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Digital measurement of SARS-CoV-2 
transmission risk from 7 million contacts

Luca Ferretti1,2,7 ✉, Chris Wymant1,2,7, James Petrie1,2, Daphne Tsallis3, Michelle Kendall4, 
Alice Ledda5, Francesco  Di Lauro1,2, Adam Fowler1,2, Andrea Di Francia5,  
Jasmina Panovska-Griffiths1,2,5, Lucie Abeler-Dörner1,2, Marcos Charalambides6, Mark Briers6 
& Christophe Fraser1,2 ✉

How likely is it to become infected by SARS-CoV-2 after being exposed? Almost 
everyone wondered about this question during the COVID-19 pandemic. Contact- 
tracing apps1,2 recorded measurements of proximity3 and duration between nearby 
smartphones. Contacts—individuals exposed to confirmed cases—were notified 
according to public health policies such as the 2 m, 15 min guideline4,5, despite limited 
evidence supporting this threshold. Here we analysed 7 million contacts notified by 
the National Health Service COVID-19 app6,7 in England and Wales to infer how app 
measurements translated to actual transmissions. Empirical metrics and statistical 
modelling showed a strong relation between app-computed risk scores and actual 
transmission probability. Longer exposures at greater distances had risk similar to 
that of shorter exposures at closer distances. The probability of transmission 
confirmed by a reported positive test increased initially linearly with duration of 
exposure (1.1% per hour) and continued increasing over several days. Whereas most 
exposures were short (median 0.7 h, interquartile range 0.4–1.6), transmissions 
typically resulted from exposures lasting between 1 h and several days (median 6 h, 
interquartile range 1.4–28). Households accounted for about 6% of contacts but 40% 
of transmissions. With sufficient preparation, privacy-preserving yet precise analyses 
of risk that would inform public health measures, based on digital contact tracing, 
could be performed within weeks of the emergence of a new pathogen.

Non-pharmaceutical measures such as social distancing, testing, con-
tact tracing and quarantine are effective approaches to control the 
spread of epidemics, but they also entail significant social and eco-
nomic costs8,9. It would be desirable to adjust these measures through-
out an epidemic as epidemiological understanding increases or as 
the pathogen evolves. Optimization of such interventions requires 
methods to quantify transmission risk.

Despite the large amount of SARS-CoV-2 data collected globally, 
quantitative risk assessments at the level of individual exposures have 
been limited to a few large-scale, manual contact-tracing studies10,11. 
Another approach is provided by contact-tracing apps on smart-
phones, which were implemented for COVID-19 in many countries. 
These apps digitized the process of contact tracing based on record-
ing close-proximity events between smartphones1 and performing 
quantitative risk assessment by measuring proximity3,12,13 and dura-
tion of exposure to cases, although their real-life accuracy has been 
questioned14–17. Contact-tracing apps are useful for public health if they 
are able to estimate the risk of pathogen transmission, and should be 
evaluated to improve their functionality and ensure public trust2,18.

For contact tracing and, more generally, for distancing guidelines, 
public health authorities worldwide often used a binary classification 

of risk—for example, whether individuals spent 15 min or more at a 
distance of 2 m or less from a case4,5. Contact-tracing apps were cali-
brated to approximately match these heuristic rules. In the UK, which 
experienced a large-scale epidemic and implemented a substantial 
test-and-trace infrastructure, this advice led to more than 20 million 
notifications and quarantine requests from manual19 and digital20 
contact tracing, with a peak of over 1.5 million per week in July 2021. 
The socioeconomic costs could have been significantly mitigated by 
improved, fine-tuned guidelines for contact tracing and quarantine. 
Doing this would require two components: (1) data and methods for 
quantitative assessment of how the probability of transmission varies 
with different factors, and (2) tools to measure those risk factors for 
contacts, to estimate their individual level of risk and respond appro-
priately.

Digital contact tracing in England and Wales was implemented 
through the National Health Service (NHS) COVID-19 app6, which was 
active on 13–18 million smartphones each day during 2021 (ref. 7). The 
app recorded measurements of the proximity and duration of exposure 
to an index case using the privacy-preserving Exposure Notification 
framework21, with custom analysis of Bluetooth signal attenuation 
between smartphones to estimate proximity22. By relating these data to 
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whether the exposed individual subsequently reported a positive test 
through the app, we showed how the probability of SARS-CoV-2 trans-
mission varied with app-recorded measurements. We analysed 7 million 
exposure notifications from April 2021 to February 2022 comprising 
23 million hours of cumulative exposure and 240,000 positive tests 
reported following notification. We demonstrate that the NHS COVID-19  
app accurately translated proximity and duration of exposure into 
a meaningful epidemiological risk score, and we quantify how these 
factors affected the actual probability of transmission.

We use the terms ‘case’ to mean an individual whose infection was 
confirmed by testing, ‘index case’ to mean a case who triggered a 
contact-tracing process and ‘contact’ to mean an individual identi-
fied as having had some level of exposure to an index case (including, 
in general, individuals whose level of exposure is evaluated as being 
below a particular risk threshold).

