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Single-neuronal elements of speech 
production in humans

Arjun R. Khanna1,6, William Muñoz1,6, Young Joon Kim2,6, Yoav Kfir1, Angelique C. Paulk3, 
Mohsen Jamali1, Jing Cai1, Martina L. Mustroph1, Irene Caprara1, Richard Hardstone3, 
Mackenna Mejdell1, Domokos Meszéna3, Abigail Zuckerman2, Jeffrey Schweitzer1, 
Sydney Cash3,7 & Ziv M. Williams1,4,5,7 ✉

Humans are capable of generating extraordinarily diverse articulatory movement 
combinations to produce meaningful speech. This ability to orchestrate specific 
phonetic sequences, and their syllabification and inflection over subsecond 
timescales allows us to produce thousands of word sounds and is a core component  
of language1,2. The fundamental cellular units and constructs by which we plan and 
produce words during speech, however, remain largely unknown. Here, using acute 
ultrahigh-density Neuropixels recordings capable of sampling across the cortical 
column in humans, we discover neurons in the language-dominant prefrontal cortex 
that encoded detailed information about the phonetic arrangement and composition 
of planned words during the production of natural speech. These neurons represented 
the specific order and structure of articulatory events before utterance and reflected 
the segmentation of phonetic sequences into distinct syllables. They also accurately 
predicted the phonetic, syllabic and morphological components of upcoming words 
and showed a temporally ordered dynamic. Collectively, we show how these mixtures 
of cells are broadly organized along the cortical column and how their activity 
patterns transition from articulation planning to production. We also demonstrate 
how these cells reliably track the detailed composition of consonant and vowel 
sounds during perception and how they distinguish processes specifically related to 
speaking from those related to listening. Together, these findings reveal a remarkably 
structured organization and encoding cascade of phonetic representations by 
prefrontal neurons in humans and demonstrate a cellular process that can support 
the production of speech.

Humans can produce a remarkably wide array of word sounds to con-
vey specific meanings. To produce fluent speech, linguistic analyses 
suggest a structured succession of processes involved in planning the 
arrangement and structure of phonemes in individual words1,2. These 
processes are thought to occur rapidly during natural speech and to 
recruit prefrontal regions in parts of the broader language network 
known to be involved in word planning3–12 and sentence construc-
tion13–16 and which widely connect with downstream areas that play 
a role in their motor production17–19. Cortical surface recordings have 
also demonstrated that phonetic features may be regionally organ-
ized20 and that they can be decoded from local-field activities across 
posterior prefrontal and premotor areas21–23, suggesting an underlying 
cortical structure. Understanding the basic cellular elements by which 
we plan and produce words during speech, however, has remained a 
significant challenge.

Although previous studies in animal models24–26 and more recent 
investigation in humans27,28 have offered an important understanding 

of how cells in primary motor areas relate to vocalization movements 
and the production of sound sequences such as song, they do not reveal 
the neuronal process by which humans construct individual words and 
by which we produce natural speech29. Further, although linguistic 
theory based on behavioural observations has suggested tightly cou-
pled sublexical processes necessary for the coordination of articulators 
during word planning30, how specific phonetic sequences, their syl-
labification or inflection are precisely coded for by individual neurons 
remains undefined. Finally, whereas previous studies have revealed a 
large regional overlap in areas involved in articulation planning and 
production31–35, little is known about whether and how these linguistic 
process may be uniquely represented at a cellular scale36, what their 
cortical organization may be or how mechanisms specifically related 
to speech production and perception may differ.

Single-neuronal recordings have the potential to begin reveal-
ing some of the basic functional building blocks by which humans 
plan and produce words during speech and study these processes at 
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spatiotemporal scales that have largely remained inaccessible37–45. 
Here, we used an opportunity to combine recently developed 
ultrahigh-density microelectrode arrays for acute intraoperative 
neuronal recordings, speech tracking and modelling approaches to 
begin addressing these questions.

Neuronal recordings during natural speech
Single-neuronal recordings were obtained from the language-dominant 
(left) prefrontal cortex in participants undergoing planned intraop-
erative neurophysiology (Fig. 1a; section on ‘Acute intraoperative 
single-neuronal recordings’). These recordings were obtained from 
the posterior middle frontal gyrus10,46–50 in a region known to be 
broadly involved in word planning3–12 and sentence construction13–16 
and to connect with neighbouring motor areas shown to play a role 
in articulation17–19 and lexical processing51–53 (Extended Data Fig. 1a).  

This region was traversed during recordings as part of planned neuro-
surgical care and roughly ranged in distribution from alongside anterior 
area 55b to 8a, with sites varying by approximately 10 mm (s.d.) across 
subjects (Extended Data Fig. 1b; section on ‘Anatomical localization 
of recordings’). Moreover, the participants undergoing recordings 
were awake and thus able to perform language-based tasks (section 
on ‘Study participants’), together providing an extraordinarily rare 
opportunity to study the action potential (AP) dynamics of neurons 
during the production of natural speech.

To obtain acute recordings from individual cortical neurons and to 
reliably track their AP activities across the cortical column, we used 
ultrahigh-density, fully integrated linear silicon Neuropixels arrays that 
allowed for high throughput recordings from single cortical units54,55. 
To further obtain stable recordings, we developed custom-made 
software that registered and motion-corrected the AP activity of 
each unit and kept track of their position across the cortical column  
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Fig. 1 | Tracking phonetic representations by prefrontal neurons during 
the production of natural speech. a, Left, single-neuronal recordings were 
confirmed to localize to the posterior middle frontal gyrus of language- 
dominant prefrontal cortex in a region known to be involved in word planning 
and production (Extended Data Fig. 1a,b); right, acute single-neuronal 
recordings were made using Neuropixels arrays (Extended Data Fig. 1c,d); 
bottom, speech production task and controls (Extended Data Fig. 2a).  
b, Example of phonetic groupings based on the planned places of articulation 
(Extended Data Table 1). c, A ten-dimensional feature space was constructed to 
provide a compositional representation of all phonemes per word. d, Peri-event 
time histograms were constructed by aligning the APs of each neuron to word 
onset at millisecond resolution. Data are presented as mean (line) values ± s.e.m. 
(shade). Inset, spike waveform morphology and scale bar (0.5 ms). e, Left, 

proportions of modulated neurons that selectively changed their activities to 
specific planned phonemes; right, tuning curve for a cell that was preferentially 
tuned to velar consonants. f, Average z-scored firing rates as a function of the 
Hamming distance between the preferred phonetic composition of the neuron 
(that producing largest change in activity) and all other phonetic combinations. 
Here, a Hamming distance of 0 indicates that the words had the same phonetic 
compositions, whereas a Hamming distance of 1 indicates that they differed  
by a single phoneme. Data are presented as mean (line) values ± s.e.m. (shade).  
g, Decoding performance for planned phonemes. The orange points provide 
the sampled distribution for the classifier’s ROC-AUC; n = 50 random test/train 
splits; P = 7.1 × 10−18, two-sided Mann–Whitney U-test. Data are presented as 
mean ± s.d.
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(Fig. 1a, right)56. Only well-isolated single units, with low relative neigh-
bour noise and stable waveform morphologies consistent with that 
of neocortical neurons were used (Extended Data Fig. 1c,d; section 
on ‘Acute intraoperative single-neuronal recordings’). Altogether, 
we obtained recordings from 272 putative neurons across five par-
ticipants for an average of 54 ± 34 (s.d.) single units per participant  
(range 16–115 units).

Next, to study neuronal activities during the production of natural 
speech and to track their per word modulation, the participants per-
formed a naturalistic speech production task that required them to 
articulate broadly varied words in a replicable manner (Extended Data 
Fig. 2a)57. Here, the task required the participants to produce words 
that varied in phonetic, syllabic and morphosyntactic content and to 
provide them in a structured and reproducible format. It also required 
them to articulate the words independently of explicit phonetic cues 
(for example, from simply hearing and then repeating the same words) 
and to construct them de novo during natural speech. Extra controls 
were further used to evaluate for preceding word-related responses, 
sensory–perceptual effects and phonetic–acoustic properties as well 
as to evaluate the robustness and generalizability of neuronal activities 
(section on ‘Speech production task’).

Together, the participants produced 4,263 words for an average of 
852.6 ± 273.5 (s.d.) words per participant (range 406–1,252 words). The 
words were transcribed using a semi-automated platform and aligned 
to AP activity at millisecond resolution (section on ‘Audio recordings 
and task synchronization’)51. All participants were English speakers 
and showed comparable word-production performances (Extended 
Data Fig. 2b).

