
468 | Nature | Vol 625 | 18 January 2024

Article

Mathematical discoveries from program
search with large language models

Bernardino Romera-Paredes1,4 ✉, Mohammadamin Barekatain1,4, Alexander Novikov1,4,
Matej Balog1,4, M. Pawan Kumar1,4, Emilien Dupont1,4, Francisco J. R. Ruiz1,4,
Jordan S. Ellenberg2, Pengming Wang1, Omar Fawzi3, Pushmeet Kohli1 ✉ & Alhussein Fawzi1,4 ✉

Large language models (LLMs) have demonstrated tremendous capabilities in solving
complex tasks, from quantitative reasoning to understanding natural language.
However, LLMs sometimes suffer from confabulations (or hallucinations), which can
result in them making plausible but incorrect statements1,2. This hinders the use of
current large models in scientific discovery. Here we introduce FunSearch (short for
searching in the function space), an evolutionary procedure based on pairing a
pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of
this approach to surpass the best-known results in important problems, pushing
the boundary of existing LLM-based approaches3. Applying FunSearch to a central
problem in extremal combinatorics—the cap set problem—we discover new
constructions of large cap sets going beyond the best-known ones, both in finite
dimensional and asymptotic cases. This shows that it is possible to make discoveries
for established open problems using LLMs. We showcase the generality of FunSearch
by applying it to an algorithmic problem, online bin packing, finding new heuristics
that improve on widely used baselines. In contrast to most computer search
approaches, FunSearch searches for programs that describe how to solve a problem,
rather than what the solution is. Beyond being an effective and scalable strategy,
discovered programs tend to be more interpretable than raw solutions, enabling
feedback loops between domain experts and FunSearch, and the deployment of such
programs in real-world applications.

Many problems in mathematical sciences are ‘easy to evaluate’, despite
being typically ‘hard to solve’. For example, in computer science,
NP-complete optimization problems admit a polynomial-time evalu-
ation procedure (measuring the quality of the solution), despite the
widespread belief that no polynomial-time algorithms to solve such
problems exist. We focus in this paper on problems admitting an effi-
cient ‘evaluate’ function, which measures the quality of a candidate
solution. Prominent examples include the maximum independent
set problem and maximum constraint satisfaction problems (such
as finding the ground state energy of a Hamiltonian). Our goal is to
generate a ‘solve’ program, such that its outputs receive high scores
from the ‘evaluate’ function (when executed on inputs of interest), and
ultimately improve on the best-known solutions.

Whereas large language models (LLMs) have recently seen nota-
ble improvements in their coding capabilities4–8, with applications
including debugging9,10, solving code competitions11,12 and improving
code performance13, synthesizing ‘solve’ programs for open problems
requires finding new ideas that are verifiably correct. This is very hard
for LLMs, as they tend to confabulate or ultimately fall short of going
beyond existing results. To surpass the ‘nominal’ capabilities of LLMs,
recent studies3 have combined them with evolutionary algorithms14,15,

leading to important improvements on diverse synthetic problems16,
searching for neural network architectures17–19 and solving puzzles20.
Our proposed method, FunSearch, pushes the boundary of LLM-guided
evolutionary procedures to a new level: the discovery of new scien-
tific results for established open problems and the discovery of new
algorithms. Surpassing state-of-the-art results on established open
problems provides a clear indication that the discoveries are truly new,
as opposed to being retrieved from the LLM’s training data.

FunSearch (short for searching in the function space) combines a
pretrained (frozen) LLM, whose goal is to provide creative solutions,
with an evaluator, which guards against confabulations and incor-
rect ideas. FunSearch iterates over these two components, evolving
initial low-scoring programs into high-scoring ones discovering new
knowledge. Key to the success of this simple procedure is a combina-
tion of several essential ingredients. First, we sample best performing
programs and feed them back into prompts for the LLM to improve on;
we refer to this as best-shot prompting. Second, we start with a program
in the form of a skeleton (containing boilerplate code and potentially
known structure about the problem), and only evolve the part govern-
ing the critical program logic. For example, by setting a greedy program
skeleton, we evolve a priority function used to make decisions at every

https://doi.org/10.1038/s41586-023-06924-6

Received: 12 August 2023

Accepted: 30 November 2023

Published online: 14 December 2023

Open access

 Check for updates

1Google DeepMind, London, UK. 2Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA. 3Laboratoire de l’Informatique du Parallélisme, University of Lyon (Inria, ENS
Lyon, UCBL, LIP), Lyon, France. 4These authors contributed equally: Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan Kumar, Emilien
Dupont, Francisco J. R. Ruiz, Alhussein Fawzi. ✉e-mail: brp@google.com; pushmeet@google.com; afawzi@google.com

https://doi.org/10.1038/s41586-023-06924-6
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06924-6&domain=pdf
mailto:brp@google.com
mailto:pushmeet@google.com
mailto:afawzi@google.com

Nature | Vol 625 | 18 January 2024 | 469

step. Third, we maintain a large pool of diverse programs by using an
island-based evolutionary method that encourages exploration and
avoids local optima. Finally, leveraging the highly parallel nature of
FunSearch, we scale it asynchronously, considerably broadening the
scope of this approach to find new results, while keeping the overall
cost of experiments low.

We show the surprising effectiveness of FunSearch on several use
cases. We consider a fundamental problem in extremal combina-
torics, namely, the cap set problem21,22. FunSearch demonstrates the
existence of hitherto unknown constructions that go beyond existing
ones, including the largest improvement in 20 years to the asymptotic
lower bound. This demonstrates that it is possible to make a scientific
discovery—a new piece of verifiable knowledge about a notorious
scientific problem—using an LLM. Using FunSearch, we also find new
algorithms for the online bin packing problem that improve on tradi-
tional ones on well-studied distributions of interest23,24, with potential
applications to improving job scheduling algorithms.

Whereas most computer search techniques output directly what the
solution is (for example, a list of vectors forming a cap set), FunSearch
produces programs generating the solution. For structured problems,
such programs tend to be more interpretable—facilitating interac-
tions with domain experts—and concise—making it possible to scale
to large instances—compared to a mere enumeration of the solution.
In addition, decision procedures (such as for bin packing) described
by code in a standard programming language are crucially easier to
deploy compared to other types of descriptions (for example, neural
networks), which typically require specialized hardware and for which
verifying design specifications is notoriously hard.

FunSearch
An overview of FunSearch is shown in Fig. 1, and its components are
described in more detail below. For more details and ablations showing
the importance of each component, see Methods and Supplementary
Information Appendix A.

Specification
The input to FunSearch is a specification of the problem in the form of
an ‘evaluate’ function, which scores candidate solutions. In addition,
we provide an initial program (which can be trivial) to evolve. Although
in principle these are the minimum requirements, we found that per-
formance tends to improve significantly if we write the initial ‘solve’

program in the form of a skeleton (containing boilerplate code and
previous knowledge of the problem in the form of a program structure),
and only use FunSearch to evolve the critical part that governs its logic.
Fig. 2a shows an example in which the skeleton takes the form of a
simple greedy algorithm, and the crucial part to evolve by FunSearch is
the priority function that is used to make the greedy decision at every
step. This delegates to FunSearch precisely the part that is usually the
hardest to come up with. Whereas a fixed skeleton may constrain the
space of programs that can be discovered, we find it improves over-
all results because it focuses the LLM resources on only evolving the
critical part, instead of also using the LLM to recreate already known
program structures (with more opportunities for mistakes that would
render the entire program incorrect). If available, the user can option-
ally provide extra known information about the problem at hand, in the
form of docstrings, relevant primitive functions or import packages,
which FunSearch may use.

Pretrained LLM
The LLM is the creative core of FunSearch, in charge of coming up with
improvements to the functions presented in the prompt and sending
these for evaluation. We obtain our results with a pretrained model,
that is, without any fine-tuning on our problems. We use Codey, an LLM
built on top of the PaLM2 model family25, which has been fine-tuned
on a large corpus of code and is publicly accessible through its API26.
Because FunSearch relies on sampling from an LLM extensively, an
important performance-defining tradeoff is between the quality of the
samples and the inference speed of the LLM. In practice, we have cho-
sen to work with a fast-inference model (rather than slower-inference,
higher-quality), and the results in the paper are obtained using a total
number of samples on the order of 106. Beyond this tradeoff, we have
empirically observed that the results obtained in this paper are not too
sensitive to the exact choice of LLM, as long as it has been trained on a
large enough corpus of code. See Supplementary Information Appen-
dix A for a comparison to StarCoder6, a state-of-the-art open-source
LLM for code.