The NHS COVID-19 app assessed the transmission risk for a contact 
by partitioning the full exposure event into a set of non-overlapping 
‘exposure windows’, each lasting at most 30 min. For each window the 
app calculated a risk score23,24:

‐
Risk score = proximity score × duration within

30 min window × infectiousness score

The proximity score was constant below 1 m and decreased as the 
inverse square of the distance if greater than 1 m. A scaling of risk in 
proportion to duration follows from microbial risk assessment expec-
tations. Infectiousness was scored as either ‘standard’, ‘high’ (2.5×) or 
zero depending on the timing of exposure relative to the index case 
symptom onset date (or positive test date when no symptom onset 
was recorded)23,25. For ease of interpretation we normalized risk score 
such that it equals 1 for an exposure at 2 m distance from an index case 
with standard infectiousness for 15 min (that is, the typical threshold 
for manual contact tracing), implying a maximum possible score of 20.

Contacts were notified of a risky exposure if they had at least one 
exposure window with a risk score exceeding the threshold for noti-
fication, which was 1.11 with our normalization (Extended Data Fig. 1 
shows the threshold in distance–duration space). When a contact was 

notified, their app sent anonymous exposure data to the central server. 
These data were then sent in separate, unlinked data ‘packets’, one 
for each exposure window that had a risk score over the notification 
threshold (about half of the contacts had more than one exposure 
window; Extended Data Table 1). These packets formed the basis for 
our analysis: we analysed only contacts who were notified and had at 
least one exposure above the risk threshold. We grouped windows 
that were likely to have come from the same contact as a recording of 
the whole exposure history between that contact and the associated 
index case (excluding windows below the notification threshold). If a 
given individual was notified multiple times during our study, each 
notification was treated as though it were of a separate contact owing 
to the absence of unique identifiers.

The data also indicated whether the contact had reported a posi-
tive SARS-CoV-2 test through the app during an interval beginning 
with their notification and ending 14 days after exposure. The fraction 
of contacts doing so defines the probability of reported infection. 
This is a proxy for the true probability of being infected, although it 
is significantly underestimated: an unknown but probably appreci-
able fraction of infected app users either did not seek a test, or did not 
report their positive result through the app, or reported it outside of 
the aforementioned interval. As a reference, the number of infections 
in adults in the same period in the UK was two to three times greater 
than the number of cases26.

The linkage between exposure measurements and reported test posi-
tivity enables apps to be used for precision epidemiological estimation 
while preserving privacy. We analysed how contacts’ exposure data, 
recorded in separate 30-min windows, can predict their probability of 
reporting a positive test following their exposure. The peak risk experi-
enced by an individual can be summarized by the maximum risk score 
measured by the app among all of their 30-min exposure windows. This 
summary metric is what the app actually used: contacts were notified 
only when it was above the threshold. We found an increasing prob-
ability of reported infection as maximum risk score increased (Fig. 1a). 
This pattern holds irrespective of season or epidemic wave (Fig. 1b). 
This simple analysis demonstrates that the approach used by the app 
to calculate risk correlates with the actual risk of transmission.
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Fig. 1 | App risk score and duration of exposure correlate with probability 
of infection. a, The probability of reported infection—that is, the probability  
of a contact reporting a positive test through the app shortly after receiving  
an exposure notification—as a function of three summary metrics of their 
exposure measurements (scores): (1) maximum risk score from any exposure 
window (each lasting 30 min), (2) cumulative risk score, summed over all 
exposure windows and (3) total duration of the exposure, summed over all 

exposure windows. Grey points denote our estimates for the probability of 
reported infection after 15 min at 2 m distance from an individual with standard 
infectiousness. Black points indicate the bins used for the risk predictor.  
b, Probability of reported infection disaggregated by month of notification. 
Central values correspond to maximum-likelihood estimates, shading and 
(small) whiskers indicate 95% confidence intervals (n = 7,047,541 contacts). 
Tabulated values can be found in Supplementary Tables 6 and 7.
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We defined two further summary metrics of risk measurements for 
each contact: total duration of exposure and cumulative risk score, 
both aggregated over all exposure windows from the contact. Both of 
these metrics are more discriminatory than the maximum risk score. 
The probability of reported infection continues to increase as the dura-
tion and cumulative risk increase, even after several days of cumulative 
exposure (Fig. 1).

These results suggest that both the instantaneous level of risk and 
duration of exposure affect the risk of transmission. We also expect a 
background level of risk from exposures either not recorded or not 
reported by the app; we estimated this level by statistically modelling 
it as proportional to the local risk of infection among app users at that 
time (Methods). We therefore stratified contacts by two summary 
metrics of their app-recorded measurements simultaneously: the dura-
tion of their exposure and their mean risk score per unit time. For each 
stratum of contacts we calculated the fraction reporting a positive test 
through the app during the observation window, as previously, now 
also subtracting the estimated background risk; we refer to the result-
ing quantity as the probability of reported transmission. (This differs 
from the probability of reported infection in that the background has 
been subtracted, and thus we attribute transmission to the exposures 
measured by the app. Both of these probabilities are lower than the 
corresponding true probabilities owing to incomplete reporting.) As 
expected, we found that the level of risk measured by the app and the 
duration of exposure both contribute to the probability of reported 
transmission (Fig. 2). Duration is the more important predictor. For 
short exposures the probability of reported transmission grows linearly 
with duration at a rate of 1.1% per hour, increasing sublinearly only after 
a few hours (Extended Data Fig. 2).

