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Mathematical discoveries from program 
search with large language models

Bernardino Romera-Paredes1,4 ✉, Mohammadamin Barekatain1,4, Alexander Novikov1,4, 
Matej Balog1,4, M. Pawan Kumar1,4, Emilien Dupont1,4, Francisco J. R. Ruiz1,4, 
Jordan S. Ellenberg2, Pengming Wang1, Omar Fawzi3, Pushmeet Kohli1 ✉ & Alhussein Fawzi1,4 ✉

Large language models (LLMs) have demonstrated tremendous capabilities in solving 
complex tasks, from quantitative reasoning to understanding natural language. 
However, LLMs sometimes suffer from confabulations (or hallucinations), which can 
result in them making plausible but incorrect statements1,2. This hinders the use of 
current large models in scientific discovery. Here we introduce FunSearch (short for 
searching in the function space), an evolutionary procedure based on pairing a 
pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of  
this approach to surpass the best-known results in important problems, pushing  
the boundary of existing LLM-based approaches3. Applying FunSearch to a central 
problem in extremal combinatorics—the cap set problem—we discover new 
constructions of large cap sets going beyond the best-known ones, both in finite 
dimensional and asymptotic cases. This shows that it is possible to make discoveries 
for established open problems using LLMs. We showcase the generality of FunSearch 
by applying it to an algorithmic problem, online bin packing, finding new heuristics 
that improve on widely used baselines. In contrast to most computer search 
approaches, FunSearch searches for programs that describe how to solve a problem, 
rather than what the solution is. Beyond being an effective and scalable strategy, 
discovered programs tend to be more interpretable than raw solutions, enabling 
feedback loops between domain experts and FunSearch, and the deployment of such 
programs in real-world applications.

Many problems in mathematical sciences are ‘easy to evaluate’, despite 
being typically ‘hard to solve’. For example, in computer science, 
NP-complete optimization problems admit a polynomial-time evalu-
ation procedure (measuring the quality of the solution), despite the 
widespread belief that no polynomial-time algorithms to solve such 
problems exist. We focus in this paper on problems admitting an effi-
cient ‘evaluate’ function, which measures the quality of a candidate 
solution. Prominent examples include the maximum independent 
set problem and maximum constraint satisfaction problems (such 
as finding the ground state energy of a Hamiltonian). Our goal is to 
generate a ‘solve’ program, such that its outputs receive high scores 
from the ‘evaluate’ function (when executed on inputs of interest), and 
ultimately improve on the best-known solutions.

Whereas large language models (LLMs) have recently seen nota-
ble improvements in their coding capabilities4–8, with applications 
including debugging9,10, solving code competitions11,12 and improving 
code performance13, synthesizing ‘solve’ programs for open problems 
requires finding new ideas that are verifiably correct. This is very hard 
for LLMs, as they tend to confabulate or ultimately fall short of going 
beyond existing results. To surpass the ‘nominal’ capabilities of LLMs, 
recent studies3 have combined them with evolutionary algorithms14,15, 

leading to important improvements on diverse synthetic problems16, 
searching for neural network architectures17–19 and solving puzzles20. 
Our proposed method, FunSearch, pushes the boundary of LLM-guided 
evolutionary procedures to a new level: the discovery of new scien-
tific results for established open problems and the discovery of new 
algorithms. Surpassing state-of-the-art results on established open 
problems provides a clear indication that the discoveries are truly new, 
as opposed to being retrieved from the LLM’s training data.

FunSearch (short for searching in the function space) combines a 
pretrained (frozen) LLM, whose goal is to provide creative solutions, 
with an evaluator, which guards against confabulations and incor-
rect ideas. FunSearch iterates over these two components, evolving 
initial low-scoring programs into high-scoring ones discovering new 
knowledge. Key to the success of this simple procedure is a combina-
tion of several essential ingredients. First, we sample best performing 
programs and feed them back into prompts for the LLM to improve on; 
we refer to this as best-shot prompting. Second, we start with a program 
in the form of a skeleton (containing boilerplate code and potentially 
known structure about the problem), and only evolve the part govern-
ing the critical program logic. For example, by setting a greedy program 
skeleton, we evolve a priority function used to make decisions at every 
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step. Third, we maintain a large pool of diverse programs by using an 
island-based evolutionary method that encourages exploration and 
avoids local optima. Finally, leveraging the highly parallel nature of 
FunSearch, we scale it asynchronously, considerably broadening the 
scope of this approach to find new results, while keeping the overall 
cost of experiments low.

We show the surprising effectiveness of FunSearch on several use 
cases. We consider a fundamental problem in extremal combina-
torics, namely, the cap set problem21,22. FunSearch demonstrates the 
existence of hitherto unknown constructions that go beyond existing 
ones, including the largest improvement in 20 years to the asymptotic 
lower bound. This demonstrates that it is possible to make a scientific  
discovery—a new piece of verifiable knowledge about a notorious  
scientific problem—using an LLM. Using FunSearch, we also find new 
algorithms for the online bin packing problem that improve on tradi-
tional ones on well-studied distributions of interest23,24, with potential 
applications to improving job scheduling algorithms.

Whereas most computer search techniques output directly what the 
solution is (for example, a list of vectors forming a cap set), FunSearch 
produces programs generating the solution. For structured problems, 
such programs tend to be more interpretable—facilitating interac-
tions with domain experts—and concise—making it possible to scale 
to large instances—compared to a mere enumeration of the solution. 
In addition, decision procedures (such as for bin packing) described 
by code in a standard programming language are crucially easier to 
deploy compared to other types of descriptions (for example, neural 
networks), which typically require specialized hardware and for which 
verifying design specifications is notoriously hard.

FunSearch
An overview of FunSearch is shown in Fig. 1, and its components are 
described in more detail below. For more details and ablations showing 
the importance of each component, see Methods and Supplementary 
Information Appendix A.

