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Summary 15 
Transcriptional enhancers act as docking stations for combinations of transcription factors (TFs) and 16 
thereby regulate spatiotemporal activation of their target genes. It has been a long-standing goal in 17 
the field to decode the regulatory logic of an enhancer and to understand the details of how 18 
spatiotemporal gene expression is encoded in an enhancer sequence. Here, we show that deep 19 
learning models can be used to efficiently design synthetic, cell type specific enhancers, starting from 20 
random sequences, and that this optimization process allows for a detailed tracing of enhancer 21 
features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to 22 
specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further 23 
exploit enhancer design to create “dual-code” enhancers that target two cell types, and minimal 24 
enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches 25 
towards local optima, we characterise enhancer codes through the strength, combination, and 26 
arrangement of TF activator and TF repressor motifs. Finally, we apply the same strategies to 27 
successfully design human enhancers, which adhere to similar enhancer rules as Drosophila 28 
enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers 29 
work and shows that their code can be exploited to manipulate cell states. 30 
 31 
Main 32 
Cell type specific expression of a target gene is achieved when a unique combination of TFs activates 33 
a specific enhancer; while this enhancer remains either passively (“default-off”1,2) or actively 34 
repressed in other cell types (e.g., via repressor binding3 or co-repressor/polycomb recruitment). 35 
Typically, when an enhancer is translocated to another chromosome or to an episomal plasmid, it 36 
maintains cell type specific control of its nearby reporter gene4,5. Therefore, its regulatory capacity is 37 
contained within the enhancer DNA sequence and has co-evolved to respond uniquely to a specific 38 
trans-environment in a cell type. A thorough understanding of how enhancer activation is encoded in 39 
its DNA sequence is important, as it is a key component for the modelling and prediction of gene 40 
expression6,7; for the interpretation of non-coding genome variation8,9; for the improvement of gene 41 
therapy; and for the reconstruction and manipulation of dynamic gene regulatory networks underlying 42 
developmental, homeostatic, and disease-related cell states. 43 
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Many complementary approaches and techniques have been used to decode enhancer logic4. These 44 
include studies of individual enhancers by mutational analysis10–12, in vitro TF binding (e.g., 45 
electrophoresis mobility shift assay), cross-species conservation13, and reporter assays. The upscaling 46 
of such studies led to the identification of common features of co-regulated enhancers 14–16. These 47 
experimental findings also triggered the improvement of computational methods for the prediction 48 
of cis-regulatory modules, whereby feature selection and parameter optimization led to new insights 49 
into how binding sites cluster and how their strength (or binding energy) impacts enhancer 50 
function11,12,17–20. Wider adoption of genome-wide profiling of chromatin accessibility21, single-cell 51 
chromatin accessibility22–24, histone modifications25,26, TF binding27, and enhancer activity15,28 led to 52 
significantly larger training sets of co-regulated enhancers that could then be used for a posteriori 53 
discoveries of TF motifs and enhancer rules, aided by the growing resources of high-quality TF 54 
motifs29,30. Additional mechanistic insight has been provided by thermodynamic modelling of 55 
enhancers31,32, in vivo imaging of enhancer activity33, the analysis of genetic variation through eQTL 56 
and caQTL analysis2,34, and high-throughput in vitro binding assays35,36. Recently, the enhancer biology 57 
field embraced the use of convolutional neural networks (CNN) and network-explainability techniques 58 
that again provided a significant leap forward in terms of prediction accuracy and syntax 59 
formulation6,37–44.  60 
An orthogonal strategy to decode enhancer logic is to engineer synthetic enhancers from scratch. This 61 
approach has the advantage that the designer knows exactly which features are implanted, so that 62 
the minimal requirements for enhancer function can be revealed. Recent work showed the promise 63 
of CNN-driven enhancer design by successfully designing yeast promoters45, and by using a CNN to 64 
select high-scoring enhancers for S2 cells, from a large pool of random sequences38. Here we tackle 65 
the next challenge in enhancer design, namely to design enhancers that are cell type specific. To this 66 
end, we used previously trained deep learning models for which we have already validated the 67 
accuracy of nucleotide-level interpretation and motif-level predictions8,39 (Supplementary Note 1). 68 
Using these enhancer models as a guide (or ‘oracle’), we tested three different sequence design 69 
approaches46,47 (Fig. 1).  70 
 71 
In silico evolution  72 
As a first strategy for enhancer design, we created synthetic enhancers to specifically target Kenyon 73 
cells (KC) in the mushroom body of the fruit fly brain, using a nucleotide-by-nucleotide sequence 74 
evolution approach45 (Methods). This approach starts from a 500 bp random sequence that is evolved 75 
from scratch (EFS) in silico towards a chosen cell type through multiple iterations. Prediction scores 76 
are calculated using DeepFlyBrain39, a deep learning model trained on differentially accessible regions 77 
across multiple cell-types of the Drosophila brain and that can recognize motif-level nucleotide 78 
arrangements for many cell-types (Supplementary Note 1). At each iteration we performed saturation 79 
mutagenesis9,44,48 whereby all nucleotides were mutated one by one, and each sequence variation was 80 
scored by DeepFlyBrain to select the mutation with the greatest positive delta score for the KC class 81 
(among 81 classes representing different cell types that the model learned to predict). We performed 82 
this procedure starting from 6,000 GC-adjusted random sequences and observed that after 15 83 
iterations, DeepFlyBrain KC prediction scores increased from around the minimal score (0) to nearly 84 
the maximum score (1), while remaining low for other cell types (Fig. 2a, Extended Data Fig. 1a,b). We 85 
found this greedy search to provide a good balance between computational cost and ability to 86 
efficiently yield high-scoring sequences, compared to alternative state space searches (Extended Data 87 
Fig. 2a-d, Methods). 88 
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Next, we investigated the initial (random) sequence and the specific paths that are followed through 89 
the search space towards local optima. For only a small fraction (3%) of random sequences the 90 
prediction score remained below 0.5 even after 15 mutations (Extended Data Fig. 1c). These 91 
sequences were mostly characterized by more instances of repressor binding sites together with an 92 
increased number of mutations required to generate sufficient activator binding sites. A second 93 
observation is that even though 500 bp space is given to the model, the selected mutations 94 
accumulated in about 200 bp space, preferentially at the center of the random sequence (Extended 95 
Data Fig. 1d,e).  96 
We investigated the consequences of each mutation on shaping the enhancer code using 97 
DeepExplainer-based contribution scores (Fig. 2b, Methods). This revealed that initial random 98 
sequences harbor several short repressor binding sites by chance and these are preferentially 99 
destroyed during the first iterations (Extended Data Fig. 1f,g). These repressor sites contribute 100 
negatively to the KC class prediction and represent candidate binding sites for KC specific repressor 101 
TFs such as Mamo and CAATTA39. The nucleotides with the highest impact represent mutations that 102 
destroy a repressor binding site and simultaneously generate a binding site for the key activators 103 
Eyeless (Ey), Mef2 or Onecut. Eventually, DeepExplainer highlighted multiple candidate activator 104 
binding sites, whereby Ey, Mef2, and Onecut sites dominate (Fig. 2b and Extended Data Fig. 1f,g). 105 
To test whether the in silico evolved enhancers can drive reporter gene expression in vivo, we 106 
randomly selected 13 sequences after 10 or 15 iterations (Fig. 2c and Supplementary Fig. 1, 2) and 107 
integrated them into the fly genome with a minimal promoter and a GFP reporter gene (Methods). 108 
Investigating the GFP expression pattern by confocal imaging showed that 10 out of these 13 tested 109 
synthetic enhancers were active specifically in the targeted cell-type, the Kenyon cells (Fig. 2d and 110 
Extended Data Fig. 1h). Some enhancers did not show activity after 10 mutations but became active 111 
after an additional five mutations (Fig. 2d, Extended Data Fig. 1i,j and Supplementary Fig. 3). The three 112 
enhancers without GFP signal in KC were found to also be Dachshund negative, indicating the potential 113 
loss of KC (Extended Data Fig. 1k). Using assay for transposase accessible chromatin by sequencing 114 
(ATAC-seq) on the brains of the transgenic lines, we verified that the synthetic enhancers become 115 
accessible when integrated into the genome (Extended Data Fig. 1l), as predicted by the model.  116 
We also generated transgenic lines to test enhancers at different steps during the evolutionary design 117 
process (Supplementary Fig. 4, 5). We found that random sequences, or sequences with only few 118 
mutations remain inactive, while enhancer activity is initiated when repressor sites are removed and 119 
Ey and Mef2 sites are generated; and activity further increases with more and stronger instances of 120 
activator motifs (Extended Data Fig. 1m,n).  121 
To demonstrate that enhancers can be generated for other cell types, we started from the same 122 
random sequences as above and evolved them into perineurial glia (PNG) enhancers (Extended Data 123 
Fig. 2e). After 15 mutations, putative PNG repressor sites have been destroyed and activator sites have 124 
been generated (Fig. 2e and Supplementary Fig. 6). We validated six designed sequences by creating 125 
transgenic GFP reporter flies, and confirmed that four were positive, as they drive GFP specifically in 126 
perineurial glial cells (Fig. 2f and Extended Data Fig. 2f). Because the same random sequence was 127 
evolved into either KC or PNG enhancers, this experiment underscores that the chosen mutations, and 128 
the candidate binding sites they destroy or generate, causally underlie the activity of these synthetic 129 
enhancers.  130 
Given that KC enhancers can arise from random sequences after 10 or 15 mutations, we hypothesized 131 
that certain genomic regions may require even fewer mutations to acquire KC enhancer activity. We 132 
