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Abstract 37 
 38 
Many peptide hormones form an alpha-helix upon binding their receptors1–4, and sensitive 39 
detection methods for them could contribute to better clinical management of disease5. De 40 
novo protein design can now generate binders with high affinity and specificity to 41 
structured proteins6,7. However, the design of interactions between proteins and short 42 
peptides with helical propensity is an unmet challenge. Here, we describe parametric 43 
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generation and deep learning-based methods for designing proteins to address this 44 
challenge. We show that by extending RFdiffusion8 to enable binder design to flexible 45 
targets, and to refining input structure models by successive noising and denoising 46 
(partial diffusion), picomolar affinity binders can be generated to helical peptide targets 47 
both by refining designs generated with other methods, or completely de novo starting 48 
from random noise distributions. To our knowledge these are the highest affinity designed 49 
binding proteins against any protein or small molecule target generated directly by 50 
computation without any experimental optimisation. The RFdiffusion designs enable the 51 
enrichment and subsequent detection of parathyroid hormone and glucagon by mass 52 
spectrometry, and the construction of bioluminescence-based protein biosensors. The 53 
ability to design binders to conformationally variable targets, and to optimise by partial 54 
diffusion both natural and designed proteins, should be broadly useful.  55 
 56 
Main 57 
 58 
Peptide hormones, such as parathyroid hormone (PTH), neuropeptide Y (NPY), glucagon (GCG), 59 
and secretin (SCT), which adopt alpha helical structures upon binding their receptors1–4, play key 60 
roles in human biology and are well established biomarkers in clinical care and biomedical 61 
research (Fig. 1a). There is considerable interest in their sensitive and specific quantification9, 62 
which currently relies on antibodies that require substantial resources to generate, can be difficult 63 
to produce with high affinity, and often have less-than-desirable stability and reproducibility10–14. 64 
The loop-mediated interaction surfaces of antibodies are not particularly well suited to high 65 
specificity binding of extended helical peptides - almost all anti-peptide antibodies bind their 66 
targets in non-helical conformations15. Designed proteins can be readily produced with high yield 67 
and low cost in E. coli and have very high stability, but while there have been considerable 68 
advances in de novo design of binders for folded proteins6,7, the design of proteins that bind helical 69 
peptides with high affinity and specificity remains an outstanding challenge. Design of peptide-70 
binding proteins is challenging for two reasons. First, proteins designed to bind folded proteins, 71 
such as picomolar affinity hyper-stable 50-65 residue minibinders7,16, have shapes suitable for 72 
binding rigid concave targets, but not for cradling extended peptides. Helical peptides can readily 73 
associate to form coiled coil assemblies, and this principle has been used to design binders for a 74 
calmodulin peptide17, but coiled coil subunits generally self associate in the absence of binding 75 
partners due to considerable exposed hydrophobic surface, considerably reducing the effective 76 
target binding affinity. Second, peptides have fewer residues to interact with, and are often 77 
partially or entirely unstructured in isolation18. As a result, there can be an entropic cost of 78 
structuring the peptide into a specific conformation19, which compromises the favourable free 79 
energy of association. Progress has been made in designing peptides that bind to extended beta 80 
strand structures20 and polyproline II conformations21 using protein side chains to interact with the 81 
peptide backbone, but such interactions cannot be made with alpha helical peptides due to the 82 
extensive internal backbone - backbone hydrogen bonding. 83 
 84 
Design of peptide binding scaffolds 85 
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We set out to develop general methods for designing proteins that bind peptides in helical 87 
conformations. To fully leverage recent advances in protein design, we explored both parametric 88 
and deep learning-based approaches. For parametric generation, we reasoned that helical bundle 89 
scaffolds with an open groove for a helical peptide could provide a general solution to the helical 90 
peptide binding problem: the extended interaction surface between the full length of the helical 91 
peptide target and the contacting helices on the designed scaffold could enable high affinity, 92 
specific binding, while the helices flanking the groove could limit self association of the recessed 93 
hydrophobic surfaces. In parallel, we reasoned that deep learning methods, which do not pre-94 
specify scaffold geometries, could permit the exploration of different potential solutions to peptide 95 
binding. 96 
We began by exploring parametric methods for generating backbones with overall “groove” 97 
shapes. Using the Crick parameterization of alpha-helical coiled coils22, we devised a method to 98 
sample scaffolds consisting of a three helix groove supported by two buttressing helices (Fig. 1b, 99 
see Methods). We assembled a library sampling a range of supercoiling and helix-helix spacings 100 
to accommodate a variety of helical peptide targets (Supplementary Fig. S1-3). We then used this 101 
library to design binders to PTH, GCG, and NPY, and screened 12 designs for each target using 102 
a nanoBiT split luciferase binding assay. Many of the designs bound their targets (3/12, 4/12, and 103 
8/12 to PTH, GCG, and NPY) but with only micromolar affinities (Fig. 1b, Supplementary Fig. S4a-104 
c). These results suggest that groove-shaped scaffolds can be designed to bind helical peptides, 105 
but also that design method improvement was necessary to achieve high-affinity binding.  106 
We next explored using RoseTTAFold Inpainting (RFjoint)23, a model that can jointly design protein 107 
sequences and structures, along with ProteinMPNN24, an improved sequence design method, to 108 
improve the modest affinity of our tightest parametrically designed PTH binder (Fig. 1c, left). We 109 
used RFjoint Inpainting to extend the binder interfaces and ProteinMPNN to redesign the 110 
sequences, reasoning that the combination of these two methods could lead to more favourable 111 
interactions with the peptide. Out of 192 designs tested, 44 showed binding against PTH in initial 112 
yeast display screening. Following size exclusion chromatography (SEC), the best binder was 113 
found to bind with 6.1 nM affinity to PTH using fluorescence polarisation (FP). Binding was quite 114 
specific: very little binding was observed to PTH related peptide (PTHrp), a related peptide 115 
sequence with 34% sequence identity which binds the same receptor as PTH25 (Fig. 1c, right). 116 
Overall, the affinity of the starting PTH binder was improved by approximately three orders of 117 
magnitude, and the computational model of the highest-affinity binder had 19% greater surface 118 
area contacting the target peptide (the structural extension was critical to the improvement in 119 
binding affinity; sequence redesign with ProteinMPNN of the original binding interface did not 120 
measurably increase affinity; Supplementary Fig. S5). We used the same design strategy to 121 
generate higher affinity binders for NPY and GCG. Using weak parametric binders as a starting 122 
point, we extended their binding interfaces and redesigned their sequences to generate a 231 nM 123 
affinity binder for GCG and a 3.5 µM binder for NPY after screening 96 designs (Extended Data 124 
Fig. 1a, 1b).  125 
As an alternative to de novo parametric design of scaffolds that contain grooves, we explored the 126 
threading of helical peptides of interest onto already existing designed scaffolds with interfaces 127 
that make extensive interactions with helical peptides26,27 (Fig. 1d, left, see also Supplementary 128 
Materials). We threaded sequences of peptides of interest onto these complexes, and filtered for 129 
interfacial hydrophobic interactions between the target sequence and the scaffolds17,26. The 130 
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selected scaffolds were then redesigned in the presence of the threaded target sequence with 131 
ProteinMPNN24 and the complex was predicted with AlphaFold228 (AF2; with initial guess6) and 132 
filtered on AF2 and Rosetta metrics. Initial screening using yeast surface display identified 4/66 133 
binders for SCT, which were expressed in E. coli. After purification, all 4 of the designs were found 134 
to bind with sub-micromolar affinity using FP, with the highest-affinity design binding with an 135 
affinity of 2.7 nM for SCT (Fig. 1d, right); we also made designs with Kd < 100 nM to Glucagon-136 
like peptide 1 (GLP1) and Gastric inhibitory polypeptide (GIP, Extended Data Fig. 2a, 2b). The 137 
SCT binder design bound GCG, which has 44% sequence identity to SCT4,29 , with 4 fold weaker 138 
affinity than SCT (Fig. 1d, right).  139 
 140 
Designing binders using Hallucination 141 
 142 
We next explored the use of deep learning Hallucination methods to generate helical peptide 143 
binders completely de novo, with no pre-specification of the binder or peptide geometry (Fig. 1e, 144 
left, Supplementary Fig 6a). Hallucination or “activation maximisation” approaches start from a 145 
network that predicts protein structure from sequence, and carry out an optimisation in sequence 146 
space for sequences which fold to structures with desired properties. This approach has been 147 
used to generate novel monomers30, functional-site scaffolds23 and cyclic oligomers31. 148 
Hallucination using AlphaFold2 (AF2) or RosettaFold has the advantage that neither the binder 149 
nor the peptide structure needs to be specified during the design process, enabling the design of 150 
binders to peptides in different conformations (this is useful given the unstructured nature of many 151 
peptides in solution; disordered peptides can bind in different conformations to different binding 152 
partners18). Hallucination directly optimises metrics correlated with binding, albeit with the 153 
possible hazard of generating adversarial protein sequences31. We began by designing binders 154 
to the apoptosis-related BH3 domain of Bid (Fig. 1a). The Bid peptide is unstructured in isolation, 155 
but adopts an alpha-helix upon binding to Bcl-2 family members32,33; it is therefore a model 156 
candidate for the design of helix-binding proteins. Starting from only the Bid primary sequence, 157 
and a random seed binder sequence (of length 60, 70, 80, 90 or 100 residues), we carried out a 158 
Monte Carlo search in sequence space, optimising for confident binding to the target peptide 159 
