z}$ and $O E C$ channel regions at each time point, with their locations dynamically varying over time (Figs.1-4 and Extended Data Fig.7). To refine the dynamic intermediate structures conveniently and effectively, we devised double conformations for all residues, water molecules and ligands within a spherical range of 20 Å centred on the Ca of the OEC and the non-haem iron, with A and B conformations corresponding to structures of the ground state and intermediate state, respectively. In this case, unstable water molecules and residues in the intermediate state were also built into the structures. Whether to preserve or delete these water molecules is decided by examining the $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ signal. For example, in the case of W16, which became very unstable after $1 F$, building two conformations resulted in a strong negative signal on W16. Therefore, we deleted the B conformation of W16. On the other hand, for other unstable water molecules, such as W7 and W10, building two conformations did not result in a particularly strong negative $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ signal, so their B conformations were preserved. Populations of S_{i} state in PSII crystals were estimated to be $0.4 / 0.6$ for $\mathrm{S}_{1} / \mathrm{S}_{2}$ after 1 F and $0.49 / 0.51$ for $\mathrm{S}_{2} / \mathrm{S}_{3}$ after 2 F , on the basis of flash-induced Fourier transform infrared (FTIR) measurements ${ }^{4,6,57}$. On the basis of these ratios, we constructed the 1 F structure by adopting two conformations for those atoms or residues that showed structural changes between S_{1} and S_{2}. The S_{2}-state structure was refined against the density map, whereas the S_{1}-state structure was taken from the dark structure solved in the present study. On the other hand, in the 2 F data, the structure of PSII that does not advance to the S_{3} state is a mixture of S_{1} and S_{2}. Owing to the small structural changes between S_{1} and S_{2}, we fixed the structure to the S_{2} state for PSII that does not advance to the S_{3} state after 2 F , and refined the S_{3}-state structure against the density map. These assignments do not pose major problems for modelling the structures according to the densities obtained. We refined the $x y z$ coordinates of the B conformation, followed by refining the B factors of both the A and the B conformation, and applied TLS refinement at last.

O6* was modelled as a water molecule with an occupancy of 0.51 , without imposing artificial constraints on its distance to Ca and the nearby water molecules. The structures of the OEC containing O 6 at $\Delta t 2=200 \mu \mathrm{~s}$ and $\Delta t 2=5 \mathrm{~ms}$ were investigated using three different O5-O6 distances: $1.9 \AA, 2.2 \AA$ and $2.4 \AA$, as indicated by theoretical calculations ${ }^{37,58}$. The optimal distance was determined by assessing the magnitude of the adjacent $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ signals (Extended Data Fig. 6).

We need to point out that, although the XFEL data collected in the present study have a high quality, and the resolutions obtained are high, uncertainties exist with regard to the subtle structural changes that occur during $\mathrm{S}_{1}-\mathrm{S}_{2}-\mathrm{S}_{3}$ transitions, and it is important not to overinterpret the crystallographic data presented in this study.

Estimation of errors in inter-atomic distances

To estimate the errors in the inter-atomic distances, we used the resampling method, creating ten substructures with reduced data multiplicity. Subsequently, we calculated the standard deviations of atom-atom distances within these ten substructures. We resampled our XFEL data by the jackknifing method ${ }^{59}$. We began with a dataset consisting of 100% images and created ten sub-datasets by merging 75% randomly selected images. Subsequently, we refined ten substructures against these sub-datasets. To initiate the refinement of the substructures, we used the well-refined structure derived from the 100% image dataset as our starting model, resetting the temperature factors of all atoms
to $20 \AA^{2}$ and applying simulated annealing. After this, we performed refinements on the rigid body, atom position coordinates, temperature factors and TLS. The standard deviations of atom-atom distances were calculated across the ten substructures, which were used as estimates of the errors associated with the corresponding atom-atom distances in the determined structures (Extended Data Fig. 3).

