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Thousands of proteins have been validated genetically as therapeutic targets for
human diseases'. However, very few have been successfully targeted, and many are
considered ‘undruggable’. This is particularly true for proteins that function via
protein-proteininteractions—direct inhibition of binding interfaces is difficult and
requires the identification of allosteric sites. However, most proteins have no known
allosteric sites, and acomprehensive allosteric map does not exist for any protein.
Here we address this shortcoming by charting multiple global atlases of inhibitory
allostericcommunication in KRAS. We quantified the effects of more than 26,000
mutations on the folding of KRAS and its binding to six interaction partners. Genetic
interactions in double mutants enabled us to perform biophysical measurements
atscale, inferring more than 22,000 causal free energy changes. These energy
landscapes quantify how mutations tune the binding specificity of a signalling protein
and map theinhibitory allosteric sites for animportant therapeutic target. Allosteric
propagationis particularly effective across the central 3-sheet of KRAS, and multiple

surface pockets are genetically validated as allosterically active, including a distal
pocketinthe C-terminal lobe of the protein. Allosteric mutations typically inhibit
binding to all tested effectors, but they can also change the binding specificity,
revealing the regulatory, evolutionary and therapeutic potential to tune pathway
activation. Using the approach described here, it should be possible to rapidly and
comprehensively identify allosteric target sites in many proteins.

The GTPase KRAS is somatically mutated in around 10% of all cancers,
including about 90% of pancreatic adenocarcinoma, 40% of colorectal
adenocarcinoma, 35% of lung adenocarcinoma and 20% of multiple
myeloma?. KRAS functions as an archetypal molecular switch, cycling
betweeninactive GDP-bound and active GTP-bound states. The altered
conformation and activity of KRAS upon GTP bindingis an example of
allostery, the long-range transmission of information from onesite to
anotherinaprotein®. Many structures of KRAS have been determined,
revealing major (but variable) rearrangements in the switch-l and
switch-llregions that allow binding to effector proteins in GTP-bound
states®. KRAS effectors include the RAF proto-oncogene serine/
threonine protein kinase (RAF1 (also known as CRAF)), phosphatidy-
linositol 4,5-bisphosphate 3-kinase catalytic subunit-y isoform
(PIK3CG) and the signalling protein RAL guanine nucleotide disso-
ciation stimulator (RALGDS). Guanine nucleotide exchange factors
such as SOSI catalyse the release of GDP to activate KRAS whereas
GTPase-activating proteins (GAPs) catalyse GTP hydrolysis to com-
plete the cycle back to the inactive states. Cancer driver mutations
interfere with this cycle, increasing the abundance of active GTP-bound
effector-binding states®®.

Despiteits identification as an oncoprotein more than 40 years ago’,
tens of thousands of scientific publications, and more than 300 pub-
lished structures of KRAS*, only recently have inhibitors of KRAS been
approved for clinical use, pioneered by sotorasib, acovalent binder of

thedriver mutation KRAS(G12C)* ', Sotorasib is an allosteric inhibitor
that binds outside of the nucleotide and effector binding sites to lock
KRAS(G12C) in inactive GDP-bound states, reducing effector binding
and clinically validating the efficacy of allosteric KRAS inhibition®°.
Similar to many other medically important proteins, the development
oftherapeuticagents that target KRAS is limited by the lack of informa-
tionaboutinhibitory allostericsitesto target.Indeed, acomprehensive
map of allosteric sites has not been generated for any oncoprotein
orindeed for any disease target protein or any complete protein in
any species.

Atlases of allosteric sites have the potential to greatly accelerate
drug development, especially for the many human proteins consid-
ered undruggable because of the lack of an appropriate active site or
because they function via difficult-to-inhibit protein-proteininterac-
tioninterfaces.Inaddition,among other benefits, allosteric drugs often
have higher specificity than orthosteric drugs that target conserved
active sites™"2,

KRAS biophysics at scale

To comprehensively map inhibitory allostericcommunication in KRAS,
we applied amultidimensional deep mutational scanning approach®.
We used two rounds of nicking mutagenesis™* to construct three
libraries of KRAS variants in which every possible single amino acid
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substitution is present not only in the wild-type KRAS (4B isoform,
amino acids 1-188) but also in KRAS variants with a range of reduced
activities (median of tengenetic backgrounds for each single mutant;
Fig. 1a-d). Quantifying the effects of the same mutations in different
geneticbackgrounds (here double amino acid substitutions) provides
sufficient data to resolve biophysical ambiguities™ and infer the causal
biophysical effects of each mutation (see below). In total, the library
consists of more than 26,500 variants of KRAS, including more than
3,200 single amino acid substitutions and more than 23,300 double
amino acid substitutions.

We first quantified the binding of these KRAS variants to the RAS-
binding domain (RBD) of the oncoprotein effector RAF1. Binding was
quantified using a protein-fragment complementation assay'>'¢"
(BindingPCA). Binding fitness was highly correlated among three inde-
pendentreplicate selections (Pearson’sr > 0.9; Extended DataFig.1a) to
previous data that used a different binding assay in a different cellular
context’" (Pearson’s r= 0.82; Extended Data Fig.1c) and toindividual
growth measurements (Pearson’s r = 0.94; Extended Data Fig. 1d).

As expected, mutationsin the RAF1-bindinginterface strongly inhibit
binding, as do variants in the nucleotide-binding pocket (Fig. 1e,i).
However, 2,019 out of 3,231 single amino acid substitutions reduce
binding to RAF1 (false discovery rate (FDR) = 0.05, two-sided z-test),
including many outside of the interface and in the hydrophobic core
ofthe protein (Extended Data Fig. 1e). This strongly suggests that many
changesinbinding to RAF1are caused by changesin the abundance of
folded KRAS and not by altered binding affinity>%.

From phenotypes to free energy changes

To disentangle the effects of mutations on KRAS folding and binding,
we used a second selection assay, AbundancePCA®?, to quantify the
cellular abundance of the KRAS variants. We refer to this combined
approach of BindingPCA and AbundancePCA as ‘doubledeepPCA™
(ddPCA). Plotting the RAF1 binding of each variant against its cel-
lular abundance shows that many changes in binding can indeed be
explained by reduced KRAS abundance (Fig. 1j). However, inspection
of Fig.1jalsoreveals that a substantial number of variants have effects
on binding that are much larger than can be accounted for by their
reduced abundance, including many variantsin the bindinginterface
(red dots in Fig. 1j).

Protein folding and binding relate to changes in the free energies of
folding (AG;) and binding (AG,) by nonlinear functions derived from
the Boltzmann distribution?° (Fig. 1b). Typically, many different
combinations of folding and binding energy changes could underlie
ameasured change inbinding due toamutation. ddPCA is an efficient
experimental design to generate sufficient data to infer en masse the
causal biophysical effects of mutations. There are three key principles
of the approach. First, mutational effects are quantified for multiple
phenotypes—here the binding of KRAS to RAF1and the abundance of
KRAS in the absence of RAF1. Second, mutational effects are not only
quantified in wild-type proteins but also in genetic backgrounds with
altered folding and/or binding energies—here our libraries contain a
median of tendouble mutants for each single amino acid substitution
inKRAS. Third, the dataare used to fit athermodynamic modelin which
free energy changes due to mutations combine additively in energy
space (but not additively for the measured molecular phenotypes;
Methods).

We biased the choice of genetic backgrounds in our KRAS library
to mutations with weak detrimental effects and used MoCHI, a sub-
stantially improved flexible package to fit user-defined mechanistic
models to deep mutational scanning data using neural networks?,
to fit a three-state (unfolded KRAS, folded KRAS and bound KRAS)
thermodynamic model to the data (Fig. 1c, Extended Data Fig. 1f-k and
Methods). The fitted model predicts the double amino acid mutant data
held out during training very well (abundance median R? = 0.74, binding
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median R*= 0.91; Extended Data Fig. 1f,g,i,j) strongly supporting the
assumption that most free energy changes combine additively in dou-
blesandtheseinferred free energy changes are highly correlated with
in vitro measurements (Pearson’s r = 0.95; Fig. 1k). Evaluating model
performance onaheld out testreplicate gave similar results (abundance
median R? = 0.54, binding median R? = 0.87; Extended Data Fig. 1h,k).

