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Abstract10

Large Language Models (LLMs) have demonstrated tremendous capabilities in solving com-11

plex tasks, from quantitative reasoning to understanding natural language. However, LLMs12

sometimes suffer from confabulations (or hallucinations) which can result in them making plau-13

sible but incorrect statements (Bang et al., 2023; Borji, 2023). This hinders the use of current14

large models in scientific discovery. Here we introduce FunSearch (short for searching in the15

function space), an evolutionary procedure based on pairing a pre-trained LLM with a system-16

atic evaluator. We demonstrate the effectiveness of this approach to surpass the best known re-17

sults in important problems, pushing the boundary of existing LLM-based approaches (Lehman18

et al., 2022). Applying FunSearch to a central problem in extremal combinatorics — the cap19

set problem — we discover new constructions of large cap sets going beyond the best known20

ones, both in finite dimensional and asymptotic cases. This represents the first discoveries made21

for established open problems using LLMs. We showcase the generality of FunSearch by apply-22

ing it to an algorithmic problem, online bin packing, finding new heuristics that improve upon23

widely used baselines. In contrast to most computer search approaches, FunSearch searches for24

programs that describe how to solve a problem, rather than what the solution is. Beyond being25

an effective and scalable strategy, discovered programs tend to be more interpretable than raw26

solutions, enabling feedback loops between domain experts and FunSearch, and the deployment27

of such programs in real-world applications.28

Many problems in mathematical sciences are “easy to evaluate,” despite being typically “hard to29

solve.” For example, in computer science, NP-complete optimization problems admit a polynomial-30

time evaluation procedure (measuring the quality of the solution), despite the widespread belief that31

no polynomial-time algorithms to solve such problems exist. We focus in this paper on problems32

admitting an efficient evaluate function, which measures the quality of a candidate solution. Promi-33

nent examples include the maximum independent set problem and maximum constraint satisfaction34

problems (such as finding the ground state energy of a Hamiltonian). Our goal is to generate a35

solve program, such that its outputs receive high scores from evaluate (when executed on inputs36

of interest), and ultimately improve over the best known solutions.37

∗Equal contributors.
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While Large Language Models (LLMs) have recently seen dramatic improvements in their coding38

capabilities [5–9], with applications including debugging [10, 11], solving code competitions [12, 13]39

and improving code performance [14], synthesizing solve programs for open problems requires find-40

ing new ideas that are verifiably correct. This is very hard for LLMs, as they tend to confabulate or41

ultimately fall short of going beyond existing results. To surpass the “nominal” capabilities of LLMs,42

recent works [3] have combined them with evolutionary algorithms [15, 16], leading to important43

improvements on diverse synthetic problems [17], searching for neural network architectures [18–20],44

and solving puzzles [21]. Our proposed method, FunSearch, pushes the boundary of LLM-guided45

evolutionary procedures to a new level: the discovery of new scientific results for established open46

problems, and the discovery of new algorithms. Surpassing state-of-the-art results on established47

open problems provides a clear indication that the discoveries are truly new, as opposed to being48

retrieved from the LLM’s training data.49

FunSearch (short for searching in the function space) combines a pre-trained (frozen) Large Lan-50

guage Model, whose goal is to provide creative solutions, with an evaluator, which guards against51

confabulations and incorrect ideas. FunSearch iterates over these two components, evolving initial52

low-scoring programs into high-scoring ones discovering new knowledge. Key to the success of this53

simple procedure is a combination of multiple essential ingredients. First, we sample best performing54

programs and feed them back into prompts for the LLM to improve on; we refer to this as best-shot55

prompting. Second, we start with a program in the form of a skeleton (containing boilerplate code56

and potentially prior structure about the problem), and only evolve the part governing the critical57

program logic. For example, by setting a greedy program skeleton, we evolve a priority function58

used to make decisions at every step. Third, we maintain a large pool of diverse programs by using59

an island-based evolutionary method that encourages exploration and avoids local optima. Finally,60

leveraging the highly parallel nature of FunSearch, we scale it asynchronously, considerably broad-61

ening the scope of this approach to find new results, while keeping the overall cost of experiments62

low.63

We show the surprising effectiveness of FunSearch on several use-cases. We consider a fundamen-64

tal problem in extremal combinatorics, namely, the cap set problem [22, 23]. FunSearch demonstrates65

the existence of hitherto unknown constructions that go beyond existing ones, including the largest66

improvement in 20 years to the asymptotic lower bound. To the best of our knowledge, this shows67

the first scientific discovery — a new piece of verifiable knowledge about a notorious scientific prob-68

lem — using an LLM. Using FunSearch, we also find new algorithms for the online bin packing69

problem that improve upon traditional ones on well-studied distributions of interest [24, 25], with70

potential applications to improving job scheduling algorithms.71

While most computer search techniques output directly what the solution is (e.g., a list of vectors72

forming a cap set), FunSearch produces programs generating the solution. For structured problems,73

such programs tend to be more interpretable — facilitating interactions with domain experts —74

and concise — making it possible to scale to large instances — compared to a mere enumeration75

of the solution. In addition, decision procedures (such as for bin packing) described by code in a76

standard programming language are crucially easier to deploy compared to other types of descriptions77

(e.g., neural networks), which typically require specialized hardware and for which verifying design78

specifications is notoriously hard.79

1 FunSearch80

An overview of FunSearch is shown in Figure 1, and its components are described in more detail81

below. For more details and ablations showing the importance of each component, see Methods and82
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Appendix A in Supplementary Information.83

Specification. The input to FunSearch is a specification of the problem in the form of an evaluate84

function, which scores candidate solutions. In addition, we provide an initial program (which can85

be trivial) to evolve. While in principle these are the minimum requirements, we found that perfor-86

mance tends to improve significantly if we write the initial solve program in the form of a skeleton87

(containing boilerplate code and prior knowledge of the problem in the form of a program struc-88

ture), and only use FunSearch to evolve the critical part that governs its logic. Figure 2 (a) shows89

an example where the skeleton takes the form of a simple greedy algorithm, and the crucial part to90

evolve by FunSearch is the priority function that is used to make the greedy decision at every step.91