Density functional theory calculations

An OEC model of the S_{3} state for density functional theory (DFT) calculations was constructed from the XFEL model (monomer A) of PSII (PDB code: 6JLL) ${ }^{6}$. This model comprises 408 atoms, including the inorganic $\mathrm{Mn}_{4} \mathrm{CaO}_{5}$ cluster, 4 terminal aqua/hydroxo ligands at Ca and $\mathrm{Mn} 4,15$ crystal waters along with one extra hydroxide anion referred to as O^{*}, one chloride anion, and the following amino acid residues: D1-D61, D1-N87, Yz, D1-Q165, D1-S169, D1-D170, D1-N181, D1-V185, D1-F182 (backbone only), D1-E189, D1-H190, D1-N296, D1-N298 (fragment), D2-K317 (fragment), D1-H332, D1-E333, D1-A336, D1-H337, D1-D342, D1-A344 (C terminus), CP43-E354, CP43-R357, CP43-L401, CP43-V410 and CP43-A411. The revision made to the previous computational model ${ }^{6,37}$ involves augmenting it with the incorporation of five water molecules next to $\mathrm{O6}^{*}$, called a 'water wheel', along with four supporting amino acid residues (D1-N296, CP43-L401, CP43-V410 and CP43-A411). Geometric optimizations for the hydroxo form of O6* bound to the Ca site of $\left(\mathrm{Mn}^{\mathrm{IV}}\right)_{3} \mathrm{Mn}^{\text {III }} \mathrm{CaO}_{5}$ were carried out at multiplicity 14 ($M_{\mathrm{S}}=13 / 2$) using the B3LYP hybrid functional ${ }^{60}$ augmented with the D3 version of Grimme's empirical dispersion correction and the Becke-Johnson damping function ${ }^{61,62}$, in combination with the Los Alamos (LANL2DZ) pseudopotential basis set for Ca and Mn and 6-31G(d) for all other atoms ${ }^{63-66}$. A crucial requirement for the production of meta-stable Ca^{2+}-bound hydroxo form of $\mathrm{O6}^{*}$, as displayed in Extended Data Fig. 5a,b, is the absence of a Y_{z} radical ($\mathrm{Tyr}_{\mathrm{z}}-\mathrm{O}^{\prime} . .{ }^{+} \mathrm{HN}-\mathrm{His} 190$), as the K_{a} value of Ca^{2+}-bound water (around 12.7 in aqueous solution) ${ }^{67,68}$ might be much higher than that of the histidine residue (6.0) (ref. 69), even within the protein environment.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The atomic coordinates and structure factors have been deposited in the PDB under the following accession codes: 8IR5 for OF (dark, ground state for the $\Delta t 1$ structures), 8 IR 6 for $\Delta t 1=20 \mathrm{~ns}, 8$ IR7 for $\Delta t 1=200 \mathrm{~ns}$, 8IR8 for $\Delta t 1=1 \mu \mathrm{~s}, 8$ IR 9 for $\Delta t 1=30 \mu \mathrm{~s}$, 8IRA for $\Delta t 1=200 \mu \mathrm{~s}$, 8IRB for $\Delta t 1=5 \mathrm{~ms}, 8$ IRC for 1 F (ground state for the $\Delta t 2$ structures), 8IRD for $\Delta t 2=20 \mathrm{~ns}, 8$ IRE for $\Delta t 2=200 \mathrm{~ns}, 8$ IRF for $\Delta t 2=1 \mu \mathrm{~s}$, 8IRG for $\Delta t 2=30 \mu \mathrm{~s}, 8 \mathrm{IRH}$ for $\Delta t 2=200 \mu \mathrm{~s}$ and 8 IRI for $\Delta t 2=5 \mathrm{~ms}$. All other data with a PDB code used in this study are from the PDB data bank.
41. Shen, J.-R. \& Inoue, Y. Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32, 1825-1832 (1993).
42. Shen, J.-R. \& Kamiya, N. Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. Biochemistry 39, 14739-14744 (2000).
43. Shen, J.-R., Kawakami, K. \& Koike H. in Photosynthesis Research Protocols (ed. Carpentier, R.) 41-51 (Humana Press, 2011).
44. Kawakami, K. \& Shen, J.-R. in Enzymes of Energy Technology (ed. Armstrong, F.) 1-16 (Academic Press, 2018).
45. Sugahara, M. et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat. Methods 12, 61-63 (2015).
46. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 6, 540-544 (2012).
47. Tono, K. et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser. J. Synchrotron Radiat. 22, 532-537 (2015).
48. Kubo, M. et al. Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA. J. Synchrotron Radiat. 24, 1086-1091 (2017).
49. Nakane, T. et al. Data processing pipeline for serial femtosecond crystallography at SACLA. J. Appl. Crystallogr. 49, 1035-1041 (2016).
50. White, T. A. et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45, 335-341 (2012).
51. White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680-689 (2016).
52. Sauter, N. K., Hattne, J., Grosse-Kunstleve, R. W. \& Echols, N. New Python-based methods for data processing. Acta Crystallogr. D 69, 1274-1282 (2013).
53. Sauter, N. K. XFEL diffraction: developing processing methods to optimize data quality. J. Synchrotron Radiat. 22, 239-248 (2015).
54. Brewster, A. S. et al. Improving signal strength in serial crystallography with DIALS geometry refinement. Acta Crystallogr. D 74, 877-894 (2018).
55. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
56. Emsley, P. \& Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126-2132 (2004).
57. Kato, Y. et al. Fourier transform infrared analysis of the S-state cycle of water oxidation in the microcrystals of photosystem II. J. Phys. Chem. Lett. 9, 2121-2126 (2018).
58. Yamaguchi, K. et al. Geometric, electronic and spin structures of the $\mathrm{CaMn}_{4} \mathrm{O}_{5}$ catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord. Chem. Rev. 471, 214742 (2022).
59. Nass, K. et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2O20).
60. Beeke, A. D. Density-functional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 98, 5648-5646 (1993).
61. Grimme, S., Antony, J., Ehrlich, S. \& Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
62. Grimme, S., Ehrlich, S. \& Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456-1465 (2011).
63. Hay, P. J. \& Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270-283 (1985).
64. Wadt, W. R. \& Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Comput. Chem. 82, 284-298 (1985).
65. Hay, P. J. \& Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299-310 (1985).
66. Frisch, M. J. et al. Gaussian 09, Revision E. 01 (Gaussian, 2013).
67. Hawkes, S. J. All positive ions give acid solutions in water. J. Chem. Educ. 73, 516 (1996).
68. Grzybkowski, W. Nature and properties of metal cations in aqueous solutions. Pol. J. Environ. Stud. 15, 655-663 (2006).
69. Nelson, D. L., Lehninger, A. L. \& Cox, M. M. Lehninger Principles of Biochemistry 8th edn (W. H. Freeman, 2021).

