Article

Targeted design of synthetic enhancersfor
selected tissuesinthe Drosophila embryo

https://doi.org/10.1038/s41586-023-06905-9
Received: 19 June 2023

Accepted: 28 November 2023

Bernardo P. de Almeida"*%, Christoph Schaub?® Michaela Pagani’, Stefano Secchia®,
Eileen E. M. Furlong® & Alexander Stark"**>

Published online: 12 December 2023

Open access

M Check for updates

Enhancers control gene expression and have crucial roles in development and
homeostasis' 3. However, the targeted de novo design of enhancers with tissue-
specific activities has remained challenging. Here we combine deep learning and
transfer learning to design tissue-specific enhancers for five tissues in the Drosophila

melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain.
We first train convolutional neural networks using genome-wide single-cell assay

for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then
fine-tune the convolutional neural networks with smaller-scale data fromin vivo
enhancer activity assays, yielding models with 13% to 76% positive predictive value
accordingto cross-validation. We designed and experimentally assessed 40 synthetic
enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned
inthe target tissue (100% for central nervous system and muscle). The strategy of
combining genome-wide and small-scale functional datasets by transfer learning is
generally applicable and should enable the design of tissue-, cell type- and cell
state-specific enhancersin any system.

Enhancers are non-coding DNA elements that activate transcription
from target promotersinahighly cell type-specific fashion'. Although
the existence of enhancer activities within DNA sequences has been
recognized since the early1980s?, and hundreds of enhancers have been
functionally characterized in model organisms such as flies* and mice®,
the precise encoding of regulatory activities within the DNA sequence
hasremained elusive. Specifically, althoughitis known that enhancer
sequences containbindingsites for transcription factors, the specific
arrangement of these sites and the potential role of additional sequence
properties have remained unknown, hampering the prediction and the
de novo design of enhancers with tissue-specific activities.

By utilizing genome-wide enhancer activity datasets inamodel cell
line, itis possible to train deep learning convolutional neural networks
(CNNs) to predict enhancer activity and strength directly from the
DNA sequence and to design synthetic enhancers de novo®. However,
extending this achievement to in vivo systems has been challenging,
presumably owing to the limited number of functionally characterized
enhancers, which has remained relatively low, typically falling below
afewhundred per tissuein flies* and mice®. Such quantities have been
considered insufficient for effectively training deep learning models.

A widely applicable approach to enhance prediction performance
with limited datais through the utilization of transfer learning, which
hasbeen used successfully invarious fields’, including cell biology?®, net-
work biology? and genomics'® %, Transfer learning involves pre-training
models using large-scale datasets that share similarities with the target
task, followed by target task-specific adjustment or fine-tuning on
smaller datasets. Provided pre-training is carried out with datasets
sufficiently similar to the target task, transfer learning yields improved

prediction performance’. To predict enhancer activity from the DNA
sequence, leveraging genome-wide datasets of enhancer-associated
chromatin features as a steppingstone seems particularly promising
(see, for example, refs. 3,11,13,14).

Single-cell assay for transposase-accessible chromatin with sequenc-
ing (scATAC-seq) datasets provide measurements of DNA accessibil-
ity at the single-cell level and thus allow the determination of cell
type-specific accessibility profiles even within complex tissues com-
prising diverse cell populations®. Given the association of enhanc-
ers with accessible chromatin, we decided to use a combination of
scATAC-seq datasets and results fromin vivo enhancer activity assays
todevelop adeep learning model predictive of enhancer activity using
transfer learning (Fig. 1a).

Specifically, we selected four prominent and distinct tissues within
the 10- to 12-hour-old Drosophila melanogaster embryo, namely the
central nervous system (CNS), epidermis, muscle and gut. In addition,
we selected enhancers that were specifically active in the brain but not
intherestofthe CNS, an enhancer-activity patternthat we considered
particularly challenging given the shared cell types with the CNS and
therelatively small number of functionally characterized brain-specific
enhancers available for training.

We first trained single-task CNNs to map 1-kb-long DNA sequences
tiled across the genome to the corresponding pseudo-bulk ATAC-seq
signals based on our recently published scATAC-seq atlas of the Dros-
ophilaembryo (sequence-to-accessibilitymodels; Fig. 1aand Extended
DataFig.1a). We used atenfold chromosome hold-out cross-validation
schemeto trainand evaluate the predictive performance of the model.
Asexpected on the basis of previous work®”2, these models performed

'Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria. ?Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University
of Vienna, Vienna, Austria. *European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany. “Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.