These results suggest that overall risk is determined by contributions 
from each separate exposure window, with greater contributions from 
riskier windows, in addition to background risk. To disentangle these 
effects we used a statistical model for combined contributions to over-
all risk, estimating the separate contributions from each window and 
from the background. We refer to these separate contributions from 

each exposure window as the probability of reported transmission per 
exposure window. We found that the probability of reported transmis-
sion per exposure window was proportional to the app’s risk score for 
that window with remarkable accuracy, increasing by 0.3% per unit, 
providing validation that the app’s risk calculation is epidemiologi-
cally meaningful. Figure 3 shows this relationship for exposures lasting 
between 1 and 3 h. The relationship is robust with respect to individual 
heterogeneities or under-reporting of positive tests among contacts 
(Extended Data Fig. 3).

Heterogeneities in the context of an exposure are expected to have 
a major effect on transmission risk. The context is not recorded by the 
app, but date and geographical area may be correlated with context 
and other causal factors. As an example, the probability of transmission 
from low-risk exposures is higher over the weekend than on weekdays 
(Extended Data Fig. 4), and it appears to be lower in London and other 
conurbations than in rural and urban areas (towns and cities), par-
ticularly at the lower end of the risk spectrum (Extended Data Fig. 4).

The impact of transmission control measures that target risk factors 
is determined by the distribution of these factors in the population, as 
well as how predictive they are of risk. Figure 4a–c shows population 
distributions over contacts of maximum and cumulative risk scores 
and total duration of exposure. We show the distributions separately 
for (1) all contacts and (2) transmissions—that is, only those contacts 
who reported a positive test result through the app in the observation 
window, for whom we attributed the infection to the recorded exposure. 
Distributions are strongly left-skewed, with low risk scores and short 
durations most common among contacts, in agreement with previ-
ous observations in specific contexts such as university campuses27. 
Larger risk scores and longer durations are seen disproportionately 
more for transmissions than for all contacts, in keeping with our earlier 
results and mechanistic understanding of pathogen transmission risk. 
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Fig. 2 | The probability of transmission is affected by both duration and 
proximity as captured by risk score. log–log plot of the probability of 
reported transmission—that is, the probability that the contact reported a 
positive test that we attributed to the transmission event traced, as a function 
of the binned duration of exposure and mean risk score per hour (that is, 
cumulative risk score divided by duration). Solid lines connect maximum- 
likelihood estimates for each bin and shading around these denotes 95% 
confidence intervals. Tabulated values can be found in Supplementary Table 8.
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Fig. 3 | Transmission probability per exposure window increases almost 
linearly with risk score. The probability of reported transmission per 
exposure window—that is, the estimated probability of transmission in an 
individual 30-min exposure window followed by reporting of a positive test—as 
a function of the app-measured risk score for that window. Points show the 
maximum-likelihood estimate (n = 2,507,879 contacts) and error bars on 
points indicate 95% confidence intervals. We fit a weighted robust linear 
regression without intercept to the points, with shading around the line 
indicating 95% confidence intervals in its gradient, highlighting that the 
probability of reported transmission is proportional to the app-measured risk 
score. The grey point denotes our estimate for the probability of reported 
transmission after 15 min at 2 m distance from an individual with standard 
infectiousness. Tabulated values can be found in Supplementary Table 9.
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Across all contacts, most exposures are brief (median duration 40 min) 
yet most detected exposures that result in transmission last several 
hours (median duration 6 h; 82% last more than 1 h; Fig. 4e), suggest-
ing that contact tracing for SARS-CoV-2 would retain more than 80% 
of its effectiveness if applied with a threshold of 1 h. Cumulative risk 
and duration show a bimodal distribution for transmissions; duration 
has a wide distribution (interquartile range 1.4–28 h), with a peak at 

around 1–2 h of exposure and another at around one to two full days 
of cumulative exposure, the latter most probably corresponding to 
household contacts.