Evaluation
Programs generated by the LLM are evaluated and scored on a set of
inputs. For example, in the cap set problem (‘Extremal combinatorics’
section) the inputs are the values of the dimensionality n that we are
interested in, and in combinatorial optimization (‘Bin packing’ section),
the inputs correspond to different bin packing instances. The scores

??

Pretrained LLM

Evaluation

Programs
database

Speci�cation

?

Prompt

FunSearch

New program

Fig. 1 | Overview of FunSearch. The input to FunSearch is a specification of the
problem in the form of an ‘evaluate’ function, an initial implementation of the
function to evolve, which can be trivial, and potentially a skeleton. At each
iteration, FunSearch builds a prompt by combining several programs sampled
from the programs database (favouring high-scoring ones). The prompt is then

fed to the pretrained LLM and new programs are created. Newly created
programs are then scored and stored in the programs database (if correct),
thus closing the loop. The user can at any point retrieve the highest-scoring
programs discovered so far.

470 | Nature | Vol 625 | 18 January 2024

Article

across different inputs are then combined into an overall score of the
program using an aggregation function, such as the mean. The scored
programs are then sent to the programs database. Programs that were
incorrect (that did not execute within the imposed time and memory
limits, or produced invalid outputs) are discarded, and the remaining
scored programs are then sent to the programs database.

Programs database
The programs database keeps a population of correct programs, which
are then sampled to create prompts. Preserving and encouraging diver-
sity of programs in the database is crucial to enable exploration and
avoid being stuck in local optima. To encourage diversity, we adopt an
islands model, also known as a multiple population and multiple-deme
model27,28, which is a genetic algorithm approach. Several islands, or
subpopulations, are created and evolved independently. To sample
from the program database, we first sample an island and then sample
a program within that island, favouring higher-scoring and shorter
programs (see Methods for the exact mechanism). Crucially, we let
information flow between the islands by periodically discarding the
programs in the worst half of the islands (corresponding to the ones
whose best individuals have the lowest scores). We replace the pro-
grams in those islands with a new population, initialized by cloning
one of the best individuals from the surviving islands.

Prompt
New prompts are created by ‘best-shot prompting’ from the programs
database, and are then fed to the LLM to generate a new program. We
first sample k programs from a single island in the programs database,

according to the procedure described above. Sampled programs are
then sorted according to their score, and a version is assigned to each
(‘v0’ for the lowest scoring program, ‘v1’ for the second lowest scoring
and so on). These programs are then combined into a single prompt—
with the version appended as a suffix to the function name; for example,
in the case of Fig. 2a, this would be ‘priority_v0’, ‘priority_v1’, ...—and the
header of the function we wish to generate (for example, ‘priority_vk’) is
added to the end of the prompt. In practice, we set k = 2, as two functions
lead to better results compared to just one, with diminishing returns
beyond that. Constructing a prompt by combining several programs
(as opposed to only one) enables the LLM to spot patterns across the
different programs and generalize those. Related approaches to prompt
building have been recently considered, for example ref. 16, and were
shown to perform well on different domains.

Distributed approach
We implement FunSearch as a distributed system that has three types of
workers—a programs database, samplers and evaluators—which com-
municate asynchronously. The programs database stores and serves
programs, samplers generate new functions using the pretrained LLM
and evaluators assess programs, as shown in Supplementary Fig. F.26.
In the example shown in Fig. 2a, the programs database stores priority
functions, samplers generate new implementations of ‘priority’ and
evaluators score the proposals by executing the ‘main’ function on
user-specified inputs. Our distributed system offers several advan-
tages. First, it naturally leverages parallelism across different tasks: for
example, LLM sampling and evaluation are performed concurrently.
Second, it enables scaling to more than one sampler and evaluator,

"""Finds large cap sets."""
import numpy as np
import utils_capset

Function to be executed by FunSearch.
def main(n):
"""Runs `solve` on `n`-dimensional cap set and

evaluates the output."""
solution = solve(n)
return evaluate(solution, n)

def evaluate(candidate_set, n):
"""Returns size of candidate_set if it is a cap

set, None otherwise."""
if utils_capset.is_capset(candidate_set, n):
return len(candidate_set)

else:
return None

def solve(n):
"""Builds a cap set of dimension `n` using

`priority` function."""

→

Precompute all priority scores.
elements = utils_capset.get_all_elements(n)
scores = [priority(el, n) for el in elements]
Sort elements according to the scores.
elements = elements[np.argsort(scores,

kind='stable')[::-1]]

Build `capset` greedily, using scores for
prioritization.

capset = []
for element in elements:
if utils_capset.can_be_added(element, capset):
capset.append(element)

return capset

Function to be evolved by FunSearch.
def priority(element, n):
"""Returns the priority with which we want to add

`element` to the cap set."""
return 0.0

"""Finds good assignment for online 1d bin
packing."""

import numpy as np
import utils_packing

Function to be executed by FunSearch.
def main(problem):
"""Runs `solve` on online 1d bin packing instance,

and evaluates the output."""
bins = problem.bins
Packs `problem.items` into `bins` online.
for item in problem.items:
Extract bins that have space to fit item.
valid_bin_indices =

utils_packing.get_valid_bin_indices(item,
bins)

best_index = solve(item,
bins[valid_bin_indices])

Add item to the selected bin.
bins[valid_bin_indices[best_index]] -= item

return evaluate(bins, problem)

def evaluate(bins, problem):
"""Returns the negative of the number of bins

required to pack items in `problem`."""
if utils_packing.is_valid_packing(bins, problem):

return -utils_packing.count_used_bins(bins,
problem)

else:
return None

def solve(item, bins):
"""Selects the bin with the highest value according

to `heuristic`."""
scores = heuristic(item, bins)
return np.argmax(scores)

Function to be evolved by FunSearch.
def heuristic(item, bins):
"""Returns priority with which we want to add

`item` to each bin."""
return -(bins - item)

→

→

→

→

→

→

→
→

→

→

→

→

→

→

a b

Fig. 2 | Examples of FunSearch specifications for two problems. The
‘evaluate’ function takes as input a candidate solution to the problem, and
returns a score assessing it. The ‘solve’ function contains the algorithm
skeleton, which calls the function to evolve that contains the crucial logic.
a, Cap set. The function to evolve is called ‘priority’. b, Online bin packing. The
function to evolve is called ‘heuristic’. The ‘main’ function implements the

evaluation procedure by connecting the pieces together. Specifically, it uses
the ‘solve’ function to solve the problem and then scores the resulting solutions
using the ‘evaluate’ function. In the simplest cases, ‘main’ just executes ‘solve’
once and uses ‘evaluate’ to score the output, for example, a. In specific settings
such as online algorithms, the ‘main’ function implements some more logic, for
example, b.

Nature | Vol 625 | 18 January 2024 | 471

which would be a very limiting setup, considering that evaluation can
take minutes for many problems of interest. Running evaluators in
parallel considerably broadens the scope of this approach to such
problems. The distributed setting enables the running of many evalu-
ator nodes on inexpensive CPU hardware, whereas few samplers run
on machines with accelerators for fast LLM inference; this keeps the
overall cost and energy usage of experiments low. In our experiments,
we typically use 15 samplers and 150 CPU evaluators (can be served
on five CPU servers each running 32 evaluators in parallel). See Sup-
plementary Information Appendix A for more details. Also, because of
the randomness of LLM sampling and the evolutionary procedure, for
some problems we run several experiments to get the best reported
results. See Methods and Supplementary Information Appendix A.3
for a full statistical analysis.

We now describe some of the new discoveries made by FunSearch in
two different fields: pure mathematics and applied computer science.
Further discoveries on other problems (namely, the corners problem
and Shannon capacity of cycle graphs) are presented in Supplementary
Information Appendix B. The full discovered programs are available
in Supplementary Information Appendix C.

Extremal combinatorics
We apply FunSearch to two related problems in extremal combinato-
rics: a branch of mathematics that studies the maximal (or minimal)
possible sizes of sets satisfying certain properties.