scanned the entire fly genome and identified regions with high prediction scores but without 133 
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chromatin accessibility in KC (Extended Data Fig. 2g,h, Methods). By applying sequence evolution to 134 
these sequences, three out of four sequences became positive KC enhancers with only six mutations 135 
(Fig. 2g,h, Extended Data Fig. 2i,j and Supplementary Fig. 7). When the negative enhancer was further 136 
evolved, with an additional five mutations, it also became positive (Fig. 2g and Extended Data Fig. 2i,j). 137 
This suggests that KC enhancers, and likely other cell type enhancers as well, can arise de novo in the 138 
genome with few mutations. 139 
To summarize the changes that happened during the design process, we performed motif discovery 140 
across all 6,000 sequences, at each step of the optimization path (Extended Data Fig. 1f,g). This 141 
confirmed that repressor sites are often present in random sequences and that they are preferentially 142 
destroyed during the first steps of the search algorithm. To experimentally test that these short 143 
repressor sites functionally cause repression, we selected three positive synthetic enhancers and 144 
three of the near-enhancers rescued from the genome and evolved these to become non-functional 145 
by manually choosing the mutations that decrease the prediction score by creating repressor binding 146 
sites (Extended Data Fig. 2i and Supplementary Fig. 8, 9). We avoided mutating any of the predicted 147 
activator sites (Fig. 3a); thus, placed repressor motifs in between activator sites. New transgenic lines 148 
with these sequences integrated into the genome confirm that all tested enhancers have entirely lost 149 
their activity (Fig. 3b). This shows that a sufficient number of repressor sites can dominate over a 150 
functional combination of activator sites. 151 
The sequence evolution strategy thus represents an intuitive and efficient approach to generate cell 152 
type specific enhancers and to characterize their functional constituents. 153 

 154 
Multiple cell type codes 155 
A single enhancer can be active in multiple, different cell types49, and our earlier work suggested that 156 
this can be achieved by enhancers that contain multiple codes for different cell types, intertwined 157 
within a single ~500 bp sequence39. Based on this finding, we wondered whether a genomic enhancer 158 
that is active in a single cell type, could be synthetically augmented to become also active in a second 159 
cell type. To test this, we started with two optic lobe enhancers (amon and CG15117) that are 160 
accessible and active in T4/T5 and T1 neurons respectively39 and whose activity per cell type is also 161 
predicted correctly by DeepFlyBrain (Fig. 3c-e, Extended Data Fig. 3a-c). We then performed in silico 162 
evolution on these enhancers towards KC, while simultaneously maintaining a high prediction score 163 
for the original cell type. After 13 and 14 mutations, the enhancers were also predicted as KC 164 
enhancers, but retained T4 and T1 binding sites. Testing the augmented sequences in vivo with a GFP 165 
reporter confirmed the spatial expansion of the enhancer activity to KC (Fig. 3f-g, Extended Data Fig. 166 
3c-f, Supplementary Fig. 10, Methods).  167 
Reciprocally, enhancers active in multiple cell types may be pruned towards a single cell-type code. 168 
We searched for genomic enhancers that score high for multiple cell types (Fig. 3h-l). We selected a 169 
Pkc53e enhancer that is accessible and active in both optic lobe T neurons and KCs and predicted 170 
correctly by the model. This time, we drove the in silico evolution to maintain the KC prediction score, 171 
while decreasing the T neurons prediction score (Methods). After nine mutations, the sequence was 172 
predicted to have only KC activity (Fig. 3m). Nucleotide contribution scores show that the most 173 
important binding sites for KCs were unaffected after nine mutations while the activator binding sites 174 
were destroyed and new repressor binding sites were created for T neurons (Extended Data Fig. 3g). 175 
Testing the final sequence in vivo confirmed the spatial restriction of the enhancer activity (Fig. 3n). 176 
Together, our results suggest that, guided by the DeepFlyBrain model, intertwined enhancer codes 177 
can be independently dissected and altered. 178 
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 179 
Motif implantation 180 
As a second strategy, we used a classical motif implantation approach to design KC enhancers. The 181 
rationale behind this strategy is based on our results above: nucleotide-by-nucleotide sequence 182 
evolution showed that all the selected mutations were associated with the creation or destruction of 183 
a TF binding site, rather than affecting contextual sequence between motif instances (Fig. 2b,e,h, 184 
Extended Data Fig. 3d,e,g). This suggested that a combination of appropriately positioned activator 185 
motifs, without the presence of repressor motifs, would be sufficient to create a cell type-specific 186 
enhancer. Furthermore, we reasoned that by applying this design strategy to thousands of random 187 
sequences we could gain additional insight into the KC enhancer logic. To this end, we iteratively 188 
implanted strong TF binding site instances in 2,000 random sequences, selecting locations with the 189 
highest prediction score towards the KC class. We first implanted a single binding site for one of the 190 
four key activators of KC enhancers, namely Ey, Mef2, Onecut, and Sr39 and then specific combinations 191 
of sites in a particular implantation order (Extended Data Fig. 4a, Methods). This revealed that Ey and 192 
Mef2 had the strongest effect on the prediction score, while Onecut and Sr increased the prediction 193 
score only marginally (Fig. 4a). Implanting Ey and Mef2 consecutively increased the score more than 194 
the sum of their individual contribution and their implantation order did not affect the final score. 195 
Adding Onecut and then Sr on top of Ey and Mef2 sites increased the scores even further until it 196 
reached the level that we obtained above after 15 mutations through in silico sequence evolution (Fig. 197 
4a). We could also observe some minor preferences in the motif flanking sequence (e.g. Mef2 is 198 
flanked by T or G in 5’ and A or C in 3’; Extended Data Fig. 4a) 199 
We also found that high-scoring configurations consisted of activator sites that are positioned close 200 
together within a distance usually smaller than 100 bp (Fig. 4b,c, Extended Data Fig. 4b). When the Ey 201 
and Mef2 pair were implanted on the same strand, we observed strong preference for a 5 bp distance 202 
(or 4 bp when implanted on opposite strands) between the two binding sites whereby Mef2 was 203 
located upstream of Ey (Fig. 4b, Extended Data Fig. 4c). For the Ey and Onecut pair, there was a strong 204 
preference for a 3 bp space and Onecut preferred the downstream side of Ey (Fig. 4c, Extended Data 205 
Fig. 4d).  206 
We investigated the nucleotide contribution scores before and after motif implantations for an 207 
example sequence with high prediction score where motifs were inserted close together (Fig. 4d,e, 208 
Supplementary Fig. 11). The initial random sequence contained multiple repressor binding sites and 209 
the Ey binding site implantation destroyed the strongest repressor binding site. Mef2 and Onecut 210 
implantations followed the predicted spacing relative to Ey, with a distance of 5 bp and 3 bp, 211 
respectively. This can explain why implantation of motifs at random locations yields lower scoring 212 
sequences (Fig. 4a). Even though some repressor binding sites were still present at further distances, 213 
their relative negative contribution was decreased after the activator binding site implantations (Fig. 214 
4e). Testing this designed 500 bp sequence in vivo confirmed specific activity in KC (Fig. 4f). 215 
Introduction of mutations to generate repressor sites close to the implanted motifs (none of the 216 
activator sites was modified) resulted in complete loss of enhancer activity in vivo, suggesting 217 
dominance of repressor motifs (Fig. 4d,e,g). Furthermore, a 49 bp subsequence, containing just the 218 
three binding sites, resulted in the same activity and specificity in vivo (Fig. 4h,i, Supplementary Fig. 219 
12). We further confirmed the robustness of the motif implanting design by validating in vivo a second 220 
500 bp sequence displaying increased spacing between motifs (Extended Data Fig. 4e,f,g). This result 221 
suggests that a functional KC enhancer can be created via motif-by-motif implantation with just these 222 
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three binding sites and its size can be decreased to the minimal length required to contain these 223 
binding sites.  224 
As a third strategy for enhancer design, we used Generative Adversarial Networks (GAN) that have 225 
been shown to be powerful generators in different fields43,48, including the generation of functional 226 
genomic sequences46. This method was less interpretable than in silico evolution or motif implanting 227 
but still allowed for the generation of functional and specific enhancers (Supplementary Note 2).  228 
 229 
Human enhancer design  230 
We used our previously trained and validated melanoma deep learning model, DeepMEL28 231 
(Supplementary Note 1) with the same three strategies as before, to design human melanocyte, or 232 
melanocyte-like melanoma (MEL) enhancers. Like the Drosophila experiments, we started from GC-233 
adjusted random sequences (Extended Data Fig. 5a) and, by following the nucleotide-by-nucleotide 234 
sequence evolution approach, we evolved them into sequences with high prediction scores for the 235 
MEL class. This process drove the generation of activator binding sites (SOX10, MITF, TFAP2) and the 236 
destruction of ZEB motifs to resemble MEL genomic enhancers; the prediction scores started to 237 
plateau after 15 mutations (Fig. 5a, Extended Data Fig. 5b,c). We randomly selected 10 regions that 238 
were evolved from scratch (EFS-1-10) with 15 mutations and tested their activity with a luciferase 239 
assay in vitro, in a MEL cell line (MM001) (Fig. 5b,c and Methods). Seven out of 10 tested enhancers 240 
showed activity in the range of previously characterized positive control (native) enhancers and none 241 
of them showed activity in a cell line that represents another melanoma cell state (mesenchymal-like, 242 
MM047) where the MEL-specific TFs (SOX10, MITF, and TFAP2) are not expressed (Fig. 5d, Extended 243 
Data Fig. 5d). When we integrated these synthetic enhancers into the genome of the MM001 cell line 244 
using lentiviral vectors (Methods), they generated an ATAC-seq peak, while neither the random 245 
sequences nor the evolved sequence when integrated in a non-MEL cell line are accessible (Fig. 5e, 246 
Extended Data Fig. 5e,f).  247 
Next, we tested the activity of a series of synthetic sequences, along the design path, from a random 248 