Representations of phonemes by neurons
To first examine the relation between single-neuronal activities and 
the specific speech organs involved58,59, we focused our initial analy-
ses on the primary places of articulation60. The places of articulation 
describe the points where constrictions are made between an active 
and a passive articulator and are what largely give consonants their 
distinctive sounds. Thus, for example, whereas bilabial consonants 
(/p/ and /b/) involve the obstruction of airflow at the lips, velar conso-
nants are articulated with the dorsum of the tongue placed against the 
soft palate (/k/ and /g/; Fig. 1b). To further examine sounds produced 
without constriction, we also focused our initial analyses on vowels 
in relation to the relative height of the tongue (mid-low and high vow-
els). More phonetic groupings based on the manners of articulation 
(configuration and interaction of articulators) and primary cardinal 
vowels (combined positions of the tongue and lips) are described in 
Extended Data Table 1.

Next, to provide a compositional phonetic representation of each 
word, we constructed a feature space on the basis of the constituent 
phonemes of each word (Fig. 1c, left). For instance, the words ‘like’ and 
‘bike’ would be represented uniquely in vector space because they dif-
fer by a single phoneme (‘like’ contains alveolar /l/ whereas ‘bike’ con-
tains bilabial /b/; Fig. 1c, right). The presence of a particular phoneme 
was therefore represented by a unitary value for its respective vector 
component, together yielding a vectoral representation of the constitu-
ent phonemes of each word (section on ‘Constructing a word feature 
space’). Generalized linear models (GLMs) were then used to quantify 
the degree to which variations in neuronal activity during planning 
could be explained by individual phonemes across all possible combi-
nations of phonemes per word (section on ‘Single-neuronal analysis’).

Overall, we find that the firing activities of many of the neurons 
(46.7%, n = 127 of 272 units) were explained by the constituent pho-
nemes of the word before utterance (−500 to 0 ms); GLM likelihood 
ratio test, P < 0.01); meaning that their activity patterns were informa-
tive of the phonetic content of the word. Among these, the activities of 
56 neurons (20.6% of the 272 units recorded) were further selectively 

tuned to the planned production of specific phonemes (two-sided Wald 
test for each GLM coefficient, P < 0.01, Bonferroni-corrected across 
all phoneme categories; Fig. 1d,e and Extended Data Figs. 2 and 3). 
Thus, for example, whereas certain neurons changed their firing rate 
when the upcoming words contained bilabial consonants (for exam-
ple, /p/ or /b/), others changed their firing rate when they contained 
velar consonants. Of these neurons, most encoded information both 
about the planned places and manners of articulation (n = 37 or 66% 
overlap, two-sided hypergeometric test, P < 0.0001) or planned places 
of articulation and vowels (n = 27 or 48% overlap, two-sided hypergeo-
metric test, P < 0.0001; Extended Data Fig. 4). Most also reflected the 
spectral properties of the articulated words on a phoneme-by-phoneme 
basis (64%, n = 36 of 56; two-sided hypergeometric test, P = 1.1 × 10−10; 
Extended Data Fig. 5a,b); together providing detailed information 
about the upcoming phonemes before utterance.

Because we had a complete representation of the upcoming pho-
nemes for each word, we could also quantify the degree to which neu-
ronal activities reflected their specific combinations. For example, we 
could ask whether the activities of certain neurons not only reflected 
planned words with velar consonants but also words that contained the 
specific combination of both velar and labial consonants. By aligning 
the activity of each neuron to its preferred phonetic composition (that 
is, the specific combination of phonemes to which the neuron most 
strongly responded) and by calculating the Hamming distance between 
this and all other possible phonetic compositions across words (Fig. 1c, 
right; section on ‘Single-neuronal analysis’), we find that the relation 
between the vectoral distances across words and neuronal activity 
was significant (two-sided Spearman’s ρ = −0.97, P = 5.14 × 10−7; Fig. 1f). 
These neurons therefore seemed not only to encode specific planned 
phonemes but also their specific composition with upcoming words.

Finally, we asked whether the constituent phonemes of the word 
could be robustly decoded from the activity patterns of the neuronal 
population. Using multilabel decoders to classify the upcoming pho-
nemes of words not used for model training (section on ‘Population 
modelling’), we find that the composition of phonemes could be 
predicted from neuronal activity with significant accuracy (receiver 
operating characteristic area under the curve; ROC-AUC = 0.75 ± 0.03  
mean ± s.d. observed versus 0.48 ± 0.02 chance, P < 0.001, two-sided 
Mann–Whitney U-test; Fig. 1g). Similar findings were also made when 
examining the planned manners of articulation (AUC = 0.77 ± 0.03, 
P < 0.001, two-sided Mann–Whitney U-test), primary cardinal vow-
els (AUC = 0.79 ± 0.04, P < 0.001, two-sided Mann–Whitney U-test) 
and their spectral properties (AUC = 0.75 ± 0.03, P < 0.001, two-sided 
Mann–Whitney U-test; Extended Data Fig. 5a, right). Taken together, 
these neurons therefore seemed to reliably predict the phonetic com-
position of the upcoming words before utterance.

Motoric and perceptual processes
Neurons that reflected the phonetic composition of the words during 
planning were largely distinct from those that reflected their composi-
tion during perception. It is possible, for instance, that similar response 
patterns could have been observed when simply hearing the words. 
Therefore, to test for this, we performed an extra ‘perception’ con-
trol in three of the participants whereby they listened to, rather than 
produced, the words (n = 126 recorded units; section on ‘Speech pro-
duction task’). Here, we find that 29.3% (n = 37) of the neurons showed 
phonetic selectively during listening (Extended Data Fig. 6a) and that 
their activities could be used to accurately predict the phonemes being 
heard (AUC = 0.70 ± 0.03 observed versus 0.48 ± 0.02 chance, P < 0.001, 
two-sided Mann–Whitney U-test; Extended Data Fig. 6b). We also find, 
however, that these cells were largely distinct from those that showed 
phonetic selectivity during planning (n = 10; 7.9% overlap) and that 
their activities were uninformative of phonemic content of the words 
being planned (AUC = 0.48 ± 0.01, P = 0.99, two-sided Mann–Whitney 
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U-test; Extended Data Fig. 6b). Similar findings were also made when 
replaying the participant’s own voices to them (‘playback’ control; 0% 
overlap in neurons); together suggesting that speaking and listening 
engaged largely distinct but complementary sets of cells in the neural 
population.

Given the above observations, we also examined whether the activi-
ties of the neurons could have been explained by the acoustic–phonetic 
properties of the preceding spoken words. For example, it is possible 
that the activities of the neuron may have partly reflected the pho-
netic composition of the previous articulated word or their motoric 
components. Thus, to test for this, we repeated our analyses but now 
excluded words in which the preceding articulated word contained the 
phoneme being decoded (section on ‘Single-neuronal analysis’) and 
find that decoding performance remained significant (AUC = 0.72 ± 0.1, 
P < 0.001, two-sided Mann–Whitney U-test). We also find that decoding 
performance remained significant when constricting (−400 to 0 ms 
window instead of −500:0 ms; AUC = 0.72 ± 0.1, P < 0.001, two-sided 
Mann–Whitney U-test) or shifting the analysis window closer to utter-
ance (−300 to +200 ms window results in AUC = 0.76 ± 0.1, P < 0.001, 
two-sided Mann–Whitney U-test); indicating that these neurons coded 
for the phonetic composition of the upcoming words.

Syllabic and morphological features
To transform sets of consonants and vowels into words, the planned 
phonemes must also be arranged and segmented into distinct 

syllables61. For example, even though the words ‘casting’ and ‘stack-
ing’ possess the same constituent phonemes, they are distinguished 
by their specific syllabic structure and order. Therefore, to examine 
whether neurons in the population may further reflect these sublexi-
cal features, we created an extra vector space based on the specific 
order and segmentation of phonemes (section on ‘Constructing a 
word feature space’). Here, focusing on the most common syllables to 
allow for tractable neuronal analysis (Extended Data Table 1), we find 
that the activities of 25.0% (n = 68 of 272) of the neurons reflected the 
presence of specific planned syllables (two-sided Wald test for each 
GLM coefficient, P < 0.01, Bonferroni-corrected across all syllable 
categories; Fig. 2a,b). Thus, whereas certain neurons may respond 
selectively to a velar-low-alveolar syllable, other neurons may respond 
selectively to an alveolar-low-velar syllable. Together, the neurons 
responded preferentially to specific syllables when tested across 
words (two-sided Spearman’s ρ = −0.96, P = 1.85 × 10−6; Fig. 2c) and 
accurately predicted their content (AUC = 0.67 ± 0.03 observed ver-
sus 0.50 ± 0.02 chance, P < 0.001, two-sided Mann–Whitney U-test; 
Fig. 2d); suggesting that these subsets of neurons encoded informa-
tion about the syllables.