Specification
The input to FunSearch is a specification of the problem in the form of 
an ‘evaluate’ function, which scores candidate solutions. In addition, 
we provide an initial program (which can be trivial) to evolve. Although 
in principle these are the minimum requirements, we found that per-
formance tends to improve significantly if we write the initial ‘solve’ 

program in the form of a skeleton (containing boilerplate code and 
previous knowledge of the problem in the form of a program structure), 
and only use FunSearch to evolve the critical part that governs its logic.  
Fig. 2a shows an example in which the skeleton takes the form of a  
simple greedy algorithm, and the crucial part to evolve by FunSearch is 
the priority function that is used to make the greedy decision at every 
step. This delegates to FunSearch precisely the part that is usually the 
hardest to come up with. Whereas a fixed skeleton may constrain the 
space of programs that can be discovered, we find it improves over-
all results because it focuses the LLM resources on only evolving the 
critical part, instead of also using the LLM to recreate already known 
program structures (with more opportunities for mistakes that would 
render the entire program incorrect). If available, the user can option-
ally provide extra known information about the problem at hand, in the 
form of docstrings, relevant primitive functions or import packages, 
which FunSearch may use.

Pretrained LLM
The LLM is the creative core of FunSearch, in charge of coming up with 
improvements to the functions presented in the prompt and sending 
these for evaluation. We obtain our results with a pretrained model, 
that is, without any fine-tuning on our problems. We use Codey, an LLM 
built on top of the PaLM2 model family25, which has been fine-tuned 
on a large corpus of code and is publicly accessible through its API26. 
Because FunSearch relies on sampling from an LLM extensively, an 
important performance-defining tradeoff is between the quality of the 
samples and the inference speed of the LLM. In practice, we have cho-
sen to work with a fast-inference model (rather than slower-inference, 
higher-quality), and the results in the paper are obtained using a total 
number of samples on the order of 106. Beyond this tradeoff, we have 
empirically observed that the results obtained in this paper are not too 
sensitive to the exact choice of LLM, as long as it has been trained on a 
large enough corpus of code. See Supplementary Information Appen-
dix A for a comparison to StarCoder6, a state-of-the-art open-source 
LLM for code.

Evaluation
Programs generated by the LLM are evaluated and scored on a set of 
inputs. For example, in the cap set problem (‘Extremal combinatorics’ 
section) the inputs are the values of the dimensionality n that we are 
interested in, and in combinatorial optimization (‘Bin packing’ section), 
the inputs correspond to different bin packing instances. The scores 
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Fig. 1 | Overview of FunSearch. The input to FunSearch is a specification of the 
problem in the form of an ‘evaluate’ function, an initial implementation of the 
function to evolve, which can be trivial, and potentially a skeleton. At each 
iteration, FunSearch builds a prompt by combining several programs sampled 
from the programs database (favouring high-scoring ones). The prompt is then 

fed to the pretrained LLM and new programs are created. Newly created 
programs are then scored and stored in the programs database (if correct), 
thus closing the loop. The user can at any point retrieve the highest-scoring 
programs discovered so far.
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across different inputs are then combined into an overall score of the 
program using an aggregation function, such as the mean. The scored 
programs are then sent to the programs database. Programs that were 
incorrect (that did not execute within the imposed time and memory 
limits, or produced invalid outputs) are discarded, and the remaining 
scored programs are then sent to the programs database.

Programs database
The programs database keeps a population of correct programs, which 
are then sampled to create prompts. Preserving and encouraging diver-
sity of programs in the database is crucial to enable exploration and 
avoid being stuck in local optima. To encourage diversity, we adopt an 
islands model, also known as a multiple population and multiple-deme 
model27,28, which is a genetic algorithm approach. Several islands, or 
subpopulations, are created and evolved independently. To sample 
from the program database, we first sample an island and then sample 
a program within that island, favouring higher-scoring and shorter 
programs (see Methods for the exact mechanism). Crucially, we let 
information flow between the islands by periodically discarding the 
programs in the worst half of the islands (corresponding to the ones 
whose best individuals have the lowest scores). We replace the pro-
grams in those islands with a new population, initialized by cloning 
one of the best individuals from the surviving islands.

Prompt
New prompts are created by ‘best-shot prompting’ from the programs 
database, and are then fed to the LLM to generate a new program. We 
first sample k programs from a single island in the programs database, 

according to the procedure described above. Sampled programs are 
then sorted according to their score, and a version is assigned to each 
(‘v0’ for the lowest scoring program, ‘v1’ for the second lowest scoring 
and so on). These programs are then combined into a single prompt—
with the version appended as a suffix to the function name; for example, 
in the case of Fig. 2a, this would be ‘priority_v0’, ‘priority_v1’, ...—and the 
header of the function we wish to generate (for example, ‘priority_vk’) is 
added to the end of the prompt. In practice, we set k = 2, as two functions 
lead to better results compared to just one, with diminishing returns 
beyond that. Constructing a prompt by combining several programs 
(as opposed to only one) enables the LLM to spot patterns across the 
different programs and generalize those. Related approaches to prompt 
building have been recently considered, for example ref. 16, and were 
shown to perform well on different domains.

Distributed approach
We implement FunSearch as a distributed system that has three types of 
workers—a programs database, samplers and evaluators—which com-
municate asynchronously. The programs database stores and serves 
programs, samplers generate new functions using the pretrained LLM 
and evaluators assess programs, as shown in Supplementary Fig. F.26. 
In the example shown in Fig. 2a, the programs database stores priority 
functions, samplers generate new implementations of ‘priority’ and 
evaluators score the proposals by executing the ‘main’ function on 
user-specified inputs. Our distributed system offers several advan-
tages. First, it naturally leverages parallelism across different tasks: for 
example, LLM sampling and evaluation are performed concurrently. 
Second, it enables scaling to more than one sampler and evaluator, 

"""Finds large cap sets."""
import numpy as np
import utils_capset

# Function to be executed by FunSearch.
def main(n):
"""Runs `solve` on `n`-dimensional cap set and

evaluates the output."""
solution = solve(n)
return evaluate(solution, n)

def evaluate(candidate_set, n):
"""Returns size of candidate_set if it is a cap

set, None otherwise."""
if utils_capset.is_capset(candidate_set, n):
return len(candidate_set)

else:
return None

def solve(n):
"""Builds a cap set of dimension `n` using

`priority` function."""