This delegates to FunSearch precisely the part that is usually the hardest to come up with. While92

a fixed skeleton may constrain the space of programs that can be discovered, we find it improves93

overall results because it focuses the LLM resources on evolving the critical part only, instead of also94

using the LLM to recreate already known program structures (with more opportunities for mistakes95

that would render the entire program incorrect). If available, the user can optionally provide addi-96

tional known information about the problem at hand, in the form of docstrings, relevant primitive97

functions, or import packages, which FunSearch may use.98

Pre-trained LLM. The LLM is the creative core of FunSearch, in charge of coming up with99

improvements to the functions presented in the prompt and sending these for evaluation. Perhaps100

surprisingly, we obtain our results with a pre-trained model, i.e., without any fine-tuning on our101

problems. We use Codey, an LLM built on top of the PaLM2 model family [26], which has been102

finetuned on a large corpus of code and is publicly accessible through its API [27]. Because FunSearch103

relies on sampling from an LLM extensively, an important performance-defining tradeoff is between104

the quality of the samples and the inference speed of the LLM. In practice, we have chosen to work105

with a fast-inference model (rather than slower-inference, higher-quality), and the results in the106

paper are obtained using a total number of samples on the order of 106. Beyond this tradeoff, we107

have empirically observed that the results obtained in this paper are not too sensitive to the exact108

choice of LLM, as long as it has been trained on a large enough corpus of code. See Appendix A in109

Supplementary Information for a comparison to StarCoder [7], a state-of-the-art open-source LLM110

for code.111

Evaluation. Programs generated by the LLM are evaluated and scored on a set of inputs. For112

example, in the cap set problem (Section 2.1) the inputs are the values of the dimensionality n113

that we are interested in, and in combinatorial optimization (Section 2.2), the inputs correspond114

to different bin packing instances. The scores across different inputs are then combined into an115

overall score of the program using an aggregation function, such as the mean. The scored programs116

are then sent to the programs database. Programs that were incorrect (did not execute within the117

imposed time and memory limits, or produced invalid outputs) are discarded, and the remaining118

scored programs are then sent to the programs database.119

Programs database. The programs database keeps a population of correct programs, which are120

then sampled to create prompts. Preserving and encouraging diversity of programs in the database is121

crucial to enable exploration and avoid being stuck in local optima. To encourage diversity we adopt122

an islands model, also known as multiple population and multiple-deme model [28, 29], a genetic123

algorithm approach. A number of islands, or subpopulations, are created and evolved independently.124

To sample from the program database, we first sample an island and then sample a program within125

3ACCELE
RATED ARTIC

LE
 PREVIEW



that island, favoring higher-scoring and shorter programs (see Methods for the exact mechanism).126

Crucially, we let information flow between the islands by periodically discarding the programs in the127

worst half of the islands (corresponding to the ones whose best individuals have the lowest scores).128

We replace the programs in those islands with a new population, initialized by cloning one of the129

best individuals from the surviving islands.130

Prompt. New prompts are created by “best-shot prompting” from the programs database, and131

are then fed to the LLM to generate a new program. We first sample k programs from a single island132

in the programs database, according to the procedure described above. Sampled programs are then133

sorted according to their score, and a version is assigned to each (v0 for the lowest scoring program,134

v1 for the second lowest scoring, etc.). These programs are then combined into a single prompt —135

with the version appended as a suffix to the function name; e.g., in the case of Figure 2 (a), this136

would be priority v0, priority v1, ... — and the header of the function we wish to generate137

(e.g., priority vk) is added to the end of the prompt. In practice, we set k = 2, as two functions138

lead to better results compared to just one, with diminishing returns beyond that. Constructing a139

prompt by combining several programs (as opposed to only one) enables the LLM to spot patterns140

across the different programs and generalize those. Related approaches to prompt building have141

been recently considered; e.g., [17], and were shown to perform well on different domains.142

Distributed approach. We implement FunSearch as a distributed system that has three types143

of workers: a programs database, samplers, and evaluators, which communicate asynchronously. The144

programs database stores and serves programs, samplers generate new functions using the pre-trained145

LLM, while evaluators assess programs, as shown in Figure F.26 in Supplementary Information. In146

the example of Figure 2 (a), the programs database stores priority functions, samplers generate147

new implementations of priority, while evaluators score the proposals by executing the main func-148

tion on user-specified inputs. Our distributed system offers several advantages: first, it naturally149

leverages parallelism across different tasks, e.g., LLM sampling and evaluation are performed con-150

currently. Second, it enables scaling to more than one sampler and evaluator, which would be a151

very limiting setup, considering that evaluation can take minutes for many problems of interest.152

Running evaluators in parallel considerably broadens the scope of this approach to such problems.153

The distributed setting enables running many evaluator nodes on inexpensive CPU hardware, while154

few samplers run on machines with accelerators for fast LLM inference; this keeps the overall cost155

and energy usage of experiments low. In our experiments, we typically use 15 samplers and 150 CPU156

evaluators (can be served on 5 CPU servers each running 32 evaluators in parallel). See Appendix157

A in Supplementary Information for more details. Also, due to the randomness of LLM sampling158

and of the evolutionary procedure, for some problems we run several experiments to get the best159

reported results. See Methods and Appendix A.3 in Supplementary Information for a full statistical160

analysis.161

2 Results162

We now describe some of the new discoveries made by FunSearch in two different fields: pure math-163

ematics and applied computer science. Additional discoveries on other problems (namely, corners164

problem and Shannon capacity of cycle graphs) are presented in Appendix B in Supplementary165

Information. Full discovered programs are available in Appendix C in Supplementary Information.166
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2.1 Extremal combinatorics167

We apply FunSearch to two related problems in extremal combinatorics — a branch of mathematics168

that studies the maximal (or minimal) possible sizes of sets satisfying certain properties.169

Cap sets. The cap set problem [22], once described by Terence Tao as “perhaps my favourite open170

question” [30], refers to the task of finding the largest possible set of vectors in Zn
3 (known as a cap171

set) such that no three vectors sum to zero. Geometrically, no three points of a cap set lie on a line172