Cap sets
The cap set problem21, once described by Terence Tao as ‘perhaps my
favourite open question’29, refers to the task of finding the largest pos-
sible set of vectors in n

3Z (known as a cap set) such that no three vectors
sum to zero. Geometrically, no three points of a cap set are in a line (see
Fig. 3 for an example with n = 2).

The problem has drawn much interest for a variety of reasons. For
one, it is an analogue of the classical number theory problem of finding
large subsets of primes in which no three are in arithmetic progres-
sion. For another, it differs from many problems in combinatorics in
that there is no consensus among mathematicians about what the
right answer should be. Finally, the problem serves as a model for the
many other problems involving ‘three-way interactions’. For instance,
progress towards improved upper bounds for the cap set problem30,31

immediately led to a series of other combinatorial results, for example,
on the Erdös–Radio sunflower problem32.

The exact size of the largest possible cap set in n dimensions is known
only for n ≤ 6. A brute force approach is not practical as the search space
quickly becomes enormous with growing n, for example, around 31,600
for n = 8. Previous methods impose potentially suboptimal restrictions
on the search space33,34. By contrast, we search the full space by means
of an algorithm skeleton that uses a function ‘priority’ : →n

3Z R. Intui-
tively, this function provides a priority with which each Zx ∈ n

3 should
be included in the cap set. Our algorithm starts with an empty set and
iteratively adds the vector x ∈ n

3Z with the highest priority that does
not violate the cap set constraint; Fig. 2a. Starting from a trivial constant
function, we evolve the crucial ‘priority’ component of our approach
to result in large cap sets.

Using this approach, we discovered cap sets of sizes shown in Fig. 4a.
Notably, in dimension n = 8, FunSearch found a larger cap set than what
was previously known, thus illustrating the power of FunSearch to
discover new constructions. This also shows the scalability of FunSearch
to larger dimensions, in which the previously best-known construction
relied on a complex combination of cap sets in lower dimensions33,34.
By contrast, FunSearch discovered a larger cap set from scratch, with-
out having to be explicitly taught any way of combining cap sets.
Moreover, we do not just discover the set of 512 eight-dimensional
vectors in itself, but a program that generates it: we show this program
in Fig. 4b. Through inspecting the code, we obtain a degree of under-
standing of what this set is: specifically, manual simplification of Fig. 4b
provides the construction in Fig. 4c. Some properties of this construc-
tion are similar to the construction of the Hill cap35,36, which results in
the optimal 112-cap in Z3

6.

Admissible sets
Beyond finding the size of the largest cap set cn in dimension n, a fun-
damental problem in additive combinatorics22 is determining the
capacity C c= sup

n
n

n1/ . The breakthrough result from ref. 31 established

an upper bound of C ≤ 2.756. In this work, we are interested in lower
bounds on C. To this end, we use the framework of constant weight
admissible sets (or admissible sets for short)34,37, which has established
the current state-of-the-art.

Formally, admissible sets A n w(,) are collections of vectors in {0, 1, 2}n
satisfying two properties: (1) each vector has the same number w of
non-zero elements but a unique support (therefore ()A n

w≤∣ ∣); (2) for
any three distinct vectors there is a coordinate in which their three
respective values are {0, 1, 2}, {0, 0, 1} or {0, 0, 2}. Informally, an admis-
sible set describes how to combine cap sets in smaller dimensions into
large cap sets in higher dimensions34. We denote the set of full-size
admissible sets (with ()A n

w=∣ ∣) as I n w(,). The current state-of-the-art38
has relied on SAT solvers to construct large admissible sets.

As before, we evolve a function ‘priority’ : R{0, 1, 2} →n , which is used
to iteratively grow admissible sets. Starting from a trivial constant
function, we discover one that provides us with an (12, 7)I admissible
set; the discovered program is shown in Fig. 5b. This discovery alone
already improves the lower bound on the cap set capacity from 2.2180
(ref. 38) to 2.2184. Yet, interpreting the program found by FunSearch
(Fig. 5b) helps us significantly push the boundaries of what admissible
sets we can construct. Specifically, we notice that the discovered
‘priority’ function treats the n coordinates in a highly symmetric way,
and indeed it turns out that the admissible set it constructs is preserved
under independent cyclic permutations of coordinates within four
disjoint groups of coordinate triples. Hereinafter we call such admis-
sible sets symmetric (see Supplementary Information Appendix D for
a formal definition).

We now use FunSearch to directly search for symmetric admissible
sets. Note that this is a more restricted and also much smaller search
space, which allows for significantly higher dimensions and weights
than were previously possible. This led us to discovering a full-size

Fig. 3 | Diagram of a cap set of size four in 3
2Z . The circles are the elements of 3

2Z
with the ones belonging to the cap set shown in blue. The possible lines in Z3

2 are
also shown (with colours indicating lines that wrap around in arithmetic
modulo 3). No three elements of the cap set are in a line.

472 | Nature | Vol 625 | 18 January 2024

Article

I(15, 10) admissible set (indicating C ≥ 2.219486) and a partial admis-
sible set in A(24, 17) of size 237,984, which implies a new lower bound
on the cap set capacity of 2.2202 (Fig. 5a). Although this is a great
improvement to the lower bound compared to research in the last
20 years, we note it is still far from the upper bound and we hope our
results inspire future work on this problem.

Not only does FunSearch scale to much larger instances than tradi-
tional combinatorial solvers (Supplementary Information Appendix
A.4), but it is also a unique feature of searching in function space that we
were able to inspect the code discovered by FunSearch and infer a new
insight into the problem, in the form of a new symmetry. The procedure
we followed in this section is a concrete example of how LLM-based
approaches can be used in mathematical sciences: FunSearch suggests
a solution, which is examined by researchers, who may note features of
interest. These features are used to refine the search, leading to better
solutions. This process can be iterated, with both human and search
consistently in the loop.

Bin packing
Combinatorial optimization is a subfield of mathematics that plays an
important role across a wide range of areas, from theoretical computer
science to practical problems in logistics and scheduling. Whereas
many combinatorial optimization problems are provably hard to solve
for large instances, it is typically possible to achieve strong performance
using heuristics to guide the search algorithm. The choice of a heuristic

is crucial for obtaining strong performance, but designing a good heu-
ristic is difficult in practice. In this section, we show that FunSearch can
be used to discover effective heuristics for one of the central problems
in combinatorial optimization: bin packing39.

The goal of bin packing is to pack a set of items of various sizes into
the smallest number of fixed-sized bins. Bin packing finds applications
in many areas, from cutting materials to scheduling jobs on compute
clusters. We focus on the online setting in which we pack an item as
soon as it is received (as opposed to the offline setting in which we have
access to all items in advance). Solving online bin packing problems
then requires designing a heuristic for deciding which bin to assign
an incoming item to.

Heuristics for online bin packing are well studied and several variants
exist with strong worst case performance40–45. However, they often
show poor performance in practice39. Instead, the most commonly
used heuristics for bin packing are first fit and best fit. First fit places
the incoming item in the first bin with enough available space, whereas
best fit places the item in the bin with least available space where the
item still fits. Here, we show that FunSearch discovers better heuristics
than first fit and best fit on simulated data.

To achieve this, we define a heuristic as a program that takes as
input an item and an array of bins (containing the remaining capacity
of each bin) and returns a priority score for each bin. The ‘solve’ func-
tion picks the bin with the highest score according to the heuristic
(Fig. 2b). FunSearch is then used to evolve this heuristic, starting from
best fit.