To clarify the contribution of different exposure patterns and con-
texts to SARS-CoV-2 spread, we classified contacts into four categories 
intended as an approximate reflection of different contexts: contacts 
exposed for at least 8 h in one day (household contacts), non-household 
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Fig. 4 | Short, intermediate and long exposures all contribute to 
SARS-CoV-2 transmissions in the population. a–c, Distributions over 
contacts of summary metrics for their app-recorded exposure measurements, 
shown separately for all contacts in the dataset (all of whom were notified, 
shown in blue) and for ‘transmissions’—that is, only those contacts who 
reported a positive test result through the app in the observation window, for 
whom we attributed the transmission to the recorded exposure rather than the 
background risk (shown in red). a, Distribution of maximum risk score.  
b, Distribution of duration of exposure. c, Distribution of cumulative risk score 
over all exposure windows. d, Categories of contacts reflecting the context of 
their exposure. The first (far left) bar shows the fraction of contacts in each 
category; the other bars show the fractions of overall cumulative duration of 

exposure, cumulative risk score and number of transmissions associated with 
each category. e, Fraction of all traced transmissions that would still have been 
traced if only contacts with exposures longer than a given duration had been 
traced. This relative effectiveness of contact tracing at different thresholds 
corresponds also to the reduction in the reproduction number (Rt) in a 
counterfactual scenario with a higher notification threshold relative to 
reduction in Rt in the factual scenario. f, Fraction of contacts becoming 
infected during the recorded exposure and reporting a positive test—that is, 
the ratio of transmissions to contacts—among all contacts with exposures 
longer than a given duration. e,f, Shading at the top of the bars denotes 95% 
confidence intervals from uncertainty on background risk. Tabulated values 
can be found in Supplementary Table 10.
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contacts with recurring exposures on multiple days, contacts exposed 
during a single day (between 30 min and 8 h) and fleeting contacts (less 
than 30 min). Household and recurring contacts accounted for 6 and 
14% of all app-recorded contacts but were responsible for 41 and 24% of 
transmissions, respectively (Fig. 4d). The long duration of household 
exposures—33 h on average—and their closer proximity explain their 
disproportionate role in transmissions (Extended Data Table 2).

How effective are these app-measured predictors in binary risk clas-
sification for contacts? Figure 4e,f shows the sensitivity–specificity 
trade-off among contacts arising from the use of different thresholds 
on duration. Extended Data Fig. 5 shows the trade-off for several predic-
tors, including machine learning classifiers using binned counts of risk 
scores and extra information such as background risk, date and region. 
There was a small improvement in classification by using duration  
or cumulative risk rather than maximum risk, and the only signifi-
cant further gain came from the inclusion of background risk. In fact, 
duration and background risk alone were sufficient for a near-optimal 
prediction, with an area under the receiver operating characteristic 
curve of 0.73.

These quantitative risk measurements enable optimization of 
a variety of management strategies based on simple and effective 
predictors such as duration of exposure to a case. As an example, we 
previously proposed milder ‘amber’ notifications as an alternative to 
quarantine for intermediate-risk contacts during the pandemic1,28, and 
these were implemented in some settings29. If amber notifications were 
optimally assigned for intermediate durations of exposure, pursuing 
an optimized strategy of PCR testing following an amber notification 
could reduce the socioeconomic costs of an illustrative intervention 
by 30–50% for a similar epidemiological impact (Extended Data Fig. 6), 
or increase its effectiveness by 30–50% for similar costs (Extended 
Data Fig. 7).

Discussion
We performed a large-scale study of how SARS-CoV-2 transmission 
probability varies with app-recorded risk measurements of the proxim-
ity and duration of exposures, analysing data from 7 million contacts 
notified by the NHS COVID-19 app in England and Wales. We found that 
the probability of infection strongly correlated with duration of expo-
sure, as well as with the maximum and cumulative risk scores measured 
by the app. As a measure of proximity, the app’s risk score for individual 
exposure windows captured the relative probability of transmission 
with remarkable accuracy. Furthermore, the app-measured cumulative 
risk score was the best single predictor of probability of transmission 
among those tested, in agreement with expectations from microbial 
risk modelling (Supplementary Methods section 1.5). This provides 
highly encouraging validation for the risk modelling underlying the 
NHS COVID-19 app23,30 and for future development of similar tools.

Our results have immediate implications for contact tracing. We 
found that the cumulative duration of exposure to infected individu-
als was a key predictor of transmission in the COVID-19 pandemic, 
and needs to be accounted for in preparation for future epidemics of 
respiratory pathogens. Because duration of exposure to known cases 
can usually be recalled without the support of digital tools, it could be 
immediately incorporated into manual contact-tracing interviews. 
Contacts should be notified and managed based on duration of expo-
sure as well as other risk factors; knowledge transfer should prove 
relatively easy—for example, through automated tools to support 
manual contact-tracing staff with their interview-based risk assess-
ment. Beyond identification of predictors of infection, our quantita-
tive risk measurements also enable optimization of different public 
health outcomes and epidemic management strategies such as amber 
notifications and postexposure prophylaxis.

One result of particular importance beyond contact tracing is our 
empirical demonstration of the continuing increase in probability of 

transmission with the duration of exposure to an infected individual. 
Spending a long time at greater distance from an infected person carries 
similar risk to shorter times at smaller distances. ‘Physical distancing’ 
strategies to reduce risk should therefore consider the relevance of 
both time and space. The continued increase in risk that we observed 
over multiple days shows that individuals can still benefit by beginning 
precautionary measures even after having already spent days exposed 
to an index case—for example, in the same household.