(see Figure 3 for an example with n = 2).173

The problem has drawn much interest for a variety of reasons. For one, it is an analogue of174

the classical number theory problem of finding large subsets of primes in which no three are in175

arithmetic progression. For another, it differs from many problems in combinatorics in that there176

is no consensus among mathematicians regarding what the right answer should be. Finally, the177

problem serves as a model for the many other problems involving “three-way interactions.” For178

instance, progress towards improved upper bounds for the cap set problem [31, 32] immediately led179

to a series of other combinatorial results, e.g., on the Erdös-Radio sunflower problem [33].180

The exact size of the largest possible cap set in n dimensions is known only for n ≤ 6. A181

brute force approach is not practical as the search space quickly becomes enormous with growing182

n, e.g., around 31600 for n = 8. Previous methods impose potentially suboptimal restrictions on the183

search space [34, 35]. In contrast, we search the full space via an algorithm skeleton that utilises a184

function priority : Zn
3 → R. Intuitively, this function provides a priority with which each x ∈ Zn

3185

should be included in the cap set. Our algorithm starts with an empty set and iteratively adds the186

vector x ∈ Zn
3 with the highest priority that does not violate the cap set constraint; see Figure 2187

(a). Starting from a trivial constant function, we evolve the crucial priority component of our188

approach to result in large cap sets.189

Using this approach we discovered cap sets of sizes shown in Figure 4 (a). Notably, in dimension190

n = 8, FunSearch found a larger cap set than what was previously known, thus illustrating the191

power of FunSearch to discover novel constructions. This also shows the scalability of FunSearch to192

larger dimensions, where the previously best known construction relied on a complex combination193

of cap sets in lower dimensions [34, 35]. In contrast, FunSearch discovered a larger cap set from194

scratch, without having to be explicitly taught any way of combining cap sets. Moreover, we do not195

just discover the set of 512 8-dimensional vectors in itself, but a program that generates it: we show196

this program in Figure 4 (b). Through inspecting the code, we obtain a degree of understanding197

of what this set is: specifically, manual simplification of Figure 4 (b) provides the construction in198

Figure 4 (c). Some properties of this construction are strikingly similar to the construction of the199

Hill cap [36, 37], which results in the optimal 112-cap in Z6
3.200

Admissible sets. Beyond finding the size of the largest cap set cn in dimension n, a fundamental201

problem in additive combinatorics [23] is determining the capacity C = supn c
1/n
n . The breakthrough202

result of [32] established an upper bound of C ≤ 2.756. In this work, we are interested in lower203

bounds on C. To this end, we use the framework of constant weight admissible sets (or admissible204

sets for short) [35], which has established the current state-of-the-art.205

Formally, admissible sets A(n,w) are collections of vectors in {0, 1, 2}n satisfying two properties:206

i) each vector has the same number w of non-zero elements but a unique support (thereby implying207

|A| ≤
(
n
w

)
); ii) for any three distinct vectors there is a coordinate in which their three respective208

values are {0, 1, 2}, {0, 0, 1}, or {0, 0, 2}. Informally, an admissible set describes how to combine209

cap sets in smaller dimensions into large cap sets in higher dimensions [35]. We denote the set of210
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full-size admissible sets (with |A| =
(
n
w

)
) as I(n,w). The current state-of-the-art [39] has relied on211

SAT solvers to construct large admissible sets.212

As before, we evolve a function priority : {0, 1, 2}n → R, which is used to iteratively grow213

admissible sets. Starting from a trivial constant function, we discover one that provides us with214

an I(12, 7) admissible set; the discovered program is shown in Figure 5 (b). This discovery alone215

already improves the lower bound on the cap set capacity from 2.2180 [39] to 2.2184. Yet, interpreting216

the program found by FunSearch (Figure 5 b) helps us significantly push the boundaries of what217

admissible sets we can construct. Specifically, we notice that the discovered priority function218

treats the n coordinates in a highly symmetric way, and indeed it turns out that the admissible set219

it constructs is preserved under independent cyclic permutations of coordinates within four disjoint220

groups of coordinate triples. Hereinafter we call such admissible sets symmetric (see Appendix D in221

Supplementary Information for a formal definition).222

We now use FunSearch to directly search for symmetric admissible sets. Note that this is a more223

restricted but also much smaller search space, which allows for significantly higher dimensions and224

weights than were previously possible. This led us to discovering a full-size I(15, 10) admissible set225

(implying C ≥ 2.219486) and a partial admissible set in A(24, 17) of size 237 984, which implies226

a new lower bound on the cap set capacity of 2.2202 (see Figure 5 a). While this is the largest227

improvement to the lower bound in the last 20 years, we note it is still far from the upper bound,228

and we hope our results inspire future work on this problem.229

Not only does FunSearch scale to much larger instances than traditional combinatorial solvers230

(see Appendix A.4 in Supplementary Information), it is a unique feature of searching in function231

space that we were able to inspect the code discovered by FunSearch and infer a new insight into232

the problem, in the form of a new symmetry. The procedure we followed in this section is a concrete233

example of how LLM-based approaches can be used in mathematical sciences: FunSearch suggests234

a solution, which is examined by researchers, who may note features of interest. These features are235

used to refine the search, leading to better solutions. This process can be iterated, with both human236

and search consistently in the loop.237

2.2 Bin packing238

Combinatorial optimization is a subfield of mathematics which plays an important role across a wide239

range of areas, from theoretical computer science to practical problems in logistics and scheduling.240

While many combinatorial optimization problems are provably hard to solve for large instances, it241

is typically possible to achieve strong performance using heuristics to guide the search algorithm.242

The choice of a heuristic is crucial for obtaining strong performance, but designing a good heuristic243

is difficult in practice. In this section, we show that FunSearch can be used to discover effective244

heuristics for one of the central problems in combinatorial optimization: bin packing [4].245

