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Directive giant upconversion by supercritical 
bound states in the continuum

Chiara Schiattarella1, Silvia Romano1, Luigi Sirleto1, Vito Mocella1, Ivo Rendina2, 
Vittorino Lanzio3, Fabrizio Riminucci3, Adam Schwartzberg3, Stefano Cabrini3, Jiaye Chen4, 
Liangliang Liang4, Xiaogang Liu4,5,6 ✉ & Gianluigi Zito1 ✉

Photonic bound states in the continuum (BICs), embedded in the spectrum of free- 
space waves1,2 with diverging radiative quality factor, are topologically non-trivial 
dark modes in open-cavity resonators that have enabled important advances in 
photonics3,4. However, it is particularly challenging to achieve maximum near-field 
enhancement, as this requires matching radiative and non-radiative losses. Here  
we propose the concept of supercritical coupling, drawing inspiration from 
electromagnetically induced transparency in near-field coupled resonances close to 
the Friedrich–Wintgen condition2. Supercritical coupling occurs when the near-field 
coupling between dark and bright modes compensates for the negligible direct 
far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum 
enhancement imposed by non-radiative loss, even when the radiative quality factor is 
divergent. Our experimental design consists of a photonic-crystal nanoslab covered 
with upconversion nanoparticles. Near-field coupling is finely tuned at the 
nanostructure edge, in which a coherent upconversion luminescence enhanced by 
eight orders of magnitude is observed. The emission shows negligible divergence, 
narrow width at the microscale and controllable directivity through input focusing 
and polarization. This approach is relevant to various physical processes, with 
potential applications for light-source development, energy harvesting and 
photochemical catalysis.

Bound states in the continuum (BICs) have been investigated in 
photonic-crystal nanoslabs (PCNSs) and metasurfaces5,6, single-particle 
resonators7 and hybrid systems8, with applications in sensing9,10, las-
ing11,12 and nonlinear optics13,14. However, as with all other resonators, 
the achievable cavity enhancement is fundamentally limited by cavity 
losses and input coupling. The single-resonance intensity enhance-
ment between the local field Eloc and the input field Ei can be written as:
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In this equation, κi is the input coupling coefficient. Because it depends 
on the radiation channel, the coupling becomes κ γ= 2i r

, with γr =  
ω/(2Qr) radiative loss15, where ω is the angular frequency and Qr is the 
radiative quality factor (Methods section ‘TCMT: critical coupling for 
an isolated mode’). The intrinsic quality factor Q = (1/Qa + 1/Qr)

−1 com-
bines radiation channel loss (1/Qr) and non-radiative loss (1/Qa), which 
encompasses all dissipation channels (finite sizes, imperfections and 
material absorption), with Qa being the non-radiative quality factor. 
The normalized effective mode volume Veff measures the local field 
superposition with the material of interest. Although Q measures the 
storable energy of the resonator, Qr also defines the coupling between 

external drive and resonator, enabling optical energy pumping. When 
the radiative loss becomes negligible (diverging Qr), the storable energy 
becomes limited only by unavoidable non-radiative losses. However, 
when Qr → ∞ (ideal BICs and other dark states), no far-field light would 
couple with the resonator, resulting in G → 0. A trade-off maximizes 
the cavity enhancement in equation (1) at the critical coupling condi-
tion, in which radiative coupling balances non-radiative dissipation 
(Qr = Qa)15,16 (Methods section ‘TCMT: critical coupling for an isolated 
mode’). Coupling strategies for BICs at present are mainly based on 
perturbing the ideal geometry and constructing quasi-BIC resonators 
with broken symmetry8,13 and finite Qr. However, real structures exhibit 
greatly reduced Qr on the order of 102 (refs. 5,9), and quantifying  
balance with non-radiative losses is challenging.

In this work, we show that a Friedrich–Wintgen (FW)2,17–19 quasi-BIC 
can be achieved through supercritical coupling, which can be related 
to coupled-resonance-induced transparency20–22. This condition 
overcomes the negligible direct far-field coupling with the quasi-BIC 
and restores the maximum level of enhancement imposed by the 
non-radiative loss. This occurs even though the quasi-BIC has a diver-
gent and mismatched radiative quality factor. By reaching supercritical 
coupling at the edge point in which a tailored nanostructure meets 
the surrounding unpatterned slab (Fig. 1a), a giant enhancement of 
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upconversion photoluminescence is experimentally demonstrated, 
which exceeds single-dark-resonator coupling by orders of magnitude. 
Furthermore, experimental results reveal that upconversion photons 
propagate in plane, forming a microscale coherent beam with a spatial 
width of less than 100 µm and a divergence of less than 0.07° over a 
centimetre distance. This combined with supercritical coupling leads 
to an enhancement of upconversion by eight orders of magnitude.

Theoretical model
We designed a transparent holey PCNS covered with a conformal layer 
of upconversion  nanoparticles (NPs)23,24 (Fig.  1a). The system is 
described by the non-Hermitian Hamiltonian k kkH Ω jΓ^ = ^ ( ) + ^ ( )r , which 
models transverse electric-like (TE-like) and transverse magnetic-like 
(TM-like) modes coupled to a single independent radiation channel, 
thus originally non-orthogonal17,25. In the energy–momentum space, 
these modes evolve and eventually approach an FW-BIC at a specific 
wavevector k = kBIC if the FW condition that diagonalizes Ĥ

BICk  is satis-
fied by the parameters (Methods section ‘Open-resonator TCMT’). The 
initial modes 1 and 2 have radiative loss rates γr1 and γr2, respectively. 
The coupled final modes of wavelengths λ− and λ+ split apart because 
of strong coupling (Fig. 1b,c). One of these waves becomes a perfect 
dark mode (ideal FW-BIC) with zero linewidth (γ− = 0) and diverging 
lifetime (τR1 = 1/γ− = 2QR1/ω− = ∞), at a specific wavevector kBIC near the 
avoided crossing. The bright mode acquires all radiative losses with 
γ+ = γr1 + γr2, which provides a final mode with low QR2. At the asymptotic 

FW condition, Ω̂( )BICk  and Γ̂ ( )r BICk  are simultaneously diagonalized, 
resulting in orthogonal modes. This is allowed by energy-conservation 
balance of input drive and system modes because the dark mode totally 
decouples from the radiation channel. However, for wavevectors close 
to but not at the FW-BIC, the perturbed FW quasi-BIC (with γ− ≠ 0) takes 
on non-zero coupling with the radiation channel ( γ2 − ), thus the per-
turbed Hamiltonian k kĤ

BIC≃  must be represented with non-zero 
off-diagonal terms κ12 in Ω̂( )BICk k≃  to obey energy conservation21,26. 
When two modes are coupled with a single radiation channel, 
coupled-resonance-induced transparency can also take place. This is 
the analogue of electromagnetically induced transparency (EIT) in 
photonic/plasmonic systems and can provide exceptionally slow light 
and enhanced local optical field27. For suitable PCNS geometries, EIT 
and ideal FW-BIC may occur with small phase mismatch (kEIT = kBIC + δk). 
Essentially, the quasi-BIC may evolve into the transparency frequency 
of the EIT process (Fig. 1d). Temporal coupled-mode theory (TCMT) 
and final mode amplitudes for the dark (FW quasi-BIC) and bright part-
ners are explicitly provided as equations (36) and (37) in Methods sec-
tion ‘Supercritical coupling’.

