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Targeted design of synthetic enhancers for 
selected tissues in the Drosophila embryo

Bernardo P. de Almeida1,2,5, Christoph Schaub3, Michaela Pagani1, Stefano Secchia3, 
Eileen E. M. Furlong3 & Alexander Stark1,4 ✉

Enhancers control gene expression and have crucial roles in development and 
homeostasis1–3. However, the targeted de novo design of enhancers with tissue- 
specific activities has remained challenging. Here we combine deep learning and 
transfer learning to design tissue-specific enhancers for five tissues in the Drosophila 
melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. 
We first train convolutional neural networks using genome-wide single-cell assay  
for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then 
fine-tune the convolutional neural networks with smaller-scale data from in vivo 
enhancer activity assays, yielding models with 13% to 76% positive predictive value 
according to cross-validation. We designed and experimentally assessed 40 synthetic 
enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned 
in the target tissue (100% for central nervous system and muscle). The strategy of 
combining genome-wide and small-scale functional datasets by transfer learning is 
generally applicable and should enable the design of tissue-, cell type- and cell 
state-specific enhancers in any system.

Enhancers are non-coding DNA elements that activate transcription 
from target promoters in a highly cell type-specific fashion1. Although 
the existence of enhancer activities within DNA sequences has been 
recognized since the early 1980s2, and hundreds of enhancers have been 
functionally characterized in model organisms such as flies4 and mice5, 
the precise encoding of regulatory activities within the DNA sequence 
has remained elusive. Specifically, although it is known that enhancer 
sequences contain binding sites for transcription factors, the specific 
arrangement of these sites and the potential role of additional sequence 
properties have remained unknown, hampering the prediction and the 
de novo design of enhancers with tissue-specific activities.

By utilizing genome-wide enhancer activity datasets in a model cell 
line, it is possible to train deep learning convolutional neural networks 
(CNNs) to predict enhancer activity and strength directly from the 
DNA sequence and to design synthetic enhancers de novo6. However, 
extending this achievement to in vivo systems has been challenging, 
presumably owing to the limited number of functionally characterized 
enhancers, which has remained relatively low, typically falling below 
a few hundred per tissue in flies4 and mice5. Such quantities have been 
considered insufficient for effectively training deep learning models.

A widely applicable approach to enhance prediction performance 
with limited data is through the utilization of transfer learning, which 
has been used successfully in various fields7, including cell biology8, net-
work biology9 and genomics10–13. Transfer learning involves pre-training 
models using large-scale datasets that share similarities with the target 
task, followed by target task-specific adjustment or fine-tuning on 
smaller datasets. Provided pre-training is carried out with datasets 
sufficiently similar to the target task, transfer learning yields improved 

prediction performance7. To predict enhancer activity from the DNA 
sequence, leveraging genome-wide datasets of enhancer-associated 
chromatin features as a steppingstone seems particularly promising 
(see, for example, refs. 3,11,13,14).

Single-cell assay for transposase-accessible chromatin with sequenc-
ing (scATAC-seq) datasets provide measurements of DNA accessibil-
ity at the single-cell level and thus allow the determination of cell 
type-specific accessibility profiles even within complex tissues com-
prising diverse cell populations15. Given the association of enhanc-
ers with accessible chromatin, we decided to use a combination of 
scATAC-seq datasets and results from in vivo enhancer activity assays 
to develop a deep learning model predictive of enhancer activity using 
transfer learning (Fig. 1a).

Specifically, we selected four prominent and distinct tissues within 
the 10- to 12-hour-old Drosophila melanogaster embryo, namely the 
central nervous system (CNS), epidermis, muscle and gut. In addition, 
we selected enhancers that were specifically active in the brain but not 
in the rest of the CNS, an enhancer–activity pattern that we considered 
particularly challenging given the shared cell types with the CNS and 
the relatively small number of functionally characterized brain-specific 
enhancers available for training.

We first trained single-task CNNs to map 1-kb-long DNA sequences 
tiled across the genome to the corresponding pseudo-bulk ATAC-seq 
signals based on our recently published scATAC-seq atlas of the Dros-
ophila embryo16 (sequence-to-accessibility models; Fig. 1a and Extended 
Data Fig. 1a). We used a tenfold chromosome hold-out cross-validation 
scheme to train and evaluate the predictive performance of the model. 
As expected on the basis of previous work6,17–20, these models performed 
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well with Pearson correlation coefficients (PCCs) between the pre-
dicted and experimentally measured ATAC-seq signals of approxi-
mately 0.73 for all tissues in all held-out test set chromosomes (range 
of PCCs: 0.72–0.75; Fig. 1a and Extended Data Fig. 1b,d). Moreover, 
using model-interpretation tools21–24 revealed known transcription 
factor motifs, such as GGGGT (Kr and Ttk) for CNS25, and motifs for Grh 
for epidermis26, GATA for gut27–29, Mef2, forkhead (Bin) and Twist for 
muscle30, and Zelda and Klu for brain31,32 (Extended Data Figs. 1e and 2, 
Supplementary Fig. 1 and Supplementary Table 1). Finally, the models 
also captured cell type-specific differences in accessibility, that is, 
sites that were preferentially accessible in specific tissues were also 
predicted to be accessible in these tissues (Extended Data Fig. 1c).