n 3 4 5 6 7 8

Best known 9 20 45 112 236 496

FunSearch 9 20 45 112 236 512

a

def priority(el: tuple[int,...],
n: int) -> float:

score = n
in_el = 0
el_count = el.count(0)

if el_count == 0:
score += n**2
if el[1] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

if el[3] == el[-3]:
score *= 1.5

else:
if el[1] == el[-1]:
score *= 0.5

if el[2] == el[-2]:
score *= 0.5

for e in el:
if e == 0:
if in_el == 0:
score *= n * 0.5

elif in_el == el_count - 1:
score *= 0.5

else:
score *= n * 0.5 ** in_el

in_el += 1
else:
score += 1

if el[1] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score

b

def build_512_cap() -> list[tuple[int,...]]:

n = 8
V = np.array(list(itertools.product(range(3), repeat=n)), dtype=np.int32)
support = lambda v: tuple(i for i in range(n) if v[i] !=0)
reflections = lambda v:sum (1 for i in range(1, n// 2) if v[i] == v[-i])

weight8_vectors = [v for v in V
if np.count_nonzero(v) == 8
and reflections(v) >= 2]

supports_16 = [(0, 1, 2, 3), (0, 1, 2, 5), (0, 3, 6, 7), (0, 5, 6, 7),
(1, 3, 4, 6), (1, 4, 5, 6), (2, 3, 4, 7), (2, 4, 5, 7)]

weight4_vectors = [v for v in V
if support(v) in supports_16]

supports_8 = [(0, 1, 2, 7), (0, 1, 2, 6), (0, 1, 3, 7), (0, 1, 6, 7),
(0, 1, 5, 7), (0, 2, 3, 6), (0, 2, 6, 7), (0, 2, 5, 6),
(1, 2, 4, 7), (1, 2, 4, 6), (1, 3, 4, 7), (1, 4, 6, 7),
(1, 4, 5, 7), (2, 3, 4, 6), (2, 4, 6, 7), (2, 4, 5, 6)]

weight4_vectors_2 = [v for v in V
if support(v) in supports_8
and reflections(v) == 1]

allowed_zeros = [(0, 4, 7), (0, 2, 4), (0, 1, 4), (0, 4, 6),
(1, 2, 6), (2, 6, 7), (1, 2, 7), (1, 6, 7)]

weight5_vectors = [
v for v in V
if tuple(i for i in range(n) if v[i] == 0) in allowed_zeros
and reflections(v) <= 1
and (v[1] * v[7]) % 3 != 1 and (v[2] * v[6]) % 3 != 1]

return weight8_vectors + weight4_vectors + weight4_vectors_2 +
weight5_vectors

c

→

→

Fig. 4 | Result of applying FunSearch to the cap set problem. a, Size of the
largest cap set in n

3Z for different dimensions n. b, The function ‘priority’ : Z R→n
3

discovered by FunSearch that results in a cap set of size 512 in n = 8 dimensions.
One feature to note is that the priority is affected by whether the same entry
appears in positions i and −i (−i denotes the ith position counting from the end).

This motivates the notion of reflections, used in c. c, An explicit construction
of this new 512-cap, which we were able to manually construct thanks to having
discovered the cap set by searching in function space. See Supplementary
Information Appendix E.2 for more details and for relation to Hill cap.

Nature | Vol 625 | 18 January 2024 | 473

We first evaluate FunSearch on the well-known OR-Library bin packing
benchmarks23, consisting of four datasets, OR1 to OR4, containing bin
packing instances with an increasing number of items (see Supplemen-
tary Information Appendix E.4 for details). We evolve our heuristic
on a training set of generated bin packing instances with the same
number of items as those in OR1 and, after the evolutionary process
is concluded, test it on the OR1 to OR4 datasets. We measure perfor-
mance as the fraction of excess bins used over the L2 lower bound46 of
the optimal offline packing solution (which is generally not achievable
in the online setting).

As can be seen in Table 1, FunSearch outperforms both first fit and
best fit across all datasets. Further, the learned heuristic generalizes:
even though it has only seen instances of the same size as OR1 during
training, it generalizes across problem sizes, performing even better on
large instances and widening the gap to best fit. In addition to the OR
benchmarks, we also use FunSearch to evolve heuristics on bin packing
instances sampled from a Weibull distribution, as these closely follow
many real-world scheduling problems24,47 (see Supplementary Informa-
tion Appendix E.4 for details). As shown in Table 1, the performance of
FunSearch is very strong on this dataset, significantly outperforming
first fit and best fit across instances, as well as scaling gracefully to
large instances (being only 0.03% off the lower bound on the optimum

for 100,000 items). In addition, FunSearch is robust and consistently
outperforms these baselines as shown in the statistical analysis in the
Supplementary Information Appendix A.3.

We observed that several heuristics discovered by FunSearch use
the same general strategy for bin packing (see Fig. 6 for an example).
Instead of packing items into bins with the least capacity (such as best
fit), the FunSearch heuristics assign items to least capacity bins only if
the fit is very tight after placing the item. Otherwise, the item is typi-
cally placed in another bin, which would leave more space after the
item is placed. This strategy avoids leaving small gaps in bins that are
unlikely to ever be filled (see Supplementary Information Appendix E.5
for example visualizations of such packings).

As this example demonstrates, the benefits of FunSearch extend
beyond theoretical and mathematical results to practical problems
such as bin packing. Indeed, bin packing, and related combinatorial
optimization problems, are ubiquitous and find applications across a
range of industries. We are optimistic that FunSearch could be applied
to several such use cases with potential for real-world impact.

Discussion
The effectiveness of FunSearch in discovering new knowledge for hard
problems might seem intriguing. We believe that the LLM used within
FunSearch does not use much context about the problem; the LLM
should instead be seen as a source of diverse (syntactically correct)
programs with occasionally interesting ideas. When further con-
strained to operate on the crucial part of the algorithm with a program
skeleton, the LLM provides suggestions that marginally improve over
existing ones in the population, which ultimately results in discover-
ing new knowledge on open problems when combined with the evo-
lutionary algorithm. Another crucial component of the effectiveness
of FunSearch is that it operates in the space of programs: rather than
directly searching for constructions (which is typically an enormous
list of numbers), FunSearch searches for programs generating those
constructions. Because most problems we care about are structured
(highly non-random), we believe that solutions are described more
concisely with a computer program, compared to other representa-
tions. For example, the trivial representation of the admissible set
A(24, 17) consists of more than 200,000 vectors, but the program
generating this set consists of only a few lines of code. Because Fun-
Search implicitly encourages concise programs, it scales to much
larger instances compared to traditional search approaches in struc-
tured problems. In a loose sense, FunSearch attempts to find solutions
that have low Kolmogorov complexity48–50 (which is the length of the
shortest computer program that produces a given object as output),
whereas traditional search procedures have a very different inductive
bias. We believe that such Kolmogorov-compressed inductive bias is
key to FunSearch scaling up to the large instances in our use cases.
In addition to scale, we have empirically observed that FunSearch
outputs programs that tend to be interpretable: that is, they are clearly
easier to read and understand compared to a list of numbers. For
example, by scrutinizing FunSearch’s output for the admissible set
problem, we found a new symmetry, which was then subsequently
used to improve the results even further. Despite the rarity of

Bound
on

Admissible set
ingredient Source

a

b

2.2101 (90, 89) Ref. 37

2.2173 (10, 5) Ref. 34

2.2180 (11, 7) Ref. 38

2.2184 (12, 7) FunSearch

2.2194 (15, 10) FunSearch

2.2202 (24, 17) FunSearch

def priority (el: tuple[int, ...], n: int, w: int) -> float:
score = 0.0
for i in range(n):

if el[i] == 1:

score -= 0.9 ** (i % 4)

if el[i] == 2:

score -= 0.98 ** (30 - (i % 4))

)

if el[i] == 1 and el[i - 4] == 1:

score -= 0.98 ** (30 - (i % 4))

if el[i] == 2 and el[i - 4] != 0:

score -= 0.98 ** (30 - (i % 4))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 2:

score -= 0.98 ** (30 - (i % 4))

score -= 6.3

if el[i] == 2 and el[i - 4] == 2 and el[i - 8] == 1:

score -= 0.98 ** (30 - (i % 4))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 1:

score -= 6.3

if el[i] == 2 and el[i - 4] == 0 and el[i - 8] == 2:

score -= 6.3

if el[i] == 1 and el[i - 4] == 1 and el[i - 8] == 0:

score -= 2.2
return score

Fig. 5 | Results on the cap set problem through admissible sets. a, Summary
of lower bounds on the cap set capacity C. b, The ‘priority’ function R{0, 1, 2} →n
discovered by FunSearch that results in an (12, 7)I admissible set. The source
code shows that when n = 12, the function treats the four triples of coordinates
{0, 4, 8}, {1, 5, 9}, {2, 6, 10} and {3, 7, 11} together. We then checked that the
admissible set is in fact symmetric under independent cyclic permutations of
coordinates within each of these four triples. See Supplementary Information
Appendices D and E.3 for more details.