To clarify the consequences of resonance coupling, the intensity 
enhancement G of the final dark and bright modes, normalized to the 
maximum enhancement Gmax = Qa/Veff, is plotted in Fig. 1e for highly 
unmatched quality factors, representing an unsatisfactory scenario 
for single resonances. Having defined the near-field coupling quality 
factor as Qκ = ω/(2κ12) = τκω/2, an optimum condition that we term 
‘supercritical coupling’ can be reached when Q Q Q=κ R2 a

, which avoids 
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Fig. 1 | Principle of supercritical coupling and directive upconversion 
emission. a, Layout of the PCNS unit cell geometry and collimated upconversion 
generated through supercritical coupling tuned at edge pumping. b, Schematic 
depicting internally coupled resonances and their external coupling to the far 
field. c, Avoided crossing between waves λ− and λ+ (dashed lines, peaks; solid 
lines, linewidths) owing to intercoupling κ12: λ− becomes an FW quasi-BIC and 
can evolve with momentum to the dark mode of the EIT window at the crossing 
point. The laser wavelength λin is set to λ−. d, The energy–momentum dispersion 
of the system is tailored to achieve FW quasi-BIC and EIT with minimal phase 

mismatch δk at λin. e, Normalized intensity enhancement G/Gmax of the bright 
and dark modes having representative highly mismatched parameters, 
QR2 = 103 ≪ Qa = 106 ≪ QR1 = 1010. The tuning of Qκ enables the supercritical 
coupling condition: the far-field energy coupled with the bright mode (denoted 
by the solid cyan line) is diverted to the near-field drive exciting the high-QR1 FW 
quasi-BIC (solid red line) up to the maximum achievable level, Gmax. The threshold 
of the single dark mode (dashed red line) is surpassed by several orders of 
magnitude. When Qκ → ∞ (κ12 → 0), the coupled dark-mode intensity decreases to 
the uncoupled resonance threshold.
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the bottleneck of the narrow input radiation channel (QR1 = 1010) by 
diverting the input energy of the low-QR2 mode to the dark mode. The 
maximum level of local field enhancement, always in the highest 
Q-factor mode, can be reached even under extremely unfavourable 
conditions for single isolated modes. Extended Data Fig. 1 shows the 
off-resonance behaviour and the parameters for which the coupled 
dark mode has an advantage. At the EIT transparency frequency (dark 
mode), the field is enhanced because of slow light, possibly reaching 
a maximal level as explained by supercritical coupling of the dark mode 
(Methods section ‘Supercritical coupling’).

The TCMT model is validated by rigorous-coupled-wave analysis 
(RCWA) (Methods section ‘RCWA validation’), including energy–
momentum dispersion, full vector modes and their symmetry inver-
sion, FW-BIC formation, EIT condition at the nearby avoided crossing 
with incidence-angle separation of approximately 0.5° (Extended 
Data Figs. 2–5, respectively) and tuning of κ12 towards supercritical 
coupling (Extended Data Fig. 5). Further details are in Supplementary 
Figs. 1–4.

Experimental demonstration
Upconversion nanocrystals convert infrared to visible light by cas-
cade photon absorption through long-lived intermediate energy 
states28–30 and have found applications in display technology and 
lasers31–33, energy conversion34, imaging probes35,36 and metasurface 
resonators37,38. Our PCNSs consist of square holey patterns of 1 mm2 
in a Si3N4 slab on SiO2 substrate, coated for an area of 1.25 mm2 with  
conformal claddings of either NaErF4@NaYF4 or NaGdF4:Nd/
Yb(40/5%)@NaGdF4:Yb/Tm(49/1%)@NaGdF4:Eu(15%) nanocrystals 
(Extended Data Fig. 6). The NPs fill the holes and homogeneously cover 
the slab (Supplementary Figs. 5 and 6).

Figure  2a shows the measured ΓX dispersion-band diagram  
(Methods and Supplementary Fig. 7). The FW quasi-BIC has intrinsic 
quality factor (Q) of 5,240 and is spectrally overlapped with the NP 
absorption band. Hybridization between the TM-like and TE-like bands 
is observed in Supplementary Figs. 8 and 9. The experimental set-up 
for upconversion measurements is described in Supplementary Fig. 10. 
Figure 2b compares the upconversion emission generated inside the 
PCNS with the signal produced by the same number of NPs outside 
the PCNS (Methods). The forward emission spectra excited by focus-
ing the pump inside and outside the PCNS are shown in Fig. 2c. The 
intensity scaling is shown in Fig. 2d. Because n-photon scaling only 
occurs for small absorption cross-section (proportional to the local 
field), the nearly unitary exponent s points out single-photon promo-
tion to excited states39,40 because of strongly enhanced local field. To 
estimate the upconversion enhancement factor, which was EFexp ≈ 300, 
the intensity was compared with a bulk sample of NPs (Methods and 
Supplementary Fig. 11). However, most of the visible emission propa-
gated in the transverse plane rather than the forward direction.

The emission greatly increases when the input beam crosses the 
PCNS edge. Figure 3a shows a continuous transformation, measured 
with 6-µm spot resolution (Methods), causing inner bands to merge 
into boundary bands with progressively closing gap. The increase in 
lateral emission correlates with decreasing gap (κ12), indicating increas-
ing values of Qκ. The beam becomes more visible as it crosses a silicone 
layer (Fig. 3b and Supplementary Video 1). The bands become nearly 
overlapped at −2.9°, at the FW quasi-BIC wavelength (−3.4°, dashed 
line) with a momentum mismatch of 17% (Δθ ≃ 0.5°). The gap decreases 
from 3.5 to <0.7 nm, consistent with the calculated coupling based on 
RCWA modes, reaching κ12 = 0.5(Δλ/λ)ωin ≃ 4.3 × 10−4ωin, close to the 
estimated supercritical coupling value κ ω Q ω= 0.5 / 4.7 × 10κ12 in

−4
in≃ , 

as described below.
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Fig. 2 | Experimental characterization of forward upconversion radiation. 
a, Experimental TE band diagram of the PCNS resonator, highlighting the 
high-Q FW quasi-BIC. The pulsed Ti:Sa oscillator (λin = 810 nm, linewidth) is tuned 
to the FW quasi-BIC and focused to a 6-µm spot on the PCNS for upconversion 
pumping. H, high; L, low. b, Experimental upconversion emission, with the left 
image focusing inside (IN) the PCNS area and the right image focusing outside 

(OUT). The red circle indicates the pump spot and the inset provides a magnified 
view of the PCNS region. c, Corresponding upconversion spectrum along the 
forward direction inside (green and red curves) and outside the PCNS area 
(grey curve). d, Upconversion intensity excited inside the PCNS versus input 
power (error bars: intensity standard deviation). a.u., arbitrary units.
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The relative intensity, statistically sampled, for all notable upconver-
sion wavelengths is reported in Supplementary Fig. 12. At low incident 
power, the scaling s was found to be about 1.0 (Fig. 3c). When corrected 
and normalized to the isotropic bulk emission, the estimated enhance-
ment was EFexp = 3.6 × 104 (Methods). This value can be compared with 
the enhancement factor EFth expected for the single-resonance 

equation (1) and with supercritical coupling. The experimental intrinsic 
Q1 in the FW quasi-BIC dispersion curve, and calculated QR1 compensat-
ing for the flat Qa, are shown in Fig. 3d. Assuming a power scaling s  
in the range (0.8, 1.2), the more favourable enhancement factor for  
the single-resonance model can be determined by integrating Q1 over 
the excitation angles, giving κ GEF = (1.1 × 10 ) ∈ (0.3 × 10 , 4.5 × 10 )s s
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Fig. 3 | Experimental characterization of in-plane upconversion radiation. 
a, Top: the experimental upconversion emission excited by the pulsed laser 
focused at a 6-µm spot, λin = 810 nm. The edge emission reaches its maximum 
when crossing the PCNS boundary. A filter is placed on the camera to observe 
only the green emission from core–shell NPs. Bottom: the corresponding TE 
band diagrams, evolving with input position and measured with white laser 
probe equally focused to a 6-µm spot. This demonstrates the correlation 
between the enhanced edge emission and the band-structure modification, 
with modes 1 and 2 overlapping as κ12 decreases (Supplementary Fig. 2).  

b, Photograph of the visible edge emission taken without a filter, along with  
the corresponding photoluminescence spectrum. c, Corresponding intensity 
scaling: saturation is readily achieved at relatively low input power (error bar: 
intensity standard deviation). d, Total Q factors of the two modes, Q1 and Q2, 
extracted from the transmittance in a. QR1 is numerically calculated and predicts 
the experimental Q1, assuming a constant Qa. Q2 is mainly influenced by radiative 
loss, resulting in Q2 ≃ QR2 (error bars: linewidth fit standard deviation, within 
experimental point size).
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(Methods). The extraction coefficient κo is approximately 1 at upcon-
version wavelengths41. Even in this case, the single-resonance enhance-
ment underestimates the experimental EFexp = 3.6 × 104 by at least one 
order of magnitude. By contrast, with the coupled-resonance model, 
the dark mode closely approaches the maximum field for a certain 
finite range of κ12 and wavevectors (Methods section ‘Supercritical 
coupling’). With nearly optimal Q Q Q=κ R2 a

, in which QR2 ≃ Q2 = 213 
and Qa ≃ 5,240, the upconversion enhancement factor can reach the 
value κ G( ) = (6.0 × 10 ) ∈ (0.1 × 10 , 3.4 × 10 )s s

o max
3 4 4 , which is in good 

agreement with the experimental value (EFexp = 3.6 × 104).