SPresent address: InstaDeep, Paris, France. *e-mail: stark@starklab.org

Nature | Vol 626 | 1February 2024 | 207


https://doi.org/10.1038/s41586-023-06905-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06905-9&domain=pdf
mailto:stark@starklab.org

Article

DNA accessibility
(genome-wide)

a
fl
Input (1 kb) _—

) Learn the regulatory code
(complex)

Transfer learning
(start with pre-trained model)

Enhancer activity

PCC test set: 0.72 (CNS)

(subset of regions)

GAGTACAATAGTATGATGATACCTATCTTC

i
/\

»

»
=]

%ﬁ

e

(2) Refine the enhancer activity code
(simpler after having learned the regulatory code)

CNS

Gut

(1]

Epidermis

b Sequence-to-accessibility model
AUPRC: 0.4
CNS
1.00 Active in vivo "
No
g Yes %
= 0.75 o
3 £
g £%
c = O
2 050 85
G of
3 o>
B e<
E 0.25 “g’_
: 8
0

0 1 2 3
log,(predicted accessibility)

Muscle Brain-specific

. . ) . . — >50 positive
o 100 Active: 1,297 . Active: 734 Active: 471 Active: 177 Active: 119 sequences
2 Inactive: 5,415 88% ¢ Inactive: 5,523 7404 | Inactive: 5,425 Inactive: 6,080 Inactive: 4,778 ---. <50 positive
._;ﬁ:\s 75 76% 71%d¢ B sequences
5o 50 . 48% 38% o PPV based
] 41% . % on >10
zS 33% 6% . 36% §
27 254 _ W 13% )/ @ PPV based
& 0 | % on >50

0 02 04 06 08100 02 04 06 0.8 10 0 02 04 06

08100 02 04 06 08 1.0 0 02 0.4 0.6 0.8 1.0

Model prediction threshold

Fig.1|Deep learning-based design of tissue-specific synthetic enhancers.
a, Overview of the deep and transfer learning strategy for predictingin vivo
enhancer activity. First,a CNNis trained to predict quantitative DNA accessibility
(pseudo-bulk scATAC-seq data) from the DNA sequence (sequence-to-
accessibility model). Shownis alocus from the held-out test chromosome with
observed and predicted values for CNS, witha PCC of 0.72. The first model is
used toinitialize asecond model to classify DNA sequences on the basis of their
activitiesinvivointhe respective tissue (sequence-to-activity model; shownis
anenhancer activein CNS). This process is done separately for each tissue.

b, Comparison of predicted DNA accessibility from the sequence-to-accessibility

well with Pearson correlation coefficients (PCCs) between the pre-
dicted and experimentally measured ATAC-seq signals of approxi-
mately 0.73 for all tissues in all held-out test set chromosomes (range
of PCCs: 0.72-0.75; Fig. 1a and Extended Data Fig. 1b,d). Moreover,
using model-interpretation tools? % revealed known transcription
factor motifs, such as GGGGT (Kr and Ttk) for CNS, and motif's for Grh
for epidermis?, GATA for gut??°, Mef2, forkhead (Bin) and Twist for
muscle®®, and Zeldaand Klu for brain®** (Extended DataFigs.leand 2,
Supplementary Fig.1and Supplementary Table1). Finally, the models
also captured cell type-specific differences in accessibility, that is,
sites that were preferentially accessible in specific tissues were also
predicted to be accessible in these tissues (Extended Data Fig. 1c).
We next utilized functionally characterized enhancers fromour previ-
ouswork**for transfer learning to build sequence-to-activity models.
We framed the enhancer-activity prediction task as abinary classifica-
tion (active/inactive) as the in vivo enhancer-activity dataare derived
fromannotated non-quantitative in situ hybridization assays**. We ini-
tialized CNNsto predict tissue-specificenhancer activities directly from
the DNA sequence by the sequence-to-accessibility models trained on
ATAC-seq datafor therespective tissues (CNS, epidermis, gut, muscle
andbrain—see previous paragraph), and trained an enhancer prediction
task until convergence (Fig. 1a; see Methods). We evaluated the models
using cross-validation with left-out datasets containing active and
inactive enhancers, with and without ATAC-seq signals. This revealed
that the sequence-to-activity models obtained by transfer learning
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modeland predicted enhancer activity (probability) from the sequence-to-
activity modelin the CNS for all sequences tested in vivo using tenfold cross-
validation (blue, inactive; red, active). Density plots show the respective
distributions. Areaunder the precision-recall curve (AUPRC) values are shown
forboth models. ¢, PPV of enhancer activity predictions at different thresholds.
For eachthreshold (xaxis, 0-1), the percentage of active sequences among

all positive predictionsis shown (yaxis). Solid linesindicate percentages
calculated based on more than 50 positive sequences, and dashed lines represent
less confident estimates based on smaller numbers.