(pLDDT and pAE)6. The trajectories typically converged in 5000 steps (sequence substitutions; 160 
Supplementary Fig. 6b), and the output binder structure was subsequently redesigned with 161 
ProteinMPNN, as previously described31. All designed binders were predicted to bind to Bid in a 162 
predominantly helical conformation; the exact conformations differ between designs because only 163 
the amino acid sequence of the target is specified in advance. This protocol effectively carries out 164 
flexible backbone protein design, which can be a challenge for traditional Rosetta based design 165 
approaches for which deep conformational sampling can be very compute intensive. In line with 166 
our prediction that “groove” scaffolds would offer an ideal topology for helical peptide binding, 167 
many of the binders from this approach contain a well-defined “groove”, with the peptide predicted 168 
to make extensive interactions with the binder, typically helix-helix interactions (Extended Data 169 
Fig. 3a). 170 
We experimentally tested 46 of the Hallucinated designs (Extended Data Fig. 3a) by co-171 
expression of a GFP-tagged Bid peptide and HIS-tagged binders, with coelution of GFP and 172 
binder used as a readout for binding. 4 of these designs were further characterised, and showed 173 
soluble, monomeric expression even in the absence of peptide co-expression (Extended Data Fig. 174 
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3b), and could be pulled-down using Bid BH3 peptide immobilised on beads (Extended Data Fig. 175 
3c). Circular dichroism experiments indicated that the Bid peptide was unstructured in solution, 176 
and that helicity increased upon interaction with the Hallucinated proteins, in line with the design 177 
prediction (Extended Data Fig. 3d). The binders were highly thermostable, and, unlike the native 178 
Bcl-2 protein Mcl-1, readily refolded after (partial) thermal denaturation at 95 °C (Extended Data 179 
Fig. 3e). FP measurements revealed a 7 nM affinity binder to Bid peptide (Fig.1e, right), a higher 180 
affinity interaction than with the native partner Mcl-1 (Extended Data Fig. 3f, 3g).  181 
 182 
Design refinement with RFdiffusion 183 
 184 
We next explored using the RoseTTAFold-based denoising diffusion method RFdiffusion8. 185 
RFdiffusion directly generates protein structures with diverse topologies, and is much more 186 
compute efficient than hallucination. We first sought to extend RFdiffusion to enable improvement 187 
of the affinity of already generated helix peptide binding designs. 188 
A long standing challenge in protein design is to increase the activity of an input native protein or 189 
designed protein by exploring the space of plausible closely related conformations for those with 190 
predicted higher activity.34 This is difficult for traditional design methods as extensive full atom 191 
calculations are needed for each sample around a starting structure (using molecular dynamics 192 
simulation or Rosetta full atom relaxation methods), and it is not straightforward to optimise for 193 
higher binding affinity without detailed modelling of the binder-target sidechain interactions. We 194 
reasoned that, in contrast, RFdiffusion might be able to rapidly generate plausible backbones in 195 
the vicinity of a target structure, increasing the extent and quality of interaction with the target 196 
guided by the extensive knowledge of protein structure inherent in RoseTTAFold. Typically, during 197 
the reverse diffusion (generative) process, RFdiffusion takes random Gaussian noise as input, 198 
and iteratively refines this to a novel protein structure over many (“T”) steps (generally 200). Part 199 
way through this denoising process, the evolving structure no longer resembles “pure noise”, 200 
instead resembling a “noisy” version of the final structure. We therefore reasoned that ensembles 201 
of structure with varying extents of deviation from an input structure could be generated by 202 
partially noising initial starting structures to different extents (for example, timestep 70), and then 203 
denoising to a similar, but not identical final structure (Fig. 2a; in this case, the input coordinates 204 
to RFdiffusion at timestep 70 are from a noised starting structure, rather than a partially de-noised 205 
random distribution). 206 
We implemented this “partial diffusion” approach (see Methods), and sought first to assess the 207 
extent to which protein structures could be resampled and refined with partial diffusion. As 208 
expected, partial diffusion allowed diversification of a starting protein fold, and the magnitude of 209 
this diversity could be tuned by varying how much noise was added to a starting structure (Fig. 210 
2a). We next explored the ability of partial diffusion to “regularise” native protein backbones using 211 
as a metric AF2 structure prediction from a single sequence. We found that RFdiffusion improves 212 
the “designability” of protein backbones: ProteinMPNN sequence design on partially diffused 213 
native backbones (with high similarity to the native fold, Extended Data Fig. 4a, 4c, middle row) 214 
improved structure recapitulation (self-consistency) by AF2 relative to both the native sequence 215 
(Extended Data Fig. 4b, pink vs grey, Extended Data Fig. 4c, bottom row) and ProteinMPNN 216 
sequences generated from the original native backbone (Extended Data Fig. 4b, blue, Extended 217 
Data Fig. 4c, top row). Further, we found in tests on the well studied colicin-immunity protein 218 
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system35 that the small changes in protein backbone that partial diffusion can sample are sufficient 219 
to mediate specificity changes within protein families (Supplementary Fig. S7). Thus, partial 220 
diffusion enables protein backbone resampling and refinement, the extent of which can be tuned 221 
by varying the amount of noise added, and can considerably increase the designability of input 222 
protein models.  223 
As a first experimental test of partial diffusion, we started from our parametrically-designed 224 
Inpainted binders to GCG (with 231 nM Kd) and NPY (with 3.5 µM affinity) (Extended Data Fig. 225 
1a, 1b). Following partial noising and denoising, we identified diverse designs (Supplementary 226 
Fig. S8) that in silico, had significantly improved computational metrics compared to the starting 227 
design (Supplementary Fig. S11). We used an auxiliary potential during the denoising trajectory8 228 
which minimised the radius of gyration (see accompanying code) of the protein-peptide complex 229 
to promote additional interaction with the peptide. Initial screening with yeast surface display 230 
revealed quite high binding success rates, with 25/96 designs binding GCG, and 20/96 binding 231 
NPY at 10 nM peptide concentration. The highest affinity designs were expressed in E. coli, 232 
purified, and their binding affinities were determined using FP to be 5.6 nM to NPY (Fig. 2b, left) 233 
and below the limit of detection in the picomolar range to GCG (Fig. 2b, right). The designs were 234 
quite specific: the GCG binder bound preferentially to GCG over the closely related SCT, and, 235 
particularly notably, the NPY binder did not show any cross-reactivity to peptide YY (PYY), a 236 
member of the NPY/pancreatic polypeptide family36 with 63% sequence identity to NPY. 237 
To gain insight into the structural rearrangements generated by partial diffusion that contribute to 238 
the affinity increases, we solved the structures (Extended Data Table 2) of the original Inpainted 239 
GCG binder and the partially diffused higher affinity GCG binder. Both designs were very close 240 
to their design models. Subtle structural changes in the protein backbone between the original 241 
Inpainted design model (Fig. 2c, left, binder spectrum and GCG grey) and the partially diffused 242 
model (Fig. 2c, right, binder spectrum and GCG grey), are nearly perfectly recapitulated in the 243 
corresponding crystal structures (Fig. 2c, left, Inpainted design, binder teal and GCG yellow, 1.95 244 
Å, 0.72 Å RMSD for the Inpainted design, right, partially diffused design, binder teal and GCG 245 
yellow, 1.81 Å, 0.6 Å RMSD). Alignment of the two crystal structures (Fig. 2d, Inpainted design 246 
grey, partially diffused design teal, GCG yellow) on the structurally conserved C-terminal residues 247 
(16-29) of GCG (Supplementary Fig. S10) showed that in the partially diffused GCG binder (Fig. 248 
2e, centre, binder teal and GCG yellow) a 2.7 Å shift towards the target in the binder backbone 249 
enables an isoleucine to fit into a pocket previously occupied by a phenylalanine sidechain at 250 
position 13 (Fig. 2e, left inset). Similarly, at position 16, a 3.6 Å shift in the backbone allows a 251 
tyrosine residue to pack underneath the peptide and form a hydrogen bond to the peptide 252 
backbone where previously a serine could not make any contacts (Fig. 2e, right inset). These 253 
backbone movements and accompanying sequence changes increase the interaction shape 254 
complementarity (0.62 vs 0.67) and contact molecular surface (431 Å² vs 522 Å²) (computed on 255 
the crystal structures). We observed similar improvements in estimated binding energy (Rosetta 256 
ddG) and contact molecular surface after running partial diffusion starting from the inpainted 257 
designs for GCG and NPY (Supplementary Fig. S11a, S11b). 258 
 259 
De novo binder design using RFdiffusion  260 
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Inspired by this success at optimising binders with RFdiffusion, we next tested its ability to design 262 
binders completely de novo through unconditional binder design. We first used the fixed target 263 
structure approach of Watson et al8, and provided RFdiffusion with the sequence and structures 264 
of the two peptides in helical conformations, leaving the topology of the binding protein and the 265 
binding mode completely unspecified (Fig. 3a). From this minimal starting information, RFdiffusion 266 
generated designs predicted by AF2 to fold and bind to the targets with high in silico success 267 
rates. A representative design trajectory is shown for PTH in Supplemental Video 1; starting from 268 
a random distribution of residues surrounding the PTH peptide in a helical conformation, in 269 
sequential denoising steps the residue distribution shifts to surround the peptide and 270 
progressively organises into a folded structure which cradles nearly the entire surface of the 271 
peptide.  272 
We obtained synthetic genes encoding 96 designs for each target. Using yeast surface display, 273 
we found that 56 of the 96 designs bound to PTH at 10 nM peptide concentration. The highest 274 
affinity design again bound too tightly for accurate Kd estimation; instead FP data provides an 275 
approximate upper bound for the Kd < 500 pM (Fig. 3b, right). Binding was also highly specific; no 276 