 
Self-collimation and radiance enhancement
The directive emission, normal to the PCNS edge, can be translated 
with continuity by correspondingly translating the input beam. 
This emission propagates for several millimetres while preserving 
a collimated width <100 µm. Diffraction-free guiding with BICs has 
been observed in the microwave range42 and associated with the 
phenomenon of self-collimation inside the structured waveguide 
owing to flat-band dispersion in the momentum space43,44. In our 
experiments, however, not only does the propagation start from the 
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intensity map in the momentum space, revealing the presence of non-trivial 
vanishing strips. b, Near-field intensity map showing self-collimation along the 
symmetry axes. c, Simulated (top) and experimental (bottom) collimated 
emission in the visible range at 544 nm, 580 nm and 650 nm over the centimetre 
scale from a sample of side length 100 µm. On a glass slide, there is an array of 
24 photonic-crystal slabs with variable side lengths of 1 mm, 300 µm and 100 µm. 
The input light is focused to a spot of 10 µm inside a patterned area of 100 µm. 

Some cross-talk beams are generated by the propagation of the main beams 
from the illuminated area when they cross surrounding patterned areas.  
d, Snapshots of controlled light propagation near the edge (left), demonstrating 
that both horizontal and vertical side beams can be generated at the corner of 
the photonic-crystal slab, indicated in the dashed box (side length 1 mm): the 
intensity of the output is determined by the orientation of the input polarization, 
which is varied with the orientation of the half-wave plate axis (right).
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PCNS edge and continue in the slab but the negligible divergence is 
observed in the upconversion, spectrally far from the FW quasi-BIC. 
Therefore, finite-difference-time-domain (FDTD) simulations were 
performed to investigate this complex scenario computing the isof-
requency map using the Z transform of the local field (Methods). This 
approach was preliminarily validated testing the case of conventional 
flat-band self-collimation44 (Supplementary Fig. 13). By contrast, the 
isofrequency map of our system shows non-trivial vanishing strips 
along the symmetry axes of the geometry, intersecting squared flat 
bands (Fig. 4a). The associated real-space intensity map also shows 
self-collimation characteristics. However, in this case, it is the low 
coupling with the far field along the strips that leads to negligible 
divergence (Fig. 4b). This was also confirmed experimentally in a PCNS 
geometry scaled to have visible FW quasi-BIC at 532 nm, confirming 
self-collimation over a centimetre distance (Extended Data Fig. 7).

Second, an array of dipole point sources covering an area consist-
ent with the experimental pump spot was placed at the boundary 
between the finite PCNS and the homogeneous waveguide slab. The 
point sources collectively radiate in the slab with coherent phased-array 
emission, resulting in minimal divergence, as low as 0.02°, across a large 
part of the visible spectrum (Extended Data Fig. 8). This was experi-
mentally verified and compared with simulations at representative 
wavelengths in Fig. 4c. Microscopy analysis of the beam revealed a 
high degree of spatial coherence, as evidenced by the visibility of the 
interference pattern (Extended Data Fig. 9a).

Experimental characterization in Extended Data Fig. 9b,c yielded a 
solid-angle divergence of Ω1 ≃ 1.2 × 10−3 srad. The radiance enhance-
ment REF given by enhanced directive emission, normalized to the 
isotropic bulk emission (Ωsphere = 4π), yields R = × EF 3.8 × 10

Ω

ΩEF exp
8sphere

1
≃  

(Methods), an extraordinary value resulting from the combination of 
supercritical field enhancement and directivity enhancement.

Moreover, by positioning the focused input beam and rotating the 
input polarization at the corner of the PCNS, it is possible to switch 
between vertically and horizontally emitted beams (Fig. 4d and Sup-
plementary Video 2). The switch is determined by aligning the input 
polarization perpendicular to the x wave (or y wave) depicted in Fig. 4b, 
thereby selectively exciting only one of them (beam 1 or 2) or both 
when at 45° of inclination.

To investigate emission properties at a microscale level, the structure 
was reduced in size by factors of 3 and 10. This scaling down resulted 
in a manageable logarithmic slow variation of the output signal (Sup-
plementary Fig. 14).

Discussion
The mechanism of near-field coupling between FW quasi-BIC and 
bright mode can divert the input source from the bright to the 
dark mode, breaking the limits of single-dark-mode coupling with 
orders-of-magnitude improvement, a condition referred to as super-
critical coupling. This phenomenon is also related to the EIT process, 
which can arise from similar coupling and aligns with it. However, the 
occurrence of a transparency window is not a requirement, although 
its proximity in momentum space can widen the wavevector span over 
which the field is enhanced.

The experimental proof of FW quasi-BIC supercritical coupling 
is provided using chemically and optically stable upconversion 
NPs, which enable several microscale addressable sources and 
lasers. The edge enhancement facilitates directive propagation of 
self-collimated photons with remarkable control. In contrast to con-
ventional self-collimation, herein beam collimation is not only in the 
nanostructured slab, because the BIC acts as a filter in the reciprocal 
space, favouring high directivity and spatial coherence of the outcou-
pled wave despite its microscale width. Moreover, high collimation 
extends beyond just the pumping mode, covering the broad spec-
trum of upconversion because of coherent phased-array emission. The 

resulting photoluminescence is enhanced by more than eight orders 
of magnitude, representing one of the highest values achieved with a 
dielectric resonator39.

The topological confinement at the BIC expands the model of 
disorder-immune devices based on light topological phases used 
for lasing action45,46. In the present state, the upconversion emission 
is broadband and not peaked only at single lasing wavelengths. Thus, 
by combining several types of NP, the output spectrum can cover a 
continuum range in the visible with spatial coherent emission. Incor-
porating enhancement at pump and emission frequencies, this sys-
tem can offer new capabilities for on-chip microscale light control, 
providing important possibilities in many nanophotonic processes 
based on high-Q resonators, such as for light-source technology, 
energy harvesting, photochemical catalysis, sensing and quantum 
information.
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Article
Methods

Theory
In the section ‘TCMT: critical coupling for an isolated mode’, the 
local field enhancement at critical coupling for an isolated resonant 
mode is demonstrated. In the section ‘Open-resonator TCMT’, the 
non-Hermitian Hamiltonian formalism of TCMT for FW-BIC forma-
tion is used. It will be shown that, as the asymptotic condition of 
BIC cannot be ideally reached, the FW quasi-BIC originates from 
non-orthogonal modes. This understanding will then be used in the 
section ‘Supercritical coupling’ to evaluate the coupling between 
the dark FW quasi-BIC and the bright leaky partner, demonstrat-
ing the analogy to EIT and the equation for supercritical local field 
enhancement. In the section ‘RCWA validation’, we validate the TCMT 
results using RCWA.

TCMT: critical coupling for an isolated mode. The basic equation 
describing the evolution of the mode amplitude A1 (oscillator 1) in 
a resonating system with a characteristic angular frequency ω1 = 
2πc/λ1, is
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in which energy can be lost through absorption (or other additive 
non-radiative channels, such as scattering by dielectric fluctuations 
or in-plane leakage) with decay rate γa = 1/τa, as well as through direct 
far-field coupling with external radiation in the outer space with a decay 
rate γr = 1/τr. The amplitude is normalized such that |A1|2 represents 
the energy of the mode15. When adding the driving field of power |s+|2 
and monochromatic time dependence exp( jωint), associated with the 
external excitation and coupled with the resonator with coefficient κi, 
the equation becomes

A
t

jω A
τ τ

A κ s
d
d

= −
1

+
1

+ . (3)1
1 1

a r
1 i +











The solution is
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It is possible to demonstrate that the input power coupling must be 
related to the radiation decay as κ τ= 2/i r by invoking energy conser-
vation and time-reversal symmetry of Maxwell’s equations. On reso-
nance, that is, when the input frequency 2πc/λin = ωin is set at the peak 
ω1, it follows that
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τ τ
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Now let us consider that the quality factor Q of a resonator is defined 
as the ratio between the stored (W) and the lost energy fractions. 
Indeed, for the absorption-related power loss Pabs (or, more gener-
ally, all non-radiative losses) and the radiation loss Prad, the following 
holds true
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The driving field has amplitude Ei = s+/Ac, in which Ac is a normalized 
cross-section, which we define as Ac = 1, for simplicity. The local field 
of the resonant mode has amplitude given by E A V= /loc 1 eff , with Veff 
the normalized effective mode volume. Thus, from equation (5), it 
follows that the local field enhancement G is given by
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and depends on the ratio between the total quality factor Q = 1/
(1/Qa + 1/Qr) = QaQr/(Qa + Qr) and the radiation quality factor Qr. Clearly, 
if Qr ≫ Qa as for the ideal BIC with Qr → ∞, then asymptotically 
G Q Q≈ / → 0a

2
r . The maximum enhancement Gcr is reached when Qr = Qa, 

at the critical coupling condition, for which

G
Q

Q V

Q
V

≈ = . (8)cr
a
4

a
3

eff

a

eff

The above result has been applied to BICs in several papers13 and 
its origin dates to the general theory of optical and electrical resona-
tors discussed in textbooks15. Supposing a nearly ideal resonator with 
Qr = Qa, the maximum field enhancement would reach the physical 
capacity limit imposed by the unavoidable system losses represented 
by Qa. In dielectric resonators sustaining quasi-BICs, the critical cou-
pling point can be approached by breaking the in-plane symmetry of 
the system to tune the radiation quality factor that scales quadratically 
with the asymmetry parameter5, which requires precise nanostructure 
engineering and knowledge of the system losses.