The goal of bin packing is to pack a set of items of various sizes into the smallest number of246

fixed-sized bins. Bin packing finds applications in many areas, from cutting materials to scheduling247

jobs on compute clusters. We focus on the online setting where we pack an item as soon as it is248

received (as opposed to the offline setting where we have access to all items in advance). Solving249

online bin packing problems then requires designing a heuristic for deciding which bin to assign an250

incoming item to.251

Heuristics for online bin packing are well studied and several variants exist with strong worst252

case performance [40–45]. However, they often exhibit poor performance in practice [4]. Instead, the253

most commonly used heuristics for bin packing are first fit and best fit. First fit places the incoming254

item in the first bin with enough available space, while best fit places the item in the bin with least255

available space where the item still fits. Here, we show that FunSearch discovers better heuristics256
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OR1 OR2 OR3 OR4 Weibull 5k Weibull 10k Weibull 100k

First Fit 6.42% 6.45% 5.74% 5.23% 4.23% 4.20% 4.00%

Best Fit 5.81% 6.06% 5.37% 4.94% 3.98% 3.90% 3.79%

FunSearch 5.30% 4.19% 3.11% 2.47% 0.68% 0.32% 0.03%

Table 1: Online bin packing results. Fraction of excess bins (lower is better) for various bin
packing heuristics on the OR and Weibull datasets. FunSearch outperforms first fit and best fit
across problems and instance sizes.

than first fit and best fit on simulated data.257

To achieve this, we define a heuristic as a program that takes as input an item and an array258

of bins (containing the remaining capacity of each bin) and returns a priority score for each bin.259

The solve function picks the bin with the highest score according to the heuristic (see Figure 2 b).260

FunSearch is then used to evolve this heuristic, starting from best fit.261

We first evaluate FunSearch on the well-known OR-Library bin packing benchmarks [24], con-262

sisting of four datasets, OR1 to OR4, containing bin packing instances with an increasing number263

of items (see Appendix E.4 in Supplementary Information for details). We evolve our heuristic on264

a training set of generated bin packing instances with the same number of items as those in OR1265

and, after the evolutionary process is concluded, test it on the OR1 to OR4 datasets. We measure266

performance as the fraction of excess bins used over the L2 lower bound [46] of the optimal offline267

packing solution (which is generally not achievable in the online setting).268

As can be seen in Table 1, FunSearch outperforms both first fit and best fit across all datasets.269

Further, the learned heuristic generalizes: even though it has only seen instances of the same size as270

OR1 during training, it generalizes across problem sizes, performing even better on large instances271

and widening the gap to best fit. In addition to the OR benchmarks, we also use FunSearch to evolve272

heuristics on bin packing instances sampled from a Weibull distribution, as these closely follow many273

real-world scheduling problems [25, 47] (see Appendix E.4 in Supplementary Information for details).274

As shown in Table 1, the performance of FunSearch is very strong on this dataset, significantly275

outperforming first fit and best fit across instances, as well as scaling gracefully to large instances276

(being only 0.03% off the lower bound on the optimum for 100 000 items). In addition, FunSearch is277

robust and consistently outperforms these baselines as shown in the statistical analysis in Appendix278

A.3 in Supplementary Information.279

We observed that several heuristics discovered by FunSearch use the same general strategy for280

bin packing (see Figure 6 for an example). Instead of packing items into bins with the least capacity281

(like best fit), the FunSearch heuristics assign items to least capacity bins only if the fit is very tight282

after placing the item. Otherwise, the item is typically placed in another bin which would leave283

more space after the item is placed. This strategy avoids leaving small gaps in bins that are unlikely284

to ever be filled (see Appendix E.5 in Supplementary Information for example visualizations of such285

packings).286

As this example demonstrates, the benefits of FunSearch extend beyond theoretical and mathe-287

matical results to practical problems like bin packing. Indeed, bin packing, and related combinatorial288

optimization problems, are ubiquitous and find applications across a range of industries. We are289

optimistic that FunSearch could be applied to several such use-cases with potential for real-world290

impact.291
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3 Discussion292

The effectiveness of FunSearch in discovering new knowledge for hard problems might seem intrigu-293

ing. We believe that the LLM used within FunSearch does not use much context about the problem;294

the LLM should instead be seen as a source of diverse (syntactically correct) programs with occa-295

sionally interesting ideas. When further constrained to operate on the crucial part of the algorithm296

with a program skeleton, the LLM provides suggestions that marginally improve over existing ones297

in the population, which ultimately results in discovering new knowledge on open problems when298

combined with the evolutionary algorithm. Another crucial component of the effectiveness of Fun-299

Search is that it operates in the space of programs: rather than directly searching for constructions300

(which is typically an enormous list of numbers), FunSearch searches for programs generating those301

constructions. Because most problems we care about are structured (highly non-random), we hy-302

pothesize that solutions are described more concisely with a computer program, compared to other303

representations. For example, the trivial representation of the admissible set A(24, 17) consists of304

more than 200 000 vectors, but the program generating this set consists only of a few lines of code.305

Because FunSearch implicitly encourages concise programs, it scales to much larger instances com-306

pared to traditional search approaches in structured problems. In a loose sense, FunSearch attempts307

to find solutions that have low Kolmogorov complexity [48–50] (which is the length of the short-308

est computer program that produces a given object as output), while traditional search procedures309

have a very different inductive bias. We believe that such Kolmogorov-compressed inductive bias310

is key to FunSearch scaling up to the large instances in our use-cases. In addition to scale, we311

have empirically observed that FunSearch outputs programs that tend to be interpretable — that312

is, they are clearly easier to read and understand compared to a list of numbers. For example, by313

scrutinizing FunSearch’s output for the admissible set problem, we found a new symmetry, which314

was then subsequently used to improve the results even further. Despite the rarity of symmetric315

solutions, we observe that FunSearch preferred symmetric ones, as these are more parsimonious316

(that is, they require less information to specify), in addition to the natural bias of LLMs (trained317

on human-produced code) in outputting code with similar traits to human code. This is in contrast318

to traditional genetic programming which do not have this bias (and in addition require hand-tuning319

the mutation operators [51]).320

We note that FunSearch currently works best for problems having the following characteristics:321

a) availability of an efficient evaluator; b) a “rich” scoring feedback quantifying the improvements322

(as opposed to a binary signal); c) ability to provide a skeleton with an isolated part to be evolved.323