Acknowledgements We thank T. Nakane and K. Yamashita for their assistance in data processing and structural analysis. The XFEL experiments were performed at SACLA approved by the Japan Synchrotron Radiation Research Institute (JASRI) (proposals 2018A8037, 2018A8010, 2018B8029, 2018B8055, 2019A8019, 2019A8032, 2019B8020, 2019B8028, 2020A8003, 2020A8059, 2021A8003, 2021B8012 and 2022A8007), and we thank the staff at SACLA for their help. The best condition for the collection of diffraction data was determined at beamlines 41 XU and 44XU in SPring-8 (proposals 2018B2530, 2019A2559, 2019B2559, 2020A2550, 2021A2550, 2021A2741, 2021B2741, 2021B6618, 2022A2728 and 2022B2728). This research was supported by MEXT KAKENHI JP17H06434 (J.-R.S.) and JP22HO4916 (J.-R.S., F.A., K.Y. and M. Suga), JP23HO2450, JP22HO4754, JP2OHO3226, JP2OHO5446 and JST PREST grant JPMJPR18G8 (M. Suga), JP19H05784 (M.K.); a Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under grant number JP21am0101070; and MEXT KAKENHI JP19H05777 (S.I.).

Author contributions J.-R.S. conceived the project. Y.N., F.A., S.K., N.M. and S.Y. made the samples. H.L., Y.N., E.N., K.H., F.L., R.T., F.A., K.K., J.K., Y.S., S.K., H.Y., N.M., H.F., M. Sugahara, M. Suziki, T.M., T.K., T.N.T., S.Y., L.-J.Y., T.T., M. Suga and J.-R.S. participated in the data collection. K.T., Y.J., T.H., E.N., S.I. and M.Y. developed the data-collection set-up. S.O., D.Y. and M.K. developed the laser set-up. H.L., K.H. and M. Suga processed the diffraction data and analysed the structure. H.I. and K.Y. performed theoretical calculations. H.L., M. Suga and J.-R.S. wrote the manuscript, and all authors contributed to the discussion and improvement of the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-023-06987-5.
Correspondence and requests for materials should be addressed to Michihiro Suga or Jian-Ren Shen.
Peer review information Nature thanks Richard Debus, Petra Fromme and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

1F: $\Delta t 1=20 \mathrm{~ns}, 200 \mathrm{~ns}, 1 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, 200 \mu \mathrm{~s}$, and 5 ms $2 \mathrm{~F}: \Delta t 2=20 \mathrm{~ns}, 200 \mathrm{~ns}, 1 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, 200 \mu \mathrm{~s}$, and 5 ms

Extended Data Fig. 1 |The Kok cycle and schematic of the present study.
a, The Kok cycle. A rectangular box circled by red, dotted lines highlights the major objective of this study. b, Electron transfer pathway in PSII. Red arrows indicate the path of the electron. c, Water channels connecting the OEC with the lumenal surface. Blue arrows indicate the exits of water channels. 53'
indicates a water molecule not visible in the current model. d, Schematic of the pump-probe TR-SFX using one (1F) or two flashes (2F) with delay times ranging from 20 ns to 5 ms . In the 2 F experiment, the interval between the first and second flash is 5 ms .

Article

a

b

c

S_{1}	20-200 ns	1-30 $\mu \mathrm{s}$	$200 \mu \mathrm{~s}$
S_{2}	$200 \mathrm{~ns}-1 \mu \mathrm{~s}$	30-200 $\mu \mathrm{s}$	5 ms
	Y_{z}. H. D1-H190H (7)		Y_{z} D1-H190

Extended Data Fig. $2 \mid$ Redox status of $\mathbf{Y}_{\mathbf{z}}$. a, Overlap of the structures of dark (grey stick) and1F (200 ns) (yellow stick). The black arrow indicates the direction of the Y_{Z} shift, with $0.46 \AA$ representing the shift distance of the phenolic oxygen. b, Distances of the shift of the phenolic oxygen at different time points after $1 F$ and 2F. c, Redox status of Y_{Z} at various time points following 1F and 2F. The black
arrow at $\Delta t 1=20-200 \mathrm{~ns}$ and $\Delta t 2=200 \mathrm{~ns}-1 \mu \mathrm{~s}$ (and possibly between $1-30 \mu \mathrm{~s}$) indicates the transformation of Y_{Z}. Dotted arrows in green and magenta represent the translocations of proton and electron, respectively. The cyan sphere labelled with ' 7 ' represents a water molecule W7, and curves surrounding it at $\Delta t 1=1-30 \mu \mathrm{~s}$ and $\Delta t 2=30-200 \mu$ s indicate its disordered structure.

Extended Data Fig. 3 | Variance in inter-atomic distances during $\mathbf{S}_{1}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}$ transitions. Inter-atomic distances are measured at all time points collected after $1 F$ (left) and 2 F (right). The mean values for the error bars are obtained with the structures derived from 100% indexed images. The error bars are
estimated using a resampling approach, with the standard deviations determined using ten structures derived from ten sub-datasets, each comprising 75% randomly selected indexed images (see Methods for more details).