→

# Precompute all priority scores.
elements = utils_capset.get_all_elements(n)
scores = [priority(el, n) for el in elements]
# Sort elements according to the scores.
elements = elements[np.argsort(scores,

kind='stable')[::-1]]

# Build `capset` greedily, using scores for
prioritization.

capset = []
for element in elements:
if utils_capset.can_be_added(element, capset):
capset.append(element)

return capset

# Function to be evolved by FunSearch.
def priority(element, n):
"""Returns the priority with which we want to add

`element` to the cap set."""
return 0.0

"""Finds good assignment for online 1d bin
packing."""

import numpy as np
import utils_packing

# Function to be executed by FunSearch.
def main(problem):
"""Runs `solve` on online 1d bin packing instance,

and evaluates the output."""
bins = problem.bins
# Packs `problem.items` into `bins` online.
for item in problem.items:
# Extract bins that have space to fit item.
valid_bin_indices =

utils_packing.get_valid_bin_indices(item,
bins)

best_index = solve(item,
bins[valid_bin_indices])

# Add item to the selected bin.
bins[valid_bin_indices[best_index]] -= item

return evaluate(bins, problem)

def evaluate(bins, problem):
"""Returns the negative of the number of bins

required to pack items in `problem`."""
if utils_packing.is_valid_packing(bins, problem):

return -utils_packing.count_used_bins(bins,
problem)

else:
return None

def solve(item, bins):
"""Selects the bin with the highest value according

to `heuristic`."""
scores = heuristic(item, bins)
return np.argmax(scores)

# Function to be evolved by FunSearch.
def heuristic(item, bins):
"""Returns priority with which we want to add

`item` to each bin."""
return -(bins - item)

→

→

→

→

→

→

→
→

→

→

→

→

→

→

a b

Fig. 2 | Examples of FunSearch specifications for two problems. The 
‘evaluate’ function takes as input a candidate solution to the problem, and 
returns a score assessing it. The ‘solve’ function contains the algorithm 
skeleton, which calls the function to evolve that contains the crucial logic.  
a, Cap set. The function to evolve is called ‘priority’. b, Online bin packing. The 
function to evolve is called ‘heuristic’. The ‘main’ function implements the 

evaluation procedure by connecting the pieces together. Specifically, it uses 
the ‘solve’ function to solve the problem and then scores the resulting solutions 
using the ‘evaluate’ function. In the simplest cases, ‘main’ just executes ‘solve’ 
once and uses ‘evaluate’ to score the output, for example, a. In specific settings 
such as online algorithms, the ‘main’ function implements some more logic, for 
example, b.
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which would be a very limiting setup, considering that evaluation can 
take minutes for many problems of interest. Running evaluators in 
parallel considerably broadens the scope of this approach to such 
problems. The distributed setting enables the running of many evalu-
ator nodes on inexpensive CPU hardware, whereas few samplers run 
on machines with accelerators for fast LLM inference; this keeps the 
overall cost and energy usage of experiments low. In our experiments, 
we typically use 15 samplers and 150 CPU evaluators (can be served 
on five CPU servers each running 32 evaluators in parallel). See Sup-
plementary Information Appendix A for more details. Also, because of 
the randomness of LLM sampling and the evolutionary procedure, for 
some problems we run several experiments to get the best reported 
results. See Methods and Supplementary Information Appendix A.3 
for a full statistical analysis.

We now describe some of the new discoveries made by FunSearch in 
two different fields: pure mathematics and applied computer science. 
Further discoveries on other problems (namely, the corners problem 
and Shannon capacity of cycle graphs) are presented in Supplementary 
Information Appendix B. The full discovered programs are available 
in Supplementary Information Appendix C.

Extremal combinatorics
We apply FunSearch to two related problems in extremal combinato-
rics: a branch of mathematics that studies the maximal (or minimal) 
possible sizes of sets satisfying certain properties.

Cap sets
The cap set problem21, once described by Terence Tao as ‘perhaps my 
favourite open question’29, refers to the task of finding the largest pos-
sible set of vectors in n

3Z  (known as a cap set) such that no three vectors 
sum to zero. Geometrically, no three points of a cap set are in a line (see 
Fig. 3 for an example with n = 2).

The problem has drawn much interest for a variety of reasons. For 
one, it is an analogue of the classical number theory problem of finding 
large subsets of primes in which no three are in arithmetic progres-
sion. For another, it differs from many problems in combinatorics in 
that there is no consensus among mathematicians about what the 
right answer should be. Finally, the problem serves as a model for the 
many other problems involving ‘three-way interactions’. For instance, 
progress towards improved upper bounds for the cap set problem30,31 

immediately led to a series of other combinatorial results, for example, 
on the Erdös–Radio sunflower problem32.

The exact size of the largest possible cap set in n dimensions is known 
only for n ≤ 6. A brute force approach is not practical as the search space 
quickly becomes enormous with growing n, for example, around 31,600 
for n = 8. Previous methods impose potentially suboptimal restrictions 
on the search space33,34. By contrast, we search the full space by means 
of an algorithm skeleton that uses a function ‘priority’ : →n

3Z R. Intui-
tively, this function provides a priority with which each Zx ∈ n

3 should 
be included in the cap set. Our algorithm starts with an empty set and 
iteratively adds the vector x ∈ n

3Z  with the highest priority that does 
not violate the cap set constraint; Fig. 2a. Starting from a trivial constant 
function, we evolve the crucial ‘priority’ component of our approach 
to result in large cap sets.

Using this approach, we discovered cap sets of sizes shown in Fig. 4a. 
Notably, in dimension n = 8, FunSearch found a larger cap set than what 
was previously known, thus illustrating the power of FunSearch to 
discover new constructions. This also shows the scalability of FunSearch 
to larger dimensions, in which the previously best-known construction 
relied on a complex combination of cap sets in lower dimensions33,34. 
By contrast, FunSearch discovered a larger cap set from scratch, with-
out having to be explicitly taught any way of combining cap sets. 
Moreover, we do not just discover the set of 512 eight-dimensional 
vectors in itself, but a program that generates it: we show this program 
in Fig. 4b. Through inspecting the code, we obtain a degree of under-
standing of what this set is: specifically, manual simplification of Fig. 4b 
provides the construction in Fig. 4c. Some properties of this construc-
tion are similar to the construction of the Hill cap35,36, which results in 
the optimal 112-cap in Z3

6.