binding was observed to the related PTHrp (Fig. 3b, right). For Bim, 25/96 of the designs bound 277 
by yeast surface display, and FP on the highest affinity design indiciated a Kd < 500 pM (Fig 3c, 278 
right). Circular dichroism temperature melts indicate that both binders are stable at 95°C (Fig. 3b, 279 
middle, 3c, middle). The completely de novo diffused binders again had considerable structural 280 
similarity to our starting groove binding concept (compare Figs. 3b, 3c, left to Fig. 1b, middle). We 281 
were able to solve the X-ray crystallographic structure (Extended Data Table 2) of the Bim binder, 282 
and found that it closely matched the design model (3.0 Å resolution, 0.57 Å RMSD, Fig. 3d). A 283 
kinked helix on the binder adjacent to the interface is well-recapitulated in the structure, and a 284 
cross-interface hydrogen bond network designed between Thr 73 and Asn 77 of the binder and 285 
Asn 20 of Bim forms in the otherwise hydrophobic interface. 286 
We next sought to generalise RFdiffusion to enable binding to flexible targets from a specification 287 
of the target sequence alone (as can be achieved with AF2 Hallucination, detailed above). We 288 
fine-tuned RFdiffusion by training on two chain systems from the PDB, noising the structure on 289 
one and providing only the sequence on the second. We found that the fine tuned version could 290 
readily design folded structures around a variety of peptides given only sequence information. We 291 
used this approach to design binders to PYY (Fig. 3e), which in the cryoEM structure with the 292 
Neuropeptide Y Y2 receptor is incompletely resolved and adopts a partially helical structure37. 293 
Starting from only the amino acid sequence of PYY, RFdiffusion generated solutions with the 294 
peptide in a range of conformations. A design with the peptide adopting a different conformation 295 
than the experimental structure bound PYY with 24.5 nM affinity (Fig. 3e, right; we explored using 296 
shorter chain lengths in these calculations, resulting in smaller designs, which likely accounts for 297 
the lower affinity than in the fixed structure case above; lower affinities were also obtained for 298 
PTH and GCG by using RFdiffusion in this regime (Extended Data Figs. 5a, 5b). 299 
 300 
Human vs machine problem solving 301 
 302 
The deep learning methods largely converged on the overall solution to the helical peptide binding 303 
design problem–groove shaped scaffolds with helices lining the binding site–that the human 304 
designers chose in the initial Rosetta parametric approaches. The increased affinity of the deep 305 
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learning designs likely derives at least in part from higher shape complementarity resulting from 306 
direct building of the scaffold to match the peptide shape; the average contact molecular surface 307 
for the partially diffused GCG binders and NPY increased by 33% and 29% respectively compared 308 
to the starting models, and the Rosetta ddG improved by 29% and 21% (Supplementary Fig. 309 
S11a, S11b). The ability of RFdiffusion de novo design to “build to fit'' provides a general route to 310 
creating high shape complementary binders to a wide range of target structures, and as noted 311 
above, partial diffusion provides a general route to sampling binders with increased affinity by 312 
making small backbone adjustments to enable placement of more space filling sidechains. 313 
 314 
Design of protein biosensors 315 
 316 
Given our success in generating de novo binders to clinically-relevant helical peptides, we next 317 
sought to test their use as detection tools for use in diagnostic assays. Compared to 318 
immunosensors, de novo protein-based biosensors can offer a more robust platform with high 319 
stability and tunability for diagnostics38. To design PTH biosensors, we grafted the 6.1 nM PTH 320 
binder into the lucCage system39 (Fig 4a), screened 8 designs for their luminescence response in 321 
the presence of PTH, and identified a sensitive lucCagePTH biosensor (LOD = 10 nM) with ~21-322 
fold luminescence activation in the presence of PTH (Fig 4b).  323 
 324 
Enrichment for LC-MS/MS detection 325 
 326 
We explored the use of our picomolar affinity RFdiffusion generated binders to PTH and GCG as 327 
capture reagents in immunoaffinity enrichment coupled with liquid chromatography-tandem mass 328 
spectrometry (LC-MS/MS), a powerful platform for detecting low-abundance protein biomarkers 329 
in human serum40. We prepared PTH and GCG binder conjugated beads as described in Methods. 330 
PTH enrichment was quantified based on the analysis of the N-terminal peptide of a tryptic 331 
digestion of PTH in human plasma41 (see Methods and Extended Data Fig. 6a). We found that 332 
the designed binder enabled capture of PTH from buffer and human plasma supplemented with 333 
PTH (the endogenous levels are too low for reliable detection) with recoveries of 53% and 43%, 334 
respectively (Fig. 4d, left). For GCG, enrichment was quantified based on the analysis of intact 335 
peptide in buffer solution (see Methods and Extended Data Fig. 6b) because recovery was low in 336 
extract (further increases in specificity will likely be necessary for actual applications). The GCG 337 
binder beads had comparable peptide capture efficiency to that of monoclonal GCG antibody 338 
(mAb) beads, with 91.1% recovery when normalised to the antibody's 100% recovery rate in a 339 
spiked buffer (Fig. 4d, right). In contrast to the antibody-coupled beads, which lost almost all GCG 340 
binding activity after the first use (Fig. 4d, right), the GCG binder-conjugated beads retained 341 
almost full binding activity in a second capture experiment (Fig. 4d, middle). This greater 342 
robustness to washing and repeated use likely reflects the exceptional stability of the designed 343 
binders (Fig. 3b middle, 3c, middle, Extended Data Fig. 3e), which could substantially lower cost 344 
(since they are no longer single use) and extend shelf life compared to antibodies. 345 
 346 
Discussion 347 
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Antibodies have served as the industry standard for affinity reagents for many years, but their use 349 
is often hampered by variable specificity and stability10,11. For binding helical peptides, the 350 
computationally designed helical scaffolds described in this paper have a number of structural 351 
and biochemical advantages. First, the extensive burial of the full length of an extended helix is 352 
difficult to accomplish with antibody loops15, but very natural with matching extended alpha helices 353 
in groove shape scaffolds. Second, designed scaffolds are more amenable to incorporation into 354 
sensors as illustrated by the LucCage PTH sensor. Third, they are more stable than antibodies, 355 
can be produced much less expensively, and can be easily incorporated into affinity matrices for 356 
enrichment of peptide hormones from human serum (the striking difference in the robustness of 357 
antibody conjugated versus binder conjugated beads to repeated use (Fig. 4d, right) highlights 358 
the differences in stability of the two modalities). Fourth, computational design avoids the need to 359 
immunise animals, which often mount weak responses to highly conserved bioactive molecules42. 360 
MS based detection of peptides following enrichment using designed binders could provide a 361 
general route forward for serological detection of a wide range of disease associated peptide 362 
biomarkers. 363 
Our results highlight the emergence of powerful new deep learning methods for protein design. 364 
The RFjoint and RFdiffusion methods were both able to improve on initial Rosetta designs, and the 365 
Hallucination approach generated high affinity binders without requiring prespecification of the 366 
bound structures. Most impressively, the RFdiffusion method rapidly generated very tight 367 
(picomolar Kds) affinity and specific binders to multiple helical peptides. RFdiffusion was 368 
previously shown to be able to design binders to folded targets8, here we demonstrate further that 369 
it can be used to improve starting designs by partial noising and denoising, and can generate 370 
binders to peptides starting from no information other than the target sequence. To our knowledge, 371 
the Bim and PTH binding proteins diffused starting from random noise are the highest affinity 372 
binders to any target (protein, peptide, or small molecule) achieved directly by computational 373 
design with no experimental optimization. We expect both the RFdiffusion de novo peptide binder 374 
design capability and the ability to resample around initial designs (before or after experimental 375 
characterization) to be broadly applicable.  376 
 377 
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 486 
Figure 1. Design strategies for binding helical peptides. (a) Helical peptide targets: Apoptosis-487 
related BH3 domains of Bid43 (PDBID:4QVE) and Bim44 (PDB ID: 3FDL), glucagon3 (GCG; PDB 488 
ID:1GCN), gastric inhibitory peptide45 (GIP; PDB ID:2QKH), secretin46 (SCT; PDB ID:6WZG), 489 
Glucagon-like peptide-147 (GLP1; PDB ID:6X18), parathyroid hormone48 (PTH; PDB ID:1ET1), 490 
parathyroid hormone-related peptide25 (PTHrP; PDB ID:7VVJ), peptide YY49 (PYY; PDB ID:2DEZ) 491 
and neuropeptide Y50 (NPY; PDB ID:7X9A). (b) Parametric approach. Left: sampling groove 492 
scaffolds varying supercoiling and helix distance to fit different targets. Middle: design model 493 
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(spectrum) and PTH target (purple) of the best parametrically designed PTH binder. Right: Split 494 
NanoBiT titration of PTH and the binder showed weak binding. (c) Inpainting binder optimization. 495 
Left: Redesign of parametrically generated binder designs using RFjoint Inpainting to expand the 496 
binding interface and ProteinMPNN to redesign the sequences. Middle: AF2 prediction of 497 
Inpainted design (spectrum) with extended interface (teal), and PTH target (purple). Right: FP 498 
measurements (n=4) indicate 6.1 nM binding to PTH and weak binding to off-target PTHrp. (d) 499 
Threading approach to peptide binder design. Left: Starting with a helix-bound scaffold, a target 500 
is threaded into the bound helix and the interface is redesigned. Middle: AF2 prediction of design 501 
(spectrum) and SCT target (orange). Right: FP measurements (n=4) indicate 3.95 nM binding to 502 
SCT and 12 nM binding to GCG. (e) Hallucinating peptide binders. Left: MCMC steps are 503 
performed in sequence space. At each step, the peptide sequence is repredicted, and changes 504 
are accepted or rejected based on interfacial contacts and AF2 metrics. The final structure is then 505 
redesigned using ProteinMPNN to avoid adversarial sequences. Middle: AF2 prediction of design 506 
(spectrum) and Bid target (blue). Right: FP measurements (n=4) indicate 7 nM binding affinity to 507 
Bid. 508 
 509 