Article

a

Extended Data Fig. $4 \mid$ Translocation of 06* to 06.a, Polder omit maps contoured at $+3.0 \sigma$ (blue mesh) of $\mathrm{O6}^{*}$ and O 6 are superposed with OEC models after 2F. The red dashed circles indicate positions where O 6 or $\mathrm{O6}^{*}$ is either
absent or weak during that specific time point. b, Translocation pathway of 06*. Numbers represent the inter-atomic distances in angstrom (\AA). The red line represents the potential translocation pathway for $\mathrm{O6}^{*}$.

Extended Data Fig. 5 |Two representative hydrogen-bonding arrangements modelled by DFT calculations, and the rotation of CP43-V410 and appearance of one new water molecule. a,b, $\mathrm{O6}^{*}$ is modelled as a hydroxide anion bound to Ca^{2+} in the S_{2} state: one having a hydrogen bond between O6* and Glu189 (not depicted) (a), and the other one lacking this hydrogen bond (b). It is unstable if

O6* is assumed to be a water molecule. Hydrogen atoms bonded to carbon atoms are omitted for clarity. c, Polder omit maps on W20 and W74 contoured at $+3.5 \sigma$ (blue mesh) superimposed with PSII structures of 1F state (grey sticks and red spheres) and $2 \mathrm{~F}(5 \mathrm{~ms})$ (magenta sticks for CP43 and yellow sticks for D1, as well as cyan spheres for water molecules).

Extended Data Fig. 6 |Examinations of the oxyl/oxo and hydroxyl/oxo species between 05 and 06 . The $\mathrm{m} F_{\mathrm{o}}-\mathrm{D} F_{\mathrm{c}}$ maps contoured at $+2.5 \sigma$ (cyan) and -2.5σ (magenta) superposed with OEC structures of $2 \mathrm{~F}(200 \mu \mathrm{~s})$ (left) and 2 F (5 ms) (right). O5/O6 at distances of $1.9 \AA$ (oxyl/oxo, upper side), $2.4 \AA$ (hydroxyl/
oxo, bottom) and $2.2 \AA$ (mixture of the two coupling species, middle) are examined. On the basis of the residual densities, the distance of $1.9 \AA$ fits best with the electron density at $200 \mu \mathrm{~s}$, whereas it is difficult to distinguish between the distances of $1.9 \AA-2.4 \AA$ at 5 ms .

Extended Data Fig. $7 \mid$ Structural dynamics at the $\mathbf{0 1}$ channel during $\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{3}}$ transitions. a,b, Structures of PSII at the O1 channel are superposed with $F_{\text {obs }}(1 \mathrm{~F})-F_{\text {obs }}($ dark $)(\mathbf{a})$ and $F_{\text {obs }}(2 \mathrm{~F})-F_{\text {obs }}(1 \mathrm{~F})(\mathbf{b})$ difference density maps contoured at $+4.0 \sigma$ (green) and -4.0σ (orange), with delay times from 20 ns to 5 ms . The intermediate structures of D1, D2, CP43, PsbU and PsbV proteins are depicted in yellow, cyan, magenta, green and pink, respectively. Water molecule

W53 in the S_{1} state is only observable under cryo-temperature conditions (PDB codes: 3WU2 and 4UB6) and is not detectable at room temperature (PDB codes: 5 WS 5 and 7CJI). Because the protein environment around W53 is the same regardless of temperature, W53 is considered present but fluctuating. Therefore, in this study, we denote this invisible water as W53'.
a

b

network between O6* and D1-D61

The proton situated between D1-E65 and D2-E312 is released into the bulk, while the proton on D1-D61 is transferred to D1-E65-D2-E312.