Open-resonator TCMT. The theory of FW-BIC formation owing to 
coupling of two leaky modes has been reviewed in ref. 47. The demon-
stration based on the non-Hermitian Hamiltonian of temporal coupled 
modes can be found in recent papers19. The formation of FW-BICs has 
gained attention particularly in the context of photonic-crystal slabs 
with vertical asymmetry, in which TM-like and TE-like modes couple 
and interfere48,49. However, it is worth noting that the existence of 
non-radiating modes arising from the interference of vector TE-like 
and TM-like eigenmodes was first discussed in ref. 17. It was found that, 
in 2D holey textured slabs, TE and TM modes can couple at virtually 
any point in the first Brillouin zone, leading to anticrossing of their 
dispersion and formation of a mode with zero imaginary part of its 
eigenfrequency, known as an FW-BIC2. In this study, a photonic-crystal 
slab placed over a dielectric waveguide substrate with air cladding was 
considered, breaking vertical symmetry and favouring the coupling 
of vector TE-like and TM-like modes. The same system was used in our 
previous work10, in which we experimentally observed and applied the 
FW quasi-BIC, and it is also used in the present study.

To develop what we term the ‘supercritical enhancement equation’, 
we start from the non-Hermitian Hamiltonian of coupled waves25,48. 
By generalizing equation (3), the dynamic equations for resonance 
amplitudes can be written in the following form

A
A s
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in which both Ω̂ and Γ̂r matrices are Hermitian matrices representing 
the resonance frequencies and the radiation decay, respectively. On 
the other hand, Γ̂a represents non-radiative losses and is initially set to 
zero Γ̂ = 0a  to isolate the radiative rate associated with an ideal BIC. The 
resonant mode is excited by the incoming far-field waves s+ coupled 
to the resonator with coefficients denoted by K̂i. The outgoing waves 
s− depend on the direct scattering channel Ĉ  and the resonant modes 
A by means of the decay port coefficients in D̂. Energy conserva-
tion and time-reversal symmetry imply that K D^ = ^

i  and that the coupling 
with the port is linked with radiation loss, implying that D D Γ^ ^ = 2 ^†

r .  

These relationships determine the elements of K̂ i
T
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Γ D D Drank( ^ ) = rank( ^ ^) = rank( ^)r

†
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D C D^ = − ^ ^ . Let us consider a sys tem 

denoted by A = (A1, A2)T, in which A1 and A2 represent the amplitudes of 



two modes with frequencies ω1 and ω2, respectively. These reso 
nances have radiative lifetimes τr1 = 1/γr1 and τr2 = 1/γr2. Moreover, both 
resonances may experience absorption loss, characterized by 1/τa = γa. 
It is important to note that, for the specific case of the avoided crossing 
point, the absorption terms for both modes are the same, as we dem-
onstrate below. Then, in general, γ1,2 = γr1,r2 + γa, but for now, let’s turn 
γa = 0.

Recall that the modes of the resonator are defined as the eigenmodes 
of the non-Hermitian Hamiltonian operator H jΩ Γ^ = ^ − r̂  (neglecting 
non-radiative loss). Only Hermitian matrices allow for a diagonal rep-
resentation with orthogonal eigenvectors, whereas non-Hermitian 
matrices may have linearly dependent or linearly independent but 
non-orthogonal eigenvectors, or they may have orthogonal eigenvec-
tors depending on specific properties such as parity–time symmetry. 
The Hamiltonian and its eigenvalues are functions of the in-plane 
momentum k = ko(sinθcosϕ, sinθsinϕ). A previous study demonstrated 
that the eigenvectors of the non-Hermitian Hamiltonian are always 
non-orthogonal when the total number of independent decay ports is 
less than the number of optical modes and both modes are coupled to 
the decay ports25. The crucial concept here is that of independent decay 
ports, which are related to the sharing of the vertical symmetry of the 
modes. In the case of evolving TE-like and TM-like modes, the inversion 
of their character at the avoided crossing can occur at any point in 
energy–momentum space. We know that the eigenmodes of a matrix 
form an orthogonal basis if and only if H H HH^ ^ = ^ ^† †

. Because both Ω̂  
and Γ̂r are Hermitian, this is equivalent to the relation Ω Γ Γ Ω^ ^ = ^ ^

r r , which 
implies that Ω̂ and Γ̂r can be simultaneously diagonalized. When con-
sidering two eigenmodes and a single independent radiation channel, 
in which Γrank( ^ ) = 1r , one of the orthogonal eigenmodes of the matrix 
will have a pure imaginary eigenvalue. This indicates that one of the 
two modes has an infinite lifetime (BIC) and does not couple to the 
decay port. As a non-zero coupling with the single decay port exists, 
the two eigenvectors in the resonator system will always be 
non-orthogonal25. Therefore, the modes are generally non-orthogonal 
if a single radiation channel is involved. However, they can satisfy the 
orthogonality condition at a specific point in momentum space. This 
point is referred to as an ideal FW-BIC point kBIC when the Hamiltonian 
(H jΩ Γ^ = ^ − r̂ , defined below) has a purely imaginary eigenvalue (or, 
equivalently, Ω jΓ^ + r̂ has a purely real eigenvalue). This allows for the 
simultaneous diagonalization of the Hermitian matrices Ω̂ and Γ̂r.
FW condition. The Hamiltonian of a two-waves-two-ports system is 
represented as:
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in which κ measures the near-field coupling and X represents the cou-
pling mediated by the continuum between the two closed, uncoupled 
channel resonances of frequencies ω1 and ω2. Following the calculation 
in refs. 19,25, X can be expressed as

X γ γ= e , (12)jψ
r1 r2

in which the phase angle ψ describes the relative phase of the coupling 
with the open channel and in general with the two ports (up and down). 
The eigenvalues of the two diagonal frequency and decay matrices of 
the Hamiltonian at the BIC point, defined by
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uncoupled mode frequency and decay rates by
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This relation allows us to determine the asymptotic FW condition as 
a function of the uncoupled mode frequency, the decay rate and the 
coupling rate among closed channel modes κ

κ γ γ γ γ ω ω( − ) = e ( − ), (16)jψ
r1 r2 r1 r2 1 2

Zψ m m= π, ∈ (17)

Substituting (γr1 − γr2) from equation (16) into equation (15), it is pos-
sible to find that the third term with the square root is exactly equal to 
the second term in equation (14) and cancels, or adds with it, depending 
on the sign ±. The dark mode acquires ideally zero radiation loss (say, 
ω−
∼  without loss of generality). At this condition, the eigenvalues are

∼∼ω jγ
ω ω κ γ γ

γ γ
j γ γ+ =

+
2
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in which the wave of amplitude 
∼
A− has no radiative loss and becomes 

the ideal FW-BIC (ideally dark mode), whereas all radiative loss is trans-
ferred to the bright mode 

∼
A+. At this point in momentum space (k = kBIC), 

Ω̂ and Γ̂r are both diagonal, and because Γrank( ^ ) = 1r  (only a single inde-
pendent decay port exists), the resonant states interfere to annihilate 
the coupling with the radiation channel of the BIC mode, which guar-
antees energy conservation, as any coupling among the final orthogo-
nal modes asymptotically vanishes47.