 510 
Figure 2. Peptide binder optimization with RFdiffusion: (a) Top: Partial diffusion.  RFdiffusion 511 
is used to denoise a randomly noised starting design (left); varying the extent of initial noising 512 
(middle row) enables control over the extent of introduced structural variation (bottom row; colours, 513 
new designs; grey, original design). Bottom right: optimising helix binders. (b) Top: Design model 514 
(spectrum) of partially diffused binder to NPY (green) and FP measurements (n=4) indicating a 515 
5.3 nM binding affinity to NPY target and selectivity over PYY (brown). Bottom: Design model 516 
(spectrum) of the partially diffused binder to GCG (yellow) and FP measurements (n=4) indicating 517 
a subnanomolar binding affinity to GCG and selectivity over SCT (orange). (c) Left: model 518 
(spectrum with GCG in gray) aligns with 0.72 Å RMSD to the 1.95 Å crystal structure (teal + yellow) 519 
of the RFjoint Inpainted GCG binder. Right: model (spectrum with GCG in gray) aligns with 0.6 Å 520 
RMSD to the 1.81 Å crystal structure (teal + yellow) of the partially diffused GCG binder. (d) Left: 521 
The crystal structures of the Inpainted (gray) and partially diffused (teal + yellow) GCG binders 522 
have considerable topological similarity, there are many small readjustments. Right: FP titrations 523 
(n=4) with GCG indicate much tighter binding following partially diffusion. (e) Left inset: The crystal 524 
structure of the partially diffused backbone (teal) shows how the newly introduced Ile 13 increases 525 
shape complementarity compared to the Phe in the Inpainted binder (crystal structure in gray; 526 
structures aligned on residues 16-29 of GCG). Middle: crystal structure of the partially diffused 527 
GCG binder (teal + yellow). Right inset: The backbone shifts in the partially diffused structure (teal) 528 
enable Tyr 16 to make packing and hydrogen bonding interactions with the peptide; Ser 16 in the 529 
original design did not make any peptide contacts (grey). 530 
 531 