Next, to confirm that these neurons were selectively tuned to specific 
syllables, we compared their activities for words that contained the 
preferred syllable of each neuron (for example, /d-iy/) to words that 
simply contained their constituent phonemes (for example, d or iy). 
Thus, for example, if these neurons reflected individual phonemes 
irrespective of their specific order, then we would observe no difference 
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in response. On the basis of these comparisons, however, we find that 
the responses of the neurons to their preferred syllables was signifi-
cantly greater than to that of their individual constituent phonemes 
(z-score difference 0.92 ± 0.04; two-sided Wilcoxon signed-rank test, 
P < 0.0001; Fig. 2e). We also tested words containing syllables with the 
same constituent phonemes but in which the phonemes were simply 
in a different order (for example, /g-ah-d/ versus /d-ah-g/) but again 
find that the neurons were preferentially tuned to specific syllables 
(z-score difference 0.99 ± 0.06; two-sided Wilcoxon signed-rank test, 
P < 1.0 × 10−6; Fig. 2e). Then, we examined words that contained the 
same arrangements of phonemes but in which the phonemes them-
selves belonged to different syllables (for example, /r-oh-b/ versus 
r-oh/b-; accounting prosodic emphasis) and similarly find that the neu-
rons were preferentially tuned to specific syllables (z-score difference 
1.01 ± 0.06; two-sided Wilcoxon signed-rank test, P < 0.0001; Fig. 2e). 
Therefore, rather than simply reflecting the phonetic composition of 
the upcoming words, these subsets of neurons encoded their specific 
segmentation and order in individual syllables.

Finally, we asked whether certain neurons may code for the inclu-
sion of morphemes. Unlike phonemes, bound morphemes such as 
‘–ed’ in ‘directed’ or ‘re–’ in ‘retry’ are capable of carrying specific 
meanings and are thus thought to be subserved by distinct neural 
mechanisms62,63. Therefore, to test for this, we also parsed each word 
on the basis of whether it contained a suffix or prefix (controlling for 
word length) and find that the activities of 11.4% (n = 31 of 272) of the 
neurons selectively changed for words that contained morphemes 
compared to those that did not (two-sided Wald test for each GLM 
coefficient, P < 0.01, Bonferroni-corrected across morpheme catego-
ries; Extended Data Fig. 5c). Moreover, neural activity across the popu-
lation could be used to reliably predict the inclusion of morphemes 
before utterance (AUC = 0.76 ± 0.05 observed versus 0.52 ± 0.01 for 
shuffled data, P < 0.001, two-sided Mann–Whitney U-test; Extended 
Data Fig. 5c), together suggesting that the neurons coded for this 
sublexical feature.

Spatial distribution of neurons
Neurons that encoded information about the sublexical components 
of the upcoming words were broadly distributed across the cortex and 
cortical column depth. By tracking the location of each neuron in rela-
tion to the Neuropixels arrays, we find that there was a slightly higher 
preponderance of neurons that were tuned to phonemes (one-sided χ2 
test (2) = 0.7 and 5.2, P > 0.05, for places and manners of articulation, 
respectively), syllables (one-sided χ2 test (2) = 3.6, P > 0.05) and mor-
phemes (one-sided χ2 test (2) = 4.9, P > 0.05) at lower cortical depths, 
but that this difference was non-significant, suggesting a broad distribu-
tion (Extended Data Fig. 7). We also find, however, that the proportion of 
neurons that showed selectivity for phonemes increased as recordings 
were acquired more posteriorly along the rostral–caudal axis of the 
cortex (one-sided χ2 test (4) = 45.9 and 52.2, P < 0.01, for places and man-
ners of articulation, respectively). Similar findings were also made for 
syllables and morphemes (one-sided χ2 test (4) = 31.4 and 49.8, P < 0.01, 
respectively; Extended Data Fig. 7); together suggesting a gradation 
of cellular representations, with caudal areas showing progressively 
higher proportions of selective neurons.

Collectively, the activities of these cell ensembles provided richly 
detailed information about the phonetic, syllabic and morphological 
components of upcoming words. Of the neurons that showed selec-
tivity to any sublexical feature, 51% (n = 46 of 90 units) were signifi-
cantly informative of more than one feature. Moreover, the selectivity 
of these neurons lay along a continuum and were closely correlated 
(two-sided test of Pearson’s correlation in D2 across all sublexical fea-
ture comparisons, r = 0.80, 0.51 and 0.37 for phonemes versus sylla-
bles, phonemes versus morphemes and syllables versus morphemes, 
respectively, all P < 0.001; Fig. 2b), with most cells exhibiting a mixture 

of representations for specific phonetic, syllabic or morphological 
features (two-sided Wilcoxon signed-rank test, P < 0.0001). Figure 3a 
further illustrates this mixture of representations (Fig.  3a, left; 
t-distributed stochastic neighbour embedding (tSNE)) and their hier-
archical structure (Fig. 3a, right; D2 distribution), together revealing a 
detailed characterization of the phonetic, syllabic and morphological 
components of upcoming words at the level of the cell population.

c Population decoding and temporal dynamics
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across the population using a tSNE procedure (that is, neurons with similar 
response characteristics were plotted in closer proximity). The hue of each 
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morphemes, respectively; Methods). Data are presented as median (dot) 
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Temporal organization of representations
Given the above observations, we examined the temporal dynamic 
of neuronal activities during the production of speech. By tracking 
peak decoding in the period leading up to utterance onset (peak AUC; 
50 model testing/training splits)64, we find these neural populations 
showed a consistent morphological–phonetic–syllabic dynamic in 
which decoding performance first peaked for morphemes. Peak decod-
ing then followed for phonemes and syllables (Fig. 3b and Extended 
Data Fig. 8a,b; section on ‘Population modelling’). Overall, decoding 
performance peaked for the morphological properties of words at 
−405 ± 67 ms before utterance, followed by peak decoding for pho-
nemes at −195 ± 16 ms and syllables at −70 ± 62 ms (s.e.m.; Fig. 3b). This 
temporal dynamic was highly unlikely to have been observed by chance 
(two-sided Kruskal–Wallis test, H = 13.28, P < 0.01) and was largely dis-
tinct from that observed during listening (two-sided Kruskal–Wallis 
test, H = 14.75, P < 0.001; Extended Data Fig. 6c). The activities of these 
neurons therefore seemed to follow a consistent, temporally ordered 
morphological–phonetic–syllabic dynamic before utterance.

The activities of these neurons also followed a temporally structured 
transition from articulation planning to production. When compar-
ing their activities before utterance onset (−500:0 ms) to those after 
(0:500 ms), we find that neurons which encoded information about 
the upcoming phonemes during planning encoded similar information 
during production (P < 0.001, Mann–Whitney U-test for phonemes and 
syllables; Fig. 4a). Moreover, when using models that were originally 
trained on words before utterance onset to decode the properties of 

the articulated words during production (model-switch approach), we 
find that decoding accuracy for the phonetic, syllabic and morphologi-
cal properties of the words all remained significant (AUC = 0.76 ± 0.02 
versus 0.48 ± 0.03 chance, 0.65 ± 0.03 versus 0.51 ± 0.04 chance, 
0.74 ± 0.06 versus 0.44 ± 0.07 chance, for phonemes, syllables and 
morphemes, respectively; P < 0.001 for all, two-sided Mann–Whitney 
U-tests; Extended Data Fig. 8c). Information about the sublexical fea-
tures of words was therefore reliably represented during articulation 
planning and execution by the neuronal population.

Utilizing a dynamical systems approach to further allow for the unsu-
pervised identification of functional subspaces (that is, wherein neural 
activity is embedded into a high-dimensional vector space; Fig. 4b, 
left; section on ‘Dynamical system and subspace analysis’)31,34,65,66, we 
find that the activities of the population were mostly low-dimensional, 
with more than 90% of the variance in neuronal activity being captured 
by its first four principal components (Fig. 4b, right). However, when 
tracking how the dimensions in which neural populations evolved over 
time, we also find that the subspaces which defined neural activity 
during articulation planning and production were largely distinct. In 
particular, whereas the first five subspaces captured 98.4% of variance 
in the trajectory of the population during planning, they captured 
only 11.9% of variance in the trajectory during articulation (two-sided 
permutation test, P < 0.0001; Fig. 4b, bottom and Extended Data Fig. 9). 
Together, these cell ensembles therefore seemed to occupy largely 
separate preparatory and motoric subspaces while also allowing for 
information about the phonetic, syllabic and morphological contents 
of the words to be stably represented during the production of speech.
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Discussion
Using Neuropixels probes to obtain acute, fine-scaled recordings 
from single neurons in the language-dominant prefrontal cortex3–6—
in a region proposed to be involved in word planning3–12 and pro-
duction13–16—we find a strikingly detailed organization of phonetic 
representations at a cellular level. In particular, we find that the activi-
ties of many of the neurons closely mirrored the way in which the word 
sounds were produced, meaning that they reflected how individual 
planned phonemes were generated through specific articulators58,59. 
Moreover, rather than simply representing phonemes independently 
of their order or structure, many of the neurons coded for their com-
position in the upcoming words. They also reliably predicted the 
arrangement and segmentation of phonemes into distinct syllables, 
together suggesting a process that could allow the structure and order 
of articulatory events to be encoded at a cellular level.