The effectiveness of epidemic control measures depends on the 
population distribution of risk. Exposures are highly skewed towards 
short and low-risk encounters; on the other hand, transmissions are 
caused by exposures in a wide range of risk, with duration varying from 
1 h to several days. Our results can pave the way towards more targeted 
and graded interventions that account for the varying frequency and 
risk of different exposures.

The main limitation of our analysis is the absence of data on the 
context of an exposure: setting, immunity, level of ventilation and 
so on. The observed risks we report are averages over these unknown 
factors. Some of these factors might affect the risk score recorded by 
the app and the true risk in different ways—for example, being indoors 
is linked to poorer ventilation, which increases true risk but not risk 
score. Manual tracing can obtain contextual data through interviews; in 
practice these data are sometimes used to assess risk, but they should 
be collected more systematically to build a more informed classifica-
tion of risk. Recording of direct or indirect information on the context 
of exposures, either through the app (for example, by implementing 
indoor/outdoor detection) or linking it from external sources, could 
significantly improve risk assessment.

Another limitation of our study is the inclusion of exposures only 
when their risk score crossed the app’s notification threshold, excluding 
transmissions resulting from a large number of very-low-risk expo-
sures. These transmissions are likely to have a role in the spreading of 
SARS-CoV-2 in specific settings but are unlikely to be a major driver of 
the epidemic. Also, because testing was not compulsory for contacts, 
infections were probably under-reported and absolute transmission 
rates must be interpreted with caution. Biases in testing or reporting, 
such as increased propensity to get tested after learning that a close 
contact tested positive, could also have affected our results.

In summary, if deployed at scale, contact-tracing apps for infectious 
diseases have potential not only as interventions to reduce transmis-
sion6,7 but also as tools to develop quantitative epidemiological under-
standing. Doing this and translating it into improved interventions 
takes time. We should strive to accelerate and improve this process 
as a key step toward preparedness for future epidemics. Tools and 
methods for quantitative risk measurement and assessment should 
be further developed and integrated into the public health toolbox for 
the benefits they can bring now and in readiness for rapid deployment 
at the start of the next pandemic.

Recent decades have seen increasing focus on ‘personalized’ or 
‘precision medicine’: using an individual’s biomarkers to inform their 
treatment and disease prevention. Epidemiological interventions that 
are concerned with population health, based on exposures and risks, 
have a long way to go to catch up. Nevertheless, the benefit of doing so 
is clear: dynamically tailoring responses according to individual risks 
measured at scale could turn blunt instruments into sharp ones. Digital 
contact tracing and the analysis presented here are a step forward on 
the path to precision epidemiology.

Online content
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Methods

For all Methods subsections, greater detail is provided in the Supple-
mentary Methods.

Data
All data for this study were derived from contacts notified by the NHS 
COVID-19 contact-tracing app between April 2021 and February 2022 
inclusive. The data-generating process for app data was non-trivial: the 
primary aim was successful implementation of a privacy-preserving 
and data-minimizing contact-tracing process, not generating data for 
epidemiological study. We analysed data recorded by the app with three 
different timings/frequencies: (1) daily ‘analytics’ data, (2) exposure 
data sent when a contact is notified of risky exposure and (3) exposure 
data sent when a contact reports a positive test. Nowhere in the data 
is there a unique identifier for each app user, and so connecting these 
three data sources required some application of logic, some assump-
tion and some subsetting of the data. We next explain each of these 
three data sources in turn.

First, we previously described the daily analytics data6,7. Each cor-
rectly functioning installation of the app sent one ‘analytics packet’ 
of data daily (at midnight, regardless of whether the user was noti-
fied that day). Each packet indicated whether or not the app user had 
been notified of risky exposure on that day and included four fields 
of ‘individual characteristics’ that we assumed were usually constant 
for an individual over the time scale of one round of contact tracing 
and testing (that is, are effectively constant for the individual): their 
device model (for example, iPhone X), their operating system version 
on this device, the postcode district (an area with mean population size 
of about 20,000 individuals) in which they reported residing and their 
lower-tier local authority (if ambiguous from the postcode district).

Second, when a contact was notified of a risky exposure to an anon-
ymous case, their app sent one ‘event packet’ of data to the central 
server for each exposure window (lasting a maximum of 30 min) that 
had a risk score over the threshold for notification. These were sent 
separately from the daily analytics packets, and only at the time of 
notification. Data relating to proximity to any individual not report-
ing a positive test are never sent to the central server. Event packets 
included information on exposure proximity, duration and date and 
the same four fields of individual characteristics as in the daily analytics 
packets. Events packets contained no information about the index case 
to whom the contact was exposed (such information is irretrievable by 
the app by design), except for whether their infectiousness at the time 
of exposure was encoded as high or standard. If a single, continuous 
exposure event lasted more than 30 min it was automatically split into 
multiple exposure windows that were considered separately; multiple 
exposures occurring at different times (that is, a discontinuous meet-
ing between the individuals) also resulted in separate exposure win-
dows. Risk calculations were performed separately on each exposure 
window. As explained above, the overall risk score used by the app for 
each window was calculated by multiplying scores from proximity, 
duration and index infectiousness, and we normalized these overall 
scores by the value for a 15-min exposure to an index case of standard 
infectiousness at a proximity of 2 m. With this normalization the thresh-
old for notification used by the app was a risk score of 1.11 throughout 
the period analysed; this value was chosen as part of the intervention 
deployment, not as part of the analysis here.