 532 
Figure 3. De novo peptide-binder design with RFdiffusion: (a) Schematic showing peptide 533 
binder design using RFdiffusion. Starting from a random distribution of residues around the target 534 
peptide (XT), successive RFdiffusion denoising steps progressively remove the noise leading at 535 
the end of the trajectory to a folded structure, X0, cradling the peptide. At each step t, RFdiffusion 536 
predicts the final structure pX0 given the current noise sample Xt, and a step that interpolates in 537 
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this direction is taken to generate the input for the next denoising step Xt-1. (b) Design of picomolar 538 
affinity PTH binder. Left: Design model of PTH binder (spectrum, AF2 metrics in Supplementary 539 
Table 9). Middle: Circular Dichroism (CD) data shows that the binder has helical secondary 540 
structure and is stable at 95°C (inset). Right: FP measurements (n=4) with PTH indicate a sub-541 
nanomolar binding affinity and no binding for PTHrp indicates high specificity. (c) Design of 542 
picomolar affinity Bim binder. Left: Design model of Bim binder (spectrum, AF2 metrics in 543 
Supplementary Table 2). Middle: CD data shows that the binder has helical secondary structure 544 
and is stable at 95°C (inset). Right: FP measurements (n=4) with Bim indicate a sub-nanomolar 545 
binding affinity. (d) Crystal structure of Bim binder (teal + red). Top inset: A cross-interface 546 
hydrogen bond network formed between Asn 20 of Bim and Thr 73 and Asn 77 of the binder. 547 
Bottom inset: a kinked helix in the diffused backbone accommodates Arg 13 of Bim. (e) 548 
RFdiffusion with PYY sequence input alone. Left: PYY in complex with its native Neuropeptide Y 549 
Y2 receptor37 (PDB ID: 7YON) shows flexibility at its N- and C-terminus (teal). Middle: design 550 
model of the binder (spectrum) with PYY target (brown); the peptide is more ordered in both 551 
regions (N-terminus, teal). Right: FP measurements (n=4) with PYY indicate a 24.5 nM binding 552 
affinity.  553 
 554 