substantially improved the predictions for all five tissues as assessed
by several performance measures compared to: (1) models directly
trained on the in vivo enhancer activity data starting from random
initialization; (2) models pre-trained on ATAC-seq data from adifferent
tissue (salivary gland); and (3) the sequence-to-accessibility models
without transfer learning (Fig. 1b and Extended Data Figs. 3 and 4).
The transfer-learned models also outperformed the other models in
correctly discriminating accessible regions with and without enhancer
activity, and theimprovement was particularly strong for muscle and
brain, which had the fewest known enhancers for training (177 and 119,
respectively) (Extended DataFig. 5). The models also reliably discrimi-
nated additional positive and negative control enhancers, including
the known enhancers in tissue-specific marker gene loci (Extended
DataFig. 6).

Moreover, and particularly relevant for enhancer design that can only
testavery limited number of predictionsin vivo, these models reached
positive predictive values (PPVs) between 36% (brain) to 88% (CNS) at
prediction thresholds that recovered atleast 10 known enhancers dur-
ing cross-validation (or PPVs between13% to 76% at >50 known enhanc-
ers; Fig.1c), suggesting that it would not be unreasonable to attempt the
de novo design of synthetic enhancers for these tissues. We therefore
proceeded to design synthetic enhancers with defined tissue-specific
activities de novo (Fig. 2a). Specifically, we created random sequences
with azero-order Markov model and selected 8 enhancers for each of
the Stissues (40 enhancers total) that had high predicted accessibility
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Fig.2|Validation of syntheticenhancersinvivo. a, Invivoenhanceractivity
of oneactive sequence per tissue, as an example (for all other active sequences,
see Extended DataFig. 9). Foreachsequence, onerepresentative embryois
shown fromthe total200-300 embryos stained with double RNA fluorescence
insitu hybridization (FISH). Scale bar, 100 pm. Predicted enhancer activity
score and percentile value for the respective tissue model are shown. Top row,
lacZintensity reflects enhancer activity. Bottom row, lacZintensity (green)

and activity scores specifically in the CNS, epidermis, gut, muscle or
brain, focusing on distinct motif signatures when possible to remove
potential redundancies (see Methods; Extended Data Figs. 7 and 8,
Supplementary Fig. 2 and Supplementary Table 2).

We ordered the designed enhancer sequences, cloned theminto a
previously used reporter system that features a minimal hsp70 pro-
moter and lacZreporter gene, and integrated the constructsinto a
consistent landing site in the Drosophila genome* (see Methods for
detailsonthereportersystemandits properties). We then collected and
fixed embryos and scored the enhancer activities of the candidates by
two-colour fluorescentin situ hybridization, comparing lacZreporter
expression to the expression of the tissue-specific marker genes elav
(CNS), wg (epidermis), GATAe (gut), Mef2 (muscle) and ¢/l (brain). In
additionto a qualitative visual assessment, we also quantitatively com-
pared the expression patterns by pixel-wise PCCs across the entire
volumes of the acquired microscopy image z-stacks.

Thisrevealed that eight out of eight CNS enhancers were activein the
CNS; some of these had additional, mainly weak and sporadic, activity
inthe peripheral nervous system (Fig. 2, Extended Data Fig. 9a and Sup-
plementary Table 2). Similarly, seven out of eight epidermis enhancers
and eight out of eight muscle enhancers functioned specifically in the
epidermis and muscle, respectively (Fig.2, Extended DataFig. 9b,d and
Supplementary Table 2). For both the gut and brain enhancers, two
out of eight were active in the respective target tissue and had partial

overlaid withanendogenous marker gene (pink) for the respective tissue: elav
(CNS), wg (epidermis), GATAe (gut), Mef2 (muscle) and t!l (brain). The total
numbers of active sequences per tissue are shown. b, Nucleotide contribution
scores for the syntheticenhancersinaderived fromthe enhancer activity
models for the respective tissues using DeepExplainer?* 2, Instances of
transcription factor motifs known to be associated with therespective tissues
and predicted tobeimportant for the enhanceractivity are highlighted.