sequence to an active enhancer (Extended Data Fig. 6, Supplementary Fig. 13, 14). This shows that the 249 
predicted activity by DeepMEL2 correlates with the luciferase reporter activity in vitro (Fig. 5f, 250 
Extended Data Fig. 5g), suggesting that the steps of increased activity are not biased to our DeepMEL2 251 
model, but reflect biological activity. Functional in silico evolved enhancers lost their activity, and 252 
accessibility, when ZEB sites were generated in proximity of activator sites (Fig. 5e,f, Extended Data 253 
Fig. 5g, 8), and this repressive mechanism depended on the number and the strength of repressor 254 
sites (Extended Data Fig. 8a,b-e, Supplementary Fig. 15). We confirmed that the same principles of 255 
repression apply to genomic enhancers, using the MEL enhancer in an IRF4 intron as example, and 256 
through ChIP-seq we identified ZEB2 as the actual repressor TF (Fig. 5g,h, Supplementary Note 3). 257 
Mutating the endogenous ZEB2 site in the IRF4 enhancer causes a significant increase in activity, while 258 
mutations that generate additional ZEB2 sites (without touching activator sites) decrease its activity 259 
(Fig. 5i., Supplementary Note 3).  260 
These findings could be further corroborated by scoring all sequences during the optimization process 261 
with two other deep learning models, namely a newly trained ChromBPNet model50 on bulk MM001 262 
ATAC-seq data (Methods) and the previously published Enformer model, for which the SK-MEL-5 263 
ATAC-seq class represents the MEL state6. The Enformer model has a receptive field of 200 kb and can 264 
be used to predict both enhancer activity and target gene expression in the context of an entire gene 265 
locus. To simulate whether our synthetic enhancers do function like genomic enhancers in a complex 266 
locus, we replaced the IRF4 enhancer studied above with synthetic enhancers, thus performing an in 267 
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silico CRISPR experiment. Replacement of the IRF4 enhancer by a random sequence results in no 268 
predicted accessibility, while replacement by different synthetic enhancers along their design path 269 
gradually obtains increased prediction scores for accessibility, H3K27Ac signal, and CAGE gene 270 
expression (Fig. 5j,k, Extended Data Fig. 7b). Since Enformer contains more than 600 chromatin 271 
accessibility (DNase Hypersensitivity) output classes, across a wide variety of cell types, we used it to 272 
assess the specificity of our designed enhancers, and found high prediction scores for only four classes, 273 
each representing either melanocytes or melanocyte-like melanoma cell states (Fig. 5l, Extended Data 274 
Fig. 7a). The ChromBPNet model shows continuous increases of predicted enhancer activity along the 275 
optimization path (Fig. 5m). Again, all three models correctly predict that synthetic enhancers, after 276 
they reach their highest activity level, can be switched off entirely by introducing point mutations that 277 
generate ZEB binding sites (Fig. 5j,k,m, Extended Data Fig. 7a,b). Furthermore, changing the location 278 
of the enhancer relative to the TSS did not alter its functionality, suggesting that the enhancers are 279 
not dependent on the local sequence context around the IRF4 enhancer location to be functional 280 
(Extended Data Fig. 7c). As a final example of in silico evolution, we identified a human ‘near-enhancer’ 281 
and rescued its activity with only 4 mutations (Extended Data Fig. 9a-d).  282 
We also applied the motif implantation strategy to design human enhancers. We implanted SOX10, 283 
MITF, and TFAP2 binding sites to 2,000 random sequences of 500 bp. While implanting only MITF or 284 
TFAP2 resulted in a small increase in the prediction score, implanting SOX10 alone had the strongest 285 
effect (Fig. 5n). Adding MITF and then TFAP2 on top of SOX10 sites increased the prediction scores to 286 
0.6 on average. The prediction scores continued increasing even further after adding another set of 287 
SOX10, MITF, and TFAP2 binding sites (Fig. 5n). We did not observe a preferential location for the 288 
implantation of MITF or TFAP2 relative to SOX10, however both binding sites were located within 100 289 
bp of SOX10 (Fig. 5o). The second SOX10 binding site was placed further away at a 200-250 bp distance 290 
relative to the first SOX10 (Fig. 5o). We selected four sequences with either single or double SOX10, 291 
MITF, and TFAP2 implanted sites and tested their activity with luciferase assays. All enhancers showed 292 
activity in the range of native enhancers and adding the binding sites twice consistently increased the 293 
activity of the enhancers (Fig. 5p, Extended Data Fig. 10a,b,c). Replacing the implanted binding sites 294 
with their weaker versions taken from a native enhancer (IRF4) decreased the activity of the enhancers 295 
dramatically (Extended Data Fig. 10a,b,c). To confirm that the activity of the enhancers was driven by 296 
the implanted binding sites, we cut the sequences from the most upstream binding site to the most 297 
downstream binding site. These subsequences (116-164 bp) were also active with a slight change in 298 
their activity levels (Extended Data Fig. 10a,b,c). Finally, instead of choosing the best location for MITF 299 
and TFAP2 implantation, we implanted them at the closest location to the SOX10 binding site that 300 
would result in a positive change in the prediction score. These minimal enhancers (51-64 bp) were as 301 
active as their longer (500 bp) version (Extended Data Fig. 10a,b,c).  302 
Finally, we applied the GAN-based sequence generation approach to the generation of human 303 
enhancers and obtained similar performances as with the Drosophila GAN-generated enhancers 304 
(Supplementary Note 2). 305 
In conclusion, these results show that enhancer design strategies are adaptable to different biological 306 
systems and even other species including human. 307 
 308 
Discussion  309 
Understanding the code of transcriptional regulation and utilising this knowledge to design synthetic 310 
enhancers has been a persistent challenge. We successfully designed synthetic enhancer sequences 311 
in human and fly guided by deep learning models. By combining a stepwise enhancer design approach 312 
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alongside model interpretation techniques, we followed the trajectories of in silico enhancer 313 
emergence in Drosophila and human, towards local optima. Nucleotide-by-nucleotide evolution 314 
revealed that the selected mutations predominantly destroy candidate repressor TF binding sites and 315 
create candidate activator sites. Mostly, ten iterative mutations were sufficient to convert a random 316 
sequence into a cell type-specific functional enhancer. Similarly, for native yeast promoter sequences, 317 
it was recently shown that only four mutations could dramatically increase or decrease their 318 
activities45. This evolutionary design process may represent an optimized version of natural evolution 319 
of genomic enhancers. We found that the fly and human genomes contain “near-enhancers” that 320 
require few mutations to become functional. 321 
The location, orientation, strength, and number of TF motifs within a single enhancer, and their 322 
distance to other motifs are important features determining an enhancer code that is unique to each 323 
cell type. This array of well-arranged TF binding sites constitutes a docking platform for a specific 324 
combination of TFs. Their cooperative binding makes the enhancer accessible/active at different levels 325 
and in different cell types. We found certain enhancers to be active in multiple cell types. Besides the 326 
trivial possibility whereby two cell types share a common set of TFs that bind to a common set of sites 327 
(e.g., different KC subtypes), we showed that some enhancers have evolved multiple intertwined 328 
codes (e.g., KCs and T neurons). We could prove this by either removing a code from a native dual-329 
code enhancer or adding a second code to a native single-code enhancer. 330 
The consequence of this motif-driven enhancer model is that it allows for enhancer design by motif 331 
implantation. Several studies have used motif implantation in an attempt to reconstitute enhancer 332 
activity, but successes of accurate in vivo activity have been limited51,52. More recently, motif 333 
embedding has also been used in combination with deep learning models38,42,53 with the advantage 334 
that many different motif implanting scenarios can be tested in silico, before performing experimental 335 
validation38,42,43,53, as compared to high-throughput testing of random implantations28,54,55. By 336 
exploiting motif implantation further, particularly by scoring each possible implant position, as well as 337 
combinations of motifs, we could reveal motif synergies (e.g., Ey + Mef2; or SOX10 + MITF), as well as 338 
preferred orientations and distances between motifs, motif strengths, and motif copy number. A 339 
minimal fly brain enhancer designed with three abutting motif instances illustrates that functional 340 
enhancers can be created without further sequence context. Compared to random insertions of motif 341 
instances52,56, deep learning guided implantation has the capacity to take the entire enhancer 342 
sequence into account. Consequently, what makes an enhancer is not only the optimal combination 343 
of motifs used (including each motif’s strength and copy number), but also the optimal balance 344 
between repressor and activator motifs, and the optimal motif arrangement. 345 
Two out of 13 Kenyon cell enhancers remain negative while one is inconclusive. Nevertheless, this 346 
leads to a conservative success rate >75%. We also envision several routes for further improvement 347 
in enhancer design. Firstly, whereas our examples focused on adult cell types, we did not consider 348 
temporal changes. It thus remains to be investigated whether developmental enhancers with highly 349 
dynamic and complex output functions can be decoded and designed along the same principles. 350 
Studies of the shavenbaby enhancer in Drosophila showed that its output is affected by mutations in 351 
most of its nucleotides57. This may be due to a densely packed motif content, like our minimal 352 
enhancer, or to yet unknown sequence features. It may be interesting to investigate such 353 
developmental enhancers with deep learning models [INSERT CITATION TO FURLONG&STARK BACK-354 
TO-BACK]. Additionally, we observed slight variations in the GFP output pattern of (genomic and 355 
synthetic) enhancers. Incorporating such high-resolution variations in the training data may yield 356 
models with improved spatial and quantitative resolution. Lastly, the repressor motifs identified by 357 
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our models recruit TFs that cause a decrease in chromatin accessibility. However, this is likely not true 358 
for all transcriptional repressors (e.g., binding sites of the REST repressor overlap with accessible 359 