 555 
Figure 4. Application of designed binders to sensing and detection. (a) The PTH lucCage 556 
biosensor. Cage and latch (left, beige), key (right, beige), and the PTH binder (grey), 557 
thermodynamically shift from the OFF to ON state in the presence of PTH peptide target (purple). 558 
This conformational change brings two luciferase halves (inactive in white, active in blue) close 559 
together leading to luminescence. (b) Left: titration of PTH results in luminescence increase (n=3). 560 
Middle: response of lucCagePTH biosensor in the linear concentration range, indicating a 10 nM 561 
limit of detection (see Supplementary Methods). Right: titration curve of 10 nM 562 
lucCagePTH+lucKey to various concentrations of PTH (n=3). (c) LC-MS/MS enrichment 563 
experiment schematic; the Trypsin digestion step was skipped for the GCG binder. (d) Left: LC-564 
MS/MS recovery percentages for triplicate measurements of an N-terminal tryptic peptide of PTH. 565 
The negative control comprised bovine serum albumin (BSA) mixed with PTH in a buffer solution. 566 
Right: Recovery percentage for triplicate measurements of intact GCG peptide normalised to the 567 
mAb percent recovery (n=3). Following the first binding and elution experiments, beads were 568 
extensively washed and resuspended in PBS-CHAPS 0.1%, and then used in a second pull 569 
down experiment. An unrelated binder attached to the magnetic beads mixed with GCG in buffer 570 
was used as a negative control. 571 
 572 
Methods 573 
 574 
Computational Methods 575 
 576 
Parametric design of groove-shaped scaffold library and use for binder design 577 
 578 
The parametric groove-shaped scaffold library was sampled using a random sampling approach, 579 
where key parameters22 were selected randomly from specific distributions. An even distribution 580 
of bundle “lengths” was sampled, where each parametric helix was 15-19 residues long. A 581 
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supercoiling value was randomly selected from a biased distribution favouring more supercoiled 582 
scaffolds, given that these scaffolds were more likely to fail in the subsequent looping step (Figure 583 
1b, Supplementary Fig. S1). This biased sampling strategy was chosen to achieve a more uniform 584 
distribution of supercoiling within the final scaffold library, with sufficient numbers of highly-585 
supercoiled bundles. An average helix neighbour distance value was randomly selected from a 586 
Gaussian distribution informed by native protein helical bundle geometries (Figure 1b, 587 
Supplementary Fig. S1). The distance of each helix from its neighbours was independently 588 
randomly selected from a much tighter Gaussian distribution centred at the preselected average 589 
helix neighbour distance value, to provide some noise within a given scaffold to helix distances 590 
and allow for heterogeneous amino acid selections (Supplementary Fig. S2). Values for helix 591 
phase and Z displacement were randomly sampled for each helix. The “groove” consisting of 3 592 
helices was first sampled as a helical bundle using the Crick parameterisation of alpha-helical 593 
coiled coils, around an imaginary central helix where the target was to later be docked. Next, the 594 
two buttressing helices were sampled with the same parameterisation, but moved radially outward 595 
with randomly sampled helix neighbour distances as well as an additional randomly sampled tilt. 596 
This process was used to sample a set of 200k arrangements of 5 helices. Next, the Rosetta 597 
ConnectChainsMover51 was used to loop this set into approximately 135k successful scaffold 598 
backbones. These backbones were designed and filtered using Rosetta52 (including flexible 599 
backbone design) to yield a final library of 18 thousand scaffolds. Backbones were filtered on 600 
metrics including buried nonpolar surface area per residue, Rosetta score per residue, percent 601 
alanine, exposed hydrophobics per residue, and Rosetta “holes”53. This library was used to design 602 
binders to different helical peptide targets using an adapted version of the miniprotein binder 603 
design computational pipeline used by Cao et al7, in which only the binder interface was designed 604 
and the target was restricted to only rotamer repacking.  605 
 606 
RFjoint Inpainting  607 
 608 
To sample around an initial putative binder, and to extend the binding interface to make additional 609 
contacts with the bound peptide, the RFjoint Inpainting network was used23, in conjunction with 610 
ProteinMPNN24. Rosetta designed binders to PTH, GCG and NPY were used as input to RFjoint. 611 
RFjoint is deterministic, and hence, to generate diversity, additional length was added (randomly 612 
and independently sampled) at the loop junctions between the binder helices. Additionally, one 613 
whole helix was completely rebuilt by RFjoint, to further permit diversification. RFjoint designs were 614 
subsequently sequence-redesigned with ProteinMPNN, validated/filtered in silico by AlphaFold2 615 
(AF2) with initial guess6,28, and subsequently tested experimentally.  616 
 617 
Sequence threading to generate peptide binders 618 
 619 
We started from a library of several thousand all-helical scaffolds bound to designed single helices. 620 
We then threaded sequences of peptides of interest onto the bound single helix and filtered to 621 
obtain threaded conformations that maximised the number of target sequence positions that 622 
formed hydrophobic interactions at the interface to the binder scaffold17,26. The resulting binders 623 
were then redesigned in the presence of the threaded target sequence with ProteinMPNN24 624 
(forbidding cysteine) and the complex was predicted with AF2 with initial guess6,28. Another round 625 
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of ProteinMPNN and AF2 + initial guess was performed on the AF2 models that passed gate 626 
filters. Both rounds had gate filters of interface predicted alignment error (pAE) < 10, mean 627 
pLDDT > 92, pTM score > 0.8 and RMSD to input backbone < 1.75. AF2 models from both rounds 628 
that passed gate filters were further filtered on AF2 metrics and filtered on Rosetta metrics to 629 
select sequences to order. Sequences were filtered against membrane insertion potential54, 630 
contact_molecular_surface, ddG7, interface pAE, and monomer pAE6. 631 
 632 
AF2 Hallucination for flexible peptide binder design 633 
  634 
Code for running Hallucination with AlphaFold2 were modified from Wicky et al31, with custom 635 
losses developed to promote binding of the Hallucinated protein to the input peptide sequence. 636 
AlphaFold2 model_4_ptm was used for all experiments. 637 
  638 
Initial sequence sampling: In line with Wicky et al., the initial binder sequence was sampled 639 
randomly, with amino acids probabilities corresponding to background amino acid frequencies in 640 
BLOSUM6255. The target sequence (but no template structure) is also provided, separated by a 641 
chain break (+32 residue positional index offset). Residues were then mutated, with probabilities 642 
related to their background frequency in BLOSUM62. The mutation rate at each step is decayed 643 
throughout the trajectory (1250 x 3 steps, 2500 x 2 steps, 1250 x 1 step). More mutations initially 644 
helps speed up hallucination, while a lower rate later on allows more gradual refinement. To 645 
further speed up convergence, mutations were selectively made to residues with the lowest 50% 646 
of AF2 pLDDTs. 647 
  648 
Losses used for Hallucination: 649 
 650 