Table 1 | Online bin packing results

OR1 OR2 OR3 OR4 Weibull
5k

Weibull
10k

Weibull
100k

First fit 6.42% 6.45% 5.74% 5.23% 4.23% 4.20% 4.00%

Best fit 5.81% 6.06% 5.37% 4.94% 3.98% 3.90% 3.79%

FunSearch 5.30% 4.19% 3.11% 2.47% 0.68% 0.32% 0.03%

Fraction of excess bins (lower is better) for various bin packing heuristics on the OR and Weibull
datasets. FunSearch outperforms first fit and best fit across problems and instance sizes.

474 | Nature | Vol 625 | 18 January 2024

Article

symmetric solutions, we observe that FunSearch preferred symmet-
ric ones, as these are more parsimonious (that is, they require less
information to specify), in addition to the natural bias of LLMs (trained
on human-produced code) in outputting code with similar traits to
human code. This is in contrast to traditional genetic programming
that does not have this bias (and in addition requires hand-tuning the
mutation operators51).

We note that FunSearch, at present, works best for problems having
the following characteristics: (1) availability of an efficient evaluator;
(2) a ‘rich’ scoring feedback quantifying the improvements (as opposed
to a binary signal) and (3) ability to provide a skeleton with an isolated
part to be evolved. For example, the problem of generating proofs
for theorems52–54 falls outside this scope, because it is unclear how
to provide a rich enough scoring signal. By contrast, for MAX-SAT,
the number of satisfied clauses can be used as a scoring signal. In this
paper, we have explicitly striven for simplicity and we are confident
that FunSearch can be further extended to improve its performance
and be applicable to more classes of problems. In addition, the rapid
development of LLMs is likely to result in samples of far superior quality
at a fraction of the cost, making FunSearch more effective at tackling
a broad range of problems. As a result, we foresee that automatically
tailored algorithms will soon become common practice and deployed
in real-world applications.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06924-6.

1. Bang, Y. et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning,
hallucination, and interactivity. Preprint at https://arxiv.org/abs/2302.04023 (2023).

2. Borji, A. A. categorical archive of ChatGPT failures. Preprint at https://arxiv.org/
abs/2302.03494 (2023).

3. Lehman, J. et al. in Handbook of Evolutionary Machine Learning (eds Banzhaf, W. et al.)
331–366 (Springer, 2023).

4. Chen, M. et al. Evaluating large language models trained on code. Preprint at https://
arxiv.org/abs/2107.03374 (2021).

5. Austin, J. et al. Program synthesis with large language models. Preprint at https://arxiv.
org/abs/2108.07732 (2021).

6. Li, R. et al. StarCoder: may the source be with you! Preprint at https://arxiv.org/
abs/2305.06161 (2023).

7. Fried, D. et al. Incoder: a generative model for code infilling and synthesis. In Proc.
International Conference on Learning Representations (2022).

8. Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn
program synthesis. In Proc. International Conference on Learning Representations
(2022).

9. Chen, X., Lin, M., Schärli, N. & Zhou, D. Teaching large language models to self-debug.
Preprint at https://arxiv.org/abs/2304.05128 (2023).

10. Liventsev, V., Grishina, A., Härmä, A. & Moonen, L. Fully autonomous programming with
large language models. Preprint at https://arxiv.org/abs/2304.10423 (2023).

11. Li, Y. et al. Competition-level code generation with alphacode. Science 378, 1092–1097
(2022).

12. Zelikman, E., Huang, Q., Poesia, G., Goodman, N. D. & Haber, N. Parsel: a (de-)
compositional framework for algorithmic reasoning with language models. Preprint at
https://arxiv.org/abs/2212.10561 (2023).

13. Madaan, A. et al. Learning performance-improving code edits. Preprint at https://arxiv.
org/abs/2302.07867 (2023).

14. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning
(Addison-Wesley, 1989).

15. Koza, J. R. Genetic programming as a means for programming computers by natural
selection. Stat. Comput. 4, 87–112 (1994).

16. Meyerson, E. et al. Language model crossover: variation through few-shot prompting.
Preprint at https://arxiv.org/abs/2302.12170 (2023).

17. Chen, A., Dohan, D. M. & So, D. R. EvoPrompting: language models for code-level neural
architecture search. Preprint at https://arxiv.org/abs/2302.14838 (2023).

18. Zheng, M. et al. Can GPT-4 perform neural architecture search? Preprint at https://arxiv.
org/abs/2304.10970 (2023).

19. Nasir, M. U., Earle, S., Togelius, J., James, S. & Cleghorn, C. LLMatic: neural architecture
search via large language models and quality-diversity optimization. Preprint at https://
arxiv.org/abs/2306.01102 (2023).

20. Haluptzok, P., Bowers, M. & Kalai, A. T. Language models can teach themselves to
program better. In International Conference on Learning Representations (2023).

21. Grochow, J. New applications of the polynomial method: the cap set conjecture and
beyond. Bull. Am. Math. Soc. 56, 29–64 (2019).

22. Tao, T. & Vu, V. H. Additive Combinatorics Vol. 105 (Cambridge Univ. Press, 2006).
23. Beasley, J. E. OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc.

41, 1069–1072 (1990).
24. Castiñeiras, I., De Cauwer, M. & O’Sullivan, B. Weibull-based benchmarks for bin packing.

In Proc. International Conference on Principles and Practice of Constraint Programming
207–222 (Springer, 2012).

25. Anil, R. et al. Palm 2 technical report. Preprint at https://arxiv.org/abs/2305.10403 (2023).
26. Code models overview. Vertex AI, Google Cloud https://cloud.google.com/vertex-ai/

docs/generative-ai/code/code-models-overview (2023).
27. Tanese, R. Distributed Genetic Algorithms for Function Optimization. PhD thesis, Univ.

Michigan (1989).
28. Cantú-Paz, E. A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et

Systemes Repartis 10, 141–171 (1998).
29. Tao, T. Open question: best bounds for cap sets. WordPress Blog https://terrytao.

wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/ (2009).
30. Croot, E., Lev, V. F. & Pach, P. P. Progression-free sets in are exponentially small. Ann. Math.

185, 331–337 (2017).
31. Ellenberg, J. S., Gijswijt, D. On large subsets of Fq

n with no three-term arithmetic
progression. Ann. Math. 185, 339–343 (2017).

32. Naslund, E. & Sawin, W. Upper bounds for sunflower-free sets. Forum Math. Sigma 5, e15
(2017).

33. Edel, Y. & Bierbrauer, J. Large caps in small spaces. Des. Codes Cryptogr. 23, 197–212
(2001).

34. Edel, Y. Extensions of generalized product caps. Des. Codes Cryptogr. 31, 5–14 (2004).
35. Hill, R. On the largest size of cap in S5,3. Rend Lincei. Sci. Fis. Mat. Nat. 54, 378–384

(1973).
36. Cameron, P. J. & Van Lint, J. H. Designs, Graphs, Codes and Their Links Vol. 3 (Cambridge

Univ. Press, 1991).
37. Calderbank, A. R. & Fishburn, P. C. Maximal three-independent subsets of {0, 1, 2} n. Des.

Codes Cryptogr. 4, 203–211 (1994).
38. Tyrrell, F. New lower bounds for cap sets. Discrete Analysis https://doi.org/10.19086/

da.91076 (2023).
39. Coffman, E. G., Garey, M. R. & Johnson, D. S. in Algorithm Design for Computer System

Design (eds Ausiello, G. et al.) 49–106 (Springer, 1984).
40. Lee, C. C. & Lee, D. T. A simple on-line bin-packing algorithm. J. ACM 32, 562–572

(1985).
41. Ramanan, P., Brown, D. J., Lee, C.-C. & Lee, D.-T. On-line bin packing in linear time. J.

Algorithm. 10, 305–326 (1989).
42. Seiden, S. S. On the online bin packing problem. J. ACM 49, 640–671 (2002).
43. Balogh, J., Békési, J., Dósa, G., Sgall, J. & Stee, R. V. The optimal absolute ratio for online

bin packing. In Proc. Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM (ed. Chekuri, C.) 1425–1438 (SIAM, 2014).