The RAF1-bindinginterface

In total, 2,241 out of 3,453 single amino acid substitutions are det-
rimental to folding and 843 out of 3,301 are detrimental to binding
(FDR =0.05; Fig.1g,h). Mutations detrimental to folding are enriched
in the hydrophobic core of the protein (oddsratio (OR) =1.92,P<107%;
Fig.1h,l, two-sided Fisher’s exact test; Supplementary Video 1). By con-
trast, mutations that increase the binding free energy are strongly
enrichedinthebindinginterface (OR = 6.02, P <107%; Figs. 1g and 2a),
withthe mean absolute binding free energy changes upon mutation at
eachsiteidentifying the binding interface (Fig.2b,c and Supplementary
Video 2, receiver operating curve area under curve (ROC-AUC) = 0.8
compared with ROC-AUC = 0.65 when using the mean absolute bind-
ing fitness).

The interface residues that are most important for RAF1 binding
include a mixture of charged (E37 and D38) and hydrophobic (136 and
Y40) residues. D38 cannot be changed to any other amino acid without
detrimental effects on binding affinity, revealing arequirement for both
negative charge and a particular side chain length at this site (Fig.2d,e).
By contrast, E37 can be replaced by D (shortening the side chain but
retaining the negative charge) and alsoby Y, F or H, suggesting that the
salt bridge to RAF1 R67 can be replaced by an alternative interaction
involving an aromatic side chain. Y40 can only be replaced by F, reveal-
ingtheimportance of the aromatic side chain which makes a cation-mt
interaction with RAF1R89. 136 makes two hydrophobic contacts with
RAF1, and whereas polar mutations at this position are detrimental,
multiple hydrophobic substitutions are tolerated. Mutations at other
residues that contact RAF1are much better tolerated, indicating that
these sites are less important for binding. For example, mutations at
D33 tend to be mildly detrimental, with only charge-reversing muta-
tions to Rand K and mutation to P strongly inhibiting binding. Similarly,
charge-reversing mutations and mutation to P are also most detri-
mental at R41, whereas mutations at the other two charged sites (E31
and E3) at the edge of the interface generally have little effect on the
binding free energy.

Allostericlandscape for RAF1 binding

We next considered mutations outside of the binding interface. In
total, there are 361 distal mutations in 74 residues that increase the
binding free energy to agreater extent than the average effect of muta-
tions in the RAF1-binding interface (AAG, greater than the weighted
mean absolute binding free energy change of substitutions in binding
interface residues, FDR = 0.05; Fig. 3a). Allosteric mutations defined
in this manner are highly enriched in the physiological allosteric site
of KRAS, the nucleotide-binding pocket (157 mutationsin13 residues,
OR=7.68,P<107", two-sided Fisher’s exact test).

Enhanced allosteric communication

We first focused on residues in which many different mutations have
strong allosteric effects. Defining major allosteric sites as residues
where the mean absolute change in binding free energy upon mutation
isequaltoor greater thanthatinbindinginterface residuesidentifiesa
total of 18 sites (Fig. 3b,c). Ten of these major allosteric sites are located
in the physiological allosteric site—the nucleotide-binding pocket
(Fig. 3b,c). The additional eight major allosteric sites are residues V7,
G10,D54,T58,A59,P110, F141and 1163 (Fig. 3b). Three of these residues
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Fig.1|Mappingthe energeticlandscape of KRAS folding and binding to
RAF1.a,Overview of ddPCA selections. Yes, yeast growth; no, yeast growth
defect; DHF, dihydrofolate; THF, tetrahydrofolate. b, Three-state equilibrium
and corresponding thermodynamic model. AG, Gibbs free energy of folding;
AG,, Gibbs free energy of binding; K;, folding equilibrium constant; K, binding
equilibrium constant; ¢, binding partner concentration; p;, fraction folded;
P, fraction folded and bound; f;, nonlinear function of AG;; fi,,, nonlinear
function of AG;and AG,; R, gas constant; T, temperature in Kelvin. ¢, Neural
network architecture used to fit thermodynamic models to the ddPCA data
(bottom, target and output data), thereby inferring the causal changesin free
energy of folding and binding associated with single amino acid substitutions
(top, input values). AA, amino acid; WT, wild type.d, 3D structure of KRAS
bound tothe RAF1RBD (RAF1-RBD) (Protein Data Bank (PDB) ID: 6VJ)). e,f, Heat
maps of fitness effects of single amino acid substitutions for KRAS-RAF1

from BindingPCA (e) and AbundancePCA (f) assays. White spaces indicate
missing values; dashes are wild-type amino acids; asterisk indicates astop

codon. g,h, Heat maps showinginferred changesin free energies of binding
(g) and folding (h).i, Sequence and annotation of KRAS. Binding interface is
defined by RAF1distance <5A; GTP pocketis defined by GTP or Mg?' distance <5 A;
coreis defined by relative accessible surface area < 0.25;based on PDBID: 6V]).
P-loop, residue numbers 10-17; switch-1:25-40; switch-11: 58-76; a-helix 1:15-
24; a-helix 2: 67-73; a-helix 3: 87-104; a-helix 4:127-136; a-helix 5:148-166;
B-strand 1:3-9; B-strand 2: 38-44; B-strand 3: 51-57; 3-strand 4: 77-84; B-strand
5:109-115; B-strand 6:139-143.j, Scatter plot comparing abundance and
binding fitness of single amino acid substitutions. Substitutions in the binding
interfaceareindicatedinred.k, Comparisons of model-inferred free energy
changestoinvitromeasurements*°. Error barsindicate 95% confidence
intervals fromaMonte Carlo simulation approach (n =10 experiments).
Linearregression fitand its 95% confidence interval are shown as ared solid
lineand agrey shaded area, respectively. Pearson’s ris shown. Black dashed
lineindicatesy=x.1,3D structure (left) and clipping view (right) of KRAS with
residues coloured by the weighted mean folding free energy change.
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Fig.2|Freeenergy changes of mutationsinthe KRAS-RAF1binding
interface. a, Scatter plot comparing binding and folding free energy changes
of single amino acid substitutions. b, Receiver operating curves (ROCs) for
predicting binding interface residues (RAF1distance <5 A) using weighted
mean absolute binding AAG (red) or using weighted mean absolute binding
fitness (black). AUC, area under the curve. Dashed lineat y=xindicates

areclose to the binding interface, with D54 being adjacent to the bind-
inginterface and T58 and A59 connecting the bindinginterface to the
nucleotide-binding pocket (Fig. 3c and Supplementary Video 3).

Notably, 5 of the 8 novel major allosteric residues are located in the
central (and only) 6-stranded -sheet of KRAS (Fig. 3b,c, OR=5.24,
P=2.8x107, two-sided Fisher’s exact test). Within the -sheet, the
binding free energy changes are largest for mutations in residues in
the first strand that contacts RAF1 and they progressively decrease
in each subsequent strand of the sheet (Fig. 3d,e, Extended Data
Fig. 2a-c and Supplementary Video 4). This decay of the strength of
allosteric effects across the sheet is consistent with local energetic
propagations that underlie allosteric communication. A similar, yet
weaker, distance-dependent decay is observed for residues outside
of the B-sheet (Extended Data Fig. 2c). Propagation appears more
efficientacross the sheet than along the backbone withinastrand, with
residues in the first strand that do not contact RAF1 being depleted
for allosteric mutations (Fig. 3a and Extended Data Fig. 2b, OR = 0.16,
P=1073, two-sided Fisher’s exact test). Allosteric communication
therefore seems to be particularly effective across the central B-sheet
of KRAS.