Collectively, this putative mechanism supports the existence of 
context-general representations of classes of speech sounds that 
speakers use to construct different word forms. In contrast, coding 
of sequences of phonemes as syllables may represent a context-specific 
representation of these speech sounds in a particular segmental con-
text. This combination of context-general and context-specific rep-
resentation of speech sound classes, in turn, is supportive of many 
speech production models which suggest that speakers hold abstract 
representations of discrete phonological units in a context-general 
way and that, as part of speech planning, these units are organized into 
prosodic structures that are context-specific1,30. Although the present 
study does not reveal whether these representations may be stored in 
and retrieved from a mental syllabary1 or are constructed from abstract 
phonology ad hoc, it lays a groundwork from which to begin explor-
ing these possibilities at a cellular scale. It also expands on previous 
observations in animal models such as marmosets67,68, singing mice69 
and canaries70 on the syllabic structure and sequence of vocalization 
processes, providing us with some of the earliest lines of evidence for 
the neuronal coding of vocal-motor plans.

Another interesting finding from these studies is the diversity of 
phonetic feature representations and their organization across corti-
cal depth. Although our recordings sampled locally from relatively 
small columnar populations, most phonetic features could be reliably 
decoded from their collective activities. Such findings suggest that pho-
netic information necessary for constructing words may be potentially 
fully represented in certain regions along the cortical column10,46–50. 
They also place these populations at a putative intersection for the 
shared coding of places and manners of articulation and demonstrate 
how these representations may be locally distributed. Such redundancy 
and accessibility of information in local cortical populations is consist-
ent with that observed from animal models31–35 and could serve to allow 
for the rapid orchestration of neuronal processes necessary for the 
real-time construction of words; especially during the production of 
natural speech. Our findings are also supportive of a putative ‘mirror’  
system that could allow for the shared representation of phonetic 
features within the population when speaking and listening and for 
the real-time feedback of phonetic information by neurons during 
perception23,71.

A final notable observation from these studies is the temporal suc-
cession of neuronal encoding events. In particular, our findings are 
supportive of previous neurolinguistic theories suggesting closely 
coupled processes for coordination planned articulatory events that 
ultimately produces words. These models, for example, suggest that 
the morphology of a word is probably retrieved before its phonologic 
code, as the exact phonology depends on the morphemes in the word 
form1. They also suggest the later syllabification of planned phonemes 
which would enable them to be sequentially arranged in specific order 
(although different temporal orders have been suggested as well)72. 
Here, our findings provide tentative support for a structured sublexical 

coding succession that could allow for the discretization of such infor-
mation during articulation. Our findings also suggest (through dynami-
cal systems modelling) a mechanism that, consistent with previous 
observations on motor planning and execution31,34,65,66, could enable 
information to occupy distinct functional subspaces34,73 and therefore 
allow for the rapid separation of neural processes necessary for the 
construction and articulation of words.

Taken together, these findings reveal a set of processes and frame-
work in the language-dominant prefrontal cortex by which to begin 
understanding how words may be constructed during natural speech at 
a single-neuronal level through which to start defining their fine-scale 
spatial and temporal dynamics. Given their robust decoding perfor-
mances (especially in the absence of natural language processing-based 
predictions), it is interesting to speculate whether such prefrontal 
recordings could also be used for synthetic speech prostheses or for 
the augmentation of other emerging approaches21,22,74 used in brain–
machine interfaces. It is important to note, however, that the produc-
tion of words also involves more complex processes, including semantic 
retrieval, the arrangement of words in sentences, and prosody, which 
were not tested here. Moreover, future experiments will be required 
to investigate eloquent areas such as ventral premotor and superior 
posterior temporal areas not accessible with our present techniques. 
Here, this study provides a prospective platform by which to begin 
addressing these questions using a combination of ultrahigh-density 
microelectrode recordings, naturalistic speech tracking and acute 
real-time intraoperative neurophysiology to study human language 
at cellular scale.
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Methods

Study participants
All aspects of the study were carried out in strict accordance with and 
were approved by the Massachusetts General Brigham Institutional 
Review Board. Right-handed native English speakers undergoing awake 
microelectrode recording-guided deep brain stimulator implantation 
were screened for enrolment. Clinical consideration for surgery was 
made by a multidisciplinary team of neurosurgeons, neurologists and 
neuropsychologists. Operative planning was made independently by 
the surgical team and without consideration of study participation. 
Participants were only enroled if: (1) the surgical plan was for awake 
microelectrode recording-guided placement, (2) the patient was at least 
18 years of age, (3) they had intact language function with English flu-
ency and (4) were able to provide informed consent for study participa-
tion. Participation in the study was voluntary and all participants were 
informed that they were free to withdraw from the study at any time.

Acute intraoperative single-neuronal recordings
Single-neuronal prefrontal recordings using Neuropixels probes. As 
part of deep brain stimulator implantation at our institution, participants 
are often awake and microelectrode recordings are used to optimize 
anatomical targeting of the deep brain structures46. During these cases, 
the electrodes often traverse part of the posterior language-dominant 
prefrontal cortex3–6 in an area previously shown be involved in word 
planning3–12 and sentence construction13–16 and which broadly connects 
with premotor areas involved in their articulation51–53 and lexical process-
ing17–19 by imaging studies (Extended Data Fig. 1a,b). All microelectrode 
entry points and placements were based purely on planned clinical tar-
geting and were made independently of any study consideration.

Sterile Neuropixels probes (v.1.0-S, IMEC, ethylene oxide sterilized 
by BioSeal54) together with a 3B2 IMEC headstage were attached to 
cannula and a manipulator connected to a ROSA ONE Brain (Zimmer 
Biomet) robotic arm. Here, the probes were inserted into the cortical 
ribbon under direct robot navigational guidance through the implanted 
burr hole (Fig. 1a). The probes (width 70 µm; length 10 mm; thickness 
100 µm) consisted of a total of 960 contact sites (384 preselected 
recording channels) laid out in a chequerboard pattern with approxi-
mately 25 µm centre-to-centre nearest-neighbour site spacing. The 
IMEC headstage was connected through a multiplexed cable to a PXIe 
acquisition module card (IMEC), installed into a PXIe Chassis (PXIe-1071 
chassis, National Instruments). Neuropixels recordings were performed 
using SpikeGLX (v.20201103 and v.20221012-phase30; http://billkarsh.
github.io/SpikeGLX/) or OpenEphys (v.0.5.3.1 and v.0.6.0; https://
open-ephys.org/) on a computer connected to the PXIe acquisition 
module recording the action potential band (AP, band-pass filtered 
from 0.3 to 10 kHz) sampled at 30 kHz and a local-field potential band 
(LFP, band-pass filtered from 0.5 to 500 Hz), sampled at 2,500 Hz. Once 
putative units were identified, the Neuropixels probe was briefly held 
in position to confirm signal stability (we did not screen putative neu-
rons for speech responsiveness). Further description of this recording 
approach can be found in refs. 54,55. After single-neural recordings 
from the cortex were completed, the Neuropixels probe was removed 
and subcortical neuronal recordings and deep brain stimulator place-
ment proceeded as planned.

Single-unit isolation. Single-neuronal recordings were performed in 
two main steps. First, to track the activities of putative neurons at high 
spatiotemporal resolution and to account for intraoperative corti-
cal motion, we use a Decentralized Registration of Electrophysiology 
Data software (DREDge; https://github.com/evarol/DREDge) and inter
polation approach (https://github.com/williamunoz/Interpolation
AfterDREDge). Briefly, and as previously described54–56, an automated  
protocol was used to track LFP voltages using a decentralized correla-
tion technique that re-aligned the recording channels in relation to 

brain movements (Fig. 1a, right). Following this step, we then inter
polated the AP band continuous voltage data using the DREDge  
motion estimate to allow the activities of the putative neurons to be 
stably tracked over time. Next, single units were isolated from the 
motion-corrected interpolated signal using Kilosort (v.1.0; https://
github.com/cortex-lab/KiloSort) followed by Phy for cluster curation 
(v.2.0a1; https://github.com/cortex-lab/phy; Extended Data Fig. 1c,d). 
Here, units were selected on the basis of their waveform morphologies 
and separability in principal component space, their interspike interval 
profiles and similarity of waveforms across contacts. Only well-isolated 
single units with mean firing rates ≥0.1 Hz were included. The range of 
units obtained from these recordings was 16–115 units per participant.