Extended Data Fig. $8 \mid$ Structural changes at the $\mathbf{C l}-1$ channel and proton release pathways after 2 F . a, Structures of PSII at $\mathrm{Cl}-1$ channels superposed with $F_{\text {obs }}(2 \mathrm{~F})-F_{\text {obs }}(1 \mathrm{~F})$ difference densities contoured at $+3.0 \sigma$ (green) and -3.0σ (orange), with delay times from 1μ s to 5 ms . The 1 F model is depicted in grey, and intermediate structures of D1, D2, CP43 and PsbO proteins are depicted in yellow, cyan, magenta and orange, respectively. Water molecules at their ground states and intermediate states are depicted in red and cyan spheres, respectively. O6* and O 6 are represented by magenta spheres. Black dotted lines represent hydrogen bonds. Black solid lines link the oxo-oxygen in the OEC and the ligand water to the metal ions, as well as ligand residues and water
molecules to $\mathrm{Cl}-1$. Black arrows indicate structural changes. Disordered water and residues are encircled by red dotted lines, and ordered water molecules in the intermediate structures are encircled by cyan dotted lines. \mathbf{b}, Possible proton release pathways after 2 F . Water molecules are depicted as cyan spheres, with their corresponding numbers labelled. Disordered water molecules, $\mathrm{Cl}-1$ and residues are depicted with arched lines, and an orange outer ring around water molecules indicates that they became ordered. The red arrows indicate the movements of residues. The green dotted arrows indicate the movements of protons.

Extended Data Table 1 | Data processing and structure refinement statistics

${ }^{*}$ Values in parentheses indicate those for the highest-resolution shells. ${ }^{*} R_{\text {split }}=\sqrt{2} \Sigma\left|I_{\text {even }}-I_{\text {odd }}\right| / \Sigma\left(I_{\text {even }}+I_{\text {odd }}\right)$.