However, arbitrarily close to the BIC point in the momentum, both 
modes experience non-zero radiative loss. The modes are coupled with 
a single independent radiation channel and, thus, are non-orthogonal 
because their coupling guarantees energy conservation. This behaviour 
holds true in any real system, particularly with momentum close to 
ideal FW-BICs, referred to as FW quasi-BICs. It is worth mentioning 
that, in the presence of non-negligible absorption loss, the modes are 
always non-orthogonal. If we perturb the ideal FW-BIC condition by 
moving in momentum space, in the representation in which Ω̂ is diag-
onal, in general, Γ̂r  must have non-zero off-diagonal terms to ensure 
energy conservation, or similarly, in the representation in which Γ̂r is 
diagonal, Ω̂ must have non-zero off-diagonal terms, κ12,21, which repre-
sent the near-field coupling. This is a key concept that implies that 

≃k k k∀ : BIC, the new perturbed Hamiltonian k kĤ ( )r
BIC≃  for the final 

coupled modes, the FW quasi-BIC ≃A ( )− BICk k  and bright ≃k kA ( )+ BIC  
modes, can be represented with non-zero off-diagonal terms in 

k kΩ̂( )BIC≃ , when Γ̂r is diagonal because of energy conservation, as 
described below (Extended Data Fig. 1a).

The same non-Hermitian Hamiltonian can also describe the effect 
of coupled-resonance-induced transparency resulting from the 
interference of non-orthogonal eigenvectors, that is, at a wavevec-
tor different from the ideal FW-BIC condition. Hsu et al. demon-
strated that, when several resonances (two or more) are connected 
to a single independent decay port, a transparency window, known 
as coupled-resonance-induced transparency, always occurs regard-
less of the radiation loss values of the resonances because of the 
off-diagonal terms21. Therefore, this coupling, also necessary for any 
FW quasi-BIC point, can give rise to coupled-resonance-induced trans-
parency in special cases. The condition for EIT can, in principle, also 
occur with momentum near the ideal FW-BIC point, for example, when 
kEIT = kBIC + δk (Extended Data Fig. 1a). At the EIT point, the slow light 
condition increases the photon–matter interaction time, enhancing 
emission properties.
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Supercritical coupling. Coupled-resonance-induced transparency 
in far-field representation. We first describe the occurrence of the 
transparency condition in the far-field representation and its link with 
the near-field representation. We then consider the perturbation of 
the Hamiltonian close to the FW-BIC to explicitly demonstrate that the 
FW quasi-BIC, despite being a quasi-dark mode, can reach the maximum 
physical limit of the local field enhancement under the supercritical 
coupling condition, thanks to the near-field coupling with its bright 
partner. The calculations presented here follow refs. 21,25 for clarity 
of description, but with harmonic time dependence convention 
exp( jωint). Let us first restate the TCMT problem by writing the dynam-
ical equations for the two modes that are non-orthogonal in the rep-
resentation in which kΩ̂( ) is diagonal, with a single radiation channel. 
Because the representation is changed with respect to equation (11), 
we consider different symbols for elements in the matrices and we 
adopt this representation only because the condition for EIT emergence 
is rather simple to show:
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In equation (20), the off-diagonal terms γ12 in the radiative decay 
matrix must be non-zero for energy conservation if both modes decay 
in the channel, meaning that the decay matrix and the frequency matrix 
cannot have diagonal forms simultaneously21,25. In equation (21), s− is 
the transmitted wave and we have, owing to the presence of the 
substrate-breaking vertical symmetry, that the direct scattering matrix 
elements are c11 = −c22 = (1 − n)/(1 + n), with n index of the substrate and 
c c n n= = 2 /(1 + )12 21 . Equation (21) simplifies when the system is mir-
ror symmetric because n = 1 (ref. 21). Invoking again energy conserva-
tion and time-reversal symmetry and using the relations between  
Γ̂r, Ĉ and D̂:

d j γ n= 2 /( + 1) , (22)1,2 r1,r2

γ γ γ= . (23)12 r1 r2

Let us keep using a mirror-symmetric system to determine the condi-
tion of induced transparency. The experimental case is then calculated 
with RCWA, showing that the condition for induced transparency also 
holds for vertical asymmetry. The complex transmission coefficient 
at regime is25

t
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in which |c11 + c12| = |c22 − c12| and we have already established that  
absorption is the same for both modes and given by γa. The top  
(bottom) signs are used when both modes are even (odd) with respect 
to vertical symmetry. In the limit γ ω ω γ γ( − ) /max( , )a 1 2

2
r1 r2≪ , the  

absorptive decay rate is sufficiently small that the transmission  
coefficient approaches 1 (EIT condition) when the numerator of the 
second term becomes zero at the transparency frequency ωt, given  
by

≐ω
ω γ ω γ

γ γ
ω=

+

+
. (25)in
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t

This condition is always fulfilled when ω ω ω< <1 in 2  provided that 
the resonances are sufficiently close, regardless of their radiative damp-
ing. In a real system for γa ≠ 0, the approximation to this condition is a 

consequence of the optical theorem, for which t cannot reach  
ideally 1. Nonetheless, the fast dispersion induced at the transparency 
frequency leads to an enhancement of the local optical field50–52. 
Indeed, when the EIT is approached, light is substantially slowed down, 
which favours light–matter interactions and enhances the 
optical-emission process. With this simple demonstration, we have 
proved that FW-BIC and EIT can be close in principle in the momentum 
space. Indeed, the induced transparency arises from the coupling of 
two optical modes to the same radiation channel, which is also the 
same framework near FW-BIC.
Near-field representation. Although the diagonal frequency matrix 
representation is useful for finding the transparency condition, the 
next one will provide more insight into the mode coupling. Let us now 
rewrite the dynamic equations (20) in the representation in which the 
radiative decay is diagonal. We will indicate the final eigenvector waves 
at k = kEIT with amplitudes A′+ and A′− (not to be confused with the  
amplitudes A , A+ −

∼ ∼
 at the FW-BIC wavevector k = kBIC in equation (13). 

As mentioned earlier, Γ Drank( ^ ) = rank( ^) = 1r . Thus, in its diagonal rep-
resentation, Γ̂r has only one non-trivial element because the determi-
nant must be zero. It is straightforward to demonstrate that, in this 
equivalent representation (with c21 = 1),
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in which the connection with the previous representation of the diago-
nal frequency matrix is given by:
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The above relations are useful because they directly state that the 
transparency frequency ωt = ω′−, that is, it corresponds to the final dark 
mode. This link is important: at the transparency frequency, the fast 
dispersion slows down the light and enhances the local field, which 
corresponds to the dark mode. Although in the previous representation 
we were dealing with non-orthogonal modes in which their coupling 
was expressed in the far field, in this second representation, we can see 
that a non-radiative dark mode with γ′− = 0 is coupled by means of a 
non-zero near-field constant κ′12 to a bright leaky wave with a decay 
rate γ γ γ′ = ++ r1 r2 . These identities must not be confused with equa-
tions (18) and (19) that express the relations between the diagonal dark 
and bright modes at the FW-BIC point k = kBIC with the original uncou-
pled modes. Instead, the above equations refer to two different repre-
sentations of the same modes at fixed and same wavevector 
k = kEIT ≠ kBIC. Here, when the drive field is turned off, the dark-mode 
amplitude decays to zero. In the linear regime, exchange energy occurs 



between the modes. We see below that, while the drive field is on, energy 
flows from the bright mode to the dark mode. As the drive field is turned 
off, energy flows from the dark mode to the bright mode. Consequently, 
the dark mode undergoes decay in the far field owing to its nearly zero 
direct coupling with the radiation channel and its non-zero near-field 
coupling with the bright mode53. In this alternative representation, it 
is the near-field coupling between a dark mode and the bright mode 
that gives rise to the transparency condition. This formulation aligns 
with the general framework used in the subradiant–superradiant 
model, which illustrates the analogue of EIT in photonic and plasmonic 
systems50–52.
Maximum enhancement at the FW quasi-BIC. The FW-BIC and 
classical analogue of EIT formalisms are derived from the same 
original framework of modes coupled to a single radiation channel: 
the EIT with non-zero off-diagonal terms, whereas the ideal FW-BIC 
is a limit of this framework with zero off-diagonal terms. Because 
the EIT occurs at the avoided crossing, FW-BIC must not be at the 
avoided crossing, which implies that the radiative decay rates of 
the closed channel modes in equation (16) differ, γr1 ≠ γr2. Thus, the 
ideal FW-BIC is not at the avoided crossing (ω1 = ω2) but is shifted in 
its vicinity. Both conditions can be fulfilled, in principle, for close 
wavevectors when, for example, γr1 ≃ 5γr2 (see the simulated linewidths 
when the modes do not cross each other in Extended Data Fig. 3; ori-
entation angle of the photonic crystal ϕ = 45°). This also means that 
the realization of EIT is possible when the involved dark mode is a 
perturbation of the FW-BIC mode, that is, it exhibits characteristics 
of an FW quasi-BIC. Although this will be shown using RCWA in our 
system, let us now explore the consequences for enhancing the local  
optical field.