Admissible sets
Beyond finding the size of the largest cap set cn in dimension n, a fun-
damental problem in additive combinatorics22 is determining the 
capacity C c= sup

n
n

n1/ . The breakthrough result from ref. 31 established 

an upper bound of C ≤ 2.756. In this work, we are interested in lower 
bounds on C. To this end, we use the framework of constant weight 
admissible sets (or admissible sets for short)34,37, which has established 
the current state-of-the-art.

Formally, admissible sets A n w( , ) are collections of vectors in {0, 1, 2}n 
satisfying two properties: (1) each vector has the same number w of 
non-zero elements but a unique support (therefore ( )A n

w≤∣ ∣ ); (2) for 
any three distinct vectors there is a coordinate in which their three 
respective values are {0, 1, 2}, {0, 0, 1} or {0, 0, 2}. Informally, an admis-
sible set describes how to combine cap sets in smaller dimensions into 
large cap sets in higher dimensions34. We denote the set of full-size 
admissible sets (with ( )A n

w=∣ ∣ ) as I n w( , ). The current state-of-the-art38 
has relied on SAT solvers to construct large admissible sets.

As before, we evolve a function ‘priority’ : R{0, 1, 2} →n , which is used 
to iteratively grow admissible sets. Starting from a trivial constant 
function, we discover one that provides us with an (12, 7)I  admissible 
set; the discovered program is shown in Fig. 5b. This discovery alone 
already improves the lower bound on the cap set capacity from 2.2180 
(ref. 38) to 2.2184. Yet, interpreting the program found by FunSearch 
(Fig. 5b) helps us significantly push the boundaries of what admissible 
sets we can construct. Specifically, we notice that the discovered  
‘priority’ function treats the n coordinates in a highly symmetric way, 
and indeed it turns out that the admissible set it constructs is preserved 
under independent cyclic permutations of coordinates within four 
disjoint groups of coordinate triples. Hereinafter we call such admis-
sible sets symmetric (see Supplementary Information Appendix D for 
a formal definition).

We now use FunSearch to directly search for symmetric admissible 
sets. Note that this is a more restricted and also much smaller search 
space, which allows for significantly higher dimensions and weights 
than were previously possible. This led us to discovering a full-size 

Fig. 3 | Diagram of a cap set of size four in 3
2Z . The circles are the elements of 3

2Z  
with the ones belonging to the cap set shown in blue. The possible lines in Z3

2 are 
also shown (with colours indicating lines that wrap around in arithmetic 
modulo 3). No three elements of the cap set are in a line.
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I(15, 10) admissible set (indicating C ≥ 2.219486) and a partial admis-
sible set in A(24, 17) of size 237,984, which implies a new lower bound 
on the cap set capacity of 2.2202 (Fig. 5a). Although this is a great 
improvement to the lower bound compared to research in the last 
20 years, we note it is still far from the upper bound and we hope our 
results inspire future work on this problem.

Not only does FunSearch scale to much larger instances than tradi-
tional combinatorial solvers (Supplementary Information Appendix 
A.4), but it is also a unique feature of searching in function space that we 
were able to inspect the code discovered by FunSearch and infer a new 
insight into the problem, in the form of a new symmetry. The procedure 
we followed in this section is a concrete example of how LLM-based 
approaches can be used in mathematical sciences: FunSearch suggests 
a solution, which is examined by researchers, who may note features of 
interest. These features are used to refine the search, leading to better 
solutions. This process can be iterated, with both human and search 
consistently in the loop.

Bin packing
Combinatorial optimization is a subfield of mathematics that plays an 
important role across a wide range of areas, from theoretical computer 
science to practical problems in logistics and scheduling. Whereas 
many combinatorial optimization problems are provably hard to solve 
for large instances, it is typically possible to achieve strong performance 
using heuristics to guide the search algorithm. The choice of a heuristic 

is crucial for obtaining strong performance, but designing a good heu-
ristic is difficult in practice. In this section, we show that FunSearch can 
be used to discover effective heuristics for one of the central problems 
in combinatorial optimization: bin packing39.

The goal of bin packing is to pack a set of items of various sizes into 
the smallest number of fixed-sized bins. Bin packing finds applications 
in many areas, from cutting materials to scheduling jobs on compute 
clusters. We focus on the online setting in which we pack an item as 
soon as it is received (as opposed to the offline setting in which we have 
access to all items in advance). Solving online bin packing problems 
then requires designing a heuristic for deciding which bin to assign 
an incoming item to.

Heuristics for online bin packing are well studied and several variants 
exist with strong worst case performance40–45. However, they often 
show poor performance in practice39. Instead, the most commonly 
used heuristics for bin packing are first fit and best fit. First fit places 
the incoming item in the first bin with enough available space, whereas 
best fit places the item in the bin with least available space where the 
item still fits. Here, we show that FunSearch discovers better heuristics 
than first fit and best fit on simulated data.

To achieve this, we define a heuristic as a program that takes as 
input an item and an array of bins (containing the remaining capacity 
of each bin) and returns a priority score for each bin. The ‘solve’ func-
tion picks the bin with the highest score according to the heuristic 
(Fig. 2b). FunSearch is then used to evolve this heuristic, starting from  
best fit.