 pLDDT of the bound state: Average pLDDT of the binder-peptide complex 651 
 pTM of the bound state: The pTM score of the binder-peptide complex 652 
 Radius of gyration: The radius of gyration was calculated as the mean squared distance 653 

of residues from the centre of mass of the protein. To approximately standardise the 654 
scaling with length of the protein, this was empirically normalised by dividing the radius of 655 
gyration by the radius of a sphere of volume the length of the Hallucinated protein. 656 

 Contact probability: Calculated as total probability that a residue in the target is in contact 657 
(< 8Å) of the target peptide (the summed probability over the sub-8 Å bins of the distogram 658 
output from AF2). This was averaged across all binder residues. 659 

 Interface pAE: The mean predicted alignment error (pAE) between the binder and peptide 660 
chains. 661 

 662 
For all examples shown in this work, the losses were weighted with relative weights of 1:1:0.1:3:5. 663 
  664 
Simulated Annealing: To optimise the designed binder, simulated annealing was performed, with 665 
a starting temperature of 0.01, and the half-life of the exponential decay set to 500 steps. 666 
Mutations were accepted or rejected using the Metropolis criterion. A total of 5000 steps were 667 
performed during design. 668 
  669 
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ProteinMPNN: Previous work has demonstrated that AF2 Hallucination yields adversarial 670 
sequences that do not work experimentally31. However, designs can be rescued with 671 
ProteinMPNN redesign of the sequences. 64 sequences were designed per backbone, and were 672 
subsequently filtered based on AF2 pLDDT, pTM, RMSD to the design model, RMSD of the 673 
monomer to the binder model (without the peptide), and Rosetta ddg. The precise values used 674 
for filtering were chosen to reduce the set down to 46 designs. 675 
 676 
Partial diffusion to optimise binders 677 
 678 
RFdiffusion was modified to allow the input structure to be noised only up to a user-specified 679 
timestep instead of completing the full noising schedule. The starting point of the denoising 680 
trajectory is therefore not a random distribution. Rather, it contains information about the input 681 
distribution resulting in denoised structures that are structurally similar to the input (Fig. 2a). The 682 
AF2 models of the highest-affinity designs from Inpainting for GCG and NPY were used as inputs 683 
to partial diffusion. The models were subjected to 40 noising timesteps out of a total of 200 684 
timesteps in the noising schedule, and subsequently denoised. An auxiliary potential minimising 685 
the radius of gyration of the binder-peptide complex was used (described below). Approximately 686 
two thousand partially diffused designs were generated for each target. The resulting library of 687 
backbones were sequence designed using ProteinMPNN (and ProteinMPNN after Rosetta 688 
FastRelax), followed by AF2+initial guess6. The resulting libraries were filtered on AF2 pAE, 689 
pLDDT, RMSD to the design model, RMSD of the monomer to the binder model (without the 690 
peptide), and Rosetta ddG. The precise values used for filtering were chosen to reduce the set 691 
down to 96 designs for each target.  692 
 693 
De novo peptide binder design using RFdiffusion  694 
 695 
The AF2 model of the PTH peptide in the highest-affinity binder from Inpainting was used as input 696 
to RFdiffusion. For Bim, there was no previously designed binder and therefore the crystal 697 
structure of Bim56 (PDB: 6X8O) was used as input. An auxiliary potential minimising the radius of 698 
gyration of the binder-peptide complex was used during de-noising (described below). 699 
Approximately two thousand diffused designs were generated for each target. The resulting library 700 
of backbones were sequence designed using ProteinMPNN (and ProteinMPNN following 701 
FastRelax), followed by AF2+initial guess6. The resulting libraries were filtered on AF2 PAE, 702 
pLDDT, RMSD to the design model, RMSD of the monomer to the binder model (without the 703 
peptide), and Rosetta ddg. The precise values used for filtering were chosen to reduce the set 704 
down to 96 designs for each target.  705 
 706 
Radius of Gyration potential 707 
 708 
RFdiffusion enables the use of external guiding potentials during inference which helps design 709 
proteins with a certain desired property. The utility of these guiding potentials in designing 710 
symmetric oligomers and enzymes, as well as a description of how they are incorporated into the 711 
sampling procedure is described in Watson et al8. In this work, we take advantage of guiding 712 
potentials to minimise the radius of gyration (ROG) of the binder-peptide complex. The ROG is 713 
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calculated as the root mean square of the distance of all the CA atoms from the centroid. It is 714 
more important to apply the potential at the initial denoising steps, and less so towards the end 715 
when the quaternary structure is largely fixed. Therefore, the scaling factor with which the 716 
gradients are multiplied has a cubic decay over the course of the denoising trajectory.  717 
 718 
Training RFdiffusion for designing binders to targets from sequence alone 719 
  720 
A modified version of RFdiffusion was trained to permit the design of protein binders to targets, 721 
where only the sequence of the target was specified. The training strategy largely followed the 722 
training strategy used for the original RFdiffusion model, with some modifications. A summary is 723 
provided below. 724 
  725 
Overview of “base” RFdiffusion Training: RFdiffusion8 is a denoising diffusion probabilistic model 726 
(DDPM) fine-tuned from a pre-trained structure prediction model; RoseTTAFold57,58. RFdiffusion 727 
is trained with a forward noising process that iteratively, over 200 timesteps, noises residue 728 
translations and orientations to distributions that are indistinguishable from random distributions 729 
(3D Gaussian distribution and a uniform distribution on SO(3), respectively). RFdiffusion is then 730 
trained to reverse this corruption process, predicting the ground truth (X0) at each timestep of 731 
prediction. Mean squared error (MSE) losses are used to minimise the error between the forward 732 
and reverse processes. Full training details are extensively described in Watson et al8. 733 
  734 
Modifications to RFdiffusion for binder design to sequence inputs alone: RFdiffusion was trained 735 
on both monomers (< 384 amino acids) and heterocomplexes (one chain, denoted the “binder 736 
chain” < 250 amino acids) from the Protein Data Bank (PDB). Coordinates were scaled by a factor 737 
of four, in line with the original RFdiffusion model. In 20% of cases, no sequence or structure was 738 
provided to the model (for unconditional generation). In the other 80% of cases, 20-100% of the 739 
protein was noised. In contrast to RFdiffusion, however, the structure of up to 50% of the protein 740 
(monomer or “target chain”) was noised (diffused), while the sequence of those residues was 741 
provided. Thus, RFdiffusion learns to condition its predictions on the sequence of part of a protein 742 
(the monomer) or of a target to bind to. This version of RFdiffusion was trained for seven epochs. 743 
  744 
Computational filtering  745 
 746 
Precise metrics cutoffs changed for each design campaign to get to an orderable set, but largely 747 
focused on pAE (<10), pLDDT (>80) and Rosetta ddG (<-40)6. 748 
 749 
Code availability: 750 
 751 
Code for the parametric design pipeline can be found at 752 
https://github.com/proleu/peptide_paper/tree/main/projects/parametric_groove_design. Code to 753 
run RFjoint Inpainting can be found at https://github.com/RosettaCommons/RFDesign. 754 
Computational notebooks for the sequence-threading pipeline can be found at 755 
https://github.com/proleu/peptide_paper/tree/main/projects/threading. Partial-diffusion code 756 
explanation and examples can be found at 757 
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https://github.com/RosettaCommons/RFdiffusion#partial-diffusion. Code explanation and 758 
examples of binder design using RFdiffusion can be found at 759 
https://github.com/RosettaCommons/RFdiffusion#binder-design. An explanation of how to 760 
implement potentials, including ROG can be found at  761 
https://github.com/RosettaCommons/RFdiffusion#using-auxiliary-potentials. Code to run AF2 762 
Hallucination for peptide design is available at 763 
https://github.com/RosettaCommons/AF2_peptide_hallucination.  764 
 765 
Data Availability: 766 
 767 
Atomic models of the Glucagon binders designed with Inpainting and partial diffusion (Fig. 2c), 768 
the Bim binder (Fig. 3d), and PTH peptide have been uploaded to the PDB with accession codes 769 
8GJG, 8GJI, 8T5E, and 8T5F respectively.  770 
 771 
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Extended Data: 848 
 849 
Extended Data Figure 1. Low affinity RFjoint-Inpainted binders for NPY and GCG using 850 
extended parametric designs. (a) Left: Design model (colour spectrum + yellow) of the tightest 851 
GCG binder. Right: FP titration (n=4) for the tightest GCG binder indicates ~ 231 nM binding 852 
affinity (b) Left: Design model (colour spectrum + dark green) of the tightest NPY binder. Right: 853 
FP titration (n=4) for the tightest NPY binder indicates 3.5 µM binding affinity. 854 
 855 
Extended Data Figure 2. Additional binders made using threading and redesign. (a) Left: 856 
Design model (colour spectrum + dark blue) of the tightest GLP1 binder. Right: FP titration (n=4) 857 
for the tightest GLP1 binder indicates 68.8 nM binding affinity (b) Left: Design model (colour 858 
spectrum + green) of the tightest GIP binder. Right: FP titration (n=4) for the tightest GIP binder 859 
indicates 6.96 nM binding affinity. 860 
 861 
Extended Data Figure 3. Hallucinated Bid binders are stable and bind Bid peptide with high 862 
affinity. (a) 46 Hallucinated designs tested for initial experimental screening. (b) 4 designs were 863 
chosen for expression without Bid peptide. All expressed as monomeric proteins (assessed by 864 
preparative SEC) and were pure by SDS-PAGE (n=1). (c) All Hallucinations could be pulled-down 865 
by biotinylated Bid immobilised on streptavidin magnetic beads. B = bound to bead, U = unbound, 866 
in supernatant. L = ladder (n=1). (d) Bid is unstructured in isolation by circular dichroism (CD), 867 
whereas all Hallucinations were helical in isolation, as predicted from the Hallucinated structure. 868 
A 1:1 molar ratio of binder:Bid (Mix) produced greater helical signal than that predicted by the 869 
isolated spectra (No inter.) suggesting binding is inducing helix formation (n=1). (e) Melting with 870 
CD showed that Hallucinations were thermostable, and binding to Bid increased thermostability 871 
(where measurable) (n=1). All Hallucinated binders would remain folded, or refold after heating 872 
and cooling, in contrast to the natural binder Mcl-1 which precipitated in the process. (f) ITC 873 ACCELE
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showed that Hallucinations bound to Bid, with µM to nM Kds (n=1). (g) FP measurements of 874 
designed Bid binders (n=3). 875 
 876 
Extended Data Figure 4: Partial diffusion increase designability of native proteins. 500 877 
native proteins of length 100 to 300 residues were selected from the PDB (< 3.5Å resolution and 878 
no missing residues). Three different methods were applied to these proteins: 1) single sequence 879 
AlphaFold2 (AF2), 2) ProteinMPNN combined with AF2, and 3) partial diffusion (60 steps, 880 
noise=1), ProteinMPNN and AF2. (a) Partial diffusion generates diverse protein conformations 881 
from the initial fold while maintaining the same overall fold, as indicated by the TM (Template 882 
Modeling) score exceeding 0.5. (b) The backbones resulting from partial diffusion exhibit higher 883 
designability compared to the native backbone, implying that they have been idealised for design 884 
purposes. (c) Visualisation of an example where partial diffusion + ProteinMPNN results in a 885 
significantly more designable protein relative to sequence redesign by ProteinMPNN on the native 886 
backbone. 887 
 888 
Extended Data Figure 5. PTH and GCG binders designed with RFdiffusion. Representative 889 
binding data is shown for PTH and GCG binders designed by providing sequence input alone. 890 
The binding affinities, as measured by FP (n=4), indicate low micromolar interactions with the 891 
respective peptide targets. 892 
 893 
Extended Data Figure 6. LC-MS/MS chromatograms for PTH and GCG binders. (a) LC-894 
MS/MS chromatograms for SVSEIQLMHNLGK, the N-terminal tryptic peptide of PTH; different 895 
peptide fragments detected by the LC-MS/MS assay are in different colours. (b) LC-MS/MS 896 
chromatograms for the intact GCG peptide HSQGTFTSDYSKYLDSRRAQDFVQWLMNT; 897 
different peptide fragments detected by the LC-MS/MS assay are in different colours. 898 
 899 
Extended Data Table 1. Amino acid sequences of peptide binders. 900 
  901 
Extended Data Table 2. Crystallographic data collection and refinement. 902 
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 6
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Target Computational method Binder amino acid sequence