KRAS has four active surface pockets

We next considered the effects of mutations in the surface residues of
KRAS, focusing onthe four previously described structural pockets in
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—— Cation—nr interaction

performance ofarandom predictor. ¢,3D structure of KRASbound to RAF1
inwhichresidue atomsare coloured by the position-wise weighted mean
absolute changein the free energy of binding to RAF1.RAF1-RBD isshown in
greyribbon. d, Heat maps of binding free energy changesin RAF1-binding
interfaceresidues. e, Direct contacts between KRAS and RAF1.

addition to the nucleotide-binding pocket? (Fig. 3fand Supplementary
Video5).

Pocket 1 (also called the switch-I/ll pocket) is located behind switch-II
between the central B-sheet and a-helix 2 and is the binding site for
multiple inhibitors that are effective in pre-clinical models?%, Many
mutations in pocket 1allosterically inhibit RAF1 binding (57 mutations
in10 residues, FDR = 0.05; Fig. 3f and Extended Data Fig. 2d), consist-
ent with the demonstrated ability of pocket 1 engagement to inhibit
effector binding.

Pocket 2 (also called the switch-1l pocket) is located between switch-lI
and a-helix 3 and is the binding site of sotorasib and other clinically
approved allosteric inhibitors of KRAS(G12C)%*. Seventy-one muta-
tionsinnine residues that contact sotorasib allosterically inhibit RAF1
binding (Fig. 3g and Extended Data Fig. 2e). Thus, mutations and small
molecules binding to pocket 1 and pocket 2 can allosterically inhibit
KRAS activity.

Pocket 3 of KRAS is located inthe C-terminal lobe of the proteinand
is the most distant pocket from the RAF1-binding interface (Fig. 3f,g).
Theeffects of pocket 3 engagement are not well described® and pocket
3hasreceived little attention for therapeutic development?. However,
our datarevealthat pocket 3isallosterically active, with20 mutationsin
6residuesin pocket 3inhibiting binding to RAF1 (Fig.3g and Extended
DataFig. 2f). The effects of mutationslocated in pocket 3 were validated
inindividual growth assays (Pearson’sr = 0.94; Extended Data Fig. 1d).
We also validated the effects onin vitro binding to RAF1 of an allosteric
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mutation in pocket 3 (P110F), as well as a mutation in an additional
newly discovered major allosteric site (AS9R) (Extended Data Fig. 2h).
Despite its distance from the effector-binding interface, our data show
that pocket 3 should be prioritized as a site for the development of
KRAS inhibitors.

Finally, pocket 4, which is located immediately behind the flexible
effector-binding loop, contains 105 allosteric mutations in 9 resi-
dues that do not contact RAF1 (Fig. 3g and Extended Data Fig. 2g).
Our data therefore validate all four surface pockets of KRAS as allo-
sterically active, with perturbations in all pockets having large
inhibitory effects on RAF1 binding. This is a strong argument for
the development of molecules targeting all four pockets as potential
KRAS inhibitors.

Energetic maps for six KRAS interactions

Similar to most oncoproteins, KRAS binds many different proteins
as part of its physiological and disease-relevant functions®. Many
of these interaction partners bind a common surface of KRAS—the
effector-bindinginterface—making KRAS aninteresting model of multi-
specificity in molecular recognition®. To our knowledge, the effects
of mutations on binding energies for multiple interaction partners
have not been comprehensively profiled for any protein. Moreover,
quantifying KRAS binding to multiple interaction partners provides an
opportunity to quantify the conservation and specificity of allosteric
effectsin asignalling hub (Fig. 4a).

We quantified the binding of the more than 26,000 KRAS variants
to six interaction partners: the three KRAS effector proteins RAF1,
PIK3CG and RALGDS, the guanine nucleotide exchange factor SOSI,
and two DARPins, K27 and K55 (synthetic antibody-like molecules
selected tobind GDP-bound KRAS and GTP-bound KRAS, respectively).
The structures of all six complexes have been determined® .,

The data for all six binding selections were highly reproducible
(Extended Data Figs. 1a and 3a), and we used MoCHI to simultane-
ously fitathermodynamic model to the molecular phenotypes of the
variants in all seven experimental datasets (Extended Data Fig. 3b,c
and Methods). Each single amino acid change in KRAS therefore has
seven associated free energy changes: six binding energies and one
folding energy (Fig.4aand Extended DataFig. 4a). As for RAF1(Fig. 1k),
the MoCHI binding energies for RALGDS correlate extremely well
with independent in vitro measurements (Fig. 4b,c). The binding
energiesidentify the knownbinding surfaces on KRAS, including the
two known interfaces for SOSI (ref. 31) (Fig. 2b and Extended Data
Fig.4b, medianROC-AUC = 0.80, range = 0.68-0.89 for weighted mean
binding energies and median ROC-AUC = 0.64, range = 0.54-0.75 for
weighted mean binding fitness measurements).

These seven free energy landscapes constitute more than 22,000
thermodynamic measurements, which is similar in scale to the
number of measurements made for proteins in the entire scientific
literature®.

Specificity in binding interfaces

We first considered how mutationsin the binding interfaces alter bind-
ing to the six interaction partners. All six proteins bind KRAS through
an overlapping set of contacts (Fig. 5a-c). This sharing of contacts is
particularly pronounced for the three effector proteins, RAF1, PIK3CG
and RALGDS (Fig. 5a). Comparing the mutational effects reveals that
whereas someresidues are critically important for binding to all three
proteins, many substitutions alter the binding specificity (Fig. 5d). For
example, many mutationsin the negatively charged residues D33 and
D38 and the hydrophobicresidues 136 and Y40 strongly inhibit binding
toallthree effectors. However, asubset of hydrophobic substitutions
atI36inhibits binding to PIK3CG and RALGDS but not to RAF1and sub-
stitution of L56 to negatively charged residues specifically increases
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binding to RAF1while retaining binding to PIK3CG but inhibiting bind-
ing toRALGDS (Fig. 5d). By contrast, many substitutions at E37 inhibit
binding to RAF1and RALGDS butincrease binding to PIK3CG. Mutating
Y64 inhibits binding to PIK3CG and RALGDS but allows binding to RAF1.
At S39 a subset of hydrophobic mutations inhibit binding to PIK3CG
and RAF1but not to RALGDS. Comparing the binding free energies for
all six binding partners reveals a high diversity of specificity changes
thatcanbe reached through single amino acid substitutions (Extended
DataFig.5).

Allosteric maps of six KRAS interactions

We next considered the specificity of mutational effects outside of
the bindinginterfaces. We first focused on the positions that are most
enriched for allosteric mutations for each interaction, defining the
major allosteric sites for each interaction as those in which the aver-
age absolute binding free energy change is as large or greater than the
average across mutations in all the binding interfaces (Fig. 6a). Novel
major allosteric sites were identified for all six binding partners, with
amedian of 9 major allosteric sites in the nucleotide-binding pocket
and a median of 5.5 additional major allosteric sites for each interac-
tion (Fig. 6a).

We then compared the binding free energy changes between all
sixinteraction partners for all mutations in these positions (Fig. 6b).
Many substitutions at G10, G15, S17, D57, F78, P110 and V112 inhibit
allsixinteractions (Fig. 6b and Extended Data Fig. 6a). Substitutions
of F28 to non-aromatic amino acids inhibit all six interactions, as do
many changes to charged amino acids at155 and to hydrophobic amino
acidsat A18 and A83 (Fig. 6b). Substitutions to P at155, A59, R68, K117
and F156 inhibit at least five interactions (Fig. 6b and Extended Data
Fig. 6a). Considering all mutations outside of the binding interface,
allosteric mutations are enriched at G, P, F and T residues for four
out of six partners and depleted at charged residues for six out of six
partners. Allosteric mutations are also enriched for substitutions
to P for six out of six partners and to R for five out of six partners
(Extended Data Fig. 6b). The enrichment for allosteric mutations at
G residues and for substitutions to P is also observed in three small
protein domains®.