Atom- Atom distances	$\begin{aligned} & \text { Mono } \\ & \text { mer } \end{aligned}$	Dar	$\begin{aligned} & 1 \mathrm{~F} \\ & (20 \\ & \mathrm{ns}) \end{aligned}$	$\begin{gathered} \text { 1F } \\ (200 \\ \mathrm{ns}) \end{gathered}$	$\begin{gathered} 1 F \\ (1 \mu s) \end{gathered}$	$\begin{aligned} & 1 F \\ & (30 \\ & \mu \mathrm{s}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1F } \\ (200 \\ \mu \mathrm{s}) \end{gathered}$	$\begin{gathered} 1 F \\ (5 \mathrm{~ms}) \end{gathered}$	1F	$\begin{aligned} & 2 \mathrm{~F} \\ & \mathbf{2 0} \\ & \mathrm{~ns}) \end{aligned}$	$\begin{gathered} 2 F \\ (200 \\ \mathrm{ns}) \end{gathered}$	$\begin{gathered} 2 F \\ (1 \mu s) \end{gathered}$	$\begin{aligned} & 2 \mathrm{~F} \\ & (30 \\ & \mu \mathrm{s}) \end{aligned}$	$\begin{gathered} 2 F \\ (200 \\ \mu \mathrm{s}) \end{gathered}$	$\begin{gathered} 2 F \\ (5 \mathrm{~ms}) \end{gathered}$
Fe-BCT_O1	A	2.18	2.18	2.17	2.22	2.21	2.28	2.36	2.33	2.	2.	2.39	2.	2.32	2.28
	B	2.13	2.10	2.17	2.22	2.28	2.41	2.49	2.28	2.37	2.34	2.20	2.19	2.39	2.27
	Ave	2.16	2.14	2.17	2.22	2.25	2.35	2.43	2.31	2.42	2.37	2.30	2.20	2.36	2.28
Fe-$\mathrm{BCT}_{-} \mathrm{O} 2$	A	2.13	2.24	2.40	2.28	2.42	2.35	2.29	2.34	2.	2.32	. 42	2.44	2.22	. 28
	B	2.42	2.52	2.61	2.53	2.61	2.50	2.59	2.49	2.60	2.52	2.61	2.59	2.38	2.53
	Ave.	2.28	2.38	2.51	2.41	2.52	2.43	2.44	2.42	2.39	2.42	2.52	2.52	2.30	2.41
$\begin{aligned} & \text { D1-Y246- } \\ & \text { BCT_O1 } \end{aligned}$	A	3.15	3.17	3.04	3.01	2.98	3.02	2.69	2.90	2.91	3.02	3.15	3.23	3.14	2.98
	B	3.26	3.42	3.27	3.23	3.17	3.15	2.94	3.17	3.10	3.24	3.40	3.32	3.04	3.18
	Ave	3.21	3.30	3.16	3.12	3.08	3.09	2.82	3.04	3.01	3.13	3.28	3.28	3.09	3.08
Mn1-Mn3	A	3.19	3.21	3.2	3.20	3.20	3.1	3.22	3.22	3.27	3.17	3.16	3.18	3.36	3.53
	B	3.29	3.34	3.28	3.34	3.26	3.2	3.27	3.23	3.26	3.20	3.15	3.14	3.39	3.52
	Ave.	3.24	3.28	3.26	3.27	3.23	3.2	3.25	3.23	3.27	3.19	3.16	3.16	3.38	3.53