chromatin58). A future challenge will be to take repressor motifs into account that do not decrease 360 
chromatin accessibility. To train such models, additional enhancer activity data or gene expression 361 
data will be needed. 362 
The successful application of enhancer design on both fly brain and human cancer cells has shown that 363 
simple, yet powerful strategies guided by deep learning models are adaptable to different organisms 364 
or systems. Our proof-of-concept study is an encouraging step forward towards the development of 365 
organism-wide deep learning models. Such models will facilitate the generation of synthetic 366 
enhancers during development, disease, and homeostasis; and will further improve our understanding 367 
and control of the genomic cis-regulatory code. 368 
 369 
  370 
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Methods  509 
 510 
Data reporting 511 
No statistical methods were used to predetermine sample size. The number of synthetic enhancers 512 
that were tested using transgenic flies was determined to be minimally 6 per cell type and it was 513 
bounded by the feasibility of the transgenic animal generation experiments. In total, 68 transgenic 514 
flies were generated. The number of synthetic enhancers that were used with luciferase assays was 515 
determined to be minimally 10 per different category (in silico evolution, motif embedding, GAN, 516 
repressors, mutational steps). In total, 97 sequences were tested using luciferase assay. The initial 517 
random sequences (used for sequence evolution and motif implantation) were sampled from the 518 
sequence space that matches the GC content of the genomic sequences. Flies fitting the gender (equal 519 
amount of male and female) and age (<10 days) criteria were selected randomly for all experiments. 520 
In this study, we didn't perform experiments that needed to be allocated into different groups. The 521 
investigators were blinded when performing cloning, transfection, antibody staining, and luciferase 522 
experiments by using enhancer IDs. 523 
 524 
Statistics and reproducibility 525 
Statistics were calculated using Scipy (v1.6.0)59. The results here and throughout the manuscript were 526 
visualised using matplotlib (v3.1.1)60. The deep learning models were run in a conda environment 527 
where python (v3.7), tensorflow-gpu (v1.15)61, numpy (v1.19.5)62, ipykernel (v5.1.2), and h5py 528 
(v2.10.0) packages were installed. The same results were obtained from different replication 529 
experiments. Multiple brains (at least 10) were stained and imaged for the fly experiments. Three 530 
biological replicates were performed for the main luciferase experiments. Two biological replicates 531 
were performed for the negative control luciferase experiments. No biological replicates performed 532 
for ATAC-seq or ChIP-seq experiments.  533 
 534 
In silico saturation mutagenesis 535 
To measure the effect of each possible single mutation on a given DNA sequence, we performed in 536 
silico saturation mutagenesis, as described earlier9,48,63. We first generated the sequences of all single 537 
mutations for a given 500 bp sequence (3 possible mutations for each nucleotide, making 1500 538 
sequences in total). We scored these sequences and the initial sequence with the deep learning 539 
models. For a chosen class, we calculated the delta prediction score by subtracting the score of the 540 
initial sequence from the score of the mutated sequence for each mutation. 541 
 542 
Random sequence generation 543 
We generated random 500 bp sequences to use as a prior set for the in silico sequence evolution and 544 
motif implantation by using the numpy.random.choice(["A","C","G","T"]) command. For each position, 545 
instead of using 25% probability for each nucleotide to be chosen, we used the frequency of the 546 
nucleotides from fly or human genomic regions for each position. In these genomic regions, the GC-547 
content was higher in the center of the regions on average relative to the flankings. We used 6,126 KC 548 
regions for fly and 3,885 MEL regions for human that we identified in our previous publications37,39. 549 
 550 
In silico sequence evolution 551 
By using the saturation mutagenesis scores mentioned above, we performed in silico sequence 552 
evolution. For the in silico evolution from random sequences, we calculated saturation mutagenesis 553 
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scores for a random sequence. Then, we selected the mutation that had the highest positive delta 554 
prediction score for the selected class (for γ-KC, class no. 35 in DeepFlyBrain; for PNG, class no. 34 in 555 
DeepFlyBrain; for MEL, class no. 16 in DeepMEL2). For the selected sequence with one mutation, we 556 
re-calculated the saturation mutagenesis scores for each nucleotide and again selected the mutation 557 
with the highest delta score and repeated this procedure until the initial random sequence 558 
accumulated 20 mutations. 559 
Even though we used a simple objective function to direct the sequence evolution towards a single 560 
cell type, without explicitly penalising off-target cell types, the generated sequences were mostly 561 
active only in the targeted cell type. We believe this is due to the type of enhancer models we are 562 
using, which were trained on cell-type specific accessible regions. When more general models are 563 
used, for example trained on entire ATAC-seq tracks, adapted objective functions can be used and are 564 
available in our code. The cell type specific activity of our synthetic enhancers suggests that: (1) 565 
activator binding sites were not created for other cell types; and (2) repressor sites, which are present 566 
in random sequences by chance, were not destroyed for other cell types. For example, in Kenyon Cells 567 
we observed that activator binding sites are usually longer than repressor sites (18 bp and 10 bp versus 568 
5 bp and 6 bp for Ey, Mef2, Mamo, and CAATTA respectively). This implies that a random sequence is 569 
more likely to have multiple repressor binding sites by chance compared to activator sites (Extended 570 
Data Fig. 1f). Indeed, the average prediction scores of our initial 6,000 random sequences were close 571 
to zero for all classes. This may at least in part explain why earlier enhancer design efforts may have 572 
failed.  573 
We used 6,000 initial random sequences for KC and PNG and 4,000 for MEL. For the generation of KC 574 
enhancers from genomic regions, we performed 6 iterative mutations. For the multiple cell-type code 575 
enhancers, we started from optic lobe enhancers and in each iteration we manually selected the 576 
mutations that increased the γ-KC prediction score while maintaining the optic lobe prediction scores 577 
high. For the pruning experiment of a multiple cell type code enhancer into only KC code, we manually 578 
selected the mutations that maintain the γ-KC prediction score high while decreasing the optic lobe 579 
prediction scores. The DeepFlyBrain class numbers used for optic lobe neurons are 23 for T1, 20 for 580 
T2, and 2 for T4 neurons. 581 
To rescue the designed enhancers that were weak or negative, we performed 5 additional mutations 582 
on both from-scratch and from-genomic sequences. 583 
To repress the sequences with the creation of repressor binding sites, we selected single or double 584 
mutations manually, by going over in silico saturation mutagenesis plots calculated on the evolved 585 
sequences. 586 
To explore the alternative in silico sequence evolution paths besides choosing the best mutation 587 
(greedy algorithm), we chose the top 20 mutations on each sequence for every incremental step 588 
starting from a random sequence. We followed this procedure for 5 incremental mutational steps. 589 
Starting from the random sequence used to generate enhancer KC EFS-4, we obtained 3.2 million 590 
paths/sequences at the end. 591 
 592 
Nucleotide contribution scores 593 
We used a network explaining tool, called DeepExplainer (SHAP package64,65), to calculate the 594 
contribution of each nucleotide to the final prediction of the deep learning model for the chosen class. 595 
We used randomly selected 250 genomic regions to initialize the explainer. 596 
DeepFlyBrain model takes a single strand as an input. For a given 500 bp, we multiplied the explainer’s 597 
output by the one-hot encoded DNA sequence and visualized it as the height of the nucleotide letters. 598 
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DeepMEL2 model takes forward and reverse strands separately as an input. In this case, the explainer 599 
results in contribution scores for each strand. We first took the average contribution score for each 600 
nucleotide and then multiplied it by the one-hot encoded DNA sequence to visualize. 601 
 602 
Motif annotation 603 
To identify TF binding sites during the in silico evolution of designed sequences, we used TF-Modisco 604 
(v0.5.5.4)66 and Cluster-Buster67. Firstly, we calculated the nucleotide contribution scores on every 605 
mutational step including random sequences. Then, we ran TF-Modisco on each mutational step 606 
separately to identify which patterns are appearing/disappearing. The TF-Modisco parameters we 607 
used were num_to_samp=5000, sliding_window_size=15, flank_size=5, target_seqlet_fdr=0.15, 608 
trim_to_window_size=15, initial_flank_to_add=5, final_flank_to_add=5, final_min_cluster_size=60. 609 
After investigating the TF-Modisco patterns that were identified on each mutational steps, we used 610 
mutational step 1 for KC and mutational step 4 for MEL to collect the identified patterns, since they 611 
contained all the activator and repressor patterns (Earlier steps didn’t have good representation of 612 
activators since they are close to random sequences. Later steps didn’t have good representation of 613 
repressors since they were destroyed during the mutational steps). We trimmed the patterns based 614 
on information content (threshold=0.1) and saved them as a .cb file to be used by the Cluster-Buster. 615 
By using the TF-Modisco patterns, we ran ClusterBuster (with -c 0 and -m 3 options) to identify motifs 616 
on each mutational step, including random sequences. We selected only the motif instances from 617 
Cluster-Buster results and merged (by using BEDTools v2.30.068) the overlapping hits of the motifs into 618 
a single hit. We calculated mean+std on the hit scores coming from random sequences for each motif 619 
separately and used these thresholds to get the significant hits. 620 
Identification of TF binding sites similar to TF-Modisco patterns was performed using Tomtom69 using 621 
the cisTarget motif collection70. 622 
 623 
Scoring the fly genome 624 
To identify the regions that have high prediction scores for γ-KC but have less accessibility in γ-KC, we 625 
scored the whole fly genome. We used the bedtools makewindows -g dm6.chromsize -w 500 -s 50 626 
command68 to create the coordinates of the binned fly genome with a 500 bp window and 50 bp 627 
stride. We removed the regions that are not exactly 500 bp. This resulted in 2,750,893 regions to be 628 