As shown in the scheme of Extended Data Fig. 1a, let us write explic-
itly the dynamical equations (13) and add the perturbation of the 
diagonal representation (FW-BIC point) of the Hamiltonian as we move 
away from the ideal BIC wavevector towards the EIT point. Because the 
radiative Q factor of a BIC scales as |k − kBIC|−α with α ≥ 2, for any wavevec-
tor close to the BIC point, k = kBIC + Δq ≃ kBIC, it is necessary to admit a 
finite non-zero decay rate of the dark mode A−, that is, 1/γ− = τR1 with 
γ− → ε ≳ 0 and, as such, it is necessary to include a non-zero mode cou-
pling κ12 ≠ 0 to guarantee energy conservation, as both modes are cou-
pled to a single independent radiation channel. The perturbed 

Hamiltonian is 
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note that the modes are the final coupled modes: their frequencies are 
considered shifted with respect to the exact frequencies of bright and 
dark modes of the FW point k = kBIC in equation (14). The finite decay 
rate of the dark mode turns it into a quasi-dark mode (FW quasi-BIC), 
and this non-zero coupling to the radiation channel γ τ( 2 = 2/ )− R1   
will imply non-zero near-field (κ12) or far-field (γ12) coupling with the 
shifted bright partner, depending on the representation used. The 
bright mode has amplitude A+, with a decay rate 1/γ+ = τR2 ≪ τR1. Gener-
ally, the off-diagonal terms can be kept complex to include both near-
field and far-field coupling, but we have verified by RCWA that the 
coupling is real with good approximation in the next section. Here  
we assume the representation with near-field coupling κ12. Considering 
the general dynamical equations with both modes having the same 
losses included all in γa = 1/τa, it is possible to write, k k k∀ : BIC≃  that
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This set of equations is valid for any system (for example, plasmonic 
modes, whispering-gallery modes, guided modes, defect modes). 

Considering jω→t
d

d in and solving for A− in equation (34), substituting 
it in equation (35) and then substituting the resulting A+ again in  
equation (34), we find, at the steady state, that
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Above, we have explicitly defined the near-field coupling lifetime 
τ =κ

1
κ12

 and the associated quality factor τκ = 2Qκ/ω. We can see that the 
quasi-dark mode A− can be excited by means of internal coupling κ12 
more than what is expected from the isolated resonance response of 
the dark mode, represented by the first term in equation (36) (in Sup-
plementary Information section 1.2 and Supplementary Fig. 4, the 
mediated drive term is also made explicit in the original quantum 
model)2. In Extended Data Fig. 1b–d, the behaviour for both mode 
intensities for a specific set of informative values, QR1 = 5 × 109, QR2 = 200, 
Qa = 5,000 is plotted to capture the main insight. In Extended Data 
Fig. 1b, the intensity field enhancement

G
A

s ω V
=

/
(38)±

2

+ in
2

eff

∣ ∣
∣ ∣

is plotted for both modes (solid red line for the dark A− and blue 
line for the bright A+), showing that the dark mode on resonance 
(ωin = ω−) reaches the maximum limit of field enhancement possi-
ble in a real-world resonator with non-radiative loss, Gmax = Qa/Veff,  
even if

≫Q Q , (39)R1 a

which would be impossible in case of a single dark resonance, that is, 
not coupled to another wave (dashed red line). This condition occurs 
at the supercritical coupling point defined by

τ τ τ= , (40)κ R2 a

or

Q Q Q= . (41)κ R2 a

Indeed, assuming τR1 ≫ τa, τR2, τκ and τR2 < τa in equation  (36) 
and considering ωin = ω− (on resonance with the dark mode) and 
|ωin − ω+| ≃ 2κ12 = 2/τκ (the coupling affects the split in frequencies, thus 
the pump is shifted from the bright mode when on resonance with the 
dark one), the relation simplifies as
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in which the first two terms in the denominator were neglected, as they 
are smaller when τR2 < τa. The above relation proves that the dark-mode 
intensity enhancement G Q V G= = / =

A ω ω
s ω V

( = )
/

2 1
a eff max

− in −

+ in eff
∣ ∣ , that is, it 

can reach the maximum imposed by non-radiative losses even in 
extreme situations with mismatched quality factors. It is worth men-
tioning that, when Qκ → ∞ (κ12 → 0), we again obtain the correct case of 
uncoupled resonances and the dark-mode field goes to the level it could 
gain if it were isolated (dashed red line). Indeed, in the plot, we have 
specified that the near-field coupling rate affects the spectral separa-
tion among resonances, as it is proportional to their distance: 
ω± = ωo ± κ12 = ωo[1 ± 1/(2Qκ)] Thus, for Qκ → ∞, the resonant frequencies 
coincide and cross. Even when out of perfect spectral tuning, the max-
imum gain achieved by the quasi-dark mode A− is orders of magnitudes 
larger than what possible in a single dark mode, as shown in Extended 
Data Fig. 1c,d. In case ωin = ωo = 1/2(ω+ + ω−), the optimum shifts to larger 
Q*κ ≃ Qa. When QR2 → Qa and ωin = ω−, the bright mode is critically coupled 
with the pump, but there is still energy going into the dark mode up to 
0.3Gmax at a certain ≲Q Q Q* =κ κ a. Furthermore, by inspecting the ratio 
between the solid red line and the dashed red line, it is possible to appre-
ciate how, even if Qκ does not reach the optimum, the intensity of the 
coupled dark resonance is orders of magnitude larger than that of the 
single resonance.
Further discussion. The supercritical coupling mechanism guarantees 
the possibility of achieving the maximum level of local field enhance-
ment when the coupling (Qκ) is optimally tuned, and always in the high-
est Q-factor mode, even under the conditions of coupling, for both 
bright and dark modes, which would be unfavourable in the case of 
single isolated modes. To give an example, let QR2 = 103 ≪ Qa = 106 ≪ 
QR1 = 1010, thus none of the modes matches Qa; by contrast, they have 
completely unmatched quality factors. If Q = 10 × 10 3 × 10κ

3 6 4≃  (say, 
Veff = 1 for brevity), the dark mode reaches the maximum intensity 
enhancement Gmax = 106, although the intensity enhancement of the 
single dark resonance would be only 102, that is, four orders of magnitude 
less, as shown in Fig. 1e. Also, the supercritical coupling condition is 
independent of the highest Q-factor resonance, unlike the critical cou-
pling condition (QR1 = Qa); the model converges to the critical-coupling 
result if QR1 → Qa and can ensure a higher level of enhancement in the 
dark mode, with a considerable advantage over the single-dark-resonance 
case, even when QR2 and Qκ vary over a considerably large range of values. 
This is shown for fixed Q Q Q=κ R2 a

 in Extended Data Fig. 1e.
This mechanism holds true for all wavevectors that span the range 

from an FW quasi-BIC to the EIT point (if this is also present in the sys-
tem), with correspondingly varied values of the parameters involved 
(coupled mode frequencies, decay rates and near-field coupling). Far 
from this momentum region, the mode coupling becomes progres-
sively negligible (as it can be easily calculated numerically) and the 
isolated single mode response is restored.

Turning to the parallel with coupled-resonance-induced transpar-
ency, we understand that, at the dark mode frequency ωt = ω′− (equa-
tions (25) and (29)), in which the transparency window occurs, the fast 
dispersion leads to slow light and an enhanced field that, with suitable 
coupling between modes, could reach the maximum field enhancement 
of the system, as indicated by supercritical coupling. We recall that EIT 
is not a necessary condition for the FW mechanism, although it may 
widen, if present, the wavevector span of an enhanced field.