Audio recordings and task synchronization
For task synchronization, we used the TTL output and audio output to 
send the synchronization trigger through the SMA input to the IMEC 
PXIe acquisition module card. To allow for added synchronizing, trig-
gers were also recorded on an extra breakout analogue and digital input/
output board (BNC2110, National Instruments) connected through a 
PXIe board (PXIe-6341 module, National Instruments).

Audio recordings were obtained at 44 kHz sampling frequency 
(TASCAM DR-40×4-Channel/ 4-Track Portable Audio Recorder and 
USB Interface with Adjustable Microphone) which had an audio input. 
These recordings were then sent to a NIDAQ board analogue input in 
the same PXIe acquisition module containing the IMEC PXIe board for 
high-fidelity temporal alignment with neuronal data. Synchronization 
of neuronal activity with behavioural events was performed through 
TTL triggers through a parallel port sent to both the IMEC PXIe board 
(the sync channel) and the analogue NIDAQ input as well as the paral-
lel audio input into the analogue input channels on the NIDAQ board.

Audio recordings were annotated in semi-automated fashion 
(Audacity; v.2.3). Recorded audio for each word and sentence by the 
participants was analysed in Praat75 and Audacity (v.2.3). Exact word 
and phoneme onsets and offsets were identified using the Montreal 
Forced Aligner (v.2.2; https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner)76 and confirmed with manual review of 
all annotated recordings. Together, these measures allowed for the 
millisecond-level alignment of neuronal activity with each produced 
word and phoneme.

Anatomical localization of recordings
Pre-operative high-resolution magnetic resonance imaging and post-
operative head computerized tomography scans were coregistered by 
combination of ROSA software (Zimmer Biomet; v.3.1.6.276), Mango 
(v.4.1; https://mangoviewer.com/download.html) and FreeSurfer 
(v.7.4.1; https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAn-
dInstall) to reconstruct the cortical surface and identify the cortical 
location from which Neuropixels recordings were obtained77–81. This 
registration allowed localization of the surgical areas that underlaid 
the cortical sites of recording (Fig. 1a and Extended Data Fig. 1a)54–56. 
The MNI transformation of these coordinates was then carried out to 
register the locations in MNI space with Fieldtrip toolbox (v.20230602; 
https://www.fieldtriptoolbox.org/; Extended Data Fig. 1b)82.

For depth calculation, we estimated the pial boundary of recordings 
according to the observed sharp signal change in signal from channels 
that were implanted in the brain parenchyma versus those outside the 
brain. We then referenced our single-unit recording depth (based on 
their maximum waveform amplitude channel) in relation to this esti-
mated pial boundary. Here, all units were assessed on the basis of their 
relative depths in relation to the pial boundary as superficial, middle 
and deep (Extended Data Fig. 7).

Speech production task
The participants performed a priming-based naturalistic speech 
production task57 in which they were given a scene on a screen that 
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consisted of a scenario that had to be described in specific order and 
format. Thus, for example, the participant may be given a scene of a 
boy and a girl playing with a balloon or they may be given a scene of a 
dog chasing a cat. These scenes, together, required the participants to 
produce words that varied in phonetic, syllabic and morphosyntactic 
content. They were also highlighted in a way that required them to 
produce the words in a structured format. Thus, for example, a scene 
may be highlighted in a way that required the participants to produce 
the sentence “The mouse was being chased by the cat” or in a way that 
required them to produce the sentence “The cat was chasing the mouse” 
(Extended Data Fig. 2a). Because the sentences had to be constructed 
de novo, it also required the participants to produce the words without 
providing explicit phonetic cues (for example, from hearing and then 
repeating the word ‘cat’). Taken together, this task therefore allowed 
neuronal activity to be examined whereby words (for example, ‘cat’), 
rather than independent phonetic sounds (for example, /k/), were 
articulated and in which the words were produced during natural 
speech (for example, constructing the sentence “the dog chased the 
cat”) rather than simply repeated (for example, hearing and then repeat-
ing the word ‘cat’).

Finally, to account for the potential contribution of sensory– 
perceptual responses, three of the participants also performed a ‘per-
ception’ control in which they listened to words spoken to them. One 
of these participants further performed an auditory ‘playback’ control 
in which they listened to their own recorded voice. For this control, all 
words spoken by the participant were recorded using a high-fidelity 
microphone (Zoom ZUM-2 USM microphone) and then played back to 
them on a word-by-word level in randomized separate blocks.

Constructing a word feature space
Phonemes. To allow for single-neuronal analysis and to provide a com-
positional representation for each word, we grouped the constituent 
phonemes on the basis of the relative positions of articulatory organs 
associated with their production60. Here, for our primary analyses, 
we selected the places of articulation for consonants (for example,  
bilabial consonants) on the basis of established IPA categories  
defining the primary articulators involved in speech production. For 
consonants, phonemes were grouped on the basis of their places of 
articulation into glottal, velar, palatal, postalveolar, alveolar, den-
tal, labiodental and bilabial. For vowels, we grouped phonemes on 
the basis of the relative height of the tongue with high vowels being 
produced with the tongue in a relatively high position and mid-low 
(that is, mid+low) vowels being produced with it in a lower position. 
Here, this grouping of phonemes is broadly referred to as ‘places of 
articulation’ together reflecting the main positions of articulatory 
organs and their combinations used to produce the words58,59. Finally, 
to allow for comparison and to test their generalizability, we examined 
the manners of articulation stop, fricative, affricate, nasal, liquid and 
glide for consonants which describe the nature of airflow restriction by 
various parts of the mouth and tongue. For vowels, we also evaluated 
the primary cardinal vowels i, e, ɛ, a, α, ɔ, o and u which are described, 
in combination, by the position of the tongue relative to the roof of 
the mouth, how far forward or back it lies and the relative positions 
of the lips83,84. A detailed summary of these phonetic groupings can 
be found in Extended Data Table 1.

Phoneme feature space. To further evaluate the relationship between 
neuronal activity and the presence of specific constituent phonemes 
per word, the phonemes in each word were parsed according to their 
precise pronunciation provided by the English Lexicon Project (or the 
Longman Pronunciation Dictionary for American English where neces-
sary) as described previously85. Thus, for example, the word ‘like’ (l-aɪ-k) 
would be parsed into a sequence of alveolar-mid-low-velar phonemes, 
whereas the word ‘bike’ (b-aɪ-k) would be parsed into a sequence of 
bilabial-mid-low-velar phonemes.

These constituent phonemes were then used to represent each word 
as a ten-dimensional vector in which the value in each position reflected 
the presence of each type of phoneme (Fig. 1c). For example, the word 
‘like’, containing a sequence of alveolar-mid-low-velar phonemes, was 
represented by the vector [0 0 0 1 0 0 1 0 0 1], with each entry represent-
ing the number of the respective type of phoneme in the word. Together, 
such vectors representing all words defined a phonetic ‘vector space’. 
Further analyses to evaluate the precise arrangement of phonemes 
per word are described further below. Goodness-of-fit and selectivity 
metrics used to evaluate single-neuronal responses to these phonemes 
and their specific combination in words are described further below.

Syllabic feature space. Next, to evaluate the relationship between 
neuronal activity and the specific arrangement of phonemes in sylla-
bles, we parsed the constituent syllables for each word using American 
pronunciations provided in ref. 85. Thus, for example, ‘back’ would 
be defined as a labial-low-velar sequence. Here, to allow for neuronal 
analysis and to limit the combination of all possible syllables, we selec
ted the ten most common syllable types. High and mid-low vowels 
were considered as syllables here only if they reflected syllables in 
themselves and were unbound from a consonant (for example, /ih/ 
in ‘hesitate’ or /ah-/ in ‘adore’). Similar to the phoneme space, the syl-
lables were then transformed into an n-dimensional binary vector in 
which the value in each dimension reflected the presence of specific 
syllables (similar to construction of the phoneme space). Thus, for 
the n-dimensional representation of each word in this syllabic feature 
space, the value in each dimension could be also interpreted in relation 
to neuronal activity.

Morphemes. To account for the functional distinction between pho-
nemes and morphemes62,63, we also parsed words into those that con-
tained bound morphemes which were either prefixed (for example, 
‘re–’) or suffixed (for example, ‘–ed’). Unlike phonemes, morphemes 
such as ‘–ed’ in ‘directed’ or ‘re–’ in ‘retry’ are the smallest linguistic units 
capable of carrying meaning and, therefore, accounting for their pres-
ence allowed their effect on neuronal responses to be further examined. 
To allow for neuronal analysis and to control for potential differences 
in neuronal activity due to word lengths, models also took into account 
the total number of phonemes per word.