scored with the DeepFlyBrain model. We used the stats function of deeptools/pyBigWig package71 to 629 
calculate mean γ-KC accessibility values for each bin. 630 
 631 
Motif implanting 632 
To implant binding sites into 500 bp sequences, we started from a random sequence. We implanted a 633 
binding site into every possible location on the random sequence one-by-one by replacing the 634 
nucleotides on the random sequences with the binding site. Then, we scored these sequences with 635 
the model. We selected the binding site position that gives the highest prediction score and implanted 636 
the motif on that position. Then, starting from this sequence with one binding site implanted, we 637 
implanted the next binding sites one-by-one by using the same procedure. The sequence of binding 638 
sites that maximize the TF-Modisco pattern score were selected to implant and they are as follows; 639 
Ey: TGCTCACTCAAGCGTAA, Mef2: CTATTTATAG, Onecut: ATCGAT, Sr: CCACCC, SOX10: 640 
AACAATGGGCCCATTGTT, MITF: GTCACGTGAC, and TFAP2: GCCTGAGGC. We used 2,000 initial random 641 
sequences for KC and 2,000 for MEL. The weaker binding sites taken from the IRF4 enhancer are as 642 
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follows: SOX10_1: GTGAATGACAGCTTTGTT, SOX10_2: TACAAGTATCTCCATTGT, MITF_1: 643 
ATCATGTGAA, MITF_2: GCCATATGAC, TFAP2_1: TCTTCAGGC, and TFAP2_2: CCCTGTGGT.  644 
When TF motifs are implanted at random positions in a random sequence, prediction scores are very 645 
low, likely because repressor sites remain present. Likewise, to be able to generate a functional 646 
enhancer through random sequence generation, many sequences need to be generated (i.e., 100 647 
million and 1 billion38,72).  648 
To measure if there is a preference for a flanking sequence when performing motif implanting, we 649 
aggregated all the sequences aligned by the location of the implanted motif. Then, we calculated the 650 
position probability matrix and visualised it by subtracting 0.25 from each position. 651 
To measure the effect of different background sequences on the minimal KC enhancer, we generated 652 
1 million random sequences with the size of 20 bp. Then, we replaced the 20 bp spanning the position 653 
where Ey, Mef2, and Onecut binding sites implanted that occupied the 6 bp flankings on both sides 654 
and 8 bp inter-motif space. Then, we scored the sequences with the model and measured the effect 655 
of different backgrounds around the motif implantation area. 656 
 657 
Generative Adversarial Network 658 
To train a GAN model, we used Wasserstein GAN architecture with gradient penalty73 similar to earlier 659 
work47. The model consists of two parts: generator and discriminator. Generator takes noise as input 660 
(size is 128), followed by a dense layer with 64,000 (500 * 128) units with ELU activation, a reshape 661 
layer (500, 128), a convolution tower of 5 convolution blocks with skip connections, a 1D convolution 662 
layer with 4 filters with kernel width 1, and finally a SOFTMAX activation layer. The output of the 663 
generator is a 500 × 4 matrix, which represents one-hot encoded DNA sequence. Discriminator takes 664 
500 bp one-hot encoded DNA sequence as input (real or fake), followed by a 1D convolution layer with 665 
128 filters with kernel width 1, a convolution tower of 5 convolution blocks with skip connections, a 666 
flatten layer, and finally a dense layer with 1 unit. 667 
Each block in the convolution tower consists of a RELU activation layer followed by 1D convolution 668 
with 128 filters with kernel width 5. The noise is generated by the numpy.random.normal(0, 1, 669 
(batch_size, 128)) command. We used a batch size of 128. For every train_on_batch iteration of the 670 
generator, we performed 10 train_on_batch iteration for the discriminator. We used Adam optimizer 671 
with learning_rate of 0.0001, beta_1 of 0.5, and beta_2 of 0.9. We trained the models for around 672 
260,000 batch training iteration for KC and around 160,000 batch training iteration for MEL.  673 
We used 6,126 KC regions for the fly model and 3,885 MEL regions for the human model, which we 674 
identified in our previous publications, as real genomic sequences to train the models. After the 675 
training, we sampled 6,144 (48 * batch size) sequences for KC and 3,968 (31 * batch size) sequences 676 
for MEL by using the generator for every 10,000 batch training iteration. The sampled synthetic 677 
sequences were generated by calculating predictions on noise and then the numpy.argmax() 678 
command was used to convert the predictions into one-hot encoded representations. 679 
 680 
Background model 681 
To compare against the GAN-generated sequences, we generated random sequences in different 682 
orders by using the CreateBackgroundModel function from the INCLUSive package74 based on the 683 
same genomic regions that we used to train GANs. 684 
 685 
Training ChromBPNet models 686 
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For training ChromBPNet models we used a pre-released version (v1.3-pre-release) from the 687 
ChromBPNet GitHub repository (https://github.com/kundajelab/chrombpnet/tree/v1.3-pre-release). 688 
We followed all the preprocessing and training steps as described in the tutorial: from the aligned 689 
ATAC reads in the MM001 BAM file, we made a BigWig of Tn5 insertion sites, trained a bias model 690 
that predict Tn5 binding sites in non-peak regions which is then used in the ChromBPNet model to 691 
filter out Tn5 bias. ChromBPNet uses 2,114 bp DNA sequence as input and predicts both the ATAC 692 
track and the natural log count of the aligned reads for the central 1000 bp. To be able to score 500 693 
bp DNA sequences (IRF4 enhancer and synthetic enhancers), we used the flanking sequences of the 694 
cloned/integrated enhancer sequences surrounded by the integrated cassette. Both scalar and track 695 
prediction were plotted. Flanking sequences are provided in the Supplementary Code. 696 
 697 
Using the Enformer model 698 
We used the Enformer model to do in silico CRISPR experiments. We took the IRF4 locus 699 
(Chr6:339,010:453,698) centred by the IRF4 enhancer (Chr6:396,104:396,604). We replaced the 700 
endogenous IRF4 enhancer with the random / evolved / repressed designed sequences and calculated 701 
the prediction scores for the related cell types. The prediction scores were plotted as showing the 702 
whole locus. For DNase and ChIP-Histone:H3K27ac tracks, the mean values were calculated using the 703 
middle 3 bins or 1 bin spanning the enhancer location. For CAGE tracks, the mean values are calculated 704 
using 1 bin spanning the TSS of IRF4. The index of the tracks that we used to get the prediction scores 705 
are as follow; 4832: CAGE/melanoma cell line:G-361, 162: DNase/SK-MEL-5, 2162: ChIP-706 
Histone:H3K27ac/foreskin melanocyte male newborn.  707 
To measure the locational effect of the designed enhancers on gene expression, chromatin 708 
accessibility, and histone modification, we moved the synthetic enhancer around the IRF4 locus; (1) 709 
to 10 kb upstream, (2) 5 kb upstream (which is next to the promoter of the IRF4 gene), and (3) 17.5 kb 710 
downstream of the original location.  711 
 712 
Cloning of synthetic Drosophila enhancers 713 
Synthetic sequences were ordered from Twist Bioscience, pre-cloned in the pTwist ENTR vector. The 714 
motif-implantation and double-coded sequences were synthesized with an additional 5’ CACC 715 
sequence as double-stranded DNA (gBlocks Gene Fragments) by IDT. 49 bp motif-implantation 716 
sequence was ordered from IDT as forward and reverse single-stranded DNA oligos, which were then 717 
annealed for 5 min at 95°C and cooling down to RT over one hour. The double-stranded DNA 718 
sequences were then cloned into the pENTR/D-TOPO plasmid (Invitrogen).  719 
All sequences were introduced in a modified pH-Stinger vector75, containing nuclear GFP, Hsp70 720 
promoter, gypsy insulators, and attB site for phiC31 integration, via Gateway LR recombination 721 
reaction (Invitrogen). 2 µl of the reaction was transformed into 25 µl of Stellar chemically competent 722 
bacteria (Takara). Plasmid minipreps were performed using the NucleoSpin Plasmid Transfection-723 
grade Mini kit (Macherey-Nagel) and sequenced with Sanger sequencing to confirm the correct 724 
insertion of the regions in the destination plasmid. After confirmation of the sequence, plasmid 725 
midipreps were performed using the NucleoBond Xtra endotoxin-free Midi kit (Macherey-Nagel). 726 
Next, the plasmids were sent to FlyORF (CH) for injection in Drosophila embryos (21F site on 727 
chromosome 2l) and positive transformants were selected based on eye colour.  728 
Drosophila flies were raised on a yeast-based medium at 25°C under a 12 h-12 h day-night light cycle. 729 
 730 
Immunohistochemistry analysis of Drosophila brains 731 
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Brains of adult flies (Drosophila melanogaster, <10 days old, equally mixed sex) were dissected in PBS 732 
and transferred to a tube for fixation in 4% formaldehyde in PBS for 20 min. All incubations were done 733 
at room temperature, unless otherwise indicated. Brains were washed in PBS with 0.3% Triton-X 734 
(PBST) three times for 10 min each, then they were placed in blocking solution (5% normal goat serum 735 
(Abcam) in PBST) for 3 hours. We incubated the brains overnight at 4°C in primary antibodies diluted 736 
in blocking solution (rabbit anti-GFP, IgG (Invitrogen), 1:1000 and mouse anti-Dachshund, mAB dac1-737 
1 (DSHB), 1:250). The brains were then washed in PBST three times for 10 min each and incubated 738 
with the fluorochrome-conjugated secondary antibodies diluted in blocking solution for 2 hours (Alexa 739 
Fluor 488 donkey anti-rabbit IgG (Invitrogen), 1:500 and Alexa Fluor 647 goat anti-mouse IgG 740 
(Invitrogen), 1:500). Next, brains were washed in PBS three times for 10 min each. Finally, samples 741 
were mounted onto microscope slides with Prolong Glass Antifade Mountant (Invitrogen). 742 
For image acquisition, a Zeiss LSM900 microscope equipped with Airyscan2 in combination with a 20x 743 
objective (Plan Apo 0,80 Air) was used. The setup was controlled by ZEN blue (version 3.4.91, Carl Zeiss 744 
Microscopy GmbH). GFP was excited with a blue diode 100mW at 488 nm and tiled images were 745 
collected with emission filter BP450-490/BS495/BP500-550. 746 
 747 
Cloning of synthetic human enhancers 748 
500 bp synthetic sequences were ordered from Twist Bioscience, pre-cloned in the pTwist ENTR 749 
vector. 500 bp regions were introduced in the pGL4.23-GW luciferase reporter vector (Promega) via 750 
Gateway LR recombination reaction (Invitrogen) and 2 µl of the reaction was transformed into 25 µl 751 
of Stellar chemically competent bacteria (Takara). 752 
Synthetic sequences shorter than 150 bp were ordered as gBlocks from IDT (Integrated DNA 753 
Technologies) with 5’ (cccgtcgacgaattctgcagatatcacaagtttgtacaaaaaagcaggct) and 3’ 754 