We next utilized functionally characterized enhancers from our previ-
ous work4,33 for transfer learning to build sequence-to-activity models. 
We framed the enhancer–activity prediction task as a binary classifica-
tion (active/inactive) as the in vivo enhancer–activity data are derived 
from annotated non-quantitative in situ hybridization assays4,33. We ini-
tialized CNNs to predict tissue-specific enhancer activities directly from 
the DNA sequence by the sequence-to-accessibility models trained on 
ATAC-seq data for the respective tissues (CNS, epidermis, gut, muscle 
and brain—see previous paragraph), and trained an enhancer prediction 
task until convergence (Fig. 1a; see Methods). We evaluated the models 
using cross-validation with left-out datasets containing active and 
inactive enhancers, with and without ATAC-seq signals. This revealed 
that the sequence-to-activity models obtained by transfer learning 

substantially improved the predictions for all five tissues as assessed 
by several performance measures compared to: (1) models directly 
trained on the in vivo enhancer activity data starting from random 
initialization; (2) models pre-trained on ATAC-seq data from a different 
tissue (salivary gland); and (3) the sequence-to-accessibility models 
without transfer learning (Fig. 1b and Extended Data Figs. 3 and 4). 
The transfer-learned models also outperformed the other models in 
correctly discriminating accessible regions with and without enhancer 
activity, and the improvement was particularly strong for muscle and 
brain, which had the fewest known enhancers for training (177 and 119, 
respectively) (Extended Data Fig. 5). The models also reliably discrimi-
nated additional positive and negative control enhancers, including 
the known enhancers in tissue-specific marker gene loci (Extended 
Data Fig. 6).

Moreover, and particularly relevant for enhancer design that can only 
test a very limited number of predictions in vivo, these models reached 
positive predictive values (PPVs) between 36% (brain) to 88% (CNS) at 
prediction thresholds that recovered at least 10 known enhancers dur-
ing cross-validation (or PPVs between 13% to 76% at ≥50 known enhanc-
ers; Fig. 1c), suggesting that it would not be unreasonable to attempt the 
de novo design of synthetic enhancers for these tissues. We therefore 
proceeded to design synthetic enhancers with defined tissue-specific 
activities de novo (Fig. 2a). Specifically, we created random sequences 
with a zero-order Markov model and selected 8 enhancers for each of 
the 5 tissues (40 enhancers total) that had high predicted accessibility 
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Fig. 1 | Deep learning-based design of tissue-specific synthetic enhancers. 
a, Overview of the deep and transfer learning strategy for predicting in vivo 
enhancer activity. First, a CNN is trained to predict quantitative DNA accessibility 
(pseudo-bulk scATAC-seq data) from the DNA sequence (sequence-to- 
accessibility model). Shown is a locus from the held-out test chromosome with 
observed and predicted values for CNS, with a PCC of 0.72. The first model is 
used to initialize a second model to classify DNA sequences on the basis of their 
activities in vivo in the respective tissue (sequence-to-activity model; shown is 
an enhancer active in CNS). This process is done separately for each tissue.  
b, Comparison of predicted DNA accessibility from the sequence-to-accessibility 

model and predicted enhancer activity (probability) from the sequence-to- 
activity model in the CNS for all sequences tested in vivo using tenfold cross- 
validation (blue, inactive; red, active). Density plots show the respective 
distributions. Area under the precision-recall curve (AUPRC) values are shown 
for both models. c, PPV of enhancer activity predictions at different thresholds. 
For each threshold (x axis, 0–1), the percentage of active sequences among  
all positive predictions is shown ( y axis). Solid lines indicate percentages 
calculated based on more than 50 positive sequences, and dashed lines represent 
less confident estimates based on smaller numbers.
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and activity scores specifically in the CNS, epidermis, gut, muscle or 
brain, focusing on distinct motif signatures when possible to remove 
potential redundancies (see Methods; Extended Data Figs. 7 and 8, 
Supplementary Fig. 2 and Supplementary Table 2).

We ordered the designed enhancer sequences, cloned them into a 
previously used reporter system that features a minimal hsp70 pro-
moter and lacZ reporter gene, and integrated the constructs into a 
consistent landing site in the Drosophila genome33 (see Methods for 
details on the reporter system and its properties). We then collected and 
fixed embryos and scored the enhancer activities of the candidates by 
two-colour fluorescent in situ hybridization, comparing lacZ reporter 
expression to the expression of the tissue-specific marker genes elav 
(CNS), wg (epidermis), GATAe (gut), Mef2 (muscle) and tll (brain). In 
addition to a qualitative visual assessment, we also quantitatively com-
pared the expression patterns by pixel-wise PCCs across the entire 
volumes of the acquired microscopy image z-stacks.

This revealed that eight out of eight CNS enhancers were active in the 
CNS; some of these had additional, mainly weak and sporadic, activity 
in the peripheral nervous system (Fig. 2, Extended Data Fig. 9a and Sup-
plementary Table 2). Similarly, seven out of eight epidermis enhancers 
and eight out of eight muscle enhancers functioned specifically in the 
epidermis and muscle, respectively (Fig. 2, Extended Data Fig. 9b,d and 
Supplementary Table 2). For both the gut and brain enhancers, two 
out of eight were active in the respective target tissue and had partial 

additional activities in other tissues such as the CNS, salivary gland 
or amnioserosa (Fig. 2, Extended Data Fig. 9c,e and Supplementary 
Table 2), in line with the expectations from cross-validation. These 
results from our qualitative visual assessment were confirmed by quan-
titative assessment of pattern similarities (Extended Data Fig. 10 and 
Supplementary Table 2). All patterns deemed correct by visual assess-
ment and three out of the four gut enhancer patterns that were deemed 
incorrect by visual assessment were significantly different from random 
and negative control patterns (t-test P value < 0.05; n = 4 embryos).