For example, the problem of generating proofs for theorems [52–54] falls outside this scope, since324

it is unclear how to provide a rich enough scoring signal. In contrast, for MAX-SAT, the number325

of satisfied clauses can be used as a scoring signal. In this paper, we have explicitly striven for326

simplicity and we are confident that FunSearch can be further extended to improve its performance327

and be applicable to more classes of problems. In addition, the rapid development of LLMs is328

likely to result in samples of far superior quality at a fraction of the cost, making FunSearch more329

effective at tackling a broad range of problems. As a result, we envision that automatically-tailored330

algorithms will soon become common practice and deployed in real-world applications.331
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Figure 1: Overview of FunSearch. The input to FunSearch is a specification of the problem
in the form of an evaluate function, an initial implementation of the function to evolve, which can
be trivial, and potentially a skeleton. At each iteration, FunSearch builds a prompt by combining
several programs sampled from the programs database (favouring high-scoring ones). The prompt is
then fed to the pre-trained LLM, and new programs are created. Newly created programs are then
scored and stored in the programs database (if correct), thus closing the loop. The user can at any
point retrieve the highest-scoring programs discovered so far.

Figure 2: Examples of FunSearch specifications for two problems. The evaluate function
takes as input a candidate solution to the problem, and returns a score assessing it. The solve

function contains the algorithm skeleton, which calls the function to evolve that contains the crucial
logic. For (a), the function to evolve is called priority, and for (b) it is called heuristic. The main
function implements the evaluation procedure by connecting the pieces together. Specifically, it uses
the solve function to solve the problem, and then scores the resulting solutions using evaluate. In
simplest cases, main just executes solve once and uses evaluate to score the output, e.g., see (a).
In specific settings such as online algorithms, the main function implements some additional logic,
e.g., see (b).

Figure 3: Diagram of a cap set of size 4 in Z2
3. The circles are the elements of Z2

3 with the
ones belonging to the cap set shown in blue. The possible lines in Z2

3 are also shown (with colors
indicating lines that wrap around in arithmetic modulo 3). No three elements of the cap set are in
a line.

Figure 4: Result of applying FunSearch to the cap set problem. (a) Size of the largest
cap set in Zn

3 for different dimensions n. (b) The function priority : Zn
3 → R discovered by

FunSearch that results in a cap set of size 512 in n = 8 dimensions. One feature to note is that
the priority is affected by whether the same entry appears in positions i and -i (-i denotes the
i-th position counting from the end). This motivates the notion of reflections, used in (c). (c)
An explicit construction of this new 512-cap, which we were able to manually construct thanks to
having discovered the cap set by searching in function space. See Appendix E.2 in Supplementary
Information for more details and for relation to Hill cap.

Figure 5: Results on the cap set problem via admissible sets. (a) Summary of lower bounds
on the cap set capacity C. (b) The priority function {0, 1, 2}n → R discovered by FunSearch that
results in an I(12, 7) admissible set. The source code reveals that when n = 12, the function treats
the four triples of coordinates {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, and {3, 7, 11} together. We then checked
that the admissible set is in fact symmetric under independent cyclic permutations of coordinates
within each of these four triples. See Appendix D and Appendix E.3 in Supplementary Information
for more details.
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Figure 6: Example of a short online bin packing heuristic discovered by FunSearch for
the OR dataset. This example illustrates frequently observed behavior: instead of always packing
items into the best fit bin, the heuristic encourages packing the item only if the fit is tight (line 11).
Comments in the code were manually added. See Appendix C in Supplementary Information for
more discovered heuristics.
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A Methods450

A.1 Implementation details of FunSearch451

Distributed system. We implement FunSearch as a distributed system that has three types of452

workers: a programs database, samplers, and evaluators. The programs database stores the initial453

user-provided program, as well as all programs received from the evaluators. The samplers are in454

charge of performing the LLM inference step; to do so they repeatedly query the programs database455

for prompts. To achieve higher sampling throughput, samplers generate multiple samples from each456

prompt. The samples from the LLM (i.e., the generated programs) are sent to the evaluators,457

which score programs by executing them on inputs of interest and assessing the outputs using458

evaluate. Programs that are correct are sent to the programs database to be stored. Each of459

the three FunSearch components is provided as both Python code and pseudocode (Appendix F in460

Supplementary Information).461

Prompt building. When queried for a prompt, the programs database samples k programs to462

encourage the LLM to merge ideas from them (we typically set k = 2; see Appendix E.1 in Sup-463

plementary Information). Programs are sorted according to their score in increasing order, starting464

from “version 0” (v0). Using these k programs, the prompt is built as explained next.465

For the sake of clarity, we use here the problem specification from Figure 2 (a) to precisely466

describe the prompting mechanism. The overall structure of the prompt mimics the structure of467

the program skeleton, with the following differences: (i) The priority function is stripped out, and468

replaced with the k = 2 programs sampled, first priority v0 and then priority v1. (ii) After469

that, a priority v2 function with no body is appended — the LLM will be in charge of completing470

the body of that function. (iii) All other functions that appear before priority v0 are removed.471

See Extended Data Figure 1 for an example of the structure of a prompt.472

Evolutionary method and program selection. Another key feature of FunSearch is the method473

used for evolution of the population of programs from the programs database, as well as for program474

selection, i.e., how the programs database samples programs when queried for a prompt. For this,475

we use the islands model, a parallel genetic algorithm [28, 29]. Specifically, we split the population476

into m separate groups, or islands. Each island is initialized with a copy of the user-provided initial477

program and is evolved separately. That is, whenever a prompt is required, we first uniformly sample478

an island and then sample k = 2 programs from that island to build the prompt. The programs479

generated from the LLM based on that prompt will later be stored in the same island. Every four480

hours, we discard all the programs from the m/2 islands whose best instances have the lowest score.481

Each of these islands is then seeded with a single program, obtained by first choosing one of the482

surviving m/2 islands uniformly at random, and then retrieving the highest-scoring program from483

that island (breaking ties in favour of older programs). The evolutionary process is then restarted484

from this state, in which the reset islands contain one high-performing program each (see Extended485