44. Balogh, J., Békési, J., Dósa, G., Epstein, L. & Levin, A. A new and improved algorithm for
online bin packing. In Proc. 26th Annual European Symposium on Algorithms (ESA 2018)
5:1–5:14 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018).

def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
"""Online bin packing heuristic discovered with FunSearch."""
score = 1000 * np.ones(bins.shape)
Penalize bins with large capacities.
score -= bins * (bins-item)
Extract index of bin with best fit.
index = np.argmin(bins)
Scale score of best fit bin by item size.
score[index] *= item
Penalize best fit bin if fit is not tight.
score[index] -= (bins[index] - item)**4
return score

Fig. 6 | Example of a short online bin packing heuristic discovered by
FunSearch for the OR dataset. This example illustrates frequently observed
behaviour: instead of always packing items into the best fit bin, the heuristic

encourages packing the item only if the fit is tight. Comments in the code were
manually added. See Supplementary Information Appendix C for more
discovered heuristics.

https://doi.org/10.1038/s41586-023-06924-6
https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2302.03494
https://arxiv.org/abs/2302.03494
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.10423
https://arxiv.org/abs/2212.10561
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2302.12170
https://arxiv.org/abs/2302.14838
https://arxiv.org/abs/2304.10970
https://arxiv.org/abs/2304.10970
https://arxiv.org/abs/2306.01102
https://arxiv.org/abs/2306.01102
https://arxiv.org/abs/2305.10403
https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
https://doi.org/10.19086/da.91076
https://doi.org/10.19086/da.91076

Nature | Vol 625 | 18 January 2024 | 475

45. Coffman, E. G., Csirik, J., Galambos, G., Martello, S. & Vigo, D. in Handbook of
Combinatorial Optimization (eds Pardalos, P. M. et al.) 455–531 (Springer, 2013).

46. Martello, S. & Toth, P. Lower bounds and reduction procedures for the bin packing
problem. Discrete Appl. Math. 28, 59–70 (1990).

47. Angelopoulos, S., Kamali, S. & Shadkami, K. Online bin packing with predictions. J. Artif.
Intell. Res. 36, 4574–4580 (2022).

48. Chaitin, G. J. On the length of programs for computing finite binary sequences. J. ACM 13,
547–569 (1966).

49. Li, M. et al. An Introduction to Kolmogorov Complexity and its Applications Vol. 3 (Springer,
2008).

50. Solomonoff, R. J. A formal theory of inductive inference. Part I. Inf. Control 7, 1–22
(1964).

51. O’Neill, M., Vanneschi, L., Gustafson, S. & Banzhaf, W. Open issues in genetic
programming. Genet. Program. Evolvable Mach. 11, 339–363 (2010).

52. Polu, S. & Sutskever, I. Generative language modeling for automated theorem proving.
Preprint at https://arxiv.org/abs/2009.03393 (2020).

53. Polu, S. et al. Formal mathematics statement curriculum learning. In International
Conference on Learning Representations (2023).

54. Jiang, A. Q. et al. THOR: wielding hammers to integrate language models and automated
theorem provers. Adv. Neural Info. Process. Syst. 35, 8360–8373 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://arxiv.org/abs/2009.03393
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Implementation details of FunSearch
Distributed system. We implement FunSearch as a distributed system
that has three types of workers: a programs database, samplers and
evaluators. The programs database stores the initial user-provided
program, as well as all programs received from the evaluators. The sam-
plers are in charge of performing the LLM inference step; to do so they
repeatedly query the programs database for prompts. To achieve higher
sampling throughput, samplers generate several samples from each
prompt. The samples from the LLM (that is, the generated programs)
are sent to the evaluators, which score programs by executing them on
inputs of interest and assessing the outputs using ‘evaluate’. Programs
that are correct are sent to the programs database to be stored. Each of
the three FunSearch components is provided as both Python code and
pseudocode (Supplementary Information Appendix F).

Prompt building. When queried for a prompt, the programs data-
base samples k programs to encourage the LLM to merge ideas from
them (we typically set k = 2; Supplementary Information Appendix E.1).
Programs are sorted according to their score in increasing order, start-
ing from version 0 (‘v0’). Using these k programs, the prompt is built
as explained next.

For the sake of clarity, we use here the problem specification from
Fig. 2a to precisely describe the prompting mechanism. The overall
structure of the prompt mimics the structure of the program skeleton,
with the following differences: (1) the ‘priority’ function is stripped out
and replaced with the k = 2 programs sampled, first ‘priority_v0’ and
then ‘priority_v1’. (2) After that, a ‘priority_v2’ function with no body
is appended: the LLM will be in charge of completing the body of that
function. (3) All other functions that appear before ‘priority_v0’ are
removed. See Extended Data Fig. 1 for an example of the structure of
a prompt.

Evolutionary method and program selection. Another key feature
of FunSearch is the method used for evolution of the population of
programs from the programs database, as well as for program selection:
that is, how the programs database samples programs when queried
for a prompt. For this, we use the islands model, a parallel genetic algo-
rithm27,28. Specifically, we split the population into m separate groups
or islands. Each island is initialized with a copy of the user-provided
initial program and is evolved separately. That is, whenever a prompt
is required, we first uniformly sample an island and then sample k = 2
programs from that island to build the prompt. The programs gener-
ated from the LLM on the basis of that prompt will later be stored in the
same island. Every 4 h, we discard all the programs from the m/2 islands
whose best instances have the lowest score. Each of these islands is
then seeded with a single program, obtained by first choosing one of
the surviving m/2 islands uniformly at random and then retrieving the
highest-scoring program from that island (breaking ties in favour of
older programs). The evolutionary process is then restarted from this
state, in which the reset islands contain one high-performing program
each (Extended Data Fig. 2).

This method has several advantages. First, drawing the analogy in
which an island corresponds to an experiment, this approach effectively
allows us to run several smaller experiments in parallel instead of a
single large experiment. This is beneficial because single experiments
can get stuck in local minima, in which most programs in the popula-
tion are not easily mutated and combined into stronger programs.
The multiple island approach allows us to bypass this and effectively
kill off such experiments to make space for new ones starting from
more promising programs. Second, promising experiments are run for
longer, as the islands that survive a reset are the ones with higher scores.

Within each island, we further cluster programs according to their
signature. We define the signature of a program as the tuple containing

the program’s scores on each of the inputs (for example, the cap set
size for each input n). Programs with the same signature are clustered
together. When sampling a program within an island, we first sample an
island’s cluster and then a program within that cluster (Extended Data
Fig. 3). This approach, which aims to preserve diversity55,56, is related
to Lexicase57 in that both approaches consider a set of test cases for
scoring an individual, and it is related to fitness uniform optimiza-
tion58, which also clusters individuals on the basis of their fitness value;
however, we sample the clusters on the basis of their score instead of
uniformly, as detailed next.

When sampling a cluster, we favour those with larger score values.
Specifically, let si denote the score of the ith cluster, defined as an
aggregation (for example, mean) of all the scores in the signature that
characterizes that cluster. The probability Pi of choosing cluster i is

P

s T
s T

T T
n N

N
=

exp(/)
∑ exp(/)

, = 1 −
mod

, (1)i
i

i i

cluster

′ ′ cluster
cluster 0

where Tcluster is the temperature parameter, n is the current number of
programs in the island, and T0 and N are hyperparameters (given in
Supplementary Information Appendix E.1). This approach is sometimes
referred to as the Boltzmann selection procedure59.

When sampling a program within a cluster, we favour shorter pro-
grams. In particular, let ℓi denote the negative length of the ith program
within the chosen cluster (measured as the number of characters), and

let ℓ∼
ℓ ℓ

ℓ
=i

− min

max + 10

i
i

i

i
i

′
′

′
′

−6
. We set the probability of each program proportional

to ℓ∼ Texp(/)i program , where Tprogram is a temperature hyperparameter.

Robustness. Owing to randomness in LLM sampling and in the evolu-
tionary procedure, repeating an experiment can lead to different
results. For some problems (for example, cap set through the admis-
sible set problem and online bin packing) every single run of FunSearch
surpasses the baseline, with only some variation in the magnitude of
the difference. For example, all experiments on admissible sets improve
on the previous best capacity lower bound, with 60% of experiments
on (12, 7)I finding a full-size admissible set. For other problems, many
independent repetitions of an experiment may be necessary to improve
on previous best results. In particular, the case of cap set by direct
construction in n = 8 dimensions is particularly challenging, with only
four out of 140 experiments discovering a cap set of size 512. See Sup-
plementary Information Appendix A.3 for more details.