additional activities in other tissues such as the CNS, salivary gland
or amnioserosa (Fig. 2, Extended Data Fig. 9c,e and Supplementary
Table 2), in line with the expectations from cross-validation. These
results from our qualitative visual assessment were confirmed by quan-
titative assessment of pattern similarities (Extended Data Fig. 10 and
Supplementary Table 2). All patterns deemed correct by visual assess-
mentand three out of the four gut enhancer patterns that were deemed
incorrectby visual assessment were significantly different from random
and negative control patterns (¢-test Pvalue < 0.05; n =4 embryos).
Notably, given the aim of this study to target broad tissue types that
comprise distinct subtypes, not all of the enhancers that were active
in the correct target tissue exhibited identical activity patterns. For
example, the epidermis enhancers were active in segmental and/or
pharyngeal parts of the epidermis, and a similar sub-pattern variabil-
ity within the correct overall tissue type was seen for CNS and muscle
(Extended Data Fig. 9). Also notable are the different success rates
for muscle (100%) and gut (25%), and the observation that several gut
enhancerswere active outside the gutin epidermis, sensory complexes
and amnioserosa (Extended Data Fig. 9c and Supplementary Table 2).
This probably stems from a more complex gut ‘enhancer grammar’
involving low-information GATA motifs (for example, in Fig. 2c and
Extended DataFig.2d): the five GATA transcription factorsinthe fly are
utilized rather broadly inendodermand gut (Serpent and dGATAe>**),
butalsoinamnioserosa, dorsal epidermis, the heart (Pannier***) and
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other tissues**—that is, the very tissues for which we observe ectopic
gutenhancer activity. In this context, itisnotable that the pattern simi-
larity (PCC) with the gut marker gene dGATAe is significantly above
random for allbut one of the gut enhancers deemed incorrect by visual
assessment (and for all the correct ones), potentially indicating pattern
overlap and/or relatedness of the tissues (Extended Data Figs. 9c and
10b). After this proof of concept at the level of broad tissue types, it will
beinterestingto see the development of more fine-grained models that
discriminate between closely related tissue subtypes and individual
celltypes, especially those that share prominent transcription factors
(such as GATA factors in gut and other tissues).

Overall, our work demonstrates the feasibility of targeted design of
syntheticenhancers for selected tissues by deep and transfer learning.
The framework proposed here should be applicable to any species
and tissue provided a genome-wide dataset of enhancer-associated
features (for example, DNA accessibility, characteristic histone modi-
fications, transcription factor or cofactor binding and enhancer RNAs)
and areasonable number of functionally validated enhancers (in this
study, more than100 were used per tissue).

More traditional machine learning approaches have been used suc-
cessfully for the prediction of chromatin features, transcription factor
binding and enhancer sequences***? and for predicting genomic
elements with highly constrained cis-regulatory codes and limited
architectures (for example, core promoter elements* or highly defined
enhancer motif contexts**). However, the challenge of flexible enhancer
design has only become possible with deep learning®* (and ref. 46,
which was published as a preprint while this manuscript was under
review).

For the near future, we foresee great progress in deep and transfer
learning approaches to the prediction and design of enhancers and
other genomic regulatory elements. These will probably include the
application of large multitask models trained simultaneously on many
datasets comprising different tissues and cell types®. As predictive
sequence features such as transcription factor motifs are often shared
betweentissues (for example, in Extended DataFig.2 and Supplemen-
tary Fig. 1), shared learning of large models might further improve
model performance compared to the dedicated single-task models
used here. Conversely, improved performance might come from the
combination of many small, dedicated models such as the ones devel-
oped here, each specialized for one specific type of function or genomic
element, intoalarger overarching framework. Another likely improve-
ment for the specific task of enhancer design will be the move from
computational screening of random sequences, which canonly sample
avery small part of the possible sequence space, to amore direct and
efficient way to generate synthetic enhancer sequences, such asthe use
of generative adversarial networks*:, variational autoencoders**° and
diffusion models® that can ‘hallucinate’ possible solutions.

Our work complements approaches to design enhancers in or via
cell culture models®*¢ or via the modelling of cell type-characteristic
DNA accessibility patterns and their sequence signatures (topic model-
ling*) and ongoing efforts to predict gene expression* and 3D genome
architecture®®* from extended DNA sequences. Models to predict
endogenous gene expression must integrate the regulatory cues of
multiple enhancers acting from different distances, consider distinct
promoter types with enhancer-promoter compatibilities, and insu-
lator, silencer and tethering elements, together with the sequence
determinants of RNA processing and stability. It will be interesting to
see these modelsintegrate lessons from enhancer-centricapproaches
to further develop and move towards designing entire synthetic gene
loci with complex gene-expression patterns.