Spectral features. To evaluate the time-varying spectral features of the 
articulated phonemes on a phoneme-by-phoneme basis, we identified 
the occurrence of each phoneme using a Montreal Forced Aligner (v.2.2; 
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner). 
For pitch, we calculated the spectral power in ten log-spaced frequency 
bins from 200 to 5,000 Hz for each phoneme per word. For amplitude, we 
took the root-mean-square of the recorded waveform of each phoneme.

Single-neuronal analysis
Evaluating the selectivity of single-neuronal responses. To inves-
tigate the relationship between single-neuronal activity and specific 
word features, we used a regression analysis to determine the degree 
to which variation in neural activity could be explained by phonetic, 
syllabic or morphologic properties of spoken words86–89. For all analy-
ses, neuronal activity was considered in relation to word utterance 
onset (t = 0) and taken as the mean spike count in the analysis window 
of interest (that is, −500 to 0 ms from word onset for word planning 
and 0 to +500 ms for word production). To limit the potential effects 
of preceding words on neuronal activity, words with planning periods 
that overlapped temporally were excluded from regression and selec-
tivity analyses. For each neuron, we constructed a GLM that modelled 
the spike count rate as the realization of a Poisson process whose rate 
varied as a function of the linguistic (for example, phonetic, syllabic 
and morphologic) or acoustic features (for example, spectral power 
and root-mean-square amplitude) of the planned words.

https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner


Models were fit using the Python (v.3.9.17) library statsmodels 
(v.0.13.5) by iterative least-squares minimization of the Poisson nega-
tive log-likelihood function86. To assess the goodness-of-fit of the mod-
els, we used both the Akaike information criterion ( k LAIC = 2 − 2ln( ) 
where k is the number of estimated parameters and L is the maximized 
value of the likelihood function) and a generalization of the R2 score 
for the exponential family of regression models that we refer to as D2 
whereby87:
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y is a vector of realized outcomes, μ is a vector of estimated means 
from a full (including all regressors) or restricted (without regressors 
of interest) model and K µµ µµ( , ) = 2 llf( ; ) − 2 llf( ; )∙ ∙y y y y  where µµllf( ; )y  is 
the log-likelihood of the model and y yllf( ; ) is the log-likelihood of the 
saturated model. The D2 value represents the proportion of reduction 
in uncertainty (measured by the Kullback–Leibler divergence) due to 
the inclusion of regressors. The statistical significance of model fit was 
evaluated using the likelihood ratio test compared with a model with 
all covariates except the regressors of interest (the task variables).

We characterized a neuron as selectively ‘tuned’ to a given word fea-
ture if the GLM of neuronal firing rates as a function of task variables 
for that feature exhibited a statistically significant model fit (likelihood 
ratio test with α set at 0.01). For neurons meeting this criterion, we 
also examined the point estimates and confidence intervals for each 
coefficient in the model. A vector of these coefficients (or, in our fea-
ture space, a vector of the sign of these coefficients) indicates a word 
with the combination of constituent elements expected to produce 
a maximal neuronal response. The multidimensional feature spaces 
also allowed us to define metrics that quantified the phonemic, syl-
labic or morphologic similarity between words. Here, we calculated 
the Hamming distance between the vector describing each word u 
and the vector of the sign of regression coefficients that defines each 
neuron’s maximal predicted response v, which is equal to the number 
of positions at which the corresponding values are different:

u vi i nHamming distance = count{ : ≠ , = 1… }i i

For each ‘tuned’ neuron, we compared the Z-scored firing rate elic-
ited by each word as a function of the Hamming distance between the 
word and the ‘preferred word’ of the neuron to examine the ‘tuning’ 
characteristics of these neurons (Figs. 1f and 2c). A Hamming distance 
of zero would therefore indicate that the words have phonetically 
identical compositions. Finally, to examine the relationship between 
neuronal activity and spectral features of each phoneme, we extracted 
the acoustic waveform for each phoneme and calculated the power in 
ten log-spaced spectral bands. We then constructed a ‘spectral vector’ 
representation for each word based on these ten values and fit a Poisson 
GLM of neuronal firing rates against these values. For amplitude analy-
sis, we regressed neuronal firing rates against the root-mean-square 
amplitude of the waveform for each word.

Controlling for interdependency between phonetic and syllabic 
features. Three more word variations were used to examine the inter-
dependency between phonetic and syllabic features. First, we com-
pared firing rates for words containing specific syllables with words 
containing individual phonemes in that syllable but not the syllable 
itself (for example, simply /d/ in ‘god’ or ‘dog’). Second, we examined 
words containing syllables with the same constituent phonemes but 
in a different order (for example, /g-ah-d/ for ‘god’ versus /d-ah-g/ for 
‘dog’). Thus, if neurons responded preferentially to specific syllables, 
then they should continue to respond to them preferentially even when 
comparing words that had the same arrangements of phonemes but in 
different or reverse order. Third, we examined words containing the 

same sequence of syllables but spanning a syllable boundary such that 
the cluster of phonemes did not constitute a syllable (that is, in the same 
syllable versus spanning across syllable boundaries).

Visualization of neuronal responses within the population. To allow 
for visualization of groupings of neurons with shared representational 
characteristics, we calculated the AIC and D2 for phoneme, syllable and 
morpheme models for each neuron and conducted tSNE procedure 
which transformed these data into two dimensions such that neurons 
with similar feature representations are spatially closer together than 
those with dissimilar representations90. We used the tSNE implantation 
in the scikit-learn Python module (v.1.3.0). In Fig. 3a left, a tSNE was fit 
on the AIC values for phoneme, syllable and morpheme models for 
each neuron during the planning period with the following parameters: 
perplexity = 35, early exaggeration = 2 and using Euclidean distance 
as the metric. In Fig. 3a right and Fig. 4a bottom, a different tSNE was 
fit on the D2 values for all planning and production models using the 
following parameters: perplexity = 10, early exaggeration = 10 and  
using a cosine distance metric. The resulting embeddings were mapped 
onto a grid of points according to a linear sum assignment algorithm 
between embeddings and grid points.

Population modelling
Modelling population activity. To quantify the degree to which the 
neural population coded information about the planned phonemes, 
syllables and morphemes, we modelled the activity of the entire pseu-
dopopulation of recorded neurons. To match trials across the differ-
ent participants, we first labelled each word according to whether 
it contained the feature of interest and then matched words across 
subjects based on the features that were shared. Using this procedure, 
no trials or neural data were duplicated or upsampled, ensuring strict 
separation between training and testing sets during classifier training 
and subsequent evaluation.

For decoding, words were randomly split into training (75%) and test-
ing (25%) trials across 50 iterations. A support vector machine (SVM) as 
implemented in the scikit-learn Python package (v.1.3.0)91 was used to 
construct a hyperplane in n-dimensional space that optimally separates 
samples of different word features by solving the following minimiza-
tion problem:
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i i and ζ ≥ 0i  for all i n∈ {1, …, }, where w 
is the margin in feature space, C is the regularization strength, ζi is the 
distance of each point from the margin, yi is the predicted class for each 
sample and ϕ(xi) is the image of each datapoint in transformed feature 
space. A radial basis function kernel with coefficient γ = 1/272 was 
applied. The penalty term C was optimized for each classifier using a 
cross-validation procedure nested in the training set.

A separate classifier was trained for each dimension in a task space 
(for example, separate classifiers for bilabial, dental and alveolar 
consonants) and scores for each of these classifiers were averaged 
to calculate an overall decoding score for that feature type. Each 
decoder was trained to predict whether the upcoming word contained 
an instance of a specific phoneme, syllable or morpheme arrange-
ment. For phonemes, we used nine of the ten phoneme groups (there 
were insufficient instances of palatal consonants to train a classifier; 
Extended Data Table 1). For syllables, we used ten syllables taken from 
the most common syllables across the study vocabulary (Extended 
Data Table 1). For morpheme analysis, a single classifier was trained 
to predict the presence or absence of any bound morpheme in the  
upcoming word.

Finally, to assess performance, we scored classifiers using the area 
under the curve of the receiver operating characteristic (AUC-ROC) 
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model. With this scoring metric, a classifier that always guesses the 
most common class (that is, an uninformative classifier) results in 
a score of 0.5 whereas a perfect classification results in a score of 1.  
The overall decoding score for a particular feature space was the 
mean score of the classifier for each dimension in the space. The 
entire procedure was repeated 50 times with random train/test 
splits. Summary statistics for these 50 iterations are presented in the  
main text.