Related work
LLMs. The rise of powerful LLMs such as that in ref. 60 has been followed
by systems in which an LLM core has been enveloped by a ‘program-
matic scaffold’61, and several LLM calls were connected in some way to
accomplish larger and more intricate tasks beyond what would be pos-
sible using a single prompt and the raw LLM, possibly by using external
tools or external memory streams62–66. LLMs have also been paired with
evaluators; for example, refs. 20,67 fine-tuned an LLM on data that had
been previously generated by the LLM itself (respectively on puzzle
problems and solutions, and on justifications and/or explanations for
answers to questions), and they used an evaluator to assess the correct-
ness of this data, ensuring that the fine-tuning dataset contained only
correct solutions and/or explanations. More related to our approach
is the use of LLMs as mutation operators on code, and ref. 3 was the
first study to show that coupling an LLM with a programmatic way of
scoring a solution can lead to a self-improvement loop. In refs. 16–19,
the LLM was used as a crossover operator rather than a mutation one,
that is, the LLM prompts are composed of several functions, similarly
to FunSearch. In refs. 3,16, the task was to improve code that generated
bidimensional virtual robots that could move as far as possible in a given
simulated terrain (ref. 16 also considered the tasks of symbolic regres-
sion, natural language sentences and image generation). In refs. 17–19

the task was to find neural network architectures (described with Py-
thon code), and in ref. 68 the task was continuous exploration in the
game of Minecraft. By contrast, in this paper, we tackle open problems
in mathematics and algorithm design, and we surpass human-designed
constructions. We achieve that by combining several ingredients: a
distributed system with many samplers and evaluators that commu-
nicate asynchronously, a user-provided program specification and
skeleton, as well as an evolutionary mechanism based on islands that
preserves the diversity of programs. FunSearch achieves that using an
off-the-shelf LLM without fine-tuning.

More broadly, LLMs have been used for program synthesis as one of
its main applications4–8. There are many use cases being explored, such
as automatically editing code to improve performance13, automatically
debugging code9,10, generating code from natural language descrip-
tions69–71 and doing so to solve problems in code competitions11,12. Unlike
the above approaches that provide tools to increase the productivity
of software engineers, we combine in this paper the creativity of LLMs
with the power of evolutionary procedures to push the boundaries of
human knowledge through solving open hard problems. Another line
of research uses LLMs to guide the search for formal proofs for auto-
matic theorem proving52–54. Although this approach has the potential
to eventually find new knowledge, the achievements of these methods
still lag behind the frontier of human knowledge.

Genetic programming. Genetic programming is a subfield of com-
puter science concerned with automatically generating or discover-
ing computer programs using evolutionary methods15,72,73 and is used
for symbolic regression applications74,75 and discovery of optimiza-
tion algorithms76 among others. In this broad sense, combining LLMs
with evolution can be seen as an instance of genetic programming
with the LLM acting as a mutation and crossover operator. However,
using an LLM mitigates several issues in traditional genetic program-
ming51, as shown in Supplementary Information Appendix A and
discussed in ref. 3. Indeed, genetic programming methods require
defining several parameters, chief among them the set of allowed
mutation operations (or primitives)15. Designing such a set of opera-
tions is non-trivial and problem specific, requiring domain knowl-
edge about the problem at hand or its plausible solution51. Although
research has been done to mitigate this limitation, through, for ex-
ample, the reuse of subprograms77 or modelling the distribution of
high-performing programs78, designing effective and general code
mutation operators remains difficult. By contrast, LLMs have been
trained on vast amounts of code and as such have learned about com-
mon patterns and routines from human-designed code. The LLM can
leverage this, as well as the context given in the prompt, to generate
more effective suggestions than the random ones typically used in
genetic programming.

Related to genetic programming, the field of hyper-heuristics79,80
seeks to design learning methods for generating heuristics applied to
combinatorial optimization problems. In practice, these heuristics are
often programs discovered through genetic programming, typically
by evolving a heuristic on a set of instances of a given combinatorial
optimization problem, such as bin packing81. Indeed, like FunSearch,
hyper-heuristics have also been applied to online bin packing, with
the learned heuristics able to match the performance of first fit82 and
best fit83 on a set of generated bin packing instances. Augmenting the
heuristics with memory of previously seen items can even lead to heu-
ristics outperforming best fit84. In addition, these evolved heuristics
can sometimes generalize to larger instances than the ones they were
trained on85, similar to the learned FunSearch heuristics. However, as is
the case with genetic programming, one of the fundamental limitations
of hyper-heuristics is that the components of the evolved heuristic
must be manually defined by the user and often need to be tailored
to a specific problem to be effective. The LLM in FunSearch allows us
to bypass this limitation and learn heuristics for bin packing and job

scheduling as well as discovering new mathematical constructions, all
within a single pipeline without problem-specific tuning.

Program superoptimization and software engineering. Searching
for the best way of modifying source code is a task that appears in sev-
eral branches of computer science and software development. These
occurrences can be broadly classified into two groups: first, in which the
goal is to find semantic-preserving modifications (this arises in program
optimization and superoptimization, in which the aim is to modify the
program so that it executes faster while maintaining its input–output
behaviour), and second, in which the goal is to find programs with dif-
ferent semantics (this arises, for example, in automatic program repair
and mutation testing). With some exceptions discussed below, most of
these areas use relatively simple and hard-coded mutation operators
on either the source code directly (such as deleting or swapping lines)
or on the abstract syntax tree.

Machine learning approaches have been used for program superopti-
mization. For example, ref. 86 used reinforcement learning to learn the
sampling probabilities used within a hierarchical probabilistic model
of simple program edits introduced by STOKE87. Neural networks have
also been proposed as a mutation operator for program optimization
in ref. 88. These studies operated on code written in Assembly (perhaps
because designing meaningful and rich edit distributions on programs
in higher-level languages is challenging). More recently, ref. 13 used
LLMs to find performance-improving edits to code written in C++ or
Python. We also note that reinforcement learning has recently been
applied to discover new faster algorithms for fundamental operations
such as matrix multiplication89 and sorting90.

In this paper, we have not explicitly explored semantic-preserving
applications such as discovering performance-improving code edits,
but we believe that FunSearch could be an effective method for that
setting too. In both use cases presented in the main text, the goal is to
evolve programs with new semantics, but the application is different
from program repair or mutation testing: in the ‘Extremal combinato-
rics’ section, we used FunSearch to discover a program that constructs
a previously unknown mathematical object, and in the ‘Bin packing’
section, we used FunSearch to discover a program that corresponds
to a more efficient heuristic for online bin packing.

Data availability
The experiments carried out in this paper do not require any data cor-
pus other than the publicly available OR-Library bin packing bench-
marks23. The output functions of interest produced by FunSearch are
shown across the main paper and in text files in the Supplementary
Information.

Code availability
The discovered functions as well as the evolutionary algorithm, code
manipulation routines and a single-threaded implementation of the
FunSearch pipeline are available as Python code in the Supplementary
Information and at https://github.com/google-deepmind/funsearch.
Furthermore, the software library launchpad91 and a sandbox for safely
executing generated code on our internal distributed system were used.
No training or fine-tuning of a LLM is required; API access for inference
is sufficient. We used Codey26, which is available through its API, and
StarCoder6, which is open source.

55. Mouret, J.-B. & Doncieux, S. Overcoming the bootstrap problem in evolutionary robotics
using behavioral diversity. In Proc. 2009 IEEE Congress on Evolutionary Computation
1161–1168 (IEEE, 2009).

56. Pugh, J. K., Soros, L. B. & Stanley, K. O. Quality diversity: a new frontier for evolutionary
computation. Front. Robotics AI 3, 40 (2016).

57. Helmuth, T., Spector, L. & Matheson, J. Solving uncompromising problems with lexicase
selection. IEEE Trans. Evol. Comput. 19, 630–643 (2015).

https://github.com/google-deepmind/funsearch

Article
58. Hutter, M. & Legg, S. Fitness uniform optimization. IEEE Trans. Evol. Comput. 10, 568–589

(2006).
59. de la Maza, M. An analysis of selection procedures with particular attention paid to

proportional and Boltzmann selection. In Proc. Fifth International Conference on Genetic
Algorithms (Morgan Kaufmann, 1993).

60. OpenAI, GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
61. Millidge, B. Scaffolded LLMs as natural language computers. Beren’s Blog https://www.

beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers (2023).
62. Schick, T. et al. Toolformer: language models can teach themselves to use tools. Preprint

at https://arxiv.org/abs/2302.04761 (2023).
63. Park, J. S. et al. Generative agents: interactive simulacra of human behavior. In Proc. 36th

Annual ACM Symposium on User Interface Software and Technology1–22 (ACM, 2023).
64. Wu, J. et al. Recursively summarizing books with human feedback. Preprint at https://

arxiv.org/abs/2109.10862 (2021).
65. Nye, M. et al. Show your work: scratchpads for intermediate computation with language

models. In Deep Learning for Code Workshop, International Conference on Learning
Representations (2022).