Notably, given the aim of this study to target broad tissue types that 
comprise distinct subtypes, not all of the enhancers that were active 
in the correct target tissue exhibited identical activity patterns. For 
example, the epidermis enhancers were active in segmental and/or 
pharyngeal parts of the epidermis, and a similar sub-pattern variabil-
ity within the correct overall tissue type was seen for CNS and muscle 
(Extended Data Fig. 9). Also notable are the different success rates 
for muscle (100%) and gut (25%), and the observation that several gut 
enhancers were active outside the gut in epidermis, sensory complexes 
and amnioserosa (Extended Data Fig. 9c and Supplementary Table 2). 
This probably stems from a more complex gut ‘enhancer grammar’ 
involving low-information GATA motifs (for example, in Fig. 2c and 
Extended Data Fig. 2d): the five GATA transcription factors in the fly are 
utilized rather broadly in endoderm and gut (Serpent and dGATAe34,35), 
but also in amnioserosa, dorsal epidermis, the heart (Pannier36,37) and 
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Fig. 2 | Validation of synthetic enhancers in vivo. a, In vivo enhancer activity 
of one active sequence per tissue, as an example (for all other active sequences, 
see Extended Data Fig. 9). For each sequence, one representative embryo is 
shown from the total 200–300 embryos stained with double RNA fluorescence 
in situ hybridization (FISH). Scale bar, 100 μm. Predicted enhancer activity 
score and percentile value for the respective tissue model are shown. Top row, 
lacZ intensity reflects enhancer activity. Bottom row, lacZ intensity (green) 

overlaid with an endogenous marker gene (pink) for the respective tissue: elav 
(CNS), wg (epidermis), GATAe (gut), Mef2 (muscle) and tll (brain). The total 
numbers of active sequences per tissue are shown. b, Nucleotide contribution 
scores for the synthetic enhancers in a derived from the enhancer activity 
models for the respective tissues using DeepExplainer22–24. Instances of 
transcription factor motifs known to be associated with the respective tissues 
and predicted to be important for the enhancer activity are highlighted.
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other tissues38—that is, the very tissues for which we observe ectopic 
gut enhancer activity. In this context, it is notable that the pattern simi-
larity (PCC) with the gut marker gene dGATAe is significantly above 
random for all but one of the gut enhancers deemed incorrect by visual 
assessment (and for all the correct ones), potentially indicating pattern 
overlap and/or relatedness of the tissues (Extended Data Figs. 9c and 
10b). After this proof of concept at the level of broad tissue types, it will 
be interesting to see the development of more fine-grained models that 
discriminate between closely related tissue subtypes and individual 
cell types, especially those that share prominent transcription factors 
(such as GATA factors in gut and other tissues).

Overall, our work demonstrates the feasibility of targeted design of 
synthetic enhancers for selected tissues by deep and transfer learning. 
The framework proposed here should be applicable to any species 
and tissue provided a genome-wide dataset of enhancer-associated 
features (for example, DNA accessibility, characteristic histone modi-
fications, transcription factor or cofactor binding and enhancer RNAs) 
and a reasonable number of functionally validated enhancers (in this 
study, more than 100 were used per tissue).

More traditional machine learning approaches have been used suc-
cessfully for the prediction of chromatin features, transcription factor 
binding and enhancer sequences4,39–42 and for predicting genomic 
elements with highly constrained cis-regulatory codes and limited 
architectures (for example, core promoter elements43 or highly defined 
enhancer motif contexts44). However, the challenge of flexible enhancer 
design has only become possible with deep learning6,45 (and ref. 46, 
which was published as a preprint while this manuscript was under 
review).

For the near future, we foresee great progress in deep and transfer 
learning approaches to the prediction and design of enhancers and 
other genomic regulatory elements. These will probably include the 
application of large multitask models trained simultaneously on many 
datasets comprising different tissues and cell types47. As predictive 
sequence features such as transcription factor motifs are often shared 
between tissues (for example, in Extended Data Fig. 2 and Supplemen-
tary Fig. 1), shared learning of large models might further improve 
model performance compared to the dedicated single-task models 
used here. Conversely, improved performance might come from the 
combination of many small, dedicated models such as the ones devel-
oped here, each specialized for one specific type of function or genomic 
element, into a larger overarching framework. Another likely improve-
ment for the specific task of enhancer design will be the move from 
computational screening of random sequences, which can only sample 
a very small part of the possible sequence space, to a more direct and 
efficient way to generate synthetic enhancer sequences, such as the use 
of generative adversarial networks48, variational autoencoders49,50 and 
diffusion models51 that can ‘hallucinate’ possible solutions.

Our work complements approaches to design enhancers in or via 
cell culture models6,46 or via the modelling of cell type-characteristic 
DNA accessibility patterns and their sequence signatures (topic model-
ling45) and ongoing efforts to predict gene expression47 and 3D genome 
architecture52,53 from extended DNA sequences. Models to predict 
endogenous gene expression must integrate the regulatory cues of 
multiple enhancers acting from different distances, consider distinct 
promoter types with enhancer–promoter compatibilities, and insu-
lator, silencer and tethering elements, together with the sequence 
determinants of RNA processing and stability. It will be interesting to 
see these models integrate lessons from enhancer-centric approaches 
to further develop and move towards designing entire synthetic gene 
loci with complex gene-expression patterns.

We envision that our work will synergize with ongoing efforts to 
build comprehensive ‘cell atlases’ for gene expression and DNA acces-
sibility in the fly, mouse and human, thus providing the opportunity 
to design enhancers for many, if not all, tissues in these organisms, 
potentially even for aberrant tissue or cell states. In conclusion, our 

work not only demonstrates the remarkable progress in enhancer 
design made possible by deep and transfer learning and the growing 
datasets on enhancers and chromatin, but also sets the stage for a future 
in which the precise design and manipulation of gene-expression pat-
terns become a reality.
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Methods

Processing of pseudo-bulk DNA accessibility data
We retrieved sci-ATAC-seq3 mapped reads (dm6) from each of the 18 tis-
sue pseudo-bulk (that is, mapped reads from all cells combined) at the 
10–12 h timepoint from ref. 16 (downloaded from https://shendure-web.
gs.washington.edu/content/members/DEAP_website/public/ on  
1 February 2022, BAM files available upon request; see also Extended 
Data Fig. 1a). We generated coverage tracks for each tissue pseudo bulks, 
including the five tissues of interest: CNS, brain, epidermis, midgut and 
muscle (initially modelled separately for the somatic muscle and vis-
ceral muscle pseudo bulks as these were annotated separately in the 
respective publication, we proceeded with only visceral as explained 
below). All read fragments from each pseudo-bulk were used for peak 
calling with MACS254,55 with the following command: macs2 callpeak 
--nomodel --keep-dup all --extsize 200 --shift −100 --gsize dm -B.