Data Figure 2).486

This method has several advantages. First, drawing the analogy where an island corresponds487

to an experiment, this approach effectively allows us to run several smaller experiments in parallel,488

instead of a single large experiment. This is beneficial because single experiments can get stuck in489

local minima, where the majority of programs in the population are not easily mutated and combined490

into stronger programs. The multiple island approach allows us to bypass this and effectively kill491

off such experiments to make space for new ones starting from more promising programs. Second,492
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promising experiments are run for longer, since the islands that survive a reset are the ones with493

higher scores.494

Within each island, we further cluster programs according to their signature. We define the495

signature of a program as the tuple containing the program’s scores on each of the inputs (e.g., the496

cap set size for each input n). Programs with the same signature are clustered together. When497

sampling a program within an island, we first sample an island’s cluster, and then a program within498

that cluster (see Extended Data Figure 3). This approach, which aims at preserving diversity499

[55, 56], is related to Lexicase [57] in that both approaches consider a set of test cases for scoring an500

individual, and it is related to fitness uniform optimization [58], which also clusters individuals based501

on their fitness value, however we sample the clusters based on their score instead of uniformly, as502

detailed next.503

When sampling a cluster, we favor those with larger score values. Specifically, let si denote the504

score of the i-th cluster, defined as an aggregation (e.g., mean) of all the scores in the signature that505

characterizes that cluster. The probability pi of choosing cluster i is506

pi =
exp (si/Tcluster)∑
i′ exp (si′/Tcluster)

, Tcluster = T0 ·
(

1 − n mod N

N

)
, (1)

where Tcluster is the temperature parameter, n is the current number of programs in the island,507

and T0 and N are hyperparameters (given in Appendix E.1 in Supplementary Information). This508

approach is sometimes referred to as the Boltzmann selection procedure [59].509

When sampling a program within a cluster, we favor shorter programs. In particular, let ℓi510

denote the negative length of the i-th program within the chosen cluster (measured as the number511

of characters), and let ℓ̃i = ℓi−mini′ ℓi′
maxi′ ℓi′+10−6 . We set the probability of each program proportional to512

exp(ℓ̃i/Tprogram), where Tprogram is a temperature hyperparameter.513

Robustness. Due to randomness in LLM sampling and in the evolutionary procedure, repeating514

an experiment can lead to different results. For some problems (e.g. cap set through the admissible515

set problem, and online bin packing) every single run of FunSearch surpasses the baseline, with only516

some variation in the magnitude of the difference. For example, all experiments on admissible sets517

improve upon the previous best capacity lower bound, with 60% of experiments on I(12, 7) finding518

a full-size admissible set. For other problems, multiple independent repetitions of an experiment519

may be necessary to improve upon prior best results. In particular, the case of cap set by direct520

construction in n = 8 dimensions is particularly challenging, with only 4 out of 140 experiments521

discovering a cap set of size 512. See Appendix A.3 in Supplementary Information for more details.522

A.2 Related work523

Large Language Models. The rise of powerful LLMs such as [60] has been followed by systems524

in which an LLM core is enveloped by a “programmatic scaffold” [61], and multiple LLM calls are525

connected together in some way to accomplish larger and more intricate tasks beyond what would be526

possible using a single prompt and the raw LLM, possibly using external tools or external memory527

streams [62–66]. LLMs have also been paired with evaluators; for example, [21, 67] fine-tune an528

LLM on data that has been previously generated by the LLM itself (respectively on puzzle problems529

and solutions, and on justifications/explanations for answers to questions), and use an evaluator530

to assess the correctness of this data, ensuring that the fine-tuning dataset contains correct solu-531

tions/explanations only. More related to our approach is the use of LLMs as a mutation operator532

on code. [3] was the first work to show that coupling an LLM with a programatic way of scoring a533
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solution can lead to a self-improvement loop. In [17–20], the LLM is used as a crossover operator534

rather than a mutation one, i.e., the LLM prompts are composed of several functions, similarly to535

FunSearch. In [3, 17], the task is to improve code that generates bidimensional virtual robots that536

can move as far as possible in a given simulated terrain ([17] additionally considers the tasks of537

symbolic regression, natural language sentences, and image generation), in [18–20] the task is to538

find neural network architectures (described with Python code), and in [68] the task is continuous539

exploration in the game of Minecraft. In contrast, in this paper we tackle open problems in math-540

ematics and algorithm design, and we surpass human-designed constructions. We achieve that by541

combining multiple ingredients together: a distributed system with multiple samplers and evaluators542

that communicate asynchronously, a user-provided program specification and skeleton, as well as543

an evolutionary mechanism based on islands that preserves the diversity of programs. FunSearch544

achieves that using an off-the-shelf LLM without fine-tuning.545

More broadly, LLMs have been used for program synthesis as one of its main applications [5–9].546

There are many use cases being explored, such as automatically editing code to improve performance547

[14], automatically debugging code [10, 11], generating code from natural language descriptions [69–548

71], and doing so to solve problems in code competitions [12, 13]. Unlike the above approaches549

which provide tools to increase the productivity of software engineers, we combine in this paper550

the creativity of LLMs with the power of evolutionary procedures to push the boundaries of human551

knowledge through solving open hard problems. Another line of research uses LLMs to guide the552

search for formal proofs for automatic theorem proving [52–54]. While this approach has the potential553

of eventually finding new knowledge, the achievements of these methods still lag behind the frontier554

of human knowledge.555

Genetic programming. Genetic programming (GP) is a subfield of computer science concerned556

with automatically generating or discovering computer programs using evolutionary methods [16,557

72, 73] and is employed for symbolic regression applications [74, 75] and discovery of optimization558

algorithms [76] among others. In this broad sense, combining LLMs with evolution can be seen559

as an instance of GP with the LLM acting as a mutation and crossover operator. However, using560

an LLM mitigates several issues in traditional GP [51], as shown in Appendix A in Supplementary561

Information and discussed in [3]. Indeed, GP methods require defining a number of parameters,562

chief among them the set of allowed mutation operations (or primitives) [16]. Designing such a set563

of operations is non-trivial and problem-specific, requiring domain knowledge about the problem at564

hand or its plausible solution [51]. While research has been done to mitigate this limitation, through565

for example the reuse of subprograms [77] or modeling the distribution of high-performing programs566