n 3 4 5 6 7 8

Best known 9 20 45 112 236 496

FunSearch 9 20 45 112 236 512

a

def priority(el: tuple[int,...],
n: int) -> float:

score = n
in_el = 0
el_count = el.count(0)

if el_count == 0:
score += n**2
if el[1] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

if el[3] == el[-3]:
score *= 1.5

else:
if el[1] == el[-1]:
score *= 0.5

if el[2] == el[-2]:
score *= 0.5

for e in el:
if e == 0:
if in_el == 0:
score *= n * 0.5

elif in_el == el_count - 1:
score *= 0.5

else:
score *= n * 0.5 ** in_el

in_el += 1
else:
score += 1

if el[1] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score

b

def build_512_cap() -> list[tuple[int,...]]:

n = 8
V = np.array(list(itertools.product(range(3), repeat=n)), dtype=np.int32)
support = lambda v: tuple(i for i in range(n) if v[i] !=0)
reflections = lambda v:sum (1 for i in range(1, n// 2) if v[i] == v[-i])

weight8_vectors = [v for v in V
if np.count_nonzero(v) == 8  
and reflections(v) >= 2]  

supports_16 = [(0, 1, 2, 3), (0, 1, 2, 5), (0, 3, 6, 7), (0, 5, 6, 7),
(1, 3, 4, 6), (1, 4, 5, 6), (2, 3, 4, 7), (2, 4, 5, 7)]

weight4_vectors = [v for v in V
if support(v) in supports_16]

supports_8 = [(0, 1, 2, 7), (0, 1, 2, 6), (0, 1, 3, 7), (0, 1, 6, 7),
(0, 1, 5, 7), (0, 2, 3, 6), (0, 2, 6, 7), (0, 2, 5, 6),
(1, 2, 4, 7), (1, 2, 4, 6), (1, 3, 4, 7), (1, 4, 6, 7),
(1, 4, 5, 7), (2, 3, 4, 6), (2, 4, 6, 7), (2, 4, 5, 6)]

weight4_vectors_2 = [v for v in V
if support(v) in supports_8
and reflections(v) == 1]  

allowed_zeros = [(0, 4, 7), (0, 2, 4), (0, 1, 4), (0, 4, 6),
(1, 2, 6), (2, 6, 7), (1, 2, 7), (1, 6, 7)]

weight5_vectors = [
v for v in V
if tuple(i for i in range(n) if v[i] == 0) in allowed_zeros
and reflections(v) <= 1  
and (v[1] * v[7]) % 3 != 1 and (v[2] * v[6]) % 3 != 1]

return weight8_vectors + weight4_vectors + weight4_vectors_2 +
weight5_vectors

c

→

→

Fig. 4 | Result of applying FunSearch to the cap set problem. a, Size of the 
largest cap set in n

3Z  for different dimensions n. b, The function ‘priority’ : Z R→n
3  

discovered by FunSearch that results in a cap set of size 512 in n = 8 dimensions. 
One feature to note is that the priority is affected by whether the same entry 
appears in positions i and −i (−i denotes the ith position counting from the end). 

This motivates the notion of reflections, used in c. c, An explicit construction 
of this new 512-cap, which we were able to manually construct thanks to having 
discovered the cap set by searching in function space. See Supplementary 
Information Appendix E.2 for more details and for relation to Hill cap.
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We first evaluate FunSearch on the well-known OR-Library bin packing  
benchmarks23, consisting of four datasets, OR1 to OR4, containing bin 
packing instances with an increasing number of items (see Supplemen-
tary Information Appendix E.4 for details). We evolve our heuristic 
on a training set of generated bin packing instances with the same 
number of items as those in OR1 and, after the evolutionary process 
is concluded, test it on the OR1 to OR4 datasets. We measure perfor-
mance as the fraction of excess bins used over the L2 lower bound46 of 
the optimal offline packing solution (which is generally not achievable 
in the online setting).

As can be seen in Table 1, FunSearch outperforms both first fit and 
best fit across all datasets. Further, the learned heuristic generalizes: 
even though it has only seen instances of the same size as OR1 during 
training, it generalizes across problem sizes, performing even better on 
large instances and widening the gap to best fit. In addition to the OR 
benchmarks, we also use FunSearch to evolve heuristics on bin packing 
instances sampled from a Weibull distribution, as these closely follow 
many real-world scheduling problems24,47 (see Supplementary Informa-
tion Appendix E.4 for details). As shown in Table 1, the performance of 
FunSearch is very strong on this dataset, significantly outperforming 
first fit and best fit across instances, as well as scaling gracefully to 
large instances (being only 0.03% off the lower bound on the optimum 

for 100,000 items). In addition, FunSearch is robust and consistently 
outperforms these baselines as shown in the statistical analysis in the 
Supplementary Information Appendix A.3.

We observed that several heuristics discovered by FunSearch use 
the same general strategy for bin packing (see Fig. 6 for an example). 
Instead of packing items into bins with the least capacity (such as best 
fit), the FunSearch heuristics assign items to least capacity bins only if 
the fit is very tight after placing the item. Otherwise, the item is typi-
cally placed in another bin, which would leave more space after the 
item is placed. This strategy avoids leaving small gaps in bins that are 
unlikely to ever be filled (see Supplementary Information Appendix E.5 
for example visualizations of such packings).

As this example demonstrates, the benefits of FunSearch extend 
beyond theoretical and mathematical results to practical problems 
such as bin packing. Indeed, bin packing, and related combinatorial 
optimization problems, are ubiquitous and find applications across a 
range of industries. We are optimistic that FunSearch could be applied 
to several such use cases with potential for real-world impact.

Discussion
The effectiveness of FunSearch in discovering new knowledge for hard 
problems might seem intriguing. We believe that the LLM used within 
FunSearch does not use much context about the problem; the LLM 
should instead be seen as a source of diverse (syntactically correct) 
programs with occasionally interesting ideas. When further con-
strained to operate on the crucial part of the algorithm with a program 
skeleton, the LLM provides suggestions that marginally improve over 
existing ones in the population, which ultimately results in discover-
ing new knowledge on open problems when combined with the evo-
lutionary algorithm. Another crucial component of the effectiveness 
of FunSearch is that it operates in the space of programs: rather than 
directly searching for constructions (which is typically an enormous 
list of numbers), FunSearch searches for programs generating those 
constructions. Because most problems we care about are structured 
(highly non-random), we believe that solutions are described more 
concisely with a computer program, compared to other representa-
tions. For example, the trivial representation of the admissible set 
A(24, 17) consists of more than 200,000 vectors, but the program 
generating this set consists of only a few lines of code. Because Fun-
Search implicitly encourages concise programs, it scales to much 
larger instances compared to traditional search approaches in struc-
tured problems. In a loose sense, FunSearch attempts to find solutions 
that have low Kolmogorov complexity48–50 (which is the length of the 
shortest computer program that produces a given object as output), 
whereas traditional search procedures have a very different inductive 
bias. We believe that such Kolmogorov-compressed inductive bias is 
key to FunSearch scaling up to the large instances in our use cases.  
In addition to scale, we have empirically observed that FunSearch 
outputs programs that tend to be interpretable: that is, they are clearly 
easier to read and understand compared to a list of numbers. For 
example, by scrutinizing FunSearch’s output for the admissible set 
problem, we found a new symmetry, which was then subsequently 
used to improve the results even further. Despite the rarity of 