Deep learning sequence-to-accessibility models
Data preparation. We binned the dm6 genome (downloaded from  
https://hgdownload.soe.ucsc.edu/goldenPath/dm6/bigZips/dm6.fa.gz) 
into 1,001-bp windows with a stride of 50 bp, and filtered windows in the 
chromosomes chr2L, chr2R, chr3L, chr3R, chr4, chrX, chrY and chrM. 
For each window, we computed the log average of the depth-normalized 
ATAC coverage over the central 201 bp of the window. We combined 
the accessibility peaks of all scATAC-seq pseudo bulks and selected all 
bins whose central 151 bp were within any 301 bp-centred peak region. 
We further added 144,424 random windows throughout the genome 
with a range of accessibility levels to obtain a dataset with reasonable 
class imbalances while maintaining high diversity in negative exam-
ples. Finally, we only included windows with non-zero ATAC signals 
across every pseudo-bulk and removed the ones with outlier values 
(quantile <0.01 or >0.999 in any pseudo-bulk). We augmented our 
dataset by adding the reverse complement of each original sequence, 
with the same output, ending up with 464,203 examples (928,406 
post-augmentation).

Cross-validation scheme. We used a cross-validation scheme to have 
a more robust model performance. We divided the sequences into ten 
folds based on their chromosomal positions (considering chromosome 
halves; see Supplementary Table 3 for the specific folds used) and used 
a cross-validation setup where we use eight folds for training, one for 
validation, and one for testing. Each genomic window can serve as an 
example in a training, validation/tuning, or test set.

Model architecture and training. We used the previously optimized 
DeepSTARR CNN architecture for predicting genome-wide enhancer 
activity from DNA sequence with minor adaptations6. Using the Deep-
STARR architecture as a starting point, we performed hyperparameter 
grid-search to yield best performance on the DNA accessibility valida-
tion set of fold01 across the different tissues. The final CNN uses one-hot 
encoded 1,001 bp long DNA sequence (A = [1,0,0,0], C = [0,1,0,0], 
G = [0,0,1,0], T = [0,0,0,1]) to predict DNA accessibility signals. The 
CNN contains four 1D convolutional layers (filters = 256,120,60,60; 
size = 7,3,3,3; padding = same), each followed by batch normaliza-
tion, a ReLU non-linearity, and max-pooling (size = 3). After the con-
volutional layers there are two fully connected layers, with 64 and 
256 neurons, respectively, followed by batch normalization, a ReLU 
non-linearity, and dropout where the fraction is 0.4. The final layer 
is mapped to the accessibility signal output. Hyperparameters were 
manually adjusted to yield best performance on the validation set of 
one cross-validation fold. The models were implemented and trained 
in Keras (https://keras.io/) from TensorFlow v.1.14.0 (ref. 56) using 
the Adam optimizer57 (learning rate = 0.005), mean squared error as 
loss function, a batch size of 128, and early stopping with patience of  
five epochs.

To account for variance between different training runs and improve 
the accuracy and robustness of the models, we trained three replicate 
models on each held-out test fold (that is, 30 models for each pseudo 
bulks tissue). After analysing the variance in predictions, and remov-
ing the model runs that did not converge (PCC on the test set ≤ 0.1), we 
averaged the predictions of the replicate models per test set.

Model performance. The performance of each model was evaluated 
on the held-out test chromosomes of each fold. We used the PCC across 
all bins for a quantitative genome-wide evaluation.

Prediction on full Drosophila genome. We extracted 1,001 bp  
sequences tiled across the Drosophila dm6 genome (downloaded 
from https://hgdownload.soe.ucsc.edu/goldenPath/dm6/bigZips/
dm6.fa.gz) with a stride of 20 bp using bedtools makewindows  
(parameters -w 1001 -s 20’) and bedtools getfasta58. For each model, we 
next predicted the accessibility of each genomic window and averaged 
these per nucleotide to obtain genome-wide coverage.

Nucleotide contributions. We used DeepExplainer (the DeepSHAP 
implementation of DeepLIFT, see refs. 22–24 update from https://
github.com/AvantiShri/shap/blob/master/shap/explainers/deep/deep_ 
tf.py) to compute contribution scores for all nucleotides in all  
sequences with respect to the accessibility predictions. We used 100 
dinucleotide-shuffled versions of each input sequence as reference 
sequences. For each sequence, the obtained hypothetical impor-
tance scores were multiplied by the one-hot encoded matrix of the 
sequences to derive the final nucleotide contribution scores. We 
used one replicate model for each of the 10 folds of cross-validation 
and averaged the scores for each sequence in each cell type across 
all the 10 folds. The nucleotide contribution scores were visual-
ized using the ggseqlogo function from the R package ggseqlogo  
(v.0.124).

Motif discovery using TF-Modisco. To find important predictive  
motifs, we ran TF-Modisco (v.0.5.12.0 (ref. 21)) on the nucleotide contri-
bution scores of one model fold for each tissue type separately, using 
the respective accessible regions. We specified the following param-
eters: sliding_window_size=15, flank_size=5, max_seqlets_per_meta-
cluster=50000 and TfModiscoSeqletsToPatternsFactory(trim_to_
window_size=15, initial_flank_to_add=5, final_min_cluster_size=30). 
We trimmed the PWM motifs by removing flanking positions with an 
information content lower than 0.4. The TF-Modisco discovered motifs 
are detailed in Extended Data Fig. 2, the converted PWM logo and the 
closest match from the transcription factor motif database available at 
https://github.com/bernardo-de-almeida/motif-clustering6 (similarity 
assessed using TOMTOM59 with the following command: tomtom -dist 
kullback -motif-pseudo 0.1 -text -min-overlap 1).