Model switching. Assessing decoder generalization across different 
experimental conditions provides a powerful method to evaluate the 
similarity of neuronal representations of information in different con-
texts64. To determine how neurons encoded the same word features but 
under different conditions, we trained SVM decoders using neuronal 
data during one condition (for example, word production) but tested 
the decoder using data from another (for example, no word produc-
tion). Before decoder training or testing, trials were split into disjoint 
training and testing sets, from which the neuronal data were extracted 
in the epoch of interest. Thus, trials used to train the model were never 
used to test the model while testing either native decoder performance 
or decoder generalizability.

Modelling temporal dynamic. To further study the temporal dynamic 
of neuronal response, we trained decoders to predict the phonemes, 
syllables and morpheme arrangement for each word across successive 
time points before utterance64. For each neuron, we aligned all spikes 
to utterance onset, binned spikes into 5 ms windows and convolved 
with a Gaussian kernel with standard deviation of 25 ms to generate 
an estimated instantaneous firing rate at each point in time during 
word planning. For each time point, we evaluated the performance 
of decoders of phonemes, syllables and morphemes trained on these 
data over 50 random splits of training and testing trials. The distribu-
tion of times of peak decoding performance across the planning or 
perception period revealed the dynamic of information encoding by 
these neurons during word planning or perception and we then cal-
culated the median peak decoding times for phonemes, syllables or  
morphemes.

Dynamical system and subspace analysis
To study the dimensionality of neuronal activity and to evaluate the 
functional subspaces occupied by the neuronal population, we used 
dynamical systems approach that quantified the time-dependent 
changes in neural activity patterns31. For the dynamical system analy-
sis, activity for all words were averaged for each neuron to come up 
with a single peri-event time projection (aligned to word onset) which 
allowed all neurons to be analysed together as a pseudopopulation. 
First, we calculated the instantaneous firing rates of the neuron which 
showed selectivity to any word feature (phonemes, syllables or mor-
pheme arrangement) into 5 ms bins convolved with a Gaussian filter 
with standard deviation of 50 ms. We used equal 500 ms windows set 
at −500 to 0 ms before utterance onset for the planning phase and 0 
to 500 ms following utterance onset for the production phase to allow 
for comparison. These data were then standardized to zero mean and 
unit variance. Finally, the neural data were concatenated into a T × N 
matrix of sampled instantaneous firing rates for each of the N neurons 
at every time T.

Together, these matrices represented the evolution of the system 
in N-dimensional space over time. A principal component analysis 
revealed a small set of five principal components (PC) embedded 
in the full N-dimensional space that captured most of the variance 
in the data for each epoch (Fig. 4b). Projection of the data into this 
space yields a T × 5 matrix representing the evolution of the system in 
five-dimensional space over time. The columns of the N × 5 principal 
components form an orthonormal basis for the five-dimensional sub-
space occupied by the system during each epoch.

Next, to quantify the relationship between these subspaces during 
planning and production, we took two approaches. First, we calculated 
the alignment index from ref. 66:
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where DA is the matrix defined by the orthonormal basis of subspace 
A, CB is the covariance of the neuronal data as it evolves in space B, σ i( )B  
is the ith singular value of the covariance matrix CB and Tr(∙) is the matrix 
trace. The alignment index A ranges from 0 to 1 and quantifies the frac-
tion of variance in space B recovered when the data are projected into 
space A. Higher values indicate that variance in the data is adequately 
captured by either subspace.

As discussed in ref. 66, subspace misalignment in the form 
of low alignment index A can arise by chance when considering 
high-dimensional neuronal data because of the probability that two 
randomly selected sets of dimensions in high-dimensional space may 
not align well. Therefore, to further explore the degree to which our 
subspace misalignment was attributable to chance, we used the Monte 
Carlo analysis to generate random subspaces from data with the same 
covariance structure as the true (observed) data:
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where V is a random subspace, U and S are the eigenvectors and eigenval-
ues of the covariance matrix of the observed data across all epochs being 
compared, v is a matrix of white noise and orth(∙) orthogonalizes the 
matrix. The alignment index A of the subspaces defined by the resulting 
basis vectors V was recalculated 1,000 times to generate a distribution of 
alignment index values A attributable to chance alone (compare Fig. 4b).

Finally, we calculated the projection error between each pair of sub-
spaces on the basis of relationships between the three orthonormal 
bases (rather than a projection of the data into each of these subspaces). 
The set of all (linear) subspaces of dimension k < n embedded in an 
n-dimensional vector space V forms a manifold known as the Grass-
mannian, endowed with several metrics which can be used to quantify 
distances between two subspaces on the manifold. Thus, the subspaces 
(defined by the columns of a T × N′ matrix, where N′ is the number of 
selected principal components; five in our case) explored by the sys-
tem during planning and production are points on the Grassmannian 
manifold of the full N-neuron dimensional vector space. Here, we used 
the Grassmannian chordal distance92:

A B AA BBd( , ) =
1
2
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⊺ ⊺

where A and B are matrices whose columns are the orthonormal basis 
for their respective subspaces and ⋅ F is the Frobenius norm. By normal-
izing this distance by the Frobenius norm of subspace A, we scale the 
distance metric from 0 to 1, where 0 indicates a subspace identical to A 
(that is, completely overlapping) and increasing values indicate greater 
misalignment from A. Random sampling of subspaces under the null 
hypothesis was repeated using the same procedure outlined above.

Participant demographics
Across the participants, there was no statistically significant differ-
ence in word length based on sex (three-way analysis of variance, 
F(1,4257) = 1.78, P = 0.18) or underlying diagnosis (essential tremor ver-
sus Parkinson’s disease; F(1,4257) = 0.45, P = 0.50). Among subjects with 
Parkinson’s disease, there was a significant difference based on disease 
severity (both ON score and OFF score) with more advanced disease 
(higher scores) correlating with longer word lengths (F(1,3295) = 145.8, 
P = 7.1 × 10−33 for ON score and F(1,3295) = 1,006.0, P = 6.7 × 10−193 for OFF 



score, P < 0.001) and interword intervals (F(1,3291) = 14.9, P = 1.1 × 10−4 
for ON score and F(1,3291) = 31.8, P = 1.9 × 10−8 for OFF score). Model-
ling neuronal activities in relation to these interword intervals (bot-
tom versus top quartile), decoding performances were slightly higher 
for longer compared to shorter delays (0.76 ± 0.01 versus 0.68 ± 0.01, 
P < 0.001, two-sided Mann–Whitney U-test).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the primary data supporting the main findings of this study are avail-
able online at https://doi.org/10.6084/m9.figshare.24720501. Source 
data are provided with this paper.

Code availability
All codes necessary for reproducing the main findings of this study 
are available online at https://doi.org/10.6084/m9.figshare.24720501.
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Extended Data Fig. 1 | Single-unit isolations from the human prefrontal 
cortex using Neuropixels recordings. a. Individual recording sites on a 
standardized 3D brain model (FreeSurfer), on side (top), zoomed-in oblique 
(inset) and top (bottom) views. Recordings lay across the posterior middle 
frontal gyrus of the language-dominant prefrontal cortex and roughly ranged 
in distribution from alongside anterior area 55b to 8a. b. Recording coordinates 
for the five participants are given in MNI space. c. Left, representative example 

of raw, motion-corrected action potential traces recorded across 
neighbouring channels over time. Right, an example of overlayed spike 
waveform morphologies and their distribution across neighbouring channels 
recorded from a Neuropixels array. d. Isolation metrics for the recorded 
population (n = 272 units) together with an example of spikes from four 
concomitantly recorded units (labelled red, blue, cyan and yellow) in principal 
component space.



Extended Data Fig. 2 | Naturalistic speech production task performance 
and phonetic selectivity across neurons and participants. a. A priming- 
based speech production task that provided participants with pictorial 
representations of naturalistic events and that had to be verbally described in 
specific order. The task trial example is given here for illustrative purposes 
(created with BioRender.com). b. Mean word production times across 
participants and their standard deviation of the mean. The blue bars and dots 

represent performances for the five participants in which recordings were 
acquired (n = 964, 1252, 406, 836, 805 words, respectively). The grey bar and 
dots represent healthy control (n = 1534 words). c. Percentage of modulated 
neurons that responded selectively to specific planned phonemes across 
participants. All participants possessed neurons that responded to various 
phonetic features (one-sided χ2 = 10.7, 6.9, 7.4, 0.5 and 1.3, p = 0.22, 0.44, 0.49, 
0.97, 0.86, for participants 1–5, respectively).
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Extended Data Fig. 3 | Examples of single-neuronal activities and their 
temporal dynamics. a. Peri-event time histograms were constructed by 
aligning the action potentials of each neuron to word onset. Data are presented 
as mean (line) values ± standard error of the mean (shade). Examples of three 
representative neurons that selectively changed their activity to specific 
planned phonemes. Inset, spike waveform morphology and scale bar (0.5 ms). 

b. Peri-event time histogram and action potential raster for the same neurons 
above but now aligned to the onset of the articulated phonemes themselves. 
Data are presented as mean (line) values ± standard error of the mean (shade). 
c. Sankey diagram displaying the proportions of neurons (n = 56) that displayed 
a change in activity polarity (increases in orange and decreases in purple) from 
planning to production.