Bound
on 

Admissible set
ingredient Source

a

b

2.2101  (90, 89) Ref. 37

2.2173  (10, 5) Ref. 34

2.2180  (11, 7) Ref. 38

2.2184  (12, 7) FunSearch

2.2194  (15, 10) FunSearch

2.2202  (24, 17) FunSearch

def priority (el: tuple[int, ...], n: int, w: int) -> float:
score = 0.0
for i in range(n):

if el[i] == 1:

score -= 0.9 ** ( i % 4 )

if el[i] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

)

if el[i] == 1 and el[i - 4] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] != 0:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 2:

score -= 0.98 ** (30 - ( i % 4 ))

score -= 6.3

if el[i] == 2 and el[i - 4] == 2 and el[i - 8] == 1:

score -= 0.98 ** (30 - ( i % 4 ))

if el[i] == 2 and el[i - 4] == 1 and el[i - 8] == 1:

score -= 6.3

if el[i] == 2 and el[i - 4] == 0 and el[i - 8] == 2:

score -= 6.3

if el[i] == 1 and el[i - 4] == 1 and el[i - 8] == 0:

score -= 2.2
return score

Fig. 5 | Results on the cap set problem through admissible sets. a, Summary 
of lower bounds on the cap set capacity C. b, The ‘priority’ function R{0, 1, 2} →n  
discovered by FunSearch that results in an (12, 7)I  admissible set. The source 
code shows that when n = 12, the function treats the four triples of coordinates 
{0, 4, 8}, {1, 5, 9}, {2, 6, 10} and {3, 7, 11} together. We then checked that the 
admissible set is in fact symmetric under independent cyclic permutations of 
coordinates within each of these four triples. See Supplementary Information 
Appendices D and  E.3 for more details.

Table 1 | Online bin packing results

OR1 OR2 OR3 OR4 Weibull 
5k

Weibull 
10k

Weibull 
100k

First fit 6.42% 6.45% 5.74% 5.23% 4.23% 4.20% 4.00%

Best fit 5.81% 6.06% 5.37% 4.94% 3.98% 3.90% 3.79%

FunSearch 5.30% 4.19% 3.11% 2.47% 0.68% 0.32% 0.03%

Fraction of excess bins (lower is better) for various bin packing heuristics on the OR and Weibull 
datasets. FunSearch outperforms first fit and best fit across problems and instance sizes.
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symmetric solutions, we observe that FunSearch preferred symmet-
ric ones, as these are more parsimonious (that is, they require less 
information to specify), in addition to the natural bias of LLMs (trained 
on human-produced code) in outputting code with similar traits to 
human code. This is in contrast to traditional genetic programming 
that does not have this bias (and in addition requires hand-tuning the 
mutation operators51).

We note that FunSearch, at present, works best for problems having 
the following characteristics: (1) availability of an efficient evaluator; 
(2) a ‘rich’ scoring feedback quantifying the improvements (as opposed 
to a binary signal) and (3) ability to provide a skeleton with an isolated 
part to be evolved. For example, the problem of generating proofs 
for theorems52–54 falls outside this scope, because it is unclear how 
to provide a rich enough scoring signal. By contrast, for MAX-SAT, 
the number of satisfied clauses can be used as a scoring signal. In this 
paper, we have explicitly striven for simplicity and we are confident 
that FunSearch can be further extended to improve its performance 
and be applicable to more classes of problems. In addition, the rapid 
development of LLMs is likely to result in samples of far superior quality 
at a fraction of the cost, making FunSearch more effective at tackling 
a broad range of problems. As a result, we foresee that automatically 
tailored algorithms will soon become common practice and deployed 
in real-world applications.
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manually added. See Supplementary Information Appendix C for more 
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Methods

Implementation details of FunSearch
Distributed system. We implement FunSearch as a distributed system 
that has three types of workers: a programs database, samplers and 
evaluators. The programs database stores the initial user-provided 
program, as well as all programs received from the evaluators. The sam-
plers are in charge of performing the LLM inference step; to do so they 
repeatedly query the programs database for prompts. To achieve higher 
sampling throughput, samplers generate several samples from each 
prompt. The samples from the LLM (that is, the generated programs) 
are sent to the evaluators, which score programs by executing them on 
inputs of interest and assessing the outputs using ‘evaluate’. Programs 
that are correct are sent to the programs database to be stored. Each of 
the three FunSearch components is provided as both Python code and 
pseudocode (Supplementary Information Appendix F).

Prompt building. When queried for a prompt, the programs data-
base samples k programs to encourage the LLM to merge ideas from 
them (we typically set k = 2; Supplementary Information Appendix E.1).  
Programs are sorted according to their score in increasing order, start-
ing from version 0 (‘v0’). Using these k programs, the prompt is built 
as explained next.

For the sake of clarity, we use here the problem specification from 
Fig. 2a to precisely describe the prompting mechanism. The overall 
structure of the prompt mimics the structure of the program skeleton, 
with the following differences: (1) the ‘priority’ function is stripped out 
and replaced with the k = 2 programs sampled, first ‘priority_v0’ and 
then ‘priority_v1’. (2) After that, a ‘priority_v2’ function with no body 
is appended: the LLM will be in charge of completing the body of that 
function. (3) All other functions that appear before ‘priority_v0’ are 
removed. See Extended Data Fig. 1 for an example of the structure of 
a prompt.