(acccagctttcttgtacaaagtggtgataaacccgctgatcag) adaptors. The pGL4.23-GW luciferase reporter vector 755 
was linearized via inverse PCR with primers Lin_pSA335_short_ME_For (gtggtgataaacccgctgatcag) and 756 
Lin_pSA335_short_ME_Rev (tctgcagaattcgtcgacggg). The short sequences and the linearized vector 757 
were combined in an NEBuilder reaction (New England Biolabs, Ipswich, MA) and 2 µl of the reaction 758 
was transformed into 25 µl of Stellar chemically competent bacteria. 759 
For all cloning procedures, plasmid minipreps were performed using the NucleoSpin Plasmid 760 
Transfection-grade Mini kit (Macherey-Nagel) and sequenced with Sanger sequencing to confirm the 761 
correct insertion of the regions in the destination plasmid. 762 
To generate stable cell lines with synthetic enhancers, the synthetic sequences were cloned into the 763 
pSA351_SCP1_intron_eGFP vector (Addgene #206906). The vector was linearized via inverse PCR with 764 
primers Lin_pSA351_For (ctgagctccctagggtact) and Lin_pSA351_Rev (cgactcgaggctagtctc). The 765 
synthetic sequences were PCR-amplified from their respective pGL.23-GW vector with their respective 766 
primer pairs: MM_EFS_1_For (gagactagcctcgagtcgctgattgtttgaaccattgttacgatttgg) and 767 
MM_EFS_1_Rev (agtaccctagggagctcagcaattttgttttttgcgcgtgac) for MM-EFS-1 sequences; 768 
MM_EFS_4_For (gagactagcctcgagtcgtgatatgtattcacccatgccctca) and MM_EFS_4_Rev 769 
(agtaccctagggagctcaagggtttgtatatgtatgctcctttatacga) for MM-EFS-4 sequences; MM_EFS_8_For 770 
(gagactagcctcgagtcgatacgcacgacaaagcctcat) and MM_EFS_8_Rev 771 
(agtaccctagggagctcacactgtacaaggcatcccgc) for MM-EFS-8 sequences; IRF_4_For 772 
(gagactagcctcgagtcggctgccattggtgtggattttaag) and IRF_4_Rev (agtaccctagggagctcaactggcatcgagacggg) 773 
for IRF-4 sequences. The PCR amplicons and the linearized vector were combined in an NEBuilder 774 
reaction and 2 µl of the reaction was transformed into 25 µl of Stellar chemically competent bacteria. 775 
Plasmid minipreps were performed using the NucleoSpin Plasmid Transfection-grade Mini kit 776 
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(Macherey-Nagel) and sequenced with Sanger sequencing to confirm the correct insertion of the 777 
regions in the vector. After confirmation of the sequence, plasmid maxipreps were performed using 778 
the NucleoBond Xtra endotoxin-free Maxi kit (Macherey-Nagel). 779 
 780 
Transfection and luciferase assay 781 
MM001 and MM047 were seeded in 24-well plates and transfected with 400 ng pGL4.23-enhancer 782 
vector + 40 ng pRL-TK Renilla vector (Promega) with Lipofectamine 2000 (Thermo Fisher Scientific). As 783 
positive controls, the previously published enhancers MLANA_5-I, IRF4_4-I and TYR_-9-D or 784 
ABCC3_11-I and GPR39_23-I were used for MM001 and MM047 respectively76. One day after 785 
transfection, luciferase activity was measured via the Dual-Luciferase Reporter Assay System 786 
(Promega) by following the manufacturer’s protocol. Briefly, cells were lysed with 100 µl of Passive 787 
Lysis Buffer for 15 min at 500 rpm. 20 µl of the lysate was transferred in duplicate in a well of an 788 
OptiPlate-96 HB (PerkinElmer, Waltham, MA) and 100 µl of Luciferase Assay Reagent II was added in 789 
each well. Luciferase-generated luminescence was measured on a Victor X luminometer 790 
(PerkinElmer). 100 µl of the Stop & Glo Reagent was added to each well, and the luminescence was 791 
measured again to record Renilla activity. Luciferase activity was estimated by calculating the ratio 792 
luciferase/Renilla; This value was normalized by the ratio calculated on blank wells containing only 793 
reagents. Three biological replicates were done per condition for MM001 and two biological replicates 794 
for MM047. 795 
 796 
Production of lentivirus 797 
The lentivirus plasmids were transfected in HEK 293T cells by use of the Lipofectamine 3000 reagent 798 
(Thermo Fisher Scientific). 30 µg of pooled plasmid DNA was combined with 20 µg of a Pax2 plasmid 799 
(Addgene #12260) and 10 µg of the MD2.G plasmid (Addgene #12259). 48 hours post-transfection, 800 
medium was collected and refreshed. 72 hours post-transfection, medium was collected a second 801 
time. Both medium collections were combined and spun down for 5 min at 1,500 rpm. Supernatants 802 
was carefully collected with a blunt needle and a syringe and filtered through a 45 µm syringe disc 803 
filter (Millex-HV Millipore) into an Ultra-15 MWCO100 centrifugal filter (Amicon). The concentrator 804 
tube containing the supernatants was spun down at 4,000 rpm for approximately 45 min until the 805 
desired volume of 250 µl was reached. The virus suspension was aliquoted and stored at -80°C.  806 
 807 
Transduction of melanoma cells 808 
The MM001 cells were seeded into a 6-well plate at a density of 250,000 cells per well. Transduction 809 
was performed by adding 5-40 µl of lentivirus and Polybrene at 8 µg/ml. Cells were incubated for 24h 810 
before washing away the Polybrene with PBS and with growth medium. After 3 days the cells were 811 
split and expanded further. 812 
 813 
OmniATAC-seq 814 
Omni-assay for transposase-accessible chromatin using sequencing (OmniATAC-seq) was performed 815 
as described previously77. Briefly, 50,000 MM001 cells transduced with the enhancer pools were 816 
resuspended in 50 µL of cold ATAC-seq resuspension buffer (RSB; 10 mM TrisHCl pH 7.4, 10 mM NaCl, 817 
and 3 mM MgCl2 in water) containing 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin by pipetting 818 
up and down three times. This cell lysis reaction was incubated on ice for 3 min. After lysis, 1 mL of 819 
ATAC-seq RSB containing 0.1% Tween-20 was added, and the tubes were inverted to mix. Nuclei were 820 
then centrifuged for 10 min at 500 g in a pre-chilled (4°C) fixed-angle centrifuge. Supernatant was 821 
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removed and nuclei were resuspended in 50 µL of transposition mix (25 µL 2x TD buffer, 2.5 µL 822 
transposase (Nextera Tn5 transposase, Illumina), 16.5 µL PBS, 0.5 µL 1% digitonin, 0.5 µL 10% Tween-823 
20, and 5 µL water) by pipetting up and down six times. Transposition reactions were incubated at 824 
37°C for 30 min in a thermoblock. Reactions were cleaned-up by MinElute (Qiagen). Transposed DNA 825 
was amplified (10 cycles) with primers i5_Indexing_For 826 
(aatgatacggcgaccaccgagatctacacnnnnnnnntcgtcggcagcgtcagatgtg) and i7_Indexing_Rev 827 
(caagcagaagacggcatacgagatnnnnnngtctcgtgggctcggagatgt). All libraries were sequenced on a 828 
NextSeq2000 instrument (Illumina). 829 
Reads were demultiplexed using bcl2fastq (v2.20; 830 
https://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-831 
software.html). Adapters were trimmed by trimgalore (v0.6.7; 832 
https://github.com/FelixKrueger/TrimGalore). Reads were mapped to a custom hg38 genome, which 833 
contains integrated sequences as additional chromosomes, using bwa-mem2 (v2.2.1)78. By using 834 
SAMtools (v 1.16.1)79, reads were sorted and deduplicated, and reads from the blacklisted regions 835 
(https://www.encodeproject.org/files/ENCFF356LFX/) were cleaned. Bigwig files with RPGC 836 
normalisation were generated by using deepTools (v3.5.0) bamCoverage71. 837 
 838 
ChIP-seq 839 
ChIP-seq was performed by following the Myers Lab ChIP-seq Protocol v011014 on 2x107 MM001 cells. 840 
5 µg of rabbit anti-ZEB2 antibody (1 mg/ml; Bethyl A302-473A) was used for ChIP. 15 ng of 841 
immunoprecipitated DNA was used to perform library preparation according to the Illumina TruSeq 842 
DNA Sample preparation guide. Briefly, the immunoprecipitated DNA was end-repaired, A-tailed, and 843 
ligated to diluted sequencing adapters (1/100). After PCR amplification with i5_Indexing_For and 844 
i7_Indexing_rev (18 cycles) and bead purification (Agencourt AmpureXP, Analis), the libraries with 845 
fragment size of 300-500 bp were sequenced using the NextSeq2000 instrument (Illumina).  846 
Reads were demultiplexed using bcl2fastq (v2.20). Adapters were trimmed by trimgalore (v0.6.7). 847 
Reads were mapped to hg38 using bwa-mem2 (v2.2.1)78. By using SAMtools (v 1.16.1)79, reads were 848 
sorted and deduplicated, and reads from the blacklisted regions 849 
(https://www.encodeproject.org/files/ENCFF356LFX/) were cleaned. Bigwig files with RPGC 850 
normalisation were generated by using deepTools (v3.5.0) bamCoverage71. Peaks were called using 851 
MACS2 (v2.1.2.1) callpeak80. 852 
 853 
Cell lines 854 
MM001, MM047, and MM099 were obtained from Prof. Dr. Ghanem Ghanem and were cultured in 855 
Ham’s F-10 Nutrient Mix (Invitrogen) + 10% FBS (Invitrogen). We authenticated the cell lines by 856 
checking their genomic, transcriptomic, and epigenomic profiles8,81,82. HEK293T used for lentivirus 857 
production was obtained from ATCC (CAT# CRL-3216) and were cultured in DMEM (Invitrogen) + 10% 858 
FBS (Invitrogen). Cell lines were tested for mycoplasma contamination prior to experiments, and were 859 
found negative. 860 
 861 
Code availability  862 
Code used to load deep learning models, create random sequences, perform sequence evolution, 863 
perform motif implantation, and train GAN models together with the IPython Notebooks that 864 
reproduces all the figures were provided as Supplementary Code. The data to run the scripts, the 865 

ACCELE
RATED ARTIC

LE
 PREVIEW

https://www.encodeproject.org/files/ENCFF356LFX/
https://www.encodeproject.org/files/ENCFF356LFX/


 

models, and the intermediate files can be found together with the code here 866 
10.5281/zenodo.10184648. 867 
 868 
Data availability  869 
Cloned Drosophila and human sequences were provided as Supplementary Tables. DeepMEL, 870 
DeepMEL2, and DeepFlyBrain deep learning model files were obtained from Kipoi83 871 
(http://kipoi.org/models/DeepMEL, https://kipoi.org/models/DeepFlyBrain) with Zenodo record ids 872 
3592129, 4590308, and 5153337. The fasta files used to train GAN models and the trained GAN models 873 
are available on Zenodo at https://doi.org/10.5281/zenodo.6701504. Custom genomes (hg38 and 874 
dm6) generated in this study are available on Zenodo at https://doi.org/10.5281/zenodo.10184648. 875 
Chromatin accessibility values in Kenyon Cells in adult Drosophila brains were obtained from 876 
GSE16369739. In vitro saturation mutagenesis on IRF4 data was obtained from 877 
https://kircherlab.bihealth.org/satMutMPRA/ 84. Chromatin accessibility of Drosophila and 878 
transduced melanoma lines and ZEB2 ChIP-seq data generated for this study have been submitted to 879 
the NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession 880 
number GSE240003. 881 
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Figure legends  965 

Figure 1: Deep learning based enhancer design  966 
Overview of enhancer design strategies and activity measurements of designed enhancers in Drosophila brains and human 967 
cell lines. 968 
 969 
Figure 2: In silico sequence evolution towards functional enhancers 970 
a, Prediction score distribution of the sequences for the γ-KC class (𝑛 = 6,000 sequences) after each mutation. The box plots 971 
show the median (center line), interquartile range (box limits), and 5th and 95th percentile range (whiskers) for KC-directed 972 