RCWA validation. The validity of TCMT is confirmed through numeri-
cal simulations using full 3D RCWA. RCWA simulations are performed 
using the Fourier modal expansion method (Ansys Lumerical, RCWA 
module). Validation is performed by evaluating the exact transmittance 
spectra, the 3D-vector-field distribution of the interfering modes, 
their complex coupling constant, their evolution with momentum, 
the near-field coupling at EIT, FW quasi-BIC and FW-BIC points in mo-
mentum space. The modes belonging to the dispersion curves are a 
linear combination of tens to hundreds of Fourier plane waves in each 

xy-periodic, z-homogeneous layer satisfying the continuity boundary 
conditions in each z layer of the structure (with forward and backward 
propagating factors along the z axis), providing the exact solution 
of the problem, including material dispersion, matching the experi-
mental transmittance spectrum measured to reconstruct the energy– 
momentum band diagrams for both s-polarized (vector TE-like char-
acter) and p-polarized (vector TM-like character) excitation. RCWA is 
indeed used as a benchmark for validating other numerical techniques 
such as resonant-state expansion, quasi-normal modes and other meth-
ods. It provides the 3D vector fields and the exact solution, which can 
be analytically approximated by the leaky TE-like and TM-like modes of 
the effective waveguide, or TCMT. Further details are in Supplementary 
Information with measured refractive index dispersion (Supplementary 
Fig. 1) and details on fitting, giving imaginary refractive index used for 
simulations nI = 10−4 over the spectral range 700–1,200 nm.

Extended Data Fig. 2a shows the theoretical TE bands expected for a 
uniform film of upconversion nanoparticles (UCNPs) with a refractive 
index of 1.45, matching the experimental absorption band of UCNPs in 
Extended Data Fig. 2b. Extended Data Fig. 2c shows the mode distribu-
tion, whereas Extended Data Fig. 2d evaluates the mode energy fraction 
superimposed on the nonlinear material as a function of refractive 
index, for one layer (1L), two layers (2L) and with a cladding of air or 
silicone oil. The silicone oil promotes vertical symmetry, which means 
that it increases the field overlap with the UCNPs and helps minimize 
scattering losses, but it cannot affect the vertical symmetry of the 
TE-like and TM-like modes, which is determined mainly by the differ-
ent refractive index of the glass substrate, silicon nitride and UCNPs 
index. Indeed, the energy fraction with silicone oil only changes from 
8% to 9% (Extended Data Fig. 2d). Nonetheless, silicone oil was often 
useful to better observe the side emission, as the silicone layer acted 
as a partially opaque screen crossing the outcoupled light (as shown in 
Fig. 3b). Note that the silicone oil layer was not used in Fig. 4b.

Extended Data Fig. 3 shows the evolution of the transmittance spectra 
by changing the azimuthal angle of incidence ϕ. The avoided crossing 
stops only when the two modes no longer intersect, as shown clearly in 
Extended Data Fig. 3b at ϕ = 45°, at which it is also possible to observe 
that the uncoupled mode 1 has linewidth larger than mode 2, that is, 
γr1 ≫ γr2. Extended Data Fig. 3c,d shows the details of FW quasi-BIC and 
avoided crossing.

Extended Data Fig. 4 shows that vector TE-like and TM-like modes 
evolve and change symmetry along the momentum; they are, in general, 
non-orthogonal and nearly coincident at the avoided crossing (and 
approximately even with respect to the z-mirror symmetry). Because 
the modes are nearly coincident, the approximation γa = 1/τa in the 
above model, that is, the same for both modes, is correct. Also, because 
the input intensity is Iinput = 1, the resonance field intensity is much larger 
than what would be expected on the basis of critical coupling (material 
absorption loss, nI = 10−4 is included in the simulation), providing an 
estimate of the field enhancement (I1 > 3 × 104Iinput).

Extended Data Fig.  5a shows the spectral coincidence of the 
coupled-resonance-induced transparency (EIT) frequency (for θ = 2.7° 
at the avoided crossing) with the FW quasi-BIC frequency at θ = 3.15° for 
the angle mismatch <0.5° (mismatched momentum kEIT = kBIC + δk). The 
existence of coupled-resonance-induced transparency can only occur 
for non-orthogonal modes25, and the proximity in momentum space 
to the BIC point proves that FW-BIC is an ideal condition originating 
from the evolution of non-orthogonal modes. Extended Data Fig. 5b 
shows the near-field coupling constant normalized to ω′− = 2πc/λmodel 
calculated using the formula in ref. 54 (equation (4.13), page 162, 
including material distribution), for θ from 2.7° (EIT) to 3.24° (nearly 
ideal FW-BIC). The phase mismatch is minimal, thus the two modes 
also exchange energy along the propagation (Pendellösung effect), 
as it commonly occurs between two modes of the same waveguide 
coupled by a periodic modulation15,54. The near-field coupling was  
calculated as



∫κ
ε
μ

k
N N

ε ε A=
1
4

( − ) ⋅ d ,12
o

o

o

1 2
o 1 2E E⋆

in which E H c c∣ ̂ ∣∫N z A= ( * × + . .) ⋅ d1,2
1
2 1,2 1,2  are optical power normal-

izations. The integral is over the unitary cell area A. Note that the cal-
culation provides the complex κ12, in which the imaginary part of κ12 is 
to be understood as a representation of ζ′12 in equation (26) above. We 
estimated that ζ′12 < 10−4κ12 for all modes in the range θ ∈ (0°, 5°), thus 
ζ′12 ≃ 0. Also, we found that κ12 ≃ κ21, as expected. The near-field coupling 
is stronger at the EIT point, whereas it decreases at the ideal FW-BIC, 
in agreement with the behaviour expected from the temporally cou-
pled mode theory. As the incidence angle varies from the EIT point 
(2.7°) to the ideal position of the BIC (3.24°), Qκ = τκ ω/2 varies accord-
ingly and is characterized by a Q Q Q≈ (10 , 10 ) ≈κ

3 4
R2 a  at the FW 

quasi-BIC mode (dashed black line, 3.15°). As the near-field coupling 
is modulated, the fulfilment of the supercritical coupling condition 
can be tuned.

Supplementary Fig. 2 shows the evolution of the interference process 
as a function of κ12 and describes how the coupling changes at the edge. 
The effect of the finite boundary on resonance was investigated using 
near-field scanning optical microscopy (Witec Alpha RAS 300) and 
shown in Supplementary Fig. 3.

Supplementary Fig. 4 shows theoretical linewidths calculated with 
the original FW quantum model2, revealing that the open-channel wave 
acts as a drive field in the coupled BIC equation, for representative 
near-field coupling values.

Fabrication
Extended Data Fig. 6 shows the energy-level scheme of the produced 
UCNPs. All materials and synthesis details of NPs, NP characterization, 
PCNS fabrication and characterization are in Supplementary Informa-
tion sections 2–4 and Supplementary Figs. 5 and 6.

Optical characterization
Dispersion-band-diagram measurements, experimental interrogation 
and detection scheme of upconversion are provided, respectively, 
in Supplementary Information sections 5 and 6 and Supplementary 
Figs. 7–10. For upconversion, the pulsed (150-fs) Ti:Sa oscillator, with 
central wavelength λin = 810 nm and full-width at half-maximum of 6 nm, 
is tuned to the FW quasi-BIC and focused to a 6-µm spot on the PCNS. 
The power coupled with NPs was 5%, corresponding to 48 kW cm−2 at 
a pulse energy of 6.25 nJ (103 kW cm−2).

Photoluminescence, enhancement-factor and radiance- 
enhancement estimation
Enhancement-factor estimation, spectral emission datasets from 
samples and radiance-enhancement-factor estimation are provided, 
respectively, in Supplementary Information section 7 and Supplemen-
tary Figs. 11 and 12.

FDTD simulations
The radiation properties of the PCNS were evaluated using the FDTD 
method in Ansys Lumerical. A single dipole source was used to com-
pute the isofrequency map using the Z-transform of the local optical 
field retrieved within the finite-structure domain with the 3D full-field 
monitor. The intensity of the Z-transform determines the strength of 
radiation in the momentum space and better represents the radiation 
properties associated with the PCNS. To validate the results found 
with this approach, we first simulated a literature case discussed in 
ref. 44, that is, supercollimation resulting from flat-band dispersion in 
the momentum space, which is shown in Supplementary Fig. 13. The 
isofrequency far-field intensity map in momentum space showed, in 
our case, non-trivial vanishing strips along orthogonal arms (cross of 
zeros; Fig. 3 and Extended Data Fig. 7). The near-field intensity map 
showed self-collimation as occurring when flat dispersion is involved. 