Evolutionary method and program selection. Another key feature 
of FunSearch is the method used for evolution of the population of 
programs from the programs database, as well as for program selection: 
that is, how the programs database samples programs when queried 
for a prompt. For this, we use the islands model, a parallel genetic algo-
rithm27,28. Specifically, we split the population into m separate groups 
or islands. Each island is initialized with a copy of the user-provided 
initial program and is evolved separately. That is, whenever a prompt 
is required, we first uniformly sample an island and then sample k = 2 
programs from that island to build the prompt. The programs gener-
ated from the LLM on the basis of that prompt will later be stored in the 
same island. Every 4 h, we discard all the programs from the m/2 islands 
whose best instances have the lowest score. Each of these islands is 
then seeded with a single program, obtained by first choosing one of 
the surviving m/2 islands uniformly at random and then retrieving the 
highest-scoring program from that island (breaking ties in favour of 
older programs). The evolutionary process is then restarted from this 
state, in which the reset islands contain one high-performing program 
each (Extended Data Fig. 2).

This method has several advantages. First, drawing the analogy in 
which an island corresponds to an experiment, this approach effectively 
allows us to run several smaller experiments in parallel instead of a 
single large experiment. This is beneficial because single experiments 
can get stuck in local minima, in which most programs in the popula-
tion are not easily mutated and combined into stronger programs. 
The multiple island approach allows us to bypass this and effectively 
kill off such experiments to make space for new ones starting from 
more promising programs. Second, promising experiments are run for 
longer, as the islands that survive a reset are the ones with higher scores.

Within each island, we further cluster programs according to their 
signature. We define the signature of a program as the tuple containing 

the program’s scores on each of the inputs (for example, the cap set 
size for each input n). Programs with the same signature are clustered 
together. When sampling a program within an island, we first sample an 
island’s cluster and then a program within that cluster (Extended Data 
Fig. 3). This approach, which aims to preserve diversity55,56, is related 
to Lexicase57 in that both approaches consider a set of test cases for 
scoring an individual, and it is related to fitness uniform optimiza-
tion58, which also clusters individuals on the basis of their fitness value; 
however, we sample the clusters on the basis of their score instead of 
uniformly, as detailed next.

When sampling a cluster, we favour those with larger score values. 
Specifically, let si denote the score of the ith cluster, defined as an 
aggregation (for example, mean) of all the scores in the signature that 
characterizes that cluster. The probability Pi of choosing cluster i is
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where Tcluster is the temperature parameter, n is the current number of 
programs in the island, and T0 and N are hyperparameters (given in 
Supplementary Information Appendix E.1). This approach is sometimes 
referred to as the Boltzmann selection procedure59.

When sampling a program within a cluster, we favour shorter pro-
grams. In particular, let ℓi denote the negative length of the ith program 
within the chosen cluster (measured as the number of characters), and 

let ℓ∼
ℓ ℓ

ℓ
=i

− min

max + 10

i
i

i

i
i

′
′

′
′

−6
. We set the probability of each program proportional 

to ℓ∼ Texp( / )i program , where Tprogram is a temperature hyperparameter.

Robustness. Owing to randomness in LLM sampling and in the evolu-
tionary procedure, repeating an experiment can lead to different  
results. For some problems (for example, cap set through the admis-
sible set problem and online bin packing) every single run of FunSearch 
surpasses the baseline, with only some variation in the magnitude of 
the difference. For example, all experiments on admissible sets improve 
on the previous best capacity lower bound, with 60% of experiments 
on (12, 7)I  finding a full-size admissible set. For other problems, many 
independent repetitions of an experiment may be necessary to improve 
on previous best results. In particular, the case of cap set by direct 
construction in n = 8 dimensions is particularly challenging, with only 
four out of 140 experiments discovering a cap set of size 512. See Sup-
plementary Information Appendix A.3 for more details.

Related work
LLMs. The rise of powerful LLMs such as that in ref. 60 has been followed 
by systems in which an LLM core has been enveloped by a ‘program-
matic scaffold’61, and several LLM calls were connected in some way to 
accomplish larger and more intricate tasks beyond what would be pos-
sible using a single prompt and the raw LLM, possibly by using external 
tools or external memory streams62–66. LLMs have also been paired with 
evaluators; for example, refs. 20,67 fine-tuned an LLM on data that had 
been previously generated by the LLM itself (respectively on puzzle 
problems and solutions, and on justifications and/or explanations for 
answers to questions), and they used an evaluator to assess the correct-
ness of this data, ensuring that the fine-tuning dataset contained only 
correct solutions and/or explanations. More related to our approach 
is the use of LLMs as mutation operators on code, and ref. 3 was the 
first study to show that coupling an LLM with a programmatic way of 
scoring a solution can lead to a self-improvement loop. In refs. 16–19, 
the LLM was used as a crossover operator rather than a mutation one, 
that is, the LLM prompts are composed of several functions, similarly 
to FunSearch. In refs. 3,16, the task was to improve code that generated 
bidimensional virtual robots that could move as far as possible in a given 
simulated terrain (ref. 16 also considered the tasks of symbolic regres-
sion, natural language sentences and image generation). In refs. 17–19  



the task was to find neural network architectures (described with Py-
thon code), and in ref. 68 the task was continuous exploration in the 
game of Minecraft. By contrast, in this paper, we tackle open problems 
in mathematics and algorithm design, and we surpass human-designed 
constructions. We achieve that by combining several ingredients: a 
distributed system with many samplers and evaluators that commu-
nicate asynchronously, a user-provided program specification and 
skeleton, as well as an evolutionary mechanism based on islands that 
preserves the diversity of programs. FunSearch achieves that using an 
off-the-shelf LLM without fine-tuning.

More broadly, LLMs have been used for program synthesis as one of 
its main applications4–8. There are many use cases being explored, such 
as automatically editing code to improve performance13, automatically 
debugging code9,10, generating code from natural language descrip-
tions69–71 and doing so to solve problems in code competitions11,12. Unlike 
the above approaches that provide tools to increase the productivity 
of software engineers, we combine in this paper the creativity of LLMs 
with the power of evolutionary procedures to push the boundaries of 
human knowledge through solving open hard problems. Another line 
of research uses LLMs to guide the search for formal proofs for auto-
matic theorem proving52–54. Although this approach has the potential 
to eventually find new knowledge, the achievements of these methods 
still lag behind the frontier of human knowledge.