(blue) or random drift (orange) mutations. b, Nucleotide contribution scores for the γ-KC class of a selected random sequence 973 
in its initial form (top) and after in silico evolution (bottom). c, Prediction scores of 13 selected sequences at each mutational 974 
step. Dashed line indicates the selected iteration (10th or 15th mutation). d, In vivo enhancer activity of the cloned KC 975 
sequences with positive enhancer activity. e, Nucleotide contribution scores for the PNG class of the same selected random 976 
sequence as in panel b (top) and after PNG-directed mutations (bottom). f, In vivo enhancer activity of the cloned PNG 977 
sequences. Top-middle: initial random sequence, top-left: random sequence after 10 mutations toward KC evolution, top-978 
right: random sequence after 15 mutations toward PNG evolution, bottom: Three other random sequences after mutations 979 
toward PNG evolution. g, In vivo enhancer activity of the cloned genomic sequences with 6 mutations (11 for FP3). h, 980 
Nucleotide contribution scores of a selected genomic sequence in its initial form (top) and after 6 iterations (bottom). In 981 
panels b, e, h, dashed line shows the position of the mutations, the mutational order and type of nucleotide substitutions 982 
are written in between top and bottom plots, and motif annotation is indicated with strong (s) or weak (w) motif instances. 983 
In panels d, f, g, the expected location of KC is shown with dashed circles. Scale bars, 100 µm. 984 
 985 
Figure 3: Spatial expansion and restriction of enhancer activity  986 
a, Nucleotide contribution score and delta prediction score for in silico saturation mutagenesis of the EFS-4 enhancer after 987 
10 mutations (first and second row) and after adding repressors (third and fourth row). Dashed line shows the position of 988 
the mutations. Black circles: selected mutations to generate repressor sites. Motif annotation is indicated with strong (s) or 989 
weak (w) motif instances. b, In vivo enhancer activity of enhancers before (top-left) and after adding repressor sites. c, 990 
Chromatin accessibility profile near the amon gene. d, In vivo enhancer activity of the amon enhancer. e, amon enhancer 991 
prediction scores for each cell-type. f, Prediction scores for the γ-KC and T4 classes after each mutational step. g, In vivo 992 
enhancer activity of the amon enhancer after 13 mutations. The amon enhancer conserved exactly the same pattern of 993 
activity for T4 following incorporation of the KC code. h, Number of regions that score high (>0.3) for multiple cell-types. i, 994 
Comparison between γ-KC and T1 prediction score for the accessible regions in fly brain (𝑛 = 95,931). The selected region 995 
with high γ-KC and T1 prediction is highlighted with a blue dot. j, Chromatin accessibility profile of this region (Pkc53e) in 996 
multiple cell-types. k, In vivo enhancer activity of the Pkc53e enhancer. l, Pkc53e enhancer prediction scores for each cell-997 
type. m, Prediction scores for the γ-KC, T1, and T2 classes after each mutational step. n, In vivo enhancer activity of the multi 998 
cell-type enhancer after 9 mutations. In panels b, d, g, k, n dashed circles show the expected location of KC. Scale bars, 999 
100 µm. In panels c, e, j, l, AST: astrocytes; CTX: cortex glia; ENS: ensheathing glia; PNG: perineurial glia; SUB: subperineurial 1000 
glia; T1-T5: T1-T5 neurons; ɑ/β: ɑ/β-Kenyon cells; ɑ’/β’: ɑ’/β’-Kenyon cells; γ: γ-Kenyon cells. 1001 
 1002 
Figure 4: Motif implantation towards minimal enhancer design 1003 
a, Prediction score distribution of the sequences for the γ-KC class (𝑛 = 2,000 sequences) after each motif implantation at 1004 
best location (blue), random location (orange), and after 15 mutations (Nuc-15). The box plots show the median (center line), 1005 
interquartile range (box limits), and 5th and 95th percentile range (whiskers). b, Distribution of Mef2 locations relative to Ey 1006 
(𝑛 = 2,000). c, Distribution of Onecut locations relative to Ey (𝑛 = 2,000). d, Prediction scores for motif implanted sequence 1007 
(ME-1) after each motif implanting and generation of repressor sites. e, Nucleotide contribution scores of ME-1 in its initial 1008 
form (first track) and after Ey, Mef2, and Onecut implantations (second track). Dashed lines show the position of the motifs. 1009 
Delta prediction score for in silico saturation mutagenesis (third track). Black circles: selected mutations to generate 1010 
repressor sites. Nucleotide contribution scores after generation of repressor sites (fourth track). Dashed lines show the 1011 
position of the mutations. f-g, In vivo enhancer activity of the cloned 500 bp sequence with Ey, Mef2, and Onecut 1012 
implantations (f) and after generation of repressor sites (g). h, Zoom into the selected 49 bp part of the 500 bp sequence 1013 
from e. The size of the motifs, the spaces between motifs, and the flankings are shown at the bottom. i, In vivo enhancer 1014 
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activity of the cloned 49 bp sequence with Ey, Mef2, and Onecut implantations. In panels f, g, i, the expected location of γ-1015 
KC is shown with dashed circles. Scale bars, 100 µm. Abbreviations in a: Ey (E), Mef2 (M), Onecut (O), and Sr (S). 1016 
 1017 
Figure 5: Human enhancer design 1018 
a-b, Prediction score distribution (MEL class, 𝑛=4,000 sequences (a) and 10 selected sequences (b)) after each mutation. c, 1019 
Nucleotide contribution scores of a synthetic sequence pre (top) and post (bottom) 15 mutations, with binding site names, 1020 
mutation positions (dashed lines) and orders (between top and bottom plots). d, Mean luciferase signal (log2 fold-change 1021 
over Renilla) of synthetic sequences from in silico sequence evolution and genomic enhancers. e, MM001 ATAC-seq profile 1022 
of 3 integrated EFS reporters: initial, evolved and evolved with repressor sites. Red lines: enhancer boundaries. f, DeepMEL2 1023 
prediction scores (left), luciferase activity (middle) and their correlation (right) for EFS-4 sequences. g, MM001 ATAC-seq , 1024 
SOX10 and ZEB2 ChIP-seq tracks for IRF4 gene; enhancer location in red. h, ZEB2 ChIP-seq signal (x-axis), SOX10 ChIP-seq 1025 
signal (y-axis), and ATAC-seq signal (color) for top ZEB2 regions in MM001. i, in vitro and in silico saturation mutagenesis 1026 
values of the IRF4 enhancer. j, Enformer predictions for EFS-4 sequences replacing IRF4 enhancer: initial score and score 1027 
changes post-mutations. k, Enformer predictions per mutation step and after repressor addition for MEL EFS sequences. l, 1028 
Prediction scores for top 50 DNase tracks for EFS-4 sequences. Four first tracks are foreskin melanocyte male newborn and 1029 
SK-MEL-5 tracks. m, ChromBPNet ATAC MM001 (MEL) and MM047 (MES) prediction scores for EFS sequences, across 1030 
mutations and post-repressor addition. n, Prediction score distribution for MEL class (𝑛=2,000 sequences) after motif 1031 
implantation. o, Relative TF locations distribution (𝑛=2,000). p, Luciferase signal (log2 fold-change over Renilla) comparison 1032 
of motif-implanted sequences and genomic enhancers. In a, n, box plots show the median (center line), interquartile range 1033 
(box limits), and 5th and 95th percentile range (whiskers). Error bars in d, f, p denote mean standard error (𝑛=3 biological 1034 
replicates). In n, p, S:SOX10, M:MITF, T:TFAP2.  1035 
 1036 
Extended data figure legends 1037 
 1038 
Extended Data Figure 1: In silico sequence evolution from random sequences  1039 
a, Distribution of GC-content in GC-adjusted random sequences (green) and fly genomic regions (red). b, Prediction score 1040 
distribution of the sequences (𝑛 = 6,000 sequences) for all classes after 10 mutations. The KC specific classes and their class 1041 
number are indicated. In b, c, the box plots show the median (center line), interquartile range (box limits), and 5th and 95th 1042 
percentile range (whiskers). c, Prediction score distribution of the sequences that do not reach 0.5 prediction score threshold 1043 
after 15 mutations for the γ-KC class (𝑛 = 180 sequences) after each mutation. d, Distribution of distances (𝑛 = 6,000) between 1044 
farthest mutations on each sequence after 10 iterative mutations. The orange line shows the median. e, Location of the 1045 
generated mutations across the random sequences (𝑛 = 6,000 sequences). f, Average number of motif hits at each mutational 1046 
step compared to genomic enhancers. g, Delta number of motifs in each mutational step. The TF-Modisco patterns and the 1047 
most similar position weight matrices from the cisTarget motif database are shown at the top of each plot. The patterns that 1048 
are upside-down are the ones contributing negatively to the model’s prediction and they are destroyed by the model on 1049 
each step. h, Top panel: Dachshund staining (red) highlights KC location in the fly brain. Bottom panel: colocation of the 1050 
Dachshund (red) and GFP (green) staining from enhancer EFS-13. i, In vivo enhancer activity of the cloned sequences with no 1051 
or weak enhancer activity. j, Prediction scores, at each mutational step, of 4 sequences with no enhancer activity after 10 1052 
mutations. The selected iterations (10th and 15th mutations) are indicated with a dashed line. k, Dachshund (red) and GFP 1053 
(green) staining for three negative enhancers. l, Drosophila adult brain bulk-ATAC-seq profile of 6 transgenic flies that have 1054 
the designed enhancers integrated. The chromatin accessibility profile of the integrated enhancers (left) and two control 1055 
regions gish enhancer (middle) and Appl enhancer (right) are shown. m, Prediction scores, at each mutational step, of 3 EFS 1056 
sequences. The selected iterations to study intermediate mutational steps (0, 2, 4, 6, 8, 10 mutations) are indicated with a 1057 
dashed line. n, In vivo enhancer activity of fly lines with subsequent mutational steps. After 8 mutations of a random 1058 
sequence, the enhancer becomes active in all three lines (EFS-3, 4, and 7) marked by GFP expression. In panels h, i, k, n,  the 1059 
expected location of γ-KC is shown with dashed circles. Scale bars, 100 µm. 1060 
 1061 
Extended Data Figure 2: State space optimization, design of perineurial glia enhancers and modification of genomic 1062 
sequences toward KC enhancers 1063 
a, Prediction score distribution for 3 million sequences generated by selecting the top 20 best mutations for 5 incremental 1064 
mutational steps. Blue line represents the path that was taken by the greedy algorithm. b, Zoomed-in version of panel a to 1065 
the sequences that have higher prediction score than 0.25. c, Prediction score of evolved sequences by greedy algorithm 1066 
(EFS-4) vs the best of 3 million sequences on each mutational step. d, Nucleotide contribution score of the original and 1067 
evolved sequences as well as delta prediction score of in silico saturation mutagenesis for EFS-4 (top) and the top scoring 1068 
sequence (bottom) e, Prediction scores of 6 selected PNG sequences at each mutational step for PNG model (left) and KC 1069 