Transcription factor motif analyses across tissues. For the tran-
scription factors that we could assign to the identified motifs, we 
retrieved their RNA in situ expression data at Drosophila embryogen-
esis stage 13–16 from the Berkeley Drosophila Genome Project (BDGP; 
https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl) and matched their tis-
sue annotation with the tissues used for the sequence-to-accessibility 
model (see Supplementary Fig. 1b for summary results across tis-
sues and Supplementary Table 1 for full annotation). In addition, we  
retrieved the transcription factors expression in matched single-cell 
RNA-seq clusters from the same publication where we retrieved the 
single-cell ATAC-seq data16. The cluster assignment was done through 
nonnegative least square matrix factorization (see respective pub-
lication for details and data; https://shendure-web.gs.washington.
edu/content/members/DEAP_website/public/). Transcription factor 
expression across tissues is displayed in Supplementary Fig. 1c and  
Supplementary Table 1.
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Deep learning sequence-to-activity models
Data preparation. We retrieved the in vivo enhancer activity data from 
the CAD4 database (available in supplementary table 13 in ref. 33), which 
also includes all enhancer activity data from the Vienna Tiles library 
(https://enhancers.starklab.org/). For each of the 5 tissues of interest 
(CNS, epidermis, gut, muscle, brain-specific), we defined sequences as 
active if they were active between stages 13 and 16 in any of the related 
tissue annotation terms. CNS: ventral nerve cord, neuroblast of ventral 
nerve cord primordium, embryonic brain, embryonic central brain, 
embryonic central brain glial cell, embryonic central brain neuron; 
epidermis: embryonic dorsal epidermis, embryonic ventral epider-
mis, embryonic head epidermis, lateral head epidermis, embryonic 
lateral epidermis, embryonic ventral trunk epidermis, ventral head 
epidermis, dorsal head epidermis, embryonic epidermis; gut: embry-
onic hindgut, embryonic midgut chamber, hindgut, embryonic/larval 
midgut, foregut, midgut interstitial cell; muscle: embryonic/larval 
somatic muscle, somatic muscle, embryonic somatic muscle, visceral 
muscle, embryonic/larval visceral muscle, circular visceral muscle 
fibre, longitudinal visceral muscle fibre, oesophageal visceral muscle, 
embryonic/larval muscle system, muscle system, dorsal pharyngeal 
muscle; brain-specific: embryonic brain, embryonic central brain, 
embryonic central brain glial cell, embryonic central brain neuron AND 
inactive in the VNC: ventral nerve cord, neuroblast of ventral nerve 
cord primordium. All the remaining sequences were considered inac-
tive for the respective tissues. For data augmentation, we tiled every 
sequence in 1,001 bp windows and added also the reverse complement 
of each original sequence, with the same output, ending up with 176,424 
examples (352,848 post-augmentation). Separately for each tissue, we 
further filtered for active sequences that overlap (minimum overlap of 
151 bp) accessibility peaks of the respective tissue to obtain a cleaner 
positive set. For negative fragments, we selected only at most five dif-
ferent sequences to keep reasonable class imbalances.

Cross-validation scheme. We used the same cross-validation folds for 
training, validation and testing from the accessibility models. Hence, 
for each fold, the test sets are completely held-out across both stages 
of training.

Model architecture and training. The architecture and weights learned 
in the first model of the respective tissue were used to initialize this 
second CNN model to classify DNA sequences based on their activity 
in vivo, an approach known as transfer learning. For muscle we initial-
ized the model with the visceral muscle accessibility model because it 
led to a slightly higher performance than initializing with the somatic 
muscle model (AUPRC of 0.14 vs. 0.12, respectively). We kept all layers  
trainable and changed the last layer to a sigmoid activation. The mod-
els were trained using the Adam optimizer57 (with smaller learning  
rate = 0.0001), binary cross-entropy as loss function, a batch size of 
128, and early stopping with patience of twenty epochs.

To account for variance between different training runs and improve 
the accuracy and robustness of the models, we trained three replicate 
models on each held-out test fold (that is, 30 models for each of the 
five tissues, total of 150 models). After analysing the variance in pre-
dictions, and removing the model runs that did not converge (area 
under the curve ≤ 0.7), we averaged the predictions of the replicate 
models per test set.

Model performance. We assessed the model performance of the mod-
els of each tissue only on the original, non-augmented Vienna Tiles 
data, to have a more unbiased set of active and inactive sequences. To 
have a confident set of positive sequences, we considered as active 
sequences only the accessibility peaks of the respective tissue that fall 
(minimum overlap of 201 bp) within tiles active in the respective tissue. 
As negative sequences we considered both the accessibility peaks that 

fall (minimum overlap of 201 bp) within tiles inactive in the respective 
tissue, as well as all other sequences in inactive tiles. We computed the 
predictions for each sequence using the respective cross-validation 
set where the sequence is held-out for testing. Using this set of active 
and inactive tiles per tissue, model performance was accessed using 
the AUPRC, accuracy, F1-scores (all calculated using confusionMatrix 
from R package caret v.6.0-90 (ref. 60)), and by estimating the positive 
predictive value (percentage of validated active sequences among all 
positive predictions) at different prediction thresholds.

We also evaluated the sequence-to-activity models for known 
tissue-specific enhancers in marker gene loci of each tissue (enhanc-
ers in our database present in ±50kb from the transcription start site): 
elav (CNS), grh (epidermis), GATAe (gut), Mef2 (muscle) and tll (brain) 
(Extended Data Fig. 6). There were no enhancers in epidermis wg locus, 
so we replaced it by the epidermis marker gene grh.

Comparison with different model initializations. For each of the five 
tissues, we compared the performance of the fine-tuned models with 
transfer learning with (1) models pre-trained on DNA accessibility of a 
different tissue (salivary gland, since it has very different profiles when 
compared with the five tissues of interest; see Extended Data Fig. 1a) and 
(2) models directly trained on the in vivo enhancer activity data starting 
from random initialization (no fine-tuning). Model architecture, train-
ing and cross-validation schemes, as well as performance evaluation 
were identical to the ones described above for the main model.