Allosteric control of binding specificity

That multiple mutations at many of the allosteric sites inhibit binding
to all interaction partners suggests that engagement of these sites is
likely to generally inhibit KRAS function. However inspection of Fig. 6b
also reveals sets of mutations in the major allosteric sites that have
more specificallosteric effects. Particularly notable examples are many
mutationsin residues K16, 155, G60 and F156 that allosterically inhibit
binding to most KRAS interaction partners but allosterically increase
binding to the DARPin K27 (Fig. 6b). The DARPin K27 specifically rec-
ognizesinactive GDP-bound KRAS, and so mutations at these sites are
likely to favour GDP-binding states. Consistent with this, K16 and G60
directly contact the y-phosphate of GTP. Many substitutions of E76
alsoincrease binding to DARPin K27 but with little effect on the other
interactions. Additional examples include mutations at Y71 and M72
that specifically inhibit binding to DARPin K55 and mutations at D54
thatinhibit fourinteractions but retain or enhance binding to PIK3CG
and RALGDS (Fig. 6b). In addition, outside of these major allosteric
sites there are many other mutations that allosterically alter both the
binding affinity and specificity of KRAS (Extended Data Fig. 7).

Discussion

Here we presented a global map of inhibitory allosteric sites for KRAS
and acomprehensive comparative map of the effects of mutations on
the free energies of binding of KRAS to multiple interaction partners.
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folding and binding free energy changes of all single amino acid substitutions.
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HVR, hypervariableregion. Binding interfaceis defined by indicated binding
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INVW; DARPinK27,502S; DARPinK55,502T. b,c, Comparisons of binding free

The dataset constitutes more than 22,000 free energy measure-
ments, a rich resource for protein biophysics and computational
biology.

KRAS is one of the most frequently mutated genes in cancer and
one of the most sought after and valuable therapeutic targets. Our
resultsreveal anumber of principles concerning allosteric communica-
tionin KRAS. First, KRAS has many inhibitory allosteric sites. Second,
most allosteric mutations inhibit binding to all three KRAS effectors,
revealing the potential to broadly inhibit KRAS activity. Third, allosteric
mutations are enriched close to binding sites, suggesting local ener-
getic propagation as the main allosteric mechanism. Fourth, allosteric

c r=0.981 /

Binding AAG (inferred) (kcal mol)

T T T T T
-1 0 1 2 3 4

Binding AAG (in vitro/GDI) (kcal mol™")

energy changes toinvitro measurements by isothermal titration calorimetry
(ITC) (b) and guanine nucleotide dissociation inhibition assay (GDI) (c). Linear
regression fitand its 95% confidenceinterval are shown asaredsolid line

and agreyshaded area, respectively. Pearson’s ris shown. Black dashed line
indicatesy=x.Errorbarsindicate 95% confidence intervals from aMonte Carlo
simulation approach (n=10 experiments).

communication is anisotropic, with communication being particularly
effective across the central -sheet of KRAS. Fifth, mutations can also
allosterically control binding specificity, suggesting the potential for
regulatory, evolutionary and therapeutic modulation of signalling
bias. Sixth, all four surface pockets of KRAS are allosterically active,
with particularly notable effects of mutations in the distal pocket 3.
The comprehensive allosteric map therefore genetically validates all
four pockets assuitable for therapeutic targeting and focuses attention
onthelargely ignored pocket 3.

The KRAS effector interface—similar to many protein surfaces—has to
recognize structurally diverse proteins. Comprehensive mutagenesis of
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b, 3D structures of KRAS indicating binding partner contacts (top row, coloured
asina)and weighted mean absolute binding free energy change (bottom row).
c,3Dstructures of binding partners with binding interfaceindicated ingrey.

this surface shows thatits evolutionis constrained by fitness trade-offs,
with mutations that increase binding to one protein typically having
antagonistic pleiotropic effects on binding to others. However, the
binding specificity of KRAS is highly evolvable, with single amino acid
substitutions causing a diversity of specificity changes. These altered
binding profiles can be useful experimental tools, providing ‘edgetic’
perturbations® to test the functions of individual molecular interac-
tions and their combinations®>*,

In our experiments, we quantified mutational effects in wild-type
KRAS. To test how well these effects are conserved in KRAS carrying
oncogenicdriver mutations, we reconstituted activation of RAF1bind-
ing by driver mutationsin yeast by co-expressing the catalyticdomain
ofahuman GAP, RASA1 (Extended Data Fig. 8a-i). Mutational effectsin
oncogenic KRAS were highly correlated to those in wild-type KRAS in
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PDBIDs: RAF1, 6V]]; PIK3CG, IHES; RALGDS, 1LFD; DARPinK55,502T; SOS1,
INVW; DARPinK27,502S.d, Heat maps of binding free energy changesin
interfaceresidues contacting atleastone of the three effectors (RAF1, PIK3CG
and RALGDS). Asterisks indicate binding interface residues for each partner.

the absence and presence of human GAP co-expression (for example,
Pearson’s r between wild-type KRAS and KRAS(G12C) in the presence
of human GAP co-expression is 0.93, n = 776; Extended Data Fig. 8). A
second potential caveat of our experiments was that we quantified
binding of KRAS toisolated RBDs and, ingeneral, mutations that have
allosteric effects in isolated domains may have different effects or
directly participate in bindingin full-length proteins. However we found
that changes in binding to full-length RAF1 were highly correlated to
thosetothe RAF1RBD (Pearson’sr=0.94,n=1,186 genotypes), aswere
theinferred binding free energy changes (Pearson’sr=0.89,n=1,195;
Extended DataFig. 9). Finally, we note that there are likely to be multi-
ple molecular mechanisms that mediate the allosteric effects, includ-
ing shifts in conformational equilibria, altered nucleotide binding or
hydrolysis, and propagated structural and dynamic perturbationsinthe
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weighted mean absolute change in free energy of binding higher than the

bindinginterfaces. Further experiments will be needed to disentangle
the mechanistic causes of allostery.

The accelerated pace of human genetics research means we now
know the proteins to therapeutically target in hundreds of human
diseases®. However, effective therapies have been developed against
asmall minority of these genetically validated targets. In short, the
protein targets for many diseases are known, but we do not know how

average of binding-interface-residue mutations across all binding partners
(horizontal dashed line). Error barsindicate 95% confidence interval (n >10).
b, Heat maps of binding free energy changes in all major allosteric sites.
Nucleotide pocket and y-phosphate-contacting residues are indicated.

totarget them. For most proteins, thelocation of the ‘switches’ to target
with drugs to turn activity off or on remain unknown. If we could find
these switches, we would be able to develop drugs to control their
activity.

The data presented here and in other recent studies** have
revealed that allosteric sites are much more prevalent than is widely
appreciated. Moreover, the approach that we have applied here to
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KRAS is quite general and can be used to identify allosteric sites in
many different proteins. We believe that this general strategy can be
used to systematically map regulatory sites that can be used to target
many important proteins. Mapping of allosteric sites is likely to have
anincreasingly important role in drug development, laying the foun-
dations for therapeutically targeting proteins that were previously
considered to be undruggable.
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Methods

Media and buffers

The following media and buffers were used and prepared as follows.
Luria-Bertani (LB) medium: 10 g I Bacto-tryptone, 5 g I " yeast extract,
10 g I NaCl; autoclaved 20 minat 120 °C. Yeast peptone dextrose ade-
nine (YPDA): 20 g I glucose, 20 g I peptone, 10 g I yeast extract,
40 mg [ adenine sulfate; autoclaved 20 min at 120 °C. Sorbitol medium
(SORB):1Msorbitol, 100 mM lithium acetate, 10 mM Tris pH 8.0,1 mM
EDTA; filter sterilized (0.2 mm nylon membrane, Thermo Scientific).
Plate mixture: 40% PEG3350,100 mM lithium acetate, 10 mM Tris-HCI
pH8.0,1 mMEDTA pH 8.0; filter sterilized. Recovery medium: yeast pep-
tone dextrose (20 g I glucose, 20 g1 peptone, 10 g I yeast extract),
0.5 M sorbitol. Filter sterilized. Synthetic complete medium without
uracil (SC-URA): 6.7 g I'yeast nitrogen base without amino acid, 20 g I
glucose, 0.77 g1 complete supplement mixture drop-out without
uracil; filter sterilized. Synthetic complete medium without uracil,
methionine and adenine (SC-URA/MET/ADE): 6.7 g I yeast nitrogen
base without amino acid, 20 g1 glucose, 0.74 g I complete supple-
ment mixture drop-out without uracil, adenine and methionine; fil-
ter sterilized. Competition medium: SC-URA/MET/ADE + 200 pg ml™
methotrexate (BioShop Canada), 2% DMSO. DNA extraction buffer:
2% Triton X-100, 1% SDS, 100 mM NacCl, 10 mM Tris-HCI pH 8, 1mM
EDTA pHS8.