Mn1-Mn4	A	4.84	4.84	4.90	4.89	4.92	4.9	4.92	4.97	5.02	5.02	5.00	5.03	5.22	5.33
	B	4.8	4.	4.8	4.8	4.	4.	4.	4.88	4.	4.91	4.92	4.	5.22	5.23
	Ave.	4.84	4.88	4.87	4.88	4.93	4.95	4.92	4.93	4.95	4.97	4.96	4.94	5.	5.28
Mn4-Ca	A	3.83	3.79	3.83	3.82	3.99	4.10	4.07	4.05	4.01	4.06	4.11	4.12	4.12	4.09
	B	3.76	3.84	3.83	3.88	3.93	4.10	4.06	3.97	3.93	3.99	4.10	4.01	4.06	4.03
	Ave	3.80	3.82	3.83	3.85	3.96	4.10	4.07	4.01	3.97	4.03	4.11	4.07	4.09	4.06
$\begin{aligned} & \text { Yz-D1- } \\ & \text { H190 } \end{aligned}$	A	2.50	2.54	2.82	2.85	2.61	2.5	2.47	2.52	2.53	2.57	2.63	2.70	2.58	2.58
	B	2.5	2.6	2.78	2.80	2.	2.5	2.54	2.58	2.58	2.58	2.56	2.70	2.63	2.56
	Ave	2.51	2.61	2.80	2.83	2.66	2.53	2.51	2.55	2.56	2.58	2.60	2.70	2.61	2.57
$\begin{aligned} & \text { Ca-D1- } \\ & \text { E189 } \end{aligned}$	A	2.9	3.03	3.05	3.	2.	2.8	2.85	2.89	2.9	2.9	2.92	2.99	3.09	3.10
	B	3.03	3.03	3.0	3.00	2.95	2.9	2.86	2.89	2.93	2.95	2.93	2.97	3.03	3.08
	Ave.	3.01	3.03	3.03	3.02	2.95	2.90	2.86	2.89	2.92	2.93	2.93	2.98	3.06	3.09
$\begin{aligned} & \text { D1-E65- } \\ & \text { D2-E312 } \end{aligned}$	A	2.53	2.64	2.61	2.59	2.61	2.56	2.62	2.56	2.68	2.59	2.66	2.58	2.60	2.66
	B	2.54	2.57	2.59	2.55	2.60	2.62	2.58	2.61	2.59	2.60	2.58	2.59	2.61	2.58
	Ave.	2.54	2.61	2.60	2.57	2.61	2.59	2.60	2.59	2.64	2.60	2.62	2.59	2.61	2.62
D1-E65- D1-R334	A	3.00	3.05	3.10	2.96	3.09	3.10	3.11	2.99	3.07	3.00	2.99	2.93	3.16	3.06
	B	2.93	2.84	2.80	2.93	2.85	2.88	3.03	2.96	2.95	2.79	2.91	2.94	2.85	2.87
	Ave.	2.97	2.95	2.95	2.95	2.97	2.99	3.07	2.98	3.01	2.90	2.95	2.94	3.01	2.97
$\begin{aligned} & \text { D2-E312- } \\ & \text { D1-R334 } \end{aligned}$	A	3.06	3.06	2.96	2.91	2.96	2.98	3.05	2.99	2.97	2.9	2.94	3.07	2.90	3.02
	B	3.11	3.05	3.09	3.05	3.02	3.00	3.12	3.11	3.02	3.01	2.89	3.02	3.05	3.03
	Ave.	3.09	3.06	3.03	2.98	2.99	2.99	3.09	3.05	3.00	2.96	2.92	3.05	2.98	3.03