Nucleotide contributions. Same as described for the accessibility 
models above.

Computational design of Drosophila enhancers
Three billion random 501 bp DNA sequences were generated in bash 
with the following code: cat /dev/urandom | tr -dc ‘ACGT’ | fold -w 501 | 
head -n 3000000000 and flanked left and right with random 250 bp 
sequences to obtain 1,001 bp long sequences. We predicted these 
sequences’ activities and accessibilities with one replicate model per 
tissue (taking less than 10 min for 100,000 sequences per model on a 
single CPU) until we had ~15,000 sequences predicted to be specifically 
active and accessible in the five target tissues (CNS, epidermis, gut, mus-
cle, brain). From the top 3,000 candidates, we randomly sampled 100 
and computed the nucleotide contribution scores for visual inspection 
of motif content and arrangement, alongside the candidates’ predic-
tion scores. We made sure the predicted activity is independent of the 
±250 bp flanks by predicting the activity of each of the selected mid-
dle 501-bp sequences with 100 different ±251 bp flanks. Based on this 
combined information, we then manually selected eight candidates per 
tissue for testing in vivo (Supplementary Table 2). We searched the can-
didate synthetic enhancers against the Drosophila genome (taxid:7227) 
using Blastn via NIH NCBI Blast https://blast.ncbi.nlm.nih.gov/Blast.
cgi with default parameters, except for word size of 7 (smallest and 
thus most sensitive setting) and expectation value (E value) threshold 
of 10. Two candidates (active muscle_synth5 and inactive gut_synth9) 
had matches with E values of 0.032, which corresponds to 22/501 bp 
shared sequence; no other candidate had matches with E value ≤ 0.1.

Distribution of prediction scores in random sequences. We scored 
100,000 random 1,001 bp sequences with the sequence-to-activity 
transfer-learned models as well as activity models directly trained on 
the in vivo enhancer activity data starting from random initialization. 
We used the same replicate model of the random sequence selection 
above for each tissue. We calculated the percentiles of the final 40 syn-
thetic enhancers in the distributions of the two models in each tissue.

Final enhancer activity scores of the selected 40 candidates. 
To obtain the final expected enhancer activities (= final scores) for 
the selected 40 candidates, we placed the 501 bp sequences of each 
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candidate within the ±250 bp flanks of the actual reporter construct 
and scored the resultant 1-kb sequences with the transfer learning 
enhancer-to-activity models of each tissue. We used one replicate 
model for each of the ten folds of cross-validation and averaged the 
predictions across folds.

Nucleotide contributions. Same as described for the accessibility mod-
els above but using the 501 bp synthetic sequences flanked by the actual 
sequence of the plasmid where they were inserted for testing in vivo.

Cloning of synthetic Drosophila enhancers
The 501-bp synthetic sequences (designed above; Supplementary 
Table 2) were ordered from Twist Bioscience flanked by 20-bp linkers 
for Gibson assembly (5′, GAATTGGGAATTCGTTAACA; 3′, TGGTCTA 
GAGCCCGGGCGAA). Sequences were cloned upstream of a minimal 
hsp70 promoter driving a lacZ reporter gene in an attB-containing 
plasmid33, linearized with BglII using Gibson Assembly. Plasmids were 
verified by Sanger sequencing. 27 μg per plasmid (45 μl; 600 ng μl−1) 
were sent to BestGene for injection in Drosophila embryos (integra-
tion site: http://flybase.org/reports/FBst0024482.html) and positive 
transformants were selected. All constructs were injected into embryos 
according to standard methods and inserted into the attP landing site 
line M{3×P3-RFP.attP′}ZH-51C via PhiC31 integrase insertion, yielding 
integration at chromosomal position 51C1.

Such reporter systems provide an opportunity to measure enhancer 
activities and the enhancers’ spatio-temporal activity patterns in a con-
stant and controlled environment4,33,61. The hsp70 core promoter has 
been widely used for transgene expression and enhancer testing (for 
example, ref. 33) and functions highly similarly as other developmental 
promoters (for example, DSCP)62. While controlled reporter systems 
differ from endogenous gene regulation, we previously found that 82% 
of the enhancer–activity patterns reflect the enhancers’ endogenous 
activities4.

Embryo fixation for imaging
Embryos of the respective genotypes were washed off collection plates 
into a collection bottle with a mesh at the bottom using paintbrushes 
and water. Afterwards, the embryos were dechorionated for 2 min in 
50% bleach. Following dechorionation, embryos were washed exten-
sively with water and were collected eventually on the mesh of the 
collection bottle with 1x PBT (PBS, 0.1% Triton X-100). After drying the 
embryos on the mesh on a piece of tissue paper they were transferred 
into a 1.5-ml reaction tube with 1 volume fixation solution (4% (v/v) 
formaldehyde in PBS) and 1 volume heptane. Embryos were fixed for 
20 min on a horizontal shaker at 500 rpm. To devitellinize the embryos 
the fixation solution was aspirated and 1 volume methanol was added to 
the tube, followed by extensive shaking. The heptane phase and excess 
methanol were removed, leaving the devitellinized embryos at the 
bottom of the tube. Embryos were washed three times with methanol 
and stored in methanol or ethanol at −20 °C.

FISH in Drosophila embryos
Whole-mount Drosophila RNA in situ hybridization experiments 
were carried out as described previously63. Digoxigenin-labelled RNA 
anti-sense probes for elav, wg, GATAe, mef2 as well as tll were prepared 
from corresponding EST clones from the DGRC collections (Drosophila  
Genomics Resource Center (NIH Grant 2P40OD010949)) using the  
DIG labelling mix (Roche, 11175033910) and T3, T7 or SP6 RNA poly-
merase (Roche) according to the manufacturer’s instructions. 
Fluorescein-labelled RNA anti-sense probe for lacZ was prepared 
from a PCR fragment that has been amplified from a pGEMT easy 
plasmid containing the lacZ gene using the Fluorescein labelling mix 
(Roche, 11685619910) and T7 RNA polymerase (Roche) according to 
the manufacturer’s instructions. mRNA expression was visualized from 
these probes using anti-Digoxigenin-Peroxidase (Roche 11633716001) 

and anti-Fluorescein-Peroxidase (Roche 11426346910) (all antibod-
ies diluted 1:2,000) coupled with the TSA Plus Cyanine 3 (Akoya Bio-
sciences, NEL744001KT) and TSA Plus Fluorescein (Akoya Biosciences, 
NEL741001KT) kits.