Third, if an individual reported a positive test in the app during the 
‘observation interval’—starting with their notification and ending 
14 days after the exposure—the same event packets that were sent when 
the individual was notified were sent once more to the central server, 
identical except for a flag indicating that this was the report-positive 
stage rather than the notification stage.

Jointly analysing the second and third data sources—the event pack-
ets sent at notification and again at positive test—we could assign to 

each exposure window the binary outcome of ‘positive test reported 
or not’. This follows because we could see which event packets were 
sent a second time with all data fields identical except for the flag 
indicating either notification or report-positive stage, and which 
event packets were not. An assignment of a reported-positive-test 
outcome to a given exposure window does not imply that that expo-
sure window was causal for the individual becoming infected: the 
transmission event could have been caused by background risk or by 
any other exposure window for the same contact if they had multiple 
exposure windows.

When more than one risky exposure window was recorded between 
a contact and the index case, these were analysed separately for the 
risk calculation and sent as separate event packets to the central 
server. The absence of a unique individual identifier means that in 
general one cannot know whether n event packets sent on the same 
day (as determined by the date received centrally) with matching indi-
vidual characteristics for the contact (device model, operating system 
version, postcode district and lower-tier local authority) were sent by 
(1) one contact with n risky exposure windows, (2) n contacts who were 
notified on the same day and had matching individual characteristics, 
with one risky exposure window each, or (3) anything in between. We 
therefore restricted the dataset of event packets to an unambiguous 
subset constructed as follows. From the daily analytics data we identi-
fied the subset of notifications (of risky exposure) when exactly one 
contact with a given combination of individual characteristics was 
notified on a given day; for each such notification we assumed that all 
event packets with identical characteristics originated from the same 
contact—scenario (1) above. When more than one contact with given 
characteristics was notified on a given day, all event packets that day 
with those characteristics were excluded from analysis for simplicity. 
This procedure for grouping multiple event packets as being from the 
same contact is specifically for a single notification event of a given 
contact: if the same individual is notified multiple times during our 
study, each notification event (which will be at least a quarantine 
period apart from other notifications, by design) is treated as being 
from a separate individual, with a set of event packets associated 
with each event.

Extended Data Table  1 summarizes sample sizes for the final 
dataset analysed in this paper. Supplementary Table 1 summarizes 
sample sizes and aspects of the events packet data at three of the 
stages described above: before and after the grouping stage, and also 
for only those contacts who reported a positive test. The grouping 
stage—subsetting to instances when only a single contact with given 
characteristics was notified on a given day, for which the matching 
event packets can be grouped as from one contact—retains 60% of 
the events packets.

Empirical estimation of individuals’ probability of testing 
positive from summary statistics
In general, each contact in our dataset had multiple exposure windows, 
each of which had a duration (anything up to 30 min) and a risk score. 
We summarized these data for each contact into metrics including the 
maximum risk score from any of the windows, the cumulative risk score 
over all windows and the cumulative duration over all windows. We 
binned (grouped) contacts by the value of their summary metrics and, 
within each bin, calculated the fraction of contacts reporting a positive 
test in the observation interval. Confidence intervals on this fraction 
were calculated through the associated binomial distribution (defined 
with the number of ‘trials’ equal to the group size and the number of 
‘successes’ equal to the number of contacts reporting a positive test). 
We extrapolated our estimates to risk score 1 (that is, 2 m away from an 
index case with standard infectiousness for 15 min (indicated by a grey 
circle in Fig. 1) as a point of comparison) via a quadratic fit. In Figs. 2 
and 4 the background risk estimate from the maximum-likelihood 
approach outlined below was subtracted from the result. In all figures 
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the x coordinate for each bin corresponds to the mean of all scores 
within the bin.