PTH Parametric design SQELIEELIKLAKELAEIKDEEERRKIKRELERLAEELKEAPASSLLRALALLVIALALIQAAESEEERERARELLERLE
ELLRELEKQITDERFKEILRELEELAKELKKQL

PTH Inpainting SFELLEKLIELSKELYEVAKKYIETGDPELKKKLEEILKKIEEAYKELLESDAHPLEKALAKLILAEAYVVKSFAYISSG
KDLEKAQEYLDKAKEILEELLKLLEELKKEETDPEKLEIIEELEKIAEELLKEIEE

GCG Inpainting MLDELFSLLNKMFELSDKYRELRKELRKAIESGAPEEELRELLEKMLEIAKKLLELTKELKKLVEDVLKNNPDPVER
AKAVLLYAVGVHILYSESSELEVIAERLGFKDIAEKAKEIADKARELKEEVKRKLREIREEVPDPEIRKAAEEAIEML
ESNDKRLKEFRKL

NPY Inpainting GAAEKLAELYEKFKALREKALEVLKKAVEALENKADKETLLKLIKELKELAEKFEELAEEFERNAGESTTASLNATA
AYMARIGLLAALLALAKAAGVPEEELEEIKRRIEETAKRAIEAAERLKALAEARGDTKHVAVGVEAVRMATELYELA
QKIIDAF

SCT Threading SEELEERLREARERLEEARERLEEAREEGDLREMARALLEEARAVLEIARVAAEAGDDEALREAARRAGEVIRRA
GEVGLRAAEEGDTETIREAMLAILEAQRASAVIALHLARDDPEVAEALRVIERLLRTAERALREGQLEVARLATEA
VEALADAILRAREIGRPELVREAARLAEEARRLLEAALEALRAGDEEGARERLARARELIREIRERVRRA

GIP Threading SPKEKAERLIKEAKEAAEKAKEAAERSGLEEAKKAAEELTKLLEEAAARVAADPEDETKLRALEKIVEAAKEAVKA
LEVAIESGDEQLIRAALSLVEAAVHLAKALLAKPESPLVDFGFELLKLAAKTLAAYAEGEDVDKIALKLKAISAMAEA
LRLALAGDLERAARAAEEAVRYAIEAGDKELLRLAAEVAAYIARLAEEAGLEEVARRAREAAERAREAAK

GLP1 Threading SPEEEARRAAREAERAAREAREAARRLGDEESVRVAERLEREARRAERERDLELARRVLRAAEALRLALEGELL
AREQGDELGVVVARMITLAARDSALGRGTPELARLLLRVARALLEGDLEEVVRSLAEIAKREIGTERALLAVEAIKL
VALESIEEGDFETAELAIEKLREIAEEFEGTEVAEKAREAIEEIEKKKREAE

Bid Hallucination TPEDYRRAAELIKEIAREAERYAEGEISAEEALARIRRLRAELEECYEHGLDAVGRSYVDQARPLIDEIERLLQEKL
DAE

GCG RF Diffusion (partial) SMEKLAEIMQEIIEAYQEVKDAFFKFIKAVHEGAPEEELKKYLEKMKEALEKMKELLERLEKEAKKVIEENKDKKLE
LKVLLMLRLAYLLLKVSIELTKIAAEKLGDKELVEELEKESKEVEKKIKELEERIKKLLEEVDDEELKEAYKEVEEME
KEAEKFLEKMRKV

NPY RF Diffusion (partial) GMEERRKELLEKLKKLKEEVVELFRELAQALRDGASKERLEEIRERAEKLAEEAKKVAEELEKLAEGDAVLQLYLA
EAYALEAAALTIEAVAAAELGASKEELEKIKEKIEEALKKAEEAMKKALAEAKARGRERLVRLIEEARKEFEKLSKAI
KELLEQV

PTH RF Diffusion MREKLEEMLEEFNEVIDELIEITKEDAPELEELRERAEEAVENERLDELEEILDELEVIILEAMFRDLSAAIEMTKAKN
DKEKLKELLKQLEELEKRIKELLERAKKRGNKKIIEKLEKLLKEVEKLKKEIEEYLK

Bim RF Diffusion EEERKEKREKVRAGLKRAIAELPAEVAARCLALLDDASDEEFIEAVLEVLEAMREALVAMAREGRLDAVRRATSHI
NEVLVDAAELALEKGREYFRRLCLIVCDMMIELIRLEPEQTPELRRIRERLEEIRRRLE

PYY RF Diffusion (sequence 
only)

GLEEAEKLLEEIFANFEEIVELIKKNIGTERGKKLLKVFVATVDLILARLEQGADLAELAELVKEIAELAKDEEGLEEA
EKLVKELTAAR
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Table 1 Data collection and refinement statistics (molecular replacement)

GCG_partdiff 
(8GJI)

GCG_inpaint 
(8GJG)

Bim_fulldiff 
(8T5E)

PTH (8T5F)

Data collection
Space group P 21 21 21 P 21 P 21 21 21 P 4 21 2
Cell dimensions

a, b, c (Å) 31.26, 50.92,
91.92

37.79, 45.90, 
63.60

25.79, 66.67, 
74.30

91.32, 91.32, 
37.73

α, β, γ (°) 90, 90, 90 90, 97.31, 90 90, 90, 90 90, 90, 90

Resolution (Å) 91.93 - 1.81 (1.88 -
1.81)

63.09 - 1.95 
(2.00 - 1.95)

74.30 - 3.00 
(3.18 - 3.00)

40.84 - 1.99 
(2.04 - 1.99)

Rmerge 0.099 (1.581) 0.073 (2.001) 0.064 (0.173) 0.120 (2.069)

I / σI 8.3 (0.90) 10.10 (0.60) 17.8 (8.8) 21.8 (1.3)

Completeness (%) 99.60 (99.40) 98.50 (96.30) 99.9 (100) 98.6 (94.6)

Redundancy 6.2 (6.0) 6.7 (6.8) 7.2 (7.9) 15.1 (15.2)

Refinement
Resolution (Å) 45.96 - 1.81 (1.88 -

1.81)
63.09 - 1.95 
(2.00 - 1.95)

49.62 - 3.00 
(49.62 - 3.00)

40.84 - 1.99 
(2.19 - 1.99)

No. reflections 13875 (1327) 15425 (2387) 2861 (445) 11302 (738)
Rwork / Rfree 0.2080 (0.3752)/ 

0.2552 (0.4485)
0.2087 (0.4205)/ 
0.2488 (0.4445)

0.2398 (0.2398)/ 
0.2617 (0.2617)

0.2201 (0.2506)/
0.2494 (0.3372)

No. atoms
Protein 1579 1539 1244 853

Ligand/ion 0 0 0 0
Water 24 26 0 26

B-factors
Protein 45.14 68.55 77.56 61.14
Ligand/ion 0 0 0 0
Water 47.64 69.57 n/a 62.39

R.m.s. deviations
Bond lengths (Å) 0.012 0.002 0.003 0.010

Bond angles (°) 1.12 0.440 0.500 1.04

*Single Crystal used for each data collection. *Values in parentheses are for highest-resolution shell.
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