Plasmid construction

Two generic plasmids were constructed to be able to assay any protein
ofinterest by BindingPCA or AbundancePCA: the BindingPCA plasmid
(pGJJ161) and the AbundancePCA plasmid (pGJJ162).

The BindingPCA plasmid (pGJJ161) and AbundancePCA plas-
mid (pG)JJ162) were derived from the previous BindingPCA plasmid
(pGJJ001) and the previous AbundancePCA plasmid (pGJJ045)™. The
C-terminus (GGGGS)4 linker of DHFR3 were changed to the N terminus,
which allowed usto fuse the protein of interest to the N terminus of the
DHFR3 fragment in both abundance and BindingPCA assays.

One KRAS AbundancePCA plasmid, 7 BindingPCA plasmids, one
BindingPCA co-expression RASGAP (the catalytic domain of human
RASAL1) plasmid and one KRAS mutagenesis plasmid are used in this
paper. To construct the KRAS AbundancePCA plasmid (pGJJ271), the
sequence of full-length KRAS (188 amino acids) was amplified froma
plasmid, agift fromtheL. Serranolaboratory, using primer pair 0GJJ231/
0GJJ232 (Supplementary Table1). This primer pair also introduced the
Hindlll and Nhel restriction sites. The PCR product was digested by
Hindlll and Nhel, then was cloned into the digested pGJJ162 plasmid
using T4 Ligase (NEB). To construct 7 KRAS BindingPCA plasmids, a
common KRAS BindingPCA plasmid (pGJ)J317) was constructed by ligat-
ing full-length KRAS sequence digested by Hindllland Nhel to digested
BindingPCA plasmid. 7 BindingPCA plasmids are constructed by ligat-
ing each binding partners PCR product which was digested by BamHI
and Spel to digested pGJJ317 using T4 Ligase (NEB). To construct RAF1
BindingPCA plasmid (pGJJ336), the sequence of RAF1-RBD (52-131) was
amplified from the cDNA of 293 T cell line using primer pair 0GJ)74/
0GJJ307 which also introduced the BamHI and Spel restriction sites.
To construct PI3KCG BindingPCA plasmid (pGJJ565), the sequence
of PIK3CG RBD (203-312) was amplified from R777-E169 Hs.PIK3CG
(Addgene) using primer pair oWCC169/0WCC170. To construct RAL-
GDS BindingPCA plasmid (pGJJ400), the sequence of RALGDS RBD
(778-864) was amplified from R777-E169 Hs.PIK3CG (Addgene) using
primer pair o WCC28/0WCC29. To construct SOS1BindingPCA plasmid
(pGJJ541), the sequence of SOS1 (564-1049) was amplified from plasmid
R777-E317 Hs.SOS1 (Addgene) using primer pair o WCC149/0WCC150.
To construct DARPin K27 BindingPCA plasmid (pGJ)553), the sequence
of DARPin K27 was amplified from plasmid pCASP-SptP120-K27-HilA
(Addgene) using primer pair oWCC157/0WCC158. To construct DARPin
K55 BindingPCA plasmid (pGJ)554), the sequence of DARPin K55 was

amplified from plasmid pCASP-SptP120-K55-HilA (Addgene) using
primer pair oWCC159/0WCC160. To construct full-length RAF1 Bind-
ingPCA plasmid (pGJJ623), the sequence of full-length RAF1 (amino
acids 1to 648) was amplified from a gene block synthesized by IDT
(Integrated DNA Technologies) using primer pair oWCC252/0WCC253.
To construct the BindingPCA co-expression RASGAP plasmid, the cyc1
promoter-driven RASGAP cassette was amplified in four fragments,
cycl promoter from AbundancePCA plasmid (pGJJ271) using primer
pair oWCC182/0WCC183, two fragments of RASGAP (amino acids 714
to 1047) were amplified from ORFeome plasmid (81020C02, Protein
Technologies Unit, CRG) using primer pairs oWCC184/0WCC97, and
0WCC96/0WCC129, cycI terminator was amplified from AbundancePCA
plasmid (pGJJ271) using primer pair o WCC128/0WCC140, which were
then assembled by Gibson reaction (Protein Technologies Unit, CRG)
at 50 °C for 1 h with RAF1-RBD BindingPCA plasmid (pGJJ336) which
was digested by NgoMIV. To construct the KRAS mutagenesis plasmid
(pGJJ380), pGJJ191 plasmid was constructed firstly which contained a
streptomycinresistance gene cassette. The pGJJ191 plasmid was ampli-
fied in two fragments: one ori cassette which also contained Avrll and
Hindlll restriction sites using primer pair 0GJJ308/0GJJ309, the other
streptomycin resistance gene cassette using primer pair 0GJJ310/
0GJJ311, which were then assembled by Gibson reaction at 50 °C for
1h. The KRAS sequence was digested by Avrll and HindIIl from Abun-
dancePCA plasmid and ligated into digested pGJJ191. Then a BbvCl
restriction site was introduced using primer pair o WCC51/oWCC52.

Mutagenesis library construction

The plasmid-based one-pot saturation (nicking) mutagenesis protocol
was used in this study™. KRAS are divided to three blocks in order to be
fully sequenced by lllumina paired-end 150 NextSeq pipeline.

Aninitial single round of nicking mutagenesis using equimolar mixes
of degenerate KRAS primers (Supplementary Table 2) was obtained for
tworeasons: (1) To obtain random single mutants to use as template for
another round of nicking mutagenesis (by randomly selecting single
colonies and verified by Sanger sequencing); and (2) to quantify the
degenerate primer positional bias and compensate for itin the shallow
double mutant libraries.

To construct three final KRAS libraries, an equimolar pool of single
mutants of each block and wild type were used as the plasmid template
foraround of nicking mutagenesis. The mutants were chosen based on
their varying binding affinities to RAF1 (refs. 18,19), ensuring a range
of affinities within the mutant pools (block 1: T2K, V14S, L6H, E37G,
Y40A,D38C, L19P, Q61L, E63V; block 2:184L, F82S, L113F, Y71F, K101R,
A66P,M72G, F78W, E63V, V112N; block 3: K176 C, R149V, L133A, Y137K,
L159A and A146F). Additionally, the mutants of interest (G12C, G12D,
G12V, S17N and T35S) were also included in block 1. To compensate
for the extreme positional biases, each mutagenic primer was mixed
inthe pool inversely to the mean read counts per position from these
first-round nicking libraries.

The libraries midi preps were digested with Hindlll and Nhel
restriction enzymes and the insert containing the mutated protein
was gel purified (MinElute Gel Extraction Kit, QIAGEN) to be later
clonedinto the AbundancePCA plasmid and BindingPCA plasmids by
temperature-cycleligation. The AbundancePCA plasmid and Binding-
PCA plasmids were all digested by Hindlll and Nhel enzymes and puri-
fied using the QlAquick Gel Extraction Kit (QIAGEN). The assembly of
AbundancePCA libraries and BindingPCA libraries were done overnight
by temperature-cycle ligation using T4 ligase (New England Biolabs)
according to the manufacturer’s protocol, 67 fmol of backbone and
200 fmol of insert in a 33.3 pl reaction. The ligation was desalted by
dialysis using membrane filters for 1 h and later concentrated 3.3x
using a SpeedVac concentrator (Thermo Scientific).