In Extended Data Fig. 7e, the experimental proof is reported using a 
rescaled geometry of the PCNS (using the fit in Extended Data Fig. 2e) 
to move the FW-BIC at 532 nm and make the beam easily visible. At 
this stage, the radiation properties were examined by placing an array 
of dipole sources (18 × 18) at the boundary of the finite PCNS with a 
uniform slab covering an area of several microns squared. The results 
are shown in Fig. 3c and Extended Data Fig. 8. The sources collectively 
add up their field and coherently emit radiation in the plane of the slab, 
as shown in Extended Data Fig. 8a, in which the field propagates along 
the direction (+1, 0) with intensity enhancement as large as 1.5 × 104 
(normalized to the number of emitters). The emission was always point-
ing towards the non-textured slab, thus—on the opposite edge—the 
propagation was along the direction (−1, 0). It was found that, at shorter 
wavelengths, other preferential directions of propagation were also 
possible, such as (1, ±1). The divergence was evaluated along 1 mm of 
propagation from the edge, as shown in Extended Data Fig. 8b, which 
showed a divergence of 0.02° (Extended Data Fig. 8c), which is even 
lower than the experimental values. Analysis of the whole visible and 
near-infrared spectrum revealed that the typical value of the divergence 
is less than 0.5° (Extended Data Fig. 8d), demonstrating that this regime 
of narrow radiation is expected to be common in this type of photonic 
structure. Indeed, as shown in Extended Data Fig. 8e, the full width at 
half maximum of the beam periodically contracts and expands  along 
the propagation, which is because of a mechanism of self-healing that 
compensates for diffraction.

Directivity measurements
Extended Data Fig. 9a shows the microscopy inspection of light propa-
gation near the edge. Extended Data Fig. 9b shows the experimental 
results on the divergence of the side beam (directed along the outer 
edge versor), with a polar plot of the edge emission in Extended Data 
Fig. 9c, in agreement with simulation in Extended Data Fig. 8 in the 
upconverted emission.

Data availability
All relevant data that support the findings of this work are available 
from the authors and are included with the article and its Supplemen-
tary information.
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Extended Data Fig. 1 | Supercritical coupling model. a, Top, oscillator scheme 
at the FW quasi-BIC, with depicted dispersion diagram of the FW-BIC formation 
near the avoided crossing point and with mismatched momentum with respect 
to the EIT occurring at the avoided crossing (dashed lines, frequencies; solid 
lines, linewidth). Bottom, the corresponding Hamiltonians (frequency and 
decay rate) at the ideal FW-BIC (kBIC), FW quasi-BIC (≃kBIC) and EIT (kEIT) points. 
b–d, Normalized intensity enhancements G/Gmax for both dark and bright modes 
(red and blue solid lines, respectively) compared with the corresponding single- 
resonance intensity enhancements (red and blue dashed lines) as a function of 

Qκ, for QR1 = 5 × 109, QR2 = 200, Qa = 5,000, with input frequency tuning with the 
dark (b), middle (c) and bright (d) frequency. e, Intensity-level ratio between 
the coupled dark mode Gdark at supercritical coupling and the single dark mode 
Gsingle-dark as a function of QR1/Qa and QR2/Qa: when QR1/Qa = 1, we find the critical 
coupling condition and the coupled dark mode has the same level of 
enhancement as the single dark mode. When QR2 ≫ Qa, there is no advantage 
(Gdark → Gsingle-dark) because the input channel is unfavourable. In the remaining 
region of parameters, Gdark ≫ Gsingle-dark.
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Extended Data Fig. 2 | RCWA simulations for structure tuning. a, Numerical 
band diagrams (RCWA) of the PCNS showing a FW-BIC close to the avoided 
crossing in momentum space (TE-like modes). b, Reflectance spectrum 
overlapping with the experimental absorption of NPs. c, FW-BIC displacement 
field intensity |D|2 in the unit cell. d, Optical energy fraction in monolayer (1L) 

and bilayer (2L) NPs with air and silicone superstrates. e, RCWA simulation and 
linear fit for spectral tuning of the FW quasi-BIC position with the lattice 
constant a for the radius of the circular hole r = 0.244a, thus scaling with a 
(other parameters fixed).



Extended Data Fig. 3 | Detail of the avoided crossing. a, p-polarized transmittance. b, s-polarized transmittance. c,d, Detail of avoided crossing and indication 
of vector TE-like and TM-like modes evolving into each other, with reference to modes shown in Extended Data Fig. 4.
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Extended Data Fig. 4 | Mode field maps near the FW quasi-BIC. Main 
components Ey, Ez of the vector fields of mode 1 (dark, ω−) and mode 2 (bright, 
ω+) in the xy plane at z = 0, together with the intensity map I1, I2 in the yz 
cross-section for both modes 1 and 2 at the indicated incidence angle θ, as 

shown in Extended Data Fig. 3c. The colour map of their components 
(amplitude in modulus, divided by E0 = 1 V m–1, in logarithmic scale), on the right, 
indicates the change from TE (Ey) character to TM (Ez) character with varying 
momentum, k = ko(sinθcosϕ, sinθsinϕ), at fixed ϕ.



Extended Data Fig. 5 | Coupled-resonance-induced transparency and near- 
field coupling dependence. a, Spectral coincidence of the EIT transparency 
frequency at the avoided crossing with the FW quasi-BIC frequency for the 
angle mismatch <0.6°. b, Near-field coupling constant (real part) normalized to 

ω− = 2πc/λmode-1. c, associated quality-factor Qκ (as defined above) as a function 
of z (normalized to λmode-1 = 810 nm) along the z axis and parameterized for θ 
from 2.7° to 3.24°.
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Extended Data Fig. 6 | Emission lines of the upconversion NPs. Energy-level scheme of core–shell NPs (a) and core–shell–shell NPs (b) and their corresponding 
experimental upconversion photoluminescence (UCPL) spectra (c).



Extended Data Fig. 7 | Details on self-collimation effect. a, Isofrequency 
far-field intensity map in momentum space showing nontrivial vanishing 
strips. b, Cut lines of the Z-transform revealing a narrow divergence 
independent of the incident/outgoing wavevector along the orthogonal 
direction (cross of zeros). c, Phase map in the near field showing a phase  
vortex singularity. d, Corresponding near-field intensity map showing 

self-collimation. e, Experimental proof realized with a rescaled geometry 
supporting the same band structure at 532 nm: a 20× objective lens focuses the 
laser (SC, NKT Photonics, filtered at 532 nm) onto the patterned PCNS (red 
rectangle). The peculiar energy–momentum dispersion induces a resonant 
field that propagates in plane without spreading along the principal directions 
(±1, 0) and (0, ±1), in agreement with the simulation in b.
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Extended Data Fig. 8 | FDTD simulation with dipole sources aligned with 
the main component of the FW quasi-BIC field. The dipoles cover a circular 
area of several microns squared (same size as the input spot focused with an 
objective lens) at the boundary of the PCNS with the uniform slab. Their emission 
is pumped by the maxima of the local optical field (shown in the experimental 
near-field map in Supplementary Fig. 3), but their fields also collectively add  
up coherently emitting radiation in the plane of the slab as triggered by the 
patterned geometry affecting their spatially correlated emission. a, Field 
propagates along the direction (+1, 0) when the right boundary is excited with 

intensity enhancement as large as 1.5 × 104 (normalized to the number of 
emitters) at the quasi FW-BIC wavelength (810 nm). b, At shorter wavelengths 
(540 nm), such as those produced with the experimental UCNP emitters, the 
spatially correlated fields produce narrow emission (calculated along 1 mm of 
propagation from the edge) and with beam divergence even of 0.02° as shown 
in c. d, The analysis over the whole visible and near-infrared spectrum revealed 
that the typical value of divergence was below 0.5°. e, The full width at half 
maximum of the beam shown in b changes along the propagation, obeying a 
mechanism of self-healing, which compensates the diffraction.



Extended Data Fig. 9 | Directivity measurements. a, Microscopy inspection 
of light propagation near the edge, at which the lateral size of the emitted light 
remains equal to the input beam waist. Notably, the output collimation is 
unaffected by the input focusing owing to the influence of the BIC point 

wavevector. The inset shows the interference pattern resulting from the spatial 
coherence of the emitted wave. b, Experimental side emission directed along 
the outer edge versor. c, Polar plot of the edge emission, in agreement with the 
simulation in Extended Data Fig. 8.
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