Qualitative visual pattern assessment and imaging of 
representative FISH-stained embryos
Two-hundred to three-hundred double FISH-stained embryos with the 
respective genetic background were mounted in ProLong Gold mount-
ing medium with DAPI (ThermoFisher Scientific P36931) and scored 
individually for lacZ reporter expression in embryonic stage 13-14. If 
a synthetic enhancer-driven lacZ expression pattern was observed in 
all homozygous embryos in a reproducible manner, the enhancer was 
scored as active. For these, one representative homozygous embryo was 
selected and a z stack (1 μm step size, between 7–12 slices per embryo) 
was imaged on a Zeiss LSM 880 Airyscan Fast confocal microscope 
using a Plan Apochromat 20×/0.8 objective. For visualization of the 
enhancer-driven reporter expression in relation to the tissue-specific 
marker gene expression, a maximum projection of the z stack was per-
formed in Fiji64.

Quantification of tissue-specific enhancer activity in 
FISH-stained embryos
For the quantification of enhancer activity in the predicted tissue we 
analysed its reporter expression pattern in spatial relation to the respec-
tive tissue-specific marker expression and calculated a PCC. For this 
purpose, we imaged z-stacks (1 μm step size, between 7–12 slices per 
embryo) of 4 double FISH-stained embryos of the respective genotype 
with low-resolution (256 × 256 Pixel) on a Zeiss LSM 880 Airyscan Fast 
confocal microscope using a Plan Apochromat 20×/0.8 objective. Sub-
sequently, we calculated the PCC between the two channels with Fiji64 
utilizing the JACoP plugin65 with standard parameters. As controls we 
used either double FISH-stained embryos that showed no reporter 
expression or embryos double FISH-stained for the unrelated Myosin 
heavy chain (MHC, muscle) and cacophony (cac, CNS) genes.

Statistics and data visualization
All statistical calculations and graphical displays have been performed 
in R statistical computing environment (v.3.5.1 (ref. 66)) and using the 
R package ggplot2 (v.3.2.1 (ref. 67)). Coverage data tracks have been 
visualized in the UCSC Genome Browser68 and used to create displays 
of representative genomic loci. In all boxplots, the central line denotes 
the median, the box encompasses 25th to 75th percentile (interquartile 
range) and the whiskers extend to 1.5× interquartile range.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The transcription factor motif database is available at https://github.
com/bernardo-de-almeida/motif-clustering. The final pre-trained 
accessibility and enhancer activity models, as well as the data used to 
train and evaluate the models, are available at https://doi.org/10.5281/
zenodo.8011697. All reporter DNA constructs and transgenic flies for 
active synthetic enhancers are available from the Vienna Drosophila  
Resource Center (VDRC) at https://shop.vbc.ac.at/vdrc_store/vdrc-fly- 
stocks/other-resources/a-stark-stocks-as-stock.html.

Code availability
Code used to train the models and to make predictions on new sequences 
is available on GitHub (https://github.com/bernardo-de-almeida/ 
DeepSTARR_embryo). 
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Extended Data Fig. 1 | Learning the cis-regulatory code of Drosophila 
embryo tissues with deep learning. a) Top: Cartoon with Drosophila 
embryogenesis and respective stages and times, adapted from ref. 16. 
Reprinted with permission from AAAS. Bottom: UMAP visualization of 
cell-x-peak accessibility matrix of cells with inferred age between 10 and 12 h, 
colored and labeled by tissue annotation. Data from ref. 16. b) Performance  
of sequence-to-accessibility models for the selected pseudo-bulk tissues  
from (A). Scatter plots of predicted versus observed DNA accessibility signal  
(units of log depth-normalized coverage) across DNA sequences in the test  
set chromosomes (downsampled to 100,000 for easier visualization) for each 
tissue. Color reflects point density. PCC, Pearson correlation coefficient using 
all DNA sequences. c) Heatmaps of observed ATAC signal vs predicted ATAC 

signal across 20,000 sampled differentially accessible regions. The heatmap 
with observed values is clustered across regions (rows) and tissues (columns). 
The heatmap with predicted values has the same row and column orders but 
colored by the predicted values. d) Genome browser screenshot depicting 
observed and predicted ATAC profiles for the CNS (brown) and somatic muscle 
(purple) for a locus on the held-out test chromosome. Accessibility peaks for 
each tissue are shown below the observed signals. High-accessibility regions 
are highlighted with grey boxes (for example the well-known CNS enhancers 
upstream of the ftz gene). e) Nucleotide contribution scores for (top) a CNS and 
(bottom) a somatic muscle enhancer derived from the respective accessibility 
models. Instances of TF motifs known to be associated with the respective 
tissues and predicted to be important for the enhancer activity are highlighted.