[78], designing effective and general code mutation operators remains difficult. In contrast, LLMs567

have been trained on vast amounts of code and as such have learned about common patterns and568

routines from human-designed code. The LLM can leverage this, as well as the context given in the569

prompt, to generate more effective suggestions than the random ones typically used in GP.570

Related to GP, the field of hyper-heuristics [79, 80] seeks to design learning methods for gen-571

erating heuristics applied to combinatorial optimization problems. In practice, these heuristics are572

often programs discovered through GP, typically by evolving a heuristic on a set of instances of a573

given combinatorial optimization problem, such as bin packing [81]. Indeed, like FunSearch, hyper-574

heuristics have also been applied to online bin packing, with the learned heuristics able to match the575

performance of first fit [82] and best fit [83] on a set of generated bin packing instances. Augmenting576

the heuristics with memory of previously seen items can even lead to heuristics outperforming best577

fit [84]. In addition, these evolved heuristics can sometimes generalize to larger instances than the578

ones they were trained on [85], similar to the learned FunSearch heuristics. However, as is the case579

with GP, one of the fundamental limitations of hyper-heuristics is that the components of the evolved580
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heuristic must be manually defined by the user and often need to be tailored to a specific problem581

to be effective. The LLM in FunSearch allows us to bypass this limitation and learn heuristics for582

bin packing and job scheduling as well as discovering novel mathematical constructions, all within583

a single pipeline without problem specific tuning.584

Program superoptimization and software engineering. Searching for the best way of mod-585

ifying source code is a task that appears in multiple branches of computer science and software586

development. These occurrences can be broadly classified into two groups: first, where the goal is to587

find semantic-preserving modifications (this arises in program optimization and superoptimization,588

where the aim is to modify the program so that it executes faster while maintaining its input-output589

behaviour), and second, where the goal is to find programs with different semantics (this arises, e.g.,590

in automatic program repair and mutation testing). With some exceptions discussed below, most591

of these areas use relatively simple and hard-coded mutation operators on either the source code592

directly (such as deleting or swapping lines) or on the abstract syntax tree (AST).593

Machine learning approaches have been used for program superoptimization. For example, [86]594

used reinforcement learning to learn the sampling probabilities used within a hierarchical prob-595

abilistic model of simple program edits introduced by STOKE [87]. Neural networks have also596

been proposed as a mutation operator for program optimization in [88]. These works operated on597

code written in Assembly (perhaps because designing meaningful and rich edit distributions on pro-598

grams in higher-level languages is challenging). More recently, [14] used LLMs to find performance-599

improving edits to code written in C++ or Python. We also note that reinforcement learning has600

recently been applied to discover new faster algorithms for fundamental operations such as matrix601

multiplication [89] and sorting [90].602

In this paper, we have not explicitly explored semantic-preserving applications such as discovering603

performance-improving code edits, but we believe that FunSearch could be an effective method for604

that setting too. In both use cases presented in Section 2, the goal is to evolve programs with new605

semantics, but the application is different from program repair or mutation testing: in Section 2.1 we606

used FunSearch to discover a program that constructs a previously unknown mathematical object,607

and in Section 2.2 we used FunSearch to discover a program that corresponds to a more efficient608

heuristic for online bin packing.609

Data availability. The experiments carried out in this paper do not require any data corpus other610

than the publicly available OR-Library bin packing benchmarks [24]. The output functions of interest611

produced by FunSearch are shown across the main paper and in text files in the Supplementary612

Information.613

Code availability. The discovered functions as well as the evolutionary algorithm, code manipula-614

tion routines, and a single-threaded implementation of the FunSearch pipeline are available as Python615

code in the Supplementary information and at https://github.com/google-deepmind/funsearch.616

Additionally, the software library launchpad [91], and a sandbox for safely executing generated code617

on our internal distributed system were used. No training or fine-tuning of a large language model618

is required; API access for inference is sufficient. We used Codey [27], which is available through its619

API, and StarCoder [7], which is open source.620
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Extended Data Figure 1: Example of best-shot prompting, based on the skeleton from
Figure 2 (a). The prompt includes k = 2 implementations sampled from the programs database,
with higher-scoring implementations being more likely to be included.

Extended Data Figure 2: Evolutionary method. The initial programs are separated into
islands and each of them are evolved separately. After a number of iterations, the islands with
the worst score are wiped and the best program from the islands with the best score are placed in
the empty islands. Evolution then proceeds separately again until the next reset. This process is
repeated until termination.

Extended Data Figure 3: Program clusters within islands. Within each island, programs are
grouped into clusters based on their signature (i.e., their scores on several inputs). We first sample
clusters, favoring the ones with higher score. Within the chosen clusters, we sample a program,
favoring shorter programs. The sampled programs are used to prompt the LLM which generates a
new program. If the new program is correct, it is added to the island, either in an existing cluster
or a new one if its signature was not yet present.
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"""Finds large cap sets."""

import numpy as np
import utils_capset

# Function to be executed by FunSearch.

def main(n):
"""Runs `solve` on `n`-dimensional cap set and

evaluates the output."""→֒

solution = solve(n)
return evaluate(solution, n)

def evaluate(candidate_set, n):
"""Returns size of candidate_set if it is a cap

set, None otherwise."""→֒

if utils_capset.is_capset(candidate_set, n):
return len(candidate_set)

else:
return None

def solve(n):
"""Builds a cap set of dimension `n` using

`priority` function."""→֒

# Precompute all priority scores.

elements = utils_capset.get_all_elements(n)
scores = [priority(el, n) for el in elements]
# Sort elements according to the scores.

elements = elements[np.argsort(scores,
kind='stable')[::-1]]→֒

# Build `capset` greedily, using scores for

prioritization.→֒

capset = []
for element in elements:

if utils_capset.can_be_added(element, capset):
capset.append(element)

return capset

# Function to be evolved by FunSearch.

def priority(element, n):
"""Returns the priority with which we want to add

`element` to the cap set."""→֒

return 0.0

(a) Cap set.