Allconcentrated assembled libraries were transformed into NEB10(
High-efficiency Electrocompetent Escherichia coli cells according to
the manufacturer’s protocol (volumes used in each library specifiedin
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Supplementary Table 3). Cells were allowed to recover in SOC medium
(NEB10B Stable Outgrowth Medium) for 30 min and later transferred
t0200 mlLB mediumwith ampicillin 4x overnight. The total number of
estimated transformants for each library can be foundin Supplemen-
tary Table 3. One-hundred millilitres of each saturated E. coli culture
were collected next morning to extract the plasmid library using the
QIAfilter Plasmid Midi Kit (QIAGEN).

Methotrexate selection assays

The methotrexate selection assay protocol was describedin a previous
study®. The high-efficiency yeast transformation protocol was scaled
involume depending on the targeted number of transformants of each
library. The transformation protocol described below (adjusted to
a pre-culture of 175 ml of YPDA) was scaled up or down in volume as
reported in Supplementary Table 3.

Foreachoftheselectionassays (3 blocks x 6 BindingPCA + 3 blocks x 1
AbundancePCA), 3independent pre-cultures of BY4742 were grownin
20 mlstandard YPDA at 30 °C overnight. The next morning, the cultures
were diluted into 175 ml of pre-warmed YPDA at an optical density at
600 nm (OD,,) of 0.3. The cultures were incubated at 30 °C for 4 h.
After growth, the cells were collected and centrifuged for 5 min at
3,000g, washed with sterile water and later with SORB medium (100 mM
lithium acetate, 10 mM Tris pH 8.0,1 mM EDTA, 1 M sorbitol). The cells
were resuspended in 8.6 ml of SORB and incubated at room tempera-
ture for 30 min. After incubation, 175 pl of 10 mg ml™ boiled salmon
sperm DNA (Agilent Genomics) was added to each tube of cells, as well
as 3.5 pgof plasmid library. After gentle mixing, 35 ml of plate mixture
was added to each tube to be incubated at room temperature for a
further 30 min. DMSO (3.5 ml) was added to each tube and the cells
were then heatshocked at42 °C for 20 min (inverting tubes from time
totime to ensure homogeneous heat transfer). After heat shock, cells
were centrifuged and resuspended in~50 ml of recovery medium and
allowed torecover for1hat 30 °C. Next, cells were again centrifuged,
washed withSC-URA medium and resuspended in SC-URA (volume used
ineachlibrary foundin Supplementary Table 3). After homogenization
by stirring, 10 pl were plated on SC-URA petri dishes and incubated for
~48 hat 30 °Cto measure the transformation efficiency. Theindepend-
entliquid cultures were grown at 30 °C for ~48 h until saturation. The
number of yeast transformants obtained in each library assay can be
found in Supplementary Table 3.

For each of the BindingPCA or AbundancePCA assays, each of the
growth competitions was performed right after yeast transformation.
After thefirst cycle of post-transformation plasmid selection, a second
plasmid selection cycle (input) was performed by inoculating SC-URA/
MET/ADE at astarting ODy,, = 0.1with the saturated culture (volume of
eachexperimentspecifiedinSupplementary Table 3). Cells were grown
for 4 generations at 30 °C under constant agitation at 200 rpm (selec-
tiontime of each experiment specified in Supplementary Table 3). This
allowed the pool of mutants to be amplified and enter the exponential
growth phase. The competition cycle (output) was then started by
inoculating cells from the input cycle into the competition medium
(SC-URA/MET/ADE + 200 pg ml™ methotrexate) so that the starting
0Dy, Was 0.05. For that, the adequate volume of cells was collected,
centrifuged at 3,000 rpm for 5 min and resuspended in the pre-warmed
output medium. Meanwhile, each input replicate culture was split in
two and collected by centrifugation for 5 min at 5,000g at 4 °C. Yeast
cells were washed with water, pelleted and stored at -20 °C for later
DNA extraction. After -4 generations of competition cycles, each out-
put replicate culture was split in two and collected by centrifugation
for 5min at 5,000g at 4 °C, washed twice with water and pelleted to
be stored at -20 °C.

DNA extractions and plasmid quantification
The DNA extraction protocol used was described previously®. A50 ml
collected culture of OD¢,, = 1.6 is described below. Cell pellets (one

for each experiment input or output replicate) were resuspended
in 1 ml of DNA extraction buffer, frozen by dry ice-ethanol bath
and incubated at 62 °C water bath twice. Subsequently, 1 ml of
phenol:chloroform:isoamyl alcohol 25:24:1 (equilibrated in 10 mM
Tris-HCI,1mMEDTA, pH 8) was added, together with 1 g of acid-washed
glass beads (Sigma Aldrich) and the samples were vortexed for 10 min.
Samples were centrifuged at room temperature for 30 minat4,000 rpm
and the aqueous phase was transferred into new tubes. The same step
wasrepeated twice. Three molar sodium acetate (0.1 ml) and 2.2 ml of
pre-chilled absolute ethanol were added to the aqueous phase. The
samples were gently mixed and incubated at —20 °C for 30 min. After
that, they were centrifuged for 30 min at full speed at 4 °Cto precipitate
the DNA. The ethanol was removed and the DNA pellet was allowed to
dry overnight at room temperature. DNA pellets were resuspended
in 0.6 ml TE 1x and treated with 5 pl of RNaseA (10 mg ml™, Thermo
Scientific) for 30 minat 37 °C. To desaltand concentrate the DNA solu-
tions, QIAEX Il Gel Extraction Kit was used (50 pl of QIAEX Il beads).
The samples were washed twice with PE buffer and eluted twice by
125 pl of 10 mM Tris-HCl buffer, pH 8.5 and then the two elutions were
combined. Finally, plasmid concentrations in the total DNA extract
(that also contained yeast genomic DNA) were quantified by quanti-
tative PCR using the primer pair 0GJJ152/0GJJ153, that binds to the ori
region of the plasmids.

Sequencing library preparation

The sequencing library preparation protocol was described previ-
ously®. The sequencing libraries were constructed in two consecu-
tive PCR reactions. The first PCR (PCR1) was designed to amplify the
mutated protein of interest and toincrease the nucleotide complexity
ofthefirst sequenced bases by introducing frame-shift bases between
the adapters and the sequencing region of interest. The second PCR
(PCR2) was necessary to add the remainder of the Illumina adapter and
demultiplexing indexes.

Toavoid PCRbiases, PCR1 of eachindependent sample (input/output
replicates of any of the yeast assays) was run with an excess of plasmid
template 20-50 times higher than the number of expected sequencing
reads per sample. Each reaction started with a maximum of 1.25 x 10’
template plasmid molecules per microlitre of PCR1, avoiding introduc-
ingmore yeast genomic DNA thatinterfered with the efficiency of the
PCRreaction. For thisreason, PCR1s were scaled up in volume as speci-
fied in Supplementary Table 3. The PCR1 reactions were run using Q5
Hot Start High-Fidelity DNA Polymerase (New England Biolabs) accord-
ing to the manufacturer’s protocol, with 25 pmol of pooled frame-shift
primers as specified in Supplementary Table 1 for different blocks (for-
ward and reverse primers were independently pooled according to the
nucleotide diversity of each oligonucleotide, Supplementary Table1).
The PCR reactions were set to 60 °C annealing temperature, 10 s of
extension time and run for 15 cycles. Excess primers were removed
by adding 0.04 pl of ExoSAP-IT (Affymetrix) per microlitre of PCR1
reactionand incubated for 20 min at 37 °C followed by an inactivation
for 15 min at 80 °C. The PCRs of each sample were then pooled and
purified using the MinElute PCR Purification Kit (QIAGEN) according
to the manufacturer’s protocol. DNA was eluted in EB to a volume six
times lower than the total volume of PCRI.

PCR2 reactions were run for each sample independently using Hot
Start High-Fidelity DNA Polymerase. The total reaction of PCR2 was
reduced to half of PCR1, using 0.05 pl of the previous purified PCR1
per microlitre of PCR2. In this second PCR the remaining parts of the
Illumina adapters were added to the library amplicon. The forward
primer (5’ P5Illumina adapter) was the same for all samples, while the
reverse primer (3’ P7 Illumina adapter) differed by the barcode index
(oligonucleotide sequences in Supplementary Table 1), to be subse-
quently pooled together and demultiplex them after deep sequenc-
ing (indexes used in each replicate of each sequencing run found in
Supplementary Table 3). Eight cycles of PCR2s were run at 62 °C of



annealing temperature and 10 s of extension time. All reactions from
the same sample were pooled together and an aliquot was runon a
2% agarose gel to be quantified. All samples were purified using the
QIAEX Il Gel Extraction Kit. The purified amplicon library pools were
subjected to lllumina 150 bp paired-end NextSeq sequencing at the
CRG Genomics Core Facility.