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model (right). The selected iteration (15th mutation) is indicated with a dashed line. f, In vivo enhancer activity of the cloned 1070 
PNG sequences with no enhancer activity. g, Comparison between γ-KC prediction score and mean γ-KC accessibility for the 1071 
binned fly genome regions. The selected regions with high prediction and low accessibility are highlighted with blue, orange, 1072 
green, and red dots. h, γ-KC ATAC-seq profile of the four selected regions. The exact location of the regions is indicated with 1073 
dashed lines. i, Prediction scores of 4 selected KC near-enhancer sequences at each mutational step for KC model. The 1074 
selected iteration (6th mutation) is indicated with a dashed line. After the 6th mutation, 4 more mutations are performed in 1075 
FP-3 to improve prediction score while 7 or 8 mutations are performed in the three other sequences to generate repressor 1076 
sites. j, In vivo enhancer activity of the cloned WT genomic “near-enhancer” sequences with no enhancer activity. The 1077 
expected location of KC is shown with dashed circles. Scale bars, 100 µm. 1078 

 1079 
Extended Data Figure 3: Enhancer design towards multiple cell type codes 1080 
a, Chromatin accessibility profile near CG15117 gene. b, In vivo enhancer activity of the wild-type ( WT) CG15117 enhancer. 1081 
c, CG15117 enhancer prediction scores for each cell type (top) and prediction scores for the γ-KC and T1 classes after each 1082 
mutational step. d, Nucleotide contribution scores of WT CG15117 enhancer sequence and after 14 mutations for T1 (top) 1083 
and γ-KC (bottom). e, Nucleotide contribution scores of WT amon enhancer sequence and after 13 mutations for T4 (top) 1084 
and γ-KC (bottom). f, In vivo enhancer activity of the WT CG15117 enhancer after 14 mutations. The CG15117 enhancer 1085 
displayed a slightly altered T1 pattern following incorporation of the KC code. g, Nucleotide contribution scores of WT Pkc53e 1086 
enhancer sequence and after 9 mutations for T2 (top), T1 (middle) and γ-KC (bottom). In panels b and e, the expected location 1087 
of KC is shown with dashed circles. Scale bars, 100 µm. In panels d, f, g, the position of the mutations is shown with dashed 1088 
lines, the mutational order is written in-between top and bottom plots, and motif annotation is indicated with strong (s) or 1089 
weak (w) motif instances. 1090 
 1091 
Extended Data Figure 4: Enhancer design by motif implanting 1092 
a, Preferred nucleotides flanking implanted motifs (𝑛 = 2,000). Dashed lines indicate the boundaries of the motifs. b, 1093 
Distribution of Onecut locations relative to Mef2, Sr to Ey, Sr to Mef2, and Sr to Onecut, respectively (𝑛 = 2,000). c, 1094 
Distribution of Mef2 locations relative to Ey when both are on the same strand, Ey is on the negative strand, Mef2 is on the 1095 
negative strand, and both are on the negative strand, respectively (𝑛 = 2,000). d, Distribution of Onecut locations relative to 1096 
Ey when Ey is on the positive strand and when Ey is on the negative strand, respectively (𝑛 = 2,000). e, DeepFlyBrain KC 1097 
prediction score of the ME-2 sequence after consecutive motif implanting. f, In vivo enhancer activity of ME-2 enhancer. The 1098 
expected location of KC is shown with dashed circles. Scale bar, 100 µm. g, Nucleotide contribution scores of the ME-2 motif 1099 
implanting sequence (top) and in silico saturation mutagenesis assays (bottom). Each dot on the saturation mutagenesis plot 1100 
represents a single mutation and its effect on the prediction score (𝑛 axis). 1101 
 1102 
Extended Data Figure 5: Human enhancer design by in silico evolution 1103 
a, Distribution of GC-content in GC-adjusted random sequences (green) and human genomic regions (red). b, Average 1104 
number of motif hits at each mutational step compared to genomic enhancers. c, Delta number of motifs in each mutational 1105 
step. The TF-Modisco patterns and the most similar position weight matrices from the cisTarget motif database are shown 1106 
at the top of each plot. The patterns that are upside-down are the ones contributing negatively to the model’s prediction 1107 
and they are destroyed by the model on each step. d, Bar plot showing the mean luciferase signal (log2 fold-change over 1108 
Renilla) in a MES melanoma line (MM047) of the synthetic MEL enhancers (generated by in silico sequence evolution), 1109 
showing no activity compared to positive control genomic MES enhancers. The bar shows the mean (𝑛 = 2 biological 1110 
replicates). e, MM001 (left) and MM099 (right) ATAC-seq profiles of all integrated lentiviral EFS reporters. Red dashed lines 1111 
indicate boundaries of the enhancer. f, MM001 ATAC-seq profile of 3 integrated EFS reporters: initial (top), evolved (middle) 1112 
and post-evolution with repressive sites (bottom). Red lines mark enhancer boundaries. g, DeepMEL2 prediction score (left), 1113 
luciferase activity levels in MM001 (middle) and correlation between prediction score and activity (right) for EFS-1 (top) and 1114 
EFS-8 (bottom) sequences after incremental mutation steps. In g, the error bars show the standard error of the mean (𝑛 = 3 1115 
biological replicates) 1116 
 1117 
Extended Data Figure 6: Intermediate steps of in silico evolution and generation of repressor sites in human generated 1118 
enhancers 1119 
Nucleotide contribution scores of EFS-4 at different mutational steps; 0 (random sequence), 3, 4, 7, 8, 12, 15, 15+Repressors. 1120 
ZEB2 motif annotation is indicated with strong (s) or weak (w) motif instances. 1121 
 1122 
Extended Data Figure 7: Human enhancer design by in silico evolution 1123 
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a, Prediction scores for the top 50 DNase tracks for MEL EFS sequences. The four first DNAse tracks are: foreskin melanocyte 1124 
male newborn, SK-MEL-5, foreskin melanocyte male newborn, SK-MEL-5. b, Enformer prediction tracks for three classes and 1125 
ChromBPNet MM001 ATAC prediction tracks (right) for melanoma EFS-1 (top) and EFS-8 (bottom) sequences added in place 1126 
of the IRF4 enhancer. Top track: random sequence prediction score, other tracks: delta of mutated sequence prediction score 1127 
vs random sequence prediction score. c, Enformer prediction tracks for three classes for melanoma EFS-4 sequences added 1128 
10 kb upstream, 5 kb upstream or 17.5 kb downstream of the IRF4 enhancer. Top track: random sequence prediction score, 1129 
other tracks: delta of mutated sequence prediction score vs random sequence prediction score.  1130 
 1131 
Extended Data Figure 8: ZEB2 repression of in silico evolved MEL enhancers 1132 
a, Prediction scores for each mutational step and after the addition of repressor sites for 3 EFS sequences. b, Nucleotide 1133 
contribution scores (DeepMEL2 MEL class) showing the creation of single or multiple repressor binding sites by single or 1134 
double mutations in the EFS-4 sequence. c-e, In vivo enhancer activity of EFS-4 (c), EFS-1 (d), and EFS-8 (e) after the 1135 
generation of repressor binding sites. ZEB2 motif annotation is indicated with strong (s) or weak (w) motif instances. The 1136 
error bars in c-e, show the standard error of the mean (𝑛 = 3 biological replicates). 1137 
 1138 
Extended Data Figure 9: Human enhancer rescue 1139 
In the fly brain, we applied in silico sequence evolution to create enhancers from genomic regions with high scores that did 1140 
not show chromatin accessibility and could consequently be considered as ‘near-enhancer’ sequences. We extended this 1141 
approach to MEL enhancers. We started from a human sequence that has no MEL enhancer activity, but its homologous 1142 
sequence in the dog genome is accessible and active as MEL enhancer. We used DeepMEL to introduce 4 mutations that 1143 
restored the activator binding sites in the human sequence, resulting in a rescue of the activity, as measured by luciferase 1144 
activity. a, Dot plot showing the mean luciferase signal (log2 fold-change over Renilla) versus prediction score for the MEL 1145 
class of the WT human and dog genomic sequences and the rescued human sequences. b, Nucleotide contribution scores of 1146 
the dog, human-rescued, and human-WT sequences (top 3 rows) and in silico saturation mutagenesis assay of human-WT 1147 
sequence (bottom). c, As a variation of this approach, we introduced two mutations in a weak MEL enhancer which resulted 1148 
in a 10-fold increase in enhancer activity. Dot plot showing the mean luciferase signal (log2 fold-change over Renilla) versus 1149 
prediction score for the MEL class of the wild-type and enhanced enhancers. d, Nucleotide contribution scores of the wild-1150 
type (middle) and enhanced (top) enhancers and in silico saturation mutagenesis assay of wild-type enhancer (bottom). In a 1151 
and c, the error bars show the standard error of the mean (𝑛 = 3 biological replicates). In a, c, abbreviations are used for 1152 
SOX10 (S), MITF (M), and TFAP2 (T). In b, d, each dot on the saturation mutagenesis plot represents a single mutation and its 1153 
effect on the prediction score (𝑛 axis). In b, d, the position of the mutations is shown with dashed lines and circles. 1154 
 1155 
Extended Data Figure 10: Human enhancer design by motif implantation 1156 
a-b, Bar plots show the mean luciferase signal (log2 fold-change over Renilla) of the synthetic sequences, which were 1157 
generated by motif implantation, tested in MM001 (a, MEL melanoma cell line, 𝑛 = 3 biological replicates) and MM047 (b, 1158 
MES melanoma cell line, 𝑛 = 2 biological replicates). Values of 2 previously validated MES regions are displayed for MM047. 1159 
The error bars in a, show the standard error of the mean. The bars in b, show the mean. c, Nucleotide contribution scores of 1160 
the selected synthetic sequences in their initial form (first row), after adding SOX10, MITF, and TFAP2 motifs once (second 1161 
row), after adding SOX10, MITF, and TFAP2 motifs twice (third row), weaker-motif version of the third row after replacing 1162 
implanted motifs with weaker sites (fourth row), cut version of the second row where only the part with the binding sites 1163 
were taken (fifth row, left), and minimal version of the second row where MITF and TFAP2 placed as close as possible to 1164 
SOX10 (fifth row, right). The names of the motifs and their implantation order are indicated at the top. The position of the 1165 
motifs is shown with dashed lines. 1166 
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Extended Data Fig. 1
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Extended Data Fig. 2

ACCELE
RATED ARTIC

LE
 PREVIEW



Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6
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Extended Data Fig. 7
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Extended Data Fig. 8
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Extended Data Fig. 9
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Extended Data Fig. 10
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