"""Finds good assignment for online 1d bin

packing."""→֒

import numpy as np
import utils_packing

# Function to be executed by FunSearch.

def main(problem):
"""Runs `solve` on online 1d bin packing instance,

and evaluates the output."""→֒

bins = problem.bins
# Packs `problem.items` into `bins` online.

for item in problem.items:
# Extract bins that have space to fit item.

valid_bin_indices =
utils_packing.get_valid_bin_indices(item,
bins)

→֒

→֒

best_index = solve(item,
bins[valid_bin_indices])→֒

# Add item to the selected bin.

bins[valid_bin_indices[best_index]] -= item
return evaluate(bins, problem)

def evaluate(bins, problem):
"""Returns the negative of the number of bins

required to pack items in `problem`."""→֒

if utils_packing.is_valid_packing(bins, problem):
return -utils_packing.count_used_bins(bins,

problem)→֒

else:
return None

def solve(item, bins):
"""Selects the bin with the highest value according

to `heuristic`."""→֒

scores = heuristic(item, bins)
return np.argmax(scores)

# Function to be evolved by FunSearch.

def heuristic(item, bins):
"""Returns priority with which we want to add

`item` to each bin."""→֒

return -(bins - item)

(b) Online bin packing.ACCELE
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n 3 4 5 6 7 8

Best known 9 20 45 112 236 496

FunSearch 9 20 45 112 236 512

(a)

def priority(el: tuple[int, ...],
n: int) -> float:→֒

score = n
in_el = 0
el_count = el.count(0)

if el_count == 0:
score += n ** 2
if el[1] == el[-1]:

score *= 1.5
if el[2] == el[-2]:

score *= 1.5
if el[3] == el[-3]:

score *= 1.5
else:

if el[1] == el[-1]:
score *= 0.5

if el[2] == el[-2]:
score *= 0.5

for e in el:
if e == 0:

if in_el == 0:
score *= n * 0.5

elif in_el == el_count - 1:
score *= 0.5

else:
score *= n * 0.5 ** in_el

in_el += 1
else:

score += 1

if el[1] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score

(b)

def build_512_cap() -> list[tuple[int, ...]]:
"""Returns a cap set of size 512 in `n=8` dimensions."""

n = 8
V = np.array(list(itertools.product(range(3), repeat=n)), dtype=np.int32)
support = lambda v: tuple(i for i in range(n) if v[i] != 0)
reflections = lambda v: sum(1 for i in range(1, n // 2) if v[i] == v[-i])

# Add all 128 weight-8 vectors that have >= 2 reflections.

weight8_vectors = [v for v in V
if np.count_nonzero(v) == 8 # Weight is 8.

and reflections(v) >= 2] # At least 2 reflections.

# Add all 128 weight-4 vectors that have specific support.

supports_16 = [(0, 1, 2, 3), (0, 1, 2, 5), (0, 3, 6, 7), (0, 5, 6, 7),
(1, 3, 4, 6), (1, 4, 5, 6), (2, 3, 4, 7), (2, 4, 5, 7)]

weight4_vectors = [v for v in V
if support(v) in supports_16]

# Add all 128 weight-4 vectors with specific support and 1 reflection.

supports_8 = [(0, 1, 2, 7), (0, 1, 2, 6), (0, 1, 3, 7), (0, 1, 6, 7),
(0, 1, 5, 7), (0, 2, 3, 6), (0, 2, 6, 7), (0, 2, 5, 6),
(1, 2, 4, 7), (1, 2, 4, 6), (1, 3, 4, 7), (1, 4, 6, 7),
(1, 4, 5, 7), (2, 3, 4, 6), (2, 4, 6, 7), (2, 4, 5, 6)]

weight4_vectors_2 = [v for v in V
if support(v) in supports_8
and reflections(v) == 1] # Exactly 1 reflection.

# Add 128 weight-5 vectors with <= 1 reflections and one more condition.

allowed_zeros = [(0, 4, 7), (0, 2, 4), (0, 1, 4), (0, 4, 6),
(1, 2, 6), (2, 6, 7), (1, 2, 7), (1, 6, 7)]

weight5_vectors = [
v for v in V
if tuple(i for i in range(n) if v[i] == 0) in allowed_zeros
and reflections(v) <= 1 # At most 1 reflection.

and (v[1] * v[7]) % 3 != 1 and (v[2] * v[6]) % 3 != 1]

return weight8_vectors + weight4_vectors + weight4_vectors_2 +
weight5_vectors→֒
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Bound

on C

Admissible set

ingredient
Source

2.2101 I(90, 89) (Calderbank and Fishburn, 1994)

2.2173 I(10, 5) (Edel, 2004)

2.2180 I(11, 7) (Tyrrell, 2022)

2.2184 I(12, 7) FunSearch

2.2194 I(15, 10) FunSearch

2.2202 A(24, 17) FunSearch

(a)

def priority(el: tuple[int, ...], n: int, w: int) -> float:

score = 0.0

for i in range(n):

if el[i] == 1:

score -= 0.9 ** ( i % 4 )

if el[i] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 1 and el[i - 4] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] != 0:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

score -= 6.3

if el[i] == 2 and el[i - 4] == 2 and el[i - 8] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 1:

score -= 6.3

if el[i] == 2 and el[i - 4] == 0 and el[i - 8] == 2:

score -= 6.3

if el[i] == 1 and el[i - 4] == 1 and el[i - 8] == 0:

score -= 2.2

return score

(b)
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def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
"""Online bin packing heuristic discovered with FunSearch."""

score = 1000 * np.ones(bins.shape)
# Penalize bins with large capacities.

score -= bins * (bins - item)
# Extract index of bin with best fit.

index = np.argmin(bins)
# Scale score of best fit bin by item size.

score[index] *= item
# Penalize best fit bin if fit is not tight.

score[index] -= (bins[index] - item)**4
return score
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"""Finds large cap sets."""
import numpy as np
import utils_capset

def priority_v0(element, n):
"""Returns the priority with which we want to add `element` to the cap set."""
#######
# Code from lowest-scoring sampled program.
return ...
#######

def priority_v1(element, n):
"""Improved version of `priority_v0`."""
#######
# Code from highest-scoring sampled program.
return ...
#######

def priority_v2(element, n):
"""Improved version of `priority_v1`."""

Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3
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