Sequencing data processing

FastQ files from paired-end sequencing of all BindingPCA and Abun-
dancePCA experiments were processed with DiMSum v1.2.9 (ref. 41)
(https://github.com/lehner-lab/DiMSum) using default settings with
minor adjustments. Supplementary Table 4 contains DiMSum fitness
estimates and associated errors for all experiments. Experimental
design files and command-line options required for running DiM-
Sum on these datasets are available on GitHub (https://github.com/
lehner-lab/krasddpcams). In all cases, adaptive minimum Input read
count thresholds based on the corresponding number of nucleotide
substitutions (‘fitnessMinInputCountAny’ option) were selected in
order to minimize the fraction of reads per variant related to sequenc-
ing error-induced ‘variant flow’ from lower order mutants.

Variant counts associated with all samples (output from DiMSum
stage 4) were further filtered using acustom script toretain only those
variants with single amino acid substitutions including a G/T in the
third codon position (encoded by NNK) or amino acid substitutions
representing high confidence backgrounds. Thelatter were defined as
single amino acid substitutions observed atleast 200 times (in different
double amino acid variants) in at least five (out of a total of seven) Bind-
ingPCA/AbundancePCA experiments. For double amino acid variants,
we required one of the constituent single amino acid variants to be a
high confidence background mutation. All read counts associated with
remaining single or double amino acid variants (probably the result of
PCRandsequencingerrors) were discarded. Finally, fitness estimates
and associated errors were then obtained from the resulting filtered
variant counts with DiMSum (countPath option).

Thermodynamic model fitting with MoCHI

We used MoCHI V0.9 (https://github.com/lehner-lab/MoCHI)*’ tofita
global mechanistic model to all 21 ddPCA datasets (7 phenotypes x 3
blocks) simultaneously. The software is based on our previously
described genotype-phenotype modelling approach®® with additional
functionality and improvements for ease of use and flexibility.

In brief, we model individual KRAS PPIs as an equilibrium between
threestates: unfolded and unbound (uu), folded and unbound (fu), and
folded and bound (fb). We assume that the probability of the unfolded
and bound state (ub) is negligible and free energies of folding and
binding are additive—thatis, the total binding and folding free energy
changes of an arbitrary variant relative to the wild-type sequence is
simply the sum over residue-specific energies corresponding to all
constituent single amino acid substitutions. Furthermore, we assume
binding energies are specific for each binding partner whereas fold-
ingenergies are shared or intrinsic to KRAS—that is, unaffected by the
identity, presence or expression of a given binding partner. We also
assume that mutation effects onabundance level predominantly arise
from folding free energy changes. However, protein abundance canbe
influenced by factors beyond folding, such as degradation or cellular
processes, which may skew the free energy estimates.

We configured MoCHI parameters to specify aneural network archi-
tecture consisting of seven additive trait layers (free energies)—thatis,
one for each biophysical trait to be inferred (6 binding and 1 folding),
aswell as onelinear transformation layer per experiment (3 Abundan-
cePCA and 18 BindingPCA fitness). The specified nonlinear transfor-
mations ‘TwoStateFractionFolded’ and ‘ThreeStateFractionBound’
derived from the Boltzmann distribution function relate energies to
proportions of folded and bound molecules respectively. The target
(output) data to fit the neural network comprises fitness scores for

wild-type, single and double amino acid substitution variants from
all21ddPCA datasets.

Arandom 30% of double amino acid substitution variants was held
out during model training, with 20% representing the validation data
and 10% representing the test data. Validation datawere used to evalu-
atetraining progress and optimize hyperparameters (batch size). Opti-
mal hyperparameters were defined as those resulting in the smallest
validation loss after 100 training epochs. Test data were used to assess
final model performance.

MoCHI optimizes the parameters 6 of the neural network using sto-
chastic gradient descent on a loss function L[] based on a weighted
and regularized form of mean absolute error:

N-1

LIO1=1N Y ly, -3, ;' +2, 1161
n=0

wherey,and g,are the observed fitness score and associated standard
error respectively for variant n, y, is the predicted fitness score, N is
thebatch size and A, is the L, regularization penalty. In order to penal-
ize very large free energy changes (typically associated with extreme
fitness scores) we set A, to 10~ representing light regularization. The
mean absolute error is weighted by the inverse of the fitness error(o;l)
inorder todownweight the contribution of less confidently estimated
fitness scores to the loss. Furthermore, in order to capture the uncer-
tainty inddPCA fitness estimates, the training data were replaced with
arandom sample from the fitness error distribution of each variant.
The validation and test data were left unaltered.

Models were trained with default settings—that is, for amaximum
of1,000 epochs using the Adam optimization algorithm with aninitial
learning rate of 0.05. MoCHI reduces the learning rate exponentially
(y=0.98)if the validation loss has notimproved inthe most recent ten
epochs compared to the preceding ten epochs. In addition, MoCHI
stops model training early if the wild-type free energy terms over the
most recent ten epochs have stabilized (standard deviation <107).

Free energies are calculated directly from model parameters as
follows: AG, = ObRT and AG;= 6fRT, where T=303 Kand R =0.001987
kcal K™ mol™. We estimated the confidence intervals of model-inferred
free energies using a Monte Carlo simulation approach. The vari-
ability of inferred free energy changes was calculated between ten
separate models fit using data from (1) independent random training—
validation-test splits; and (2) independent random samples of fitness
estimates fromtheir underlyingerror distributions. Confidentinferred
free energy changes are defined as those with Monte Carlo simulation
derived 95% confidence intervals of less than1 kcal mol™. Supplemen-
tary Table 5 containsinferred binding and folding free energy changes
of mutations for all binding partners.

Recombinant protein sample preparation

KRAS residues 1-169 fused to an N-terminal His, tag and a TEV pro-
tease cleavage site was cloned into a pCoofy31 vector, and variants
were generated by using the QS5 site-directed mutagenesis kit (New
England Biolabs). Vectors were transformed into E. coli BL21 compe-
tent cells (NEB), and single colonies were picked to grow overnight
pre-cultures to saturation in Luria-Bertani broth (LB) containing
33 ug ml™ kanamycin. Ten millilitres of the pre-cultures were used to
inoculate antibiotic-supplemented 11LB cultures, which were grown
at24 °Cto 0Dy, = 0.4, thenat 18 °Cto OD,, = 0.6. Protein expression
wasinduced with 0.5 mMisopropyl B-D-1-thiogalactopyranoside (IPTG),
and induced cultures were grown at 18 °C overnight. Cells were col-
lected by centrifugation (15 min, 3,000g, 4 °C), resuspended in KRAS
lysis buffer 20 mM Tris, 500 mM NaCl, 25 mMimidazole, 5 mM MgCI2,
2 mM -mercaptoethanol, pH 8) supplemented with one tablet of Pierce
protease inhibitor tablets, 0.5 mg mI™ PMSF (both from ThermoFisher),
0.1 mg ml™ bovine pancreas DNAsel and 1.5 mg ml™ chicken egg white
lysozyme (both from Sigma Aldrich), and lysed in an Emulsiflex-C5
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homogenizer (Avestin) atamaximum pressure of 1,500 psi. Cell debris
was removed by ultracentrifugation (20 min, 40,000g, 4 °C) and the
cleared lysate was loaded on a His-Trap Fast Flow columnmounted onan
Akta Pure chromatography system (both from Cytiva). Column-bound
recombinant KRAS variants were washed with KRAS lysis buffer con-
taining1 MKCl and eluted over a15-column-volume gradient with lysis
buffer containing 0.5 M imidazole. Collected 0.25 ml fractions were
analysed by SDS-PAGE, pooled based on purity and concentrated using
Amicon 10 kDa MWCO centrifugal filters (Merck Millipore).