Corresponding author(s): Jian-Ren Shen, Michihiro Suga
Last updated by author(s): Nov 23, 2023

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

[^1]
Software and code

Data collection	Cheetah (https://github.com/keitaroyam/cheetah), CrystFEL (version: 0.6.3)
Data analysis	CrystFEL (version: 0.6.3), dials.still_process in DIALs (version: 1.16), Publicly available CCP4 modules (CCP4 7.1.015) including CCTBX, SFTOOLS, Truncate, CAD, SCALEIT, and FFT. Packages in phenix (version: 1.19.2-4158) including cxi.merge and Phaser (2.8.3). Coot (version: 0.9.8.8), Pymol (version: 2.5.4)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code \& software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The atomic coordinates and structure factors have been deposited in the Protein Data Bank under the following IDs: 8IR5 for OF (dark, ground state for the $\Delta t 1$ structures), 8 IR6 for $\Delta t 1=20 \mathrm{~ns}, 8$ IR 7 for $\Delta t 1=200 \mathrm{~ns}, 8$ IR8 for $\Delta t 1=1 \mu \mathrm{~s}, 8$ IR9 for $\Delta \mathrm{t} 1=30 \mu \mathrm{~s}, 8$ IRA for $\Delta \mathrm{t} 1=200 \mu \mathrm{~s}, 8$ IRB for $\Delta \mathrm{t} 1=5 \mathrm{~ms}, 8$ IRC for 1 F (ground state

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender	n / a
Reporting on race, ethnicity, or other socially relevant groupings	n / a
Population characteristics	n / a
Recruitment	n / a
Ethics oversight	n / a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
Life sciences $\quad \square$ Behavioural \& social sciences $\quad \square$ Ecological, evolutionary \& environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample sizeThe sample size is determined based on the number of diffraction images that produced reasonably high resolution and multiplicity or number of unique diffractions in each time-resolved serial crystallography data set. The microcrystals obtained were reproducible, and the diffraction data was processed with standard crystallographic software (Methods section), which resulted in standard data statistics as shown in Extended Data Table 1. No data was excluded; for details of the data analysis statistics, see Extended Data Table 1. Replication Thousands of microcrystals were used to obtain a full diffraction dataset, which showed that the results are well reproduced. The repetition rate of a specific dataset was shown in Extended Data Table 1, in which, it was shown that the repetition rate is over 100 even for the highest resolution shell for each of the dataset.
RandomizationThe microcrystals used for the diffraction experiments were not chosen, and diffraction data from good microcrystals were used for the structural analysis. The criterion for choosing good diffraction data is based on the resolution as well as their deviations from standard cell parameters, as described in the Methods section. BlindingNot applicable. All experimental maps were included in the statistical analysis.

Reporting for specific materials, systems and methods

[^2]

[^0]:
 of Life Science, University of Hyogo, Kobe, Japan. ${ }^{6}$ Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ${ }^{7}$ Institute for Protein Research, Osaka University, Osaka, Japan. ${ }^{8}$ Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University, Otsu, Japan. ${ }^{9}$ Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan. ${ }^{10}$ Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China. ${ }^{11}$ Center for Quantum Information and Quantum Biology, Osaka University, Osaka, Japan. ${ }^{12}$ These authors contributed equally: Hongjie Li, Yoshiki Nakajima. ${ }^{\boxtimes}$ e-mail: michisuga@okayama-u.ac.jp; shen@okayama-u.ac.jp

[^1]: For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
 n/a \mid Confirmed
 The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
 \square A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
 The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.A description of all covariates testedA description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
 $\boxtimes \square$ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
 $\boxtimes \square$ Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

 Our web collection on statistics for biologists contains articles on many of the points above.

[^2]: We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