Extended Data Fig. 4 | Generalizability of explanatory power across 
phonetic groupings for consonants and vowels. a. Scatter plots of the  
model explanatory power (D2) for different phonetic groupings across the cell 
population (n = 272 units). Phonetic groupings were based on the planned  
(i) places of articulation of consonants and/or vowels (ii) manners of articulation 
of consonants and (iii) primary cardinal vowels (Extended Data Table 1).  
Model D2 explanatory power across all phonetic groupings were significantly 
correlated (from top left to bottom right, p = 1.6×10−146, p = 2.8×10−70, 
p = 6.1×10−54, p = 1.4×10−57, p = 2.3×10−43 and p = 5.9×10−43, two-sided tests  
of Spearman rank-order correlations). Spearman’s ρ are 0.96, 0.83, 0.77, 
respectively for left to right top panels and 0.78, 0.71, 0.71, respectively for left 
to right bottom panels (dashed regression lines). Among phoneme-selective 
neurons, the planned places of articulation provided the highest explanatory 
power (two-sided Wilcoxon signed-rank test of model D2 values, W = 716, 

p = 7.9×10−16) and the best model fits (two-sided Wilcoxon signed-rank test of 
AIC, W = 2255, p = 1.3×10−5) compared to manners of articulation. They also 
provided the highest explanatory power (two-sided Wilcoxon signed-rank  
test of model D2 values, W = 846, p = 9.7×10−15) and fits (two-sided Wilcoxon 
signed-rank test of AIC, W = 2088, p = 2.0×10−6) compared to vowels.  
b. Multidimensional scaling (MDS) representation of all neurons across phonetic 
groupings. Neurons with similar response characteristics are plotted closer 
together. The hue of each point reflects the degree of selectivity to specific 
phonetic features. Here, the colour scale for places of articulation is provided 
in red, manners of articulation in green and vowels in blue. The size of each 
point reflects the magnitude of the maximum explanatory power in relation  
to each cell’s phonetic selectivity (maximum D2 for places of articulation of 
consonants and/or vowels, manners of articulation of consonants and primary 
cardinal vowels).
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Extended Data Fig. 5 | Explanatory power for the acoustic–phonetic 
properties of phonemes and neuronal tuning to morphemes. a. Left, scatter 
plot of the D2 explanatory power of neurons for planned phonemes and their 
observed spectral frequencies during articulation (n = 272 units; Spearman’s 
ρ = 0.75, p = 9.3×10−50, two-sided test of Spearman rank-order correlation). 
Right, decoding performances for the spectral frequency of phonemes (n = 50 
random test/train splits; p = 7.1×10−18, two-sided Mann–Whitney U-test). Data 
are presented as mean values ± standard error of the mean. b. Venn diagrams of 
neurons that were modulated by phonemes during planning and those that 

were modulated by the spectral frequency (left) and amplitude (right) of the 
phonemes during articulation. c. Left, peri-event time histogram and raster for 
a representative neuron exhibiting selectivity to words that contained bound 
morphemes (for example, –ing, –ed) compared to words that did not. Data are 
presented as mean (line) values ± standard error of the mean (shade). Inset, 
spike waveform morphology and scale bar (0.5 ms). Right, decoding 
performance distribution for morphemes (n = 50 random test/train splits; 
p = 1.0×10−17, two-sided Mann–Whitney U-test). Data are presented as mean 
values ± standard deviation.



Extended Data Fig. 6 | Phonetic representations of words during speech 
perception and the comparison of speaking to listening. a. Left, Venn 
diagrams of neurons that selectively changed their activity to specific 
phonemes during word planning (−500:0 ms from word utterance onset) and 
perception (0:500 ms from word utterance onset). Right, average z-scored 
firing rate for selective neurons during word planning (black) and perception 
(grey) as a function of the Hamming distance. Here, the Hamming distance was 
based on the neurons’ preferred phonetic compositions during production 
and compared for the same neurons during perception. Data are presented as 
mean (line) values ± standard error of the mean (shade). b. Left, classifier 
decoding performances for selective neurons during word planning. The 
points provide the sampled distribution for the classifier’s ROC-AUC values 
(black) compared to random chance (grey; n = 50 random test/train splits; 
p = 7.1×10−18, two-sided Mann–Whitney U-test). Middle, decoding performance 

for selective neurons during perception (n = 50 random test/train splits; 
7.1×10−18, two-sided Mann–Whitney U-test). Right, word planning-perception 
model-switch decoding performances for selective neurons. Here, models 
were trained on neural data for specific phonemes during planning and then 
used to decode those same phonemes during perception (n = 50 random  
test/train splits; p > 0.05, two-sided Mann–Whitney U-test; Methods). The 
boundaries and midline of the boxplots represent the 25th and 75th percentiles 
and the median, respectively. c. Peak decoding performance for phonemes, 
syllables and morphemes as a function of time from perceived word onset. 
Peak decoding for morphemes was observed significantly later than for 
phonemes and syllables during perception (n = 50 random test/train splits; 
two-sided Kruskal–Wallis, H = 14.8, p = 0.00062). Data are presented here as 
median (dot) values ± bootstrapped standard error of the median.
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Extended Data Fig. 7 | Spatial distribution of representations based on 
cortical location and depth. a. Relationship between recording location 
along the rostral–caudal axis of the prefrontal cortex and the proportion of 
neurons that displayed selectivity to specific phonemes, syllables and 
morphemes. Neurons that displayed selectivity were more likely to be found 
posteriorly (one-sided χ2 test, p = 2.6×10−9, 3.0×10−11, 2.5×10−6, 3.9×10−10, for 

places of articulation, manners of articulation, syllables and morpheme, 
respectively). b. Relationship between recording depth along the cortical 
column and the proportion of neurons that display selectivity to specific 
phonemes, syllables and morphemes. Neurons that displayed selectivity were 
broadly distributed along the cortical column (one-sided χ2 test, p > 0.05). 
Here, S indicates superficial, M middle and D deep.



Extended Data Fig. 8 | Receiver operating characteristic curves across 
planned phonetic representations and decoding model-switching 
performances for word planning and production. a. ROC-AUC curves for 
neurons across different phonemes, grouped by placed of articulation, during 
planning (there were insufficient palatal consonants to allow for classification 
and are therefore not displayed here). b. Average (solid line) and shuffled 
(dotted line) data across all phonemes. Data are presented as mean (line) values 
± standard error of the mean (shade). c. Planning-production model-switch 

decoding performance sample distribution (n = 50 random test/train splits) for 
all selective neurons. Here, models were trained on neuronal data recorded 
during planning and then used to decode those same phoneme (left), syllable 
(middle), or morpheme (right) on neuronal data recorded during production. 
Slightly lower decoding performances were noted for syllables and morphemes 
when comparing word planning to production (p = 0.020 for syllable comparison 
and p = 0.032 for morpheme comparison, two-sided Mann–Whitney U-test). 
Data are presented as mean values ± standard deviation.
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Extended Data Fig. 9 | Example of phonetic representations in planning 
and production subspaces. Modelled depiction of the neuronal population 
trajectory (bootstrap resampled) across averaged trials with (green) and 
without (grey) mid-low phonemes, projected into a plane within the “planning” 
subspace (y-axis) and a plane within the “production” subspace (z-axis). 
Projection planes within planning and production subspaces were chosen to 
enable visualization of trajectory divergence. Zero indicates word onset on  
the x-axis. Separation between the population trajectory during trials with  
and without mid-low phonemes is apparent in the planning subspace (y-axis) 
independently of the projection subspace (z-axis) because these subspaces  
are orthogonal. The orange plane indicates a hypothetical decision boundary 
learned by a classifier to separate neuronal activities between mid-low and 
non-mid-low trials. Because the classifier decision boundary is not constrained 
to lie within a particular subspace, classifier performance may therefore 
generalize across planning and production epochs, despite the near- 
orthogonality of these respective subspaces.



Extended Data Table 1 | Phonetic groupings

To provide a compositional representation of each word for the main analyses, phonemes were grouped based on their places of articulation for consonants (for example, velar and bilabial) and 
relative height of the tongue for vowels (for example, high and mid-low). For comparison, phonemes were also grouped based on the manners of articulation (for example, plosive and fricative) 
as well as the combined position of the tongue and lips for vowels (for example, front-close or back-open). Finally, we used the ten most common syllables in the study’s vocabulary to study the 
words’ syllabic structures.
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