Statistical modelling of the per-exposure-window probability of 
transmission
In reality, a given individual who reported a positive test was infected 
either by the background, or in their first recorded window, or in their 
second recorded window, and so on, but which of these was actually 
the case is unknown. Hence we modelled the process in terms of risk 
parameters, shared between individuals, that are to be estimated. 
We developed a statistical model for the separate contributions to 
each individual’s overall risk from each of their exposure windows 
and from background risk. Specifically, we modelled the probability 
of individual i not reporting a positive test during the observation 
interval as

B P i P i

P i

(1 − ) × (1 − ( ’s first window)) × (1 − ( ’s second window)) × …

× (1 − ( ’s last window))
i t t

t

where Bi is the probability of background transmission (followed by 
reporting of a positive test) and Pt (i’s nth window) is the probability 
of transmission during the i’s nth window (followed by reporting of a 
positive test). The justification for this form is that if an individual does 
not report a positive test, this implies that they were not infected by the 
background (with subsequent reporting) and were not infected during 
their first window (with subsequent reporting) and not during their 
second window, and so on. The probabilities for each of these events not 
happening should thus be multiplied to give the overall probability for 
none of them happening. We modelled Bi as 1 – (1 – bi)

β, defining bi as the 
sum, over the 14 days following i’s notification, of the weekly smoothed 
mean daily fraction of geographically matched, not-recently-notified 
app users that reported a positive test (β is the associated regression 
coefficient for this term). For small values of bi the background risk is 
simply rescaled by factor β—that is, Bi ≈ βbi; for larger values of bi the 
functional form accounts for saturation of risk. We modelled Pt (i’s nth 
window) as depending only on the risk score recorded by the app for 
i’s nth window. We binned risk scores into eight bins, defining a single 
independent Pt parameter for each bin, such that the expression above 
could be rewritten as

∏B P j(1 − ) × (1 − (bin )) .i
j

i j

=1

8

t
(number of windows from with risk score in bin )

The probability that individual i would report a positive test during 
the observation interval is 1 minus the expression above (the expres-
sion for them not reporting a positive test in the interval). The likeli-
hood is given by the product of all individuals’ probabilities for their 
reported outcome for testing positive. We maximized the likelihood 
to estimate the parameters β and per-window transmission probability 
for each of the eight bins of risk score (plotted in Fig. 3) and profiled 
the likelihood of obtaining the confidence intervals. Figure 3 shows 
that the per-window transmission risk estimated for each of the eight 
bins is proportional to the app-recorded risk score of that bin. We used 
a binning approach to allow the data to show this proportionality—
rather than taking it to be true as a modelling assumption—because 
this proportionality serves as validation for the app’s risk score cap-
turing real risk.

As a robustness check we developed likelihoods based on frailty 
models with several sources of heterogeneity among case–contact 
pairs in the model (Supplementary Methods section 1.6.2).

Predictors and machine learning classifiers
As basic input predictors for machine learning we used maximum, 
mean and cumulative risk scores and the duration and number of expo-
sures in each bin of risk score. Additional predictors included date, 
region, rural/urban score, background rate of infections, day of the 
week with more exposure windows and peak daily duration. Classifiers 
used included logistic regression, gradient-boosting machines31 and 
extreme gradient-boosting XGBoost32 with 10, 100 and 400 rounds.

Optimal strategies for amber notifications were obtained using a 
general approach for targeted interventions33 presented in Supple-
mentary Discussion.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data access is managed by UKHSA, who will make available on request 
the data needed to replicate the key results, either via the UK Data Service  
or through direct request for data access to UKHSA (details on the pro-
cess can be found at https://www.gov.uk/government/publications/
accessing-ukhsa-protected-data). Access is controlled for privacy reasons.

Code availability
The R code for the analyses in this paper is available on the official 
UKHSA repository at https://github.com/ukhsa-collaboration/risk_
scoring_nhs_covid19_app.
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Extended Data Fig. 1 | The app has more nuanced distance-duration rules 
than manual contact tracing. Coloured regions show regions of the 
distance-duration space where contacts are notified digitally (depending on 

the infectiousness of the index case) or manually. These boundaries apply in 
theory, though in practice distances are imperfectly estimated from Bluetooth 
signal attenuation.
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Extended Data Fig. 2 | The probability of transmission depends linearly on 
duration and cumulative risk for short exposures, then sublinearly. Log-log 
plots of the probability of reported infection (the fraction of notified contacts 
who report a positive test shortly after notification) and transmission 
(subtracting the maximum-likelihood correction for background risk) as a 
function of cumulative risk score and duration of exposure. Points correspond 
to maximum likelihood estimates. The brown bands show the 95% confidence 
interval for linear regressions on the points shown, i.e. a power-law relation 

between risk predictors and the probability of reporting a positive test. The 
maximum-likelihood estimates for the exponents are Pt ~ rcum

0.46±0.01, Pt ~ d0.47±0.01 
(infection) and Pt ~ rcum

0.69±0.04, Pt ~ d0.76±0.04 (transmission). For the regressions  
of the probability of transmission, when restricting to low values of the risk 
predictor (cumulative risk <20, duration <3 h), the relationships were 
approximately linear: Pt ~ rcum

0.95±0.07, Pt ~ d0.99±0.09 (orange bands), as expected 
from theoretical arguments. The ± values shown in the exponents are standard 
deviations.