Nucleotide exchange to load the non-hydrolysable GTP analogue
guanosine 5’-[,y-imido]triphosphate (GppNHp, Sigma Aldrich) was
achieved by adapting a previously detailed method*. In brief, concen-
trated KRAS variants were diluted to a concentration of 1.8 mg ml™
and afinal volume of 2.5 ml in GppNHp loading buffer (50 mM Tris,
200 mM (NH,),SO,, 2 mM -mercaptoethanol, pH 8) containing 3 mg
of GppNHp. After 1 hincubation at 4 °C in a rotating wheel, samples
were passed througha PD-10 columnand eluted with 3.5 ml of GppNHp
loading buffer. 30 units (6 pl) of QuickCIP (NEB) were added along
with 2 mg of GppNHp, and samples were incubated for an additional
1honarotating wheel at 4 °C. Subsequently, MgCl, was added to a
concentration of 30 mM.

Both GDP and GppNHp-loaded samples were concentrated down
to 0.5 mland injected to a Superdex 7510/300 GL column (Cytiva)
equilibrated with SPR buffer 20 mMHEPES, 150 mM NaCl,1 mM TCEP,
pH 7.4) and mounted on an Akta Pure system for size-exclusion chro-
matography. 0.5 ml fraction purity was assessed by SDS-PAGE, and
fractions with >95% purity were flash-frozen in liquid nitrogen and
stored at —80 °C until required for SPR measurement.

RAF1residues 56-131, as well as DARPin K55 residues 1-156, fused to
anN-terminal Twin-Strep tagand a3 CHRV protease cleavage site were
also cloned into pCoofy31. Inoculated cultures were grown at 37 °C to
ODyyo = 0.6,induced with1 mMIPTG, and collected after 3 hgrowth at
37 °C.Clearedlysatesinligand lysis buffer (100 mM Tris, 150 mM NacCl,
1mMEDTA, pH 8) were loaded on a StrepTrap XT prepacked chroma-
tography column mounted on an Akta Pure system (Cytiva). Bound
protein was step-eluted with ligand lysis buffer containing 50 mM bio-
tin, fractions were pooled based on SDS-PAGE-assessed purity and
concentrated using 10 kDa MWCO centrifugal filters. Size-exclusion
chromatography in SPRbuffer and storage were performed inan analo-
gous manner as described above for KRAS.

Surface plasmon resonance

Samples were thawed onice, centrifuged at 13,000g for 10 min, trans-
ferred to anew tube, and quantified using a NanoDrop One (Thermo-
Fisher). Binding kinetics and affinity of KRAS variants for RAS or K55
were evaluated by surface plasmon resonance on a BIAcore T200
instrument (Cytiva) with SPR running buffer (10 mM HEPES, 150 mM
NacCl, 0.05% Tween 20, pH 7.2). The assay format involved a Series S
CMS chip functionalized with Streptactin (50 pg ml™). In brief, amine
coupling was used to create a Streptactin surface (Strep-Tactin XT)
following instructions provided with the Twin-Strep-tag capture kit
(IBA Lifesciences). Twin-Strep-tagged RAS or K55 protein constructs

were captured on flow cell 4, leaving flow cell 3 as a subtractive refer-
ence. Capture levels of RAS or K55 were targeted between 50 and 100
resonance units, after which increasingly concentrated samples of
KRAS variants were flowed over immobilized RAS or K55 (50 pl min™
for1min)andallowed to dissociate up to3 min. Aconcentration series
of each KRAS variant ranging from 0.74 nM to 60 nM was used to ana-
lyse binding to RAS or K55. The capture surface was regenerated with
a 60 sinjection of 3 M guanidine hydrochloride (50 pl min™ for1min).
Allsensograms were analysed using a 1:1 Langmuir binding model.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All DNA sequencing data have been deposited in the Sequence Read
Archive (SRA) under BioProject PRINA907205. All fitness measure-
ments and free energies are provided in Supplementary Tables4 and 5
andreleased on MAVEdb (MAVEdb accession: urn:mavedb:00000115).

Code availability

Source code for fitting thermodynamic models (MoCHI) is available at
https://github.com/lehner-lab/MoCHI. Source code for all downstream
analyses and to reproduce all figures described here is available at
https://github.com/lehner-lab/krasddpcams.
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Extended DataFig.1|Experimental reproducibility and thermodynamic
modelfitting. a,b, Scatter plots showing the reproducibility of each block’s
RAF1BindingPCA (a) and AbundancePCA (b) fitness estimates from ddPCA.
Pearson’srindicated onthe top right corner.c, Comparison of RAF1BindingPCA
fitness to previously reported KRAS-RAF1binding Escore®. Pearson’sr=0.82.
d, Comparison of individually measured growthrates to their corresponding
fitness from deep sequencing for KRAS. Thered line corresponds to alinear
regression model. Pearson’s ris shown. e, Single mutation fitness density
distributions. f,2D density plots showing non-linear relationships (global
epistasis) between observed AbundancePCA fitness and changes in free energy
offolding. g, 2D density plots comparing model predictions and observations

of AbundancePCA fitness for held out test data (comprising 10% of double aa
substitution variants held out during model training). h, Same as (g) except the
modelwastrained using datafromreplicates1and 2 and evaluated using data
fromreplicate 3., Non-linear relationships (global epistasis) between observed
BindingPCA fitness and both free energies of binding and folding. j, 2D density
plots comparing model predictions and observations of BindingPCA fitness for
held outtest data. k, Same as (j) except the model was trained using datafrom
replicates1and 2 and evaluated using datafromreplicate 3. The three columns
inpanels (g-k) indicate data correspondingto the three mutagenesis library
blocks (block1, left; block 2, middle; block 3, right).
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(GppNHp-loaded) is shown for reference. b, Enrichments are quantified for
changes fromeach WT aaand for changesto each aa. Enrichments are also
quantified for changes from and toamino acids with particular physicochemical
properties: hydrophobic(A,V,1,L,M, F,Y, W) and charged (R, H, K, D, E). Results
areshown for all residues outside the bindinginterface.

Extended DataFig. 6| Allosteric regulation for six binding partners.

a, Surface plasmon resonance (SPR) single-cycle kinetics (SCK) measurements
oftheinvitrobinding of aKRAS major allosteric site variant, AS9R, and a pocket
3KRAS variant P110F, bothin the active state (GppNHp-loaded) to the DARPin
K55 (raw data as colour scatter plot, 2 replicates per measurement, datafitas
solid black line). An analogous measurement for WT KRAS in the active state
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All DNA sequencing data have been deposited in the Sequence Read Archive (SRA) under BioProject PRINA907205: https://www.ncbi.nlm.nih.gov/bioproject/
PRINA907205

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for
sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this information has not
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes during the construction of the mutant libraries and the yeast competition experiments were always several fold larger than the
complexity of the mutations combinations to ensure loosing as least as possible amino acid variants during the experiments. The minimum
number of yeast transformants in each of the bulk competition replicate (the strongest bottleneck in the experimental design) was calculated
so that the same least abundant mutations in the library (double amino acid substitutions) would be found on average in 20-25 different cells.

Data exclusions  Sequencing reads that did not pass the QC filters using DiMSum v1.2.9 (https://github.com/lehner-lab/DiMSum) were excluded. For all
samples where the background amino acid mutations were known, variants were further filtered using a custom script to retain double AA
variants consisting of single AA mutations in these designed backgrounds.

Replication All bulk yeast competitions per assay and protein library were performed in triplicates. All attempts of replication were successful.

Randomization  Not relevant for this study.

Blinding Not relevant for this study.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Saccharomyces cerevisiae BY4742 (MATa his3A1 leu2A0 lys2A0 ura3A0)
Authentication The cell line was not authenticated
Mycoplasma contamination Not tested for Mycoplasma (not applicable)

Commonly misidentified lines -
(See ICLAC register)
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