Extended Data Fig. 2 | TF motifs predictive of DNA accessibility discovered 
by TF-Modisco. a-f) Motifs discovered by TF-Modisco21–24 by summarizing 
recurring predictive sequence patterns from the respective accessible regions 
of each pseudo-bulk tissue. Motifs are ranked by TF-Modisco predictive value 

and label by ID (motif number). Shown are the converted PWM logos of each 
motif, labeled with their closest database match (top: motif cluster (TF name,  
if available); bottom: PWM ID and TOMTOM q-value59). NA means no significant 
match, based on TOMTOM q-value. See Methods for more details.
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Extended Data Fig. 3 | Comparison of sequence-to-accessibility and 
sequence-to-activity models plus controls. a-e) Left: Comparison of 
predicted DNA accessibility [log2] and predicted enhancer activity [probability] 
in each tissue for all tested sequences in vivo (inactive in blue, active in red). 
Density plots show the respective distributions for both predictions for 
inactive and inactive sequences. Right: precision-recall curves for the 
sequence-to-accessibility and sequence-to-activity models on test data,  

plus two additional controls: models trained directly on the in vivo enhancer 
activity data starting from random initialization and models pre-trained on 
ATAC-seq data from an unrelated tissue (salivary gland). Respective areas 
under the precision-recall curve (AUC) are shown. Predictions for all models 
were computed for each sequence only using the respective cross-validation 
set where the sequence is held-out for testing.



Extended Data Fig. 4 | Metric evaluation of the different models. The 
performance of different models (x-axis) per tissue (column) was evaluated  
on test data with five different metrics: area under the precision-recall curve 
(AUPRC), F1-score, accuracy across all sequences, only among positive, or only 
among negative sequences. The models are the ones from Extended Data Fig. 3: 

the sequence-to-accessibility (DNA accessibility) and sequence-to-activity 
(transfer learning) models, plus control models trained directly on the in vivo 
enhancer activity data starting from random initialization or pre-trained on 
ATAC-seq data from an unrelated tissue.
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Extended Data Fig. 5 | Predictive value of DNA accessibility and enhancer- 
activity models for predicted accessible sequences. a-e) For each tissue, 
sequences in the test set were selected based on a predicted DNA accessibility 
value higher than 2.5 and scored with the different models (total number of 
selected sequences shown in panel title). Sequences inactive (blue) or active (red) 
in vivo are shown in boxplots in function of their scores by the DNA accessibility 
model, enhancer activity model starting from random initialization, and 

enhancer activity model using transfer learning. P-values from two-sided 
Wilcoxon rank-sum test are shown for each comparison between inactive and 
active sequences. Numbers of predicted accessible sequences used for 
statistics per tissue: CNS – 251, epidermis – 194, gut – 233, muscle – 274, brain- 
specific – 191. The boxplots mark the median, upper and lower quartiles and 
1.5× interquartile range (whiskers); outliers are shown individually.



Extended Data Fig. 6 | Model evaluation on positive and negative control 
sequences. Predicted enhancer activity scores by the sequence-to-activity 
transfer learning models for validated inactive sequences, all known active 
enhancers, and for known enhancers in the marker gene loci of the respective 
tissues. Gene loci (+/−50kb): elav (CNS), grh (epidermis), GATAe (gut),  

Mef2 (muscle) and tll (brain). P-values from two-sided Wilcoxon rank-sum test 
are shown for each comparison between inactive and active sequences per 
tissue. Number of sequences in each boxplot is shown in the respective x-axis. 
The boxplots mark the median, upper and lower quartiles and 1.5× interquartile 
range (whiskers); outliers are shown individually.
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Extended Data Fig. 7 | Nucleotide contribution scores of synthetic enhancers. 
a-c) Left: Predicted enhancer activity across the five tissues for the synthetic 
enhancers from Fig. 2a. Right: Nucleotide contribution scores for the synthetic 

enhancers from Fig. 2a derived from the enhancer activity models of the five 
tissues, using DeepExplainer22–24, with important TF motifs annotated.



Extended Data Fig. 8 | Nucleotide contribution scores of synthetic 
enhancers. a-b) Left: Predicted enhancer activity across the five tissues for the 
synthetic enhancers from Fig. 2a. Right: Nucleotide contribution scores for the 

synthetic enhancers from Fig. 2a derived from the enhancer activity models of 
the five tissues, using DeepExplainer22–24, with important TF motifs annotated.
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Extended Data Fig. 9 | All synthetic sequences experimentally tested as 
enhancers. A-E) Left panels show the lacZ intensity (green) as a marker for the 
enhancer activity pattern of the respective candidate sequence (labeled on  
the left). Right panels show the intensity of both the lacZ reporter gene driven 
by the synthetic sequence (green) and the corresponding endogenous marker 

gene (pink) for the respective tissue (elav (CNS), wg (epidermis), GATAe (gut), 
Mef2 (muscle) and tll (brain)). Synthetic enhancers are labeled as correct tissue 
expression, incorrect tissue expression and inactive. For each sequence, one 
representative embryo is shown from the total 200–300 double FISH-stained 
embryos. Scale bar, 100 μm. See Table S2 for more details.



Extended Data Fig. 10 | Predicted scores for synthetic sequences and 
quantitative validations. a) Predicted enhancer activity scores by the 
sequence-to-activity transfer learning models for candidate synthetic 
enhancers per tissue. Sequences are colored based on their validated in vivo 
activity: correct tissue expression, incorrect tissue expression and inactive.  
b) Quantitative validations for each candidate synthetic sequence per tissue. 
Pixel-wise Pearson Correlation Coefficient (PCC) between the marker genes 
and the synthetic enhancers calculated across the entire embryo volume are 
shown for 4 embryos per sequence (dots). Barplots represent the respective 
median value across the 4 embryos. For epidermis, gut, and brain, the PCCs 
between the marker genes and one inactive candidate per tissue (grey) are 

displayed. NA: PCCs not quantified for these inactive candidates. As an 
additional control, PCCs between two unrelated genes are shown (black; see 
Methods). Sequences are colored based on their validated in vivo activity: 
correct tissue expression, incorrect tissue expression and inactive. Same order 
of sequences as in (A). P-values from two-sided t-test between the PCCs of each 
sequence and the PCCs of two unrelated genes are shown for each sequence: 
**** p-value < 0.0001, *** <0.001, ** <0.01, * <0.05, n.s. non-significant. The  
two rectangles represent the interval of PCC values (between minimum  
and maximum) for the inactive (grey) and unrelated pattern (black) control 
sequences.
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