Extended Data Fig. 3 | The monotonic relationship between the risk score 
per window and the probability of transmission in that window is robust 
with respect to the inclusion of individual heterogeneities in the model. 
Maximum-likelihood estimates of the probability of reported transmission per 
exposure window, i.e. the estimated probability of transmission in an 
individual exposure window followed by reporting of a positive test, as a 

function of the binned app-measured risk score for that window. The grey  
line and shading show the maximum-likelihood monotonic risk (and the 
corresponding 95% CI) shown in Fig. 3. Lines of different colours show 
maximum-likelihood estimates from models that do not assume monotonicity; 
these models include positive-test ascertainment and/or different functional 
forms for heterogeneities in risk (see Supplementary Methods Section 1.6.2).
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Extended Data Fig. 4 | The transmission probability per exposure window 
decreases for contacts located in conurbations and increases for low-risk 
exposures during the weekend. The probability of reported transmission per 
exposure window, i.e. the estimated probability of transmission in an 
individual 30-minute exposure window followed by reporting of a positive test, 

is shown as a function of the app-measured risk score for that window, as in 
Fig. 3 but with stratifications of contacts. Panel a: Stratification by weekday or 
weekend. Panel b: Stratification by rural area, urban area (town or city) and 
conurbation (urban agglomeration). Lines connect the maximum-likelihood 
estimates for each bin; shaded areas indicate 95% confidence intervals.



Extended Data Fig. 5 | Duration and cumulative risk are the best predictors 
of infection, only marginally improved by machine learning. Sensitivity/
specificity (receiver operating characteristic) curve for different methods and 
thresholds to classify individuals exposed to an index case as at risk or not. Our 
dataset contained only individuals who were actually notified; we varied the 
classification thresholds to interpolate between continuing to notify all of 

these individuals (top right) and notifying none of these individuals (bottom 
left). Different colours show different classification methods. For each method 
we varied thresholds to explore their balance between sensitivity (notifying 
individuals who would report a subsequent positive test) and specificity (not 
notifying individuals who would not). ML abbreviates machine learning, AUC 
the area under the curve.
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Extended Data Fig. 6 | Illustration of optimal strategies to reduce social 
costs of contact tracing via amber/red alert notifications. In this illustrative 
scenario we considered combinations of three measures: red notification 
leading to quarantine after notification, amber notification leading to PCR test 
after notification (followed by self-isolation if positive), and no notification. We 
assume that the risk of infection would be assessed based on duration of 
exposure. We consider optimal strategies leading to minimisation of total 
costs for patient and public health for a given epidemiological effectiveness; 

see Supplementary Discussion for details and assumptions on relative costs 
and effectiveness. Panel a: each horizontal line represents an optimal strategy 
(quarantining high-risk contacts, testing intermediate-risk contacts, not 
tracing low-risk contacts) that has the same effectiveness as a baseline 
quarantine-only strategy for contacts above a threshold duration of exposure 
(y axis). Panel b: the decrease in cost of the optimal strategy relative to the 
baseline strategy (quarantine for all traced contacts).



Extended Data Fig. 7 | Illustration of optimal strategies to increase 
effectiveness of contact tracing via amber/red alert notifications. Same as 
Extended Data Fig. 6, but considering optimal strategies that keep the total 
costs fixed while maximising epidemiological effectiveness. Panel a: each 

horizontal line represents an optimal strategy that has the same cost as a 
baseline quarantine-only strategy for contacts above a threshold duration of 
exposure (y axis). Panel b: the increase in effectiveness of the optimal strategy 
relative to the baseline strategy.
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Extended Data Table 1 | Summary statistics for the NHS COVID-19 app exposure dataset

We report statistics only for exposure windows that were successfully grouped and assigned to a single contact. These windows represent about 60% of the whole dataset. See Supplementary 
Table S1 for further details on the raw exposure window data before the grouping stage.



Extended Data Table 2 | Summary statistics for different types of contacts in our dataset

Household contacts (defined as contacts whose exposures cover more than 15 windows in a single day), recurring contacts (defined as non-household contacts whose multiple exposure 
windows occur on two different days or more), one-day contacts (defined as non-household contacts whose multiple exposure windows occur all in a single day) and fleeting contacts (defined 
as contacts with a single exposure window).
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection was performed using RAthena (v2.6.1) queries of the database of private app data.

Data analysis Analysis was performed in R, version 4.0.4, with use of packages data.table (v1.14.2), tidyverse (v1.3.2), gbm (v2.1.8.1), xgboost (v1.6). Code 
to replicate the analysis will be made available as part of the data sharing process by UKHSA at https://github.com/ukhsa-collaboration/
risk_scoring_nhs_covid19_app.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data access is managed by UKHSA, who will make available on request the data needed to replicate the key results, either via the UK Data Service or through direct 
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request for data access to UKHSA (details on the process can be found at https://www.gov.uk/government/publications/accessing-ukhsa-protected-data). Access is 
controlled for privacy reasons. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight Research Ethics Committee approval was not required because our analysis was performed on routinely collected, 
anonymised data that cannot be traced back to individuals, from a database built with the primary purpose of supporting 
public health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used all available data

Data exclusions No data were excluded from the analyses

Replication This is a one-off observational study, with no replication possible.

Randomization Not relevant - no use of experimental groups

Blinding Not relevant - no use of experimental groups

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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