Genetic programming. Genetic programming is a subfield of com-
puter science concerned with automatically generating or discover-
ing computer programs using evolutionary methods15,72,73 and is used 
for symbolic regression applications74,75 and discovery of optimiza-
tion algorithms76 among others. In this broad sense, combining LLMs 
with evolution can be seen as an instance of genetic programming 
with the LLM acting as a mutation and crossover operator. However,  
using an LLM mitigates several issues in traditional genetic program-
ming51, as shown in Supplementary Information Appendix A and 
discussed in ref. 3. Indeed, genetic programming methods require 
defining several parameters, chief among them the set of allowed 
mutation operations (or primitives)15. Designing such a set of opera-
tions is non-trivial and problem specific, requiring domain knowl-
edge about the problem at hand or its plausible solution51. Although 
research has been done to mitigate this limitation, through, for ex-
ample, the reuse of subprograms77 or modelling the distribution of 
high-performing programs78, designing effective and general code 
mutation operators remains difficult. By contrast, LLMs have been 
trained on vast amounts of code and as such have learned about com-
mon patterns and routines from human-designed code. The LLM can 
leverage this, as well as the context given in the prompt, to generate 
more effective suggestions than the random ones typically used in  
genetic programming.

Related to genetic programming, the field of hyper-heuristics79,80 
seeks to design learning methods for generating heuristics applied to 
combinatorial optimization problems. In practice, these heuristics are 
often programs discovered through genetic programming, typically 
by evolving a heuristic on a set of instances of a given combinatorial 
optimization problem, such as bin packing81. Indeed, like FunSearch, 
hyper-heuristics have also been applied to online bin packing, with 
the learned heuristics able to match the performance of first fit82 and 
best fit83 on a set of generated bin packing instances. Augmenting the 
heuristics with memory of previously seen items can even lead to heu-
ristics outperforming best fit84. In addition, these evolved heuristics 
can sometimes generalize to larger instances than the ones they were 
trained on85, similar to the learned FunSearch heuristics. However, as is 
the case with genetic programming, one of the fundamental limitations 
of hyper-heuristics is that the components of the evolved heuristic 
must be manually defined by the user and often need to be tailored 
to a specific problem to be effective. The LLM in FunSearch allows us 
to bypass this limitation and learn heuristics for bin packing and job 

scheduling as well as discovering new mathematical constructions, all 
within a single pipeline without problem-specific tuning.

Program superoptimization and software engineering. Searching 
for the best way of modifying source code is a task that appears in sev-
eral branches of computer science and software development. These  
occurrences can be broadly classified into two groups: first, in which the 
goal is to find semantic-preserving modifications (this arises in program 
optimization and superoptimization, in which the aim is to modify the 
program so that it executes faster while maintaining its input–output 
behaviour), and second, in which the goal is to find programs with dif-
ferent semantics (this arises, for example, in automatic program repair 
and mutation testing). With some exceptions discussed below, most of 
these areas use relatively simple and hard-coded mutation operators 
on either the source code directly (such as deleting or swapping lines) 
or on the abstract syntax tree.

Machine learning approaches have been used for program superopti-
mization. For example, ref. 86 used reinforcement learning to learn the 
sampling probabilities used within a hierarchical probabilistic model 
of simple program edits introduced by STOKE87. Neural networks have 
also been proposed as a mutation operator for program optimization 
in ref. 88. These studies operated on code written in Assembly (perhaps 
because designing meaningful and rich edit distributions on programs 
in higher-level languages is challenging). More recently, ref. 13 used 
LLMs to find performance-improving edits to code written in C++ or 
Python. We also note that reinforcement learning has recently been 
applied to discover new faster algorithms for fundamental operations 
such as matrix multiplication89 and sorting90.

In this paper, we have not explicitly explored semantic-preserving 
applications such as discovering performance-improving code edits, 
but we believe that FunSearch could be an effective method for that 
setting too. In both use cases presented in the main text, the goal is to 
evolve programs with new semantics, but the application is different 
from program repair or mutation testing: in the ‘Extremal combinato-
rics’ section, we used FunSearch to discover a program that constructs 
a previously unknown mathematical object, and in the ‘Bin packing’ 
section, we used FunSearch to discover a program that corresponds 
to a more efficient heuristic for online bin packing.

Data availability
The experiments carried out in this paper do not require any data cor-
pus other than the publicly available OR-Library bin packing bench-
marks23. The output functions of interest produced by FunSearch are 
shown across the main paper and in text files in the Supplementary 
Information.

Code availability
The discovered functions as well as the evolutionary algorithm, code 
manipulation routines and a single-threaded implementation of the 
FunSearch pipeline are available as Python code in the Supplementary 
Information and at https://github.com/google-deepmind/funsearch. 
Furthermore, the software library launchpad91 and a sandbox for safely 
executing generated code on our internal distributed system were used. 
No training or fine-tuning of a LLM is required; API access for inference 
is sufficient. We used Codey26, which is available through its API, and 
StarCoder6, which is open source.
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Extended Data Fig. 1 | Example of best-shot prompting, based on the skeleton from Fig. 2a. The prompt includes k = 2 implementations sampled from the 
programs database, with higher-scoring implementations being more likely to be included.
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Extended Data Fig. 2 | Evolutionary method. The initial programs are 
separated into islands and each of them is evolved separately. After a number of 
iterations, the islands with the worst score are wiped and the best program 

from the islands with the best score are placed in the empty islands. Evolution 
then proceeds separately again until the next reset. This process is repeated 
until termination.



Extended Data Fig. 3 | Program clusters within islands. Within each island, 
programs are grouped into clusters based on their signature (i.e., their scores 
on several inputs). We first sample clusters, favoring the ones with higher 
score. Within the chosen clusters, we sample a program, favoring shorter 

programs. The sampled programs are used to prompt the LLM which generates 
a new program. If the new program is correct, it is added to the island, either in 
an existing cluster or a new one if its signature was not yet present.
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