66. Yao, S. et al. ReAct: dynergizing reasoning and acting in language models. In Proc.
International Conference on Learning Representations (2023).

67. Zelikman, E., Wu, Y., Mu, J. & Goodman, N. Star: bootstrapping reasoning with reasoning.
Adv. Neural Info. Process. Syst. 35, 15476–15488 (2022).

68. Wang, G. et al. Voyager: an open-ended embodied agent with large language models.
Preprint at https://arxiv.org/abs/2305.16291 (2023).

69. Yin, P. et al. Natural language to code generation in interactive data science notebooks.
Preprint at https://arxiv.org/abs/2212.09248 (2022).

70. Ni, A. et al. Lever: learning to verify language-to-code generation with execution. In Proc.
International Conference on Machine Learning 26106–26128 (PMLR, 2023).

71. Zhou, S., Alon, U., Xu, F. F., Jiang, Z. & Neubig, G. Docprompting: generating code by
retrieving the docs. In Proc. International Conference on Learning Representations
(2022).

72. Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: An
Introduction: On The Automatic Evolution of Computer Programs and its Applications
(Morgan Kaufmann, 1998).

73. Langdon, W. B. & Poli, R. Foundations of Genetic Programming (Springer Science &
Business Media, 2013).

74. Ma, H., Narayanaswamy, A., Riley, P. & Li, L. Evolving symbolic density functionals. Sci.
Adv. 8, eabq0279 (2022).

75. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science
324, 81–85 (2009).

76. Chen, X. et al. Symbolic discovery of optimization algorithms. Preprint at https://arxiv.
org/abs/2302.06675 (2023).

77. Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs (MIT, 1994).
78. Salustowicz, R. & Schmidhuber, J. Probabilistic incremental program evolution. Evol.

Comput. 5, 123–141 (1997).
79. Burke, E. et al. in Handbook of Metaheuristics (eds Glover, F. & Kochenberger, G. A.)

457–474 (Springer, 2003).
80. Ross, P. in Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques (eds Burke, E. K. & Kendall, G.) 529–556 (Springer, 2005).
81. Burke, E. K. et al. Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64,

1695–1724 (2013).
82. Burke, E. K., Hyde, M. R. & Kendall, G. Evolving bin packing heuristics with genetic

programming. In Proc. International Conference on Parallel Problem Solving from Nature
860–869 (Springer, 2006).

83. Burke, E. K., Hyde, M. R., Kendall, G. & Woodward, J. Automatic heuristic generation with
genetic programming: evolving a jack-of-all-trades or a master of one. In Proc. 9th Annual
Conference on Genetic and Evolutionary Computation 1559–1565 (ACM, 2007).

84. Burke, E. K., Hyde, M. R. & Kendall, G. Providing a memory mechanism to enhance the
evolutionary design of heuristics. In Proc. IEEE Congress on Evolutionary Computation 1–8
(IEEE, 2010).

85. Burke, E. K., Hyde, M., Kendall, G. & Woodward, J. R. The scalability of evolved on line bin
packing heuristics. In Proc. 2007 IEEE Congress on Evolutionary Computation 2530–2537
(IEEE, 2007).

86. Bunel, R., Desmaison, A., Kohli, P., Torr, P. H. & Kumar, M. P. Learning to superoptimize
programs. In Proc. International Conference on Learning Representations (2017).

87. Schkufza, E., Sharma, R. & Aiken, A. Stochastic superoptimization. ACM SIGARCH Comp.
Archit. News 41, 305–316 (2013).

88. Shypula, A. et al. Learning to superoptimize real-world programs. In Proc. Deep Learning
for Code Workshop (ICLR 2022 Workshop) (2022).

89. Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement
learning. Nature 610, 47–53 (2022).

90. Mankowitz, D. J. et al. Faster sorting algorithms discovered using deep reinforcement
learning. Nature 618, 257–263 (2023).

91. Yang, F. et al. Launchpad: a programming model for distributed machine learning
research. Preprint at https://arxiv.org/abs/2106.04516 (2021).

Acknowledgements We thank R. Anil, V. Feinberg, E. Taropa, T. Hubert, J. Schrittwieser and
S. Nowozin for their LLM support; T. Schaul, C. Fernando, A. Barreto and P. Gupta for
discussions on evolutionary algorithms; M. Figurnov and T. Cemgil for reviewing the paper;
F. Piccinini and S. Kenjeyev for their support on job scheduling; S. Blackwell for technical
support; O. Ronneberger, F. Gimeno, B. Huergo, A. Mehrabian and A. Anand for useful advice
and G. Holland for program management support.

Author contributions B.R.-P. conceived the project with help from A.F. and P.K. A.F. scoped
problems and developed project vision. B.R.-P. and A.N. developed the initial FunSearch
codebase. A.N., B.R.-P., M. Balog, F.J.R.R., M. Barekatain, E.D. and A.F. implemented and refined
the different components of the system. M. Barekatain and A.N. imported and experimented
with LLMs. M. Barekatain, A.N. and M. Balog worked on evaluating, debugging and improving
the efficiency of experiments. M. Balog, M. Barekatain, B.R.-P., A.N., A.F., O.F. and J.S.E.
contributed to the cap set problem. M.P.K., M. Balog and J.S.E. researched and analysed results
from the admissible sets problem. E.D., M. Barekatain and P.W. contributed to the online bin
packing problem. F.J.R.R. and O.F. researched and did experiments on other problems
(Shannon capacity and corners problems), P.K. contributed technical advice and ideas.
A.F., B.R.-P., E.D., F.J.R.R., M.P.K., M. Balog, A.N., J.S.E. and M. Barekatain wrote the paper.

Competing interests The authors of the paper are planning to file a patent application relating
to subject matter contained in this paper in the name of Google DeepMind.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-06924-6.
Correspondence and requests for materials should be addressed to Bernardino
Romera-Paredes, Pushmeet Kohli or Alhussein Fawzi.
Peer review information Nature thanks Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
Talia Ringer and Tao Yu for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://arxiv.org/abs/2303.08774
https://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers
https://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2212.09248
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/2106.04516
https://doi.org/10.1038/s41586-023-06924-6
http://www.nature.com/reprints

Extended Data Fig. 1 | Example of best-shot prompting, based on the skeleton from Fig. 2a. The prompt includes k = 2 implementations sampled from the
programs database, with higher-scoring implementations being more likely to be included.

Article

Extended Data Fig. 2 | Evolutionary method. The initial programs are
separated into islands and each of them is evolved separately. After a number of
iterations, the islands with the worst score are wiped and the best program

from the islands with the best score are placed in the empty islands. Evolution
then proceeds separately again until the next reset. This process is repeated
until termination.

Extended Data Fig. 3 | Program clusters within islands. Within each island,
programs are grouped into clusters based on their signature (i.e., their scores
on several inputs). We first sample clusters, favoring the ones with higher
score. Within the chosen clusters, we sample a program, favoring shorter

programs. The sampled programs are used to prompt the LLM which generates
a new program. If the new program is correct, it is added to the island, either in
an existing cluster or a new one if its signature was not yet present.

	Mathematical discoveries from program search with large language models
	FunSearch
	Specification
	Pretrained LLM
	Evaluation
	Programs database
	Prompt
	Distributed approach

	Extremal combinatorics
	Cap sets
	Admissible sets

	Bin packing
	Discussion
	Online content
	Fig. 1 Overview of FunSearch.
	Fig. 2 Examples of FunSearch specifications for two problems.
	Fig. 3 Diagram of a cap set of size four in .
	Fig. 4 Result of applying FunSearch to the cap set problem.
	Fig. 5 Results on the cap set problem through admissible sets.
	Fig. 6 Example of a short online bin packing heuristic discovered by FunSearch for the OR dataset.
	Extended Data Fig. 1 Example of best-shot prompting, based on the skeleton from Fig.
	Extended Data Fig. 2 Evolutionary method.
	Extended Data Fig. 3 Program clusters within islands.
	Table 1 Online bin packing results.