We envision that our work will synergize with ongoing efforts to
build comprehensive ‘cell atlases’ for gene expression and DNA acces-
sibility in the fly, mouse and human, thus providing the opportunity
to design enhancers for many, if not all, tissues in these organisms,
potentially even for aberrant tissue or cell states. In conclusion, our
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work not only demonstrates the remarkable progress in enhancer
design made possible by deep and transfer learning and the growing
datasets on enhancers and chromatin, but also sets the stage for afuture
inwhichthe precise design and manipulation of gene-expression pat-
terns become areality.
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Methods

Processing of pseudo-bulk DNA accessibility data

Weretrieved sci-ATAC-seq3 mapped reads (dmé6) from each of the 18 tis-
sue pseudo-bulk (thatis, mapped reads fromall cells combined) at the
10-12 htimepoint fromref. 16 (downloaded from https://shendure-web.
gs.washington.edu/content/members/DEAP_website/public/ on
1February 2022, BAM files available upon request; see also Extended
DataFig.1a). We generated coverage tracks for eachtissue pseudobulks,
including the five tissues of interest: CNS, brain, epidermis, midgut and
muscle (initially modelled separately for the somatic muscle and vis-
ceral muscle pseudo bulks as these were annotated separately in the
respective publication, we proceeded with only visceral as explained
below). Allread fragments from each pseudo-bulk were used for peak
calling with MACS2** with the following command: macs2 callpeak
--nomodel --keep-dup all --extsize 200 --shift -100 --gsize dm -B.

Deep learning sequence-to-accessibility models

Data preparation. We binned the dmé6 genome (downloaded from
https://hgdownload.soe.ucsc.edu/goldenPath/dmé/bigZips/dmé.fa.gz)
into1,001-bp windows with a stride of 50 bp, and filtered windows in the
chromosomes chr2L, chr2R, chr3L, chr3R, chr4, chrX, chrY and chrM.
Foreach window, we computed thelog average of the depth-normalized
ATAC coverage over the central 201 bp of the window. We combined
the accessibility peaks of all scATAC-seq pseudo bulks and selected all
bins whose central151 bp were within any 301 bp-centred peak region.
We further added 144,424 random windows throughout the genome
with arange of accessibility levels to obtain a dataset with reasonable
class imbalances while maintaining high diversity in negative exam-
ples. Finally, we only included windows with non-zero ATAC signals
across every pseudo-bulk and removed the ones with outlier values
(quantile <0.01 or >0.999 in any pseudo-bulk). We augmented our
dataset by adding the reverse complement of each original sequence,
with the same output, ending up with 464,203 examples (928,406
post-augmentation).

Cross-validation scheme. We used a cross-validation scheme to have
amorerobust model performance. We divided the sequencesintoten
foldsbased on their chromosomal positions (considering chromosome
halves; see Supplementary Table 3 for the specific folds used) and used
across-validation setup where we use eight folds for training, one for
validation, and one for testing. Each genomic window can serve as an
exampleinatraining, validation/tuning, or test set.

Model architecture and training. We used the previously optimized
DeepSTARR CNN architecture for predicting genome-wide enhancer
activity from DNA sequence with minor adaptations®. Using the Deep-
STARR architecture asastarting point, we performed hyperparameter
grid-search toyield best performance on the DNA accessibility valida-
tionset of foldO1across the different tissues. The final CNN uses one-hot
encoded 1,001 bp long DNA sequence (A=[1,0,0,0], C=1[0,1,0,0],
G=[0,0,1,0], T=[0,0,0,1]) to predict DNA accessibility signals. The
CNN contains four 1D convolutional layers (filters = 256,120,60,60;
size =7,3,3,3; padding = same), each followed by batch normaliza-
tion, a ReLU non-linearity, and max-pooling (size = 3). After the con-
volutional layers there are two fully connected layers, with 64 and
256 neurons, respectively, followed by batch normalization, a ReLU
non-linearity, and dropout where the fractionis 0.4. The final layer
is mapped to the accessibility signal output. Hyperparameters were
manually adjusted to yield best performance on the validation set of
one cross-validation fold. The models were implemented and trained
in Keras (https://keras.io/) from TensorFlow v.1.14.0 (ref. 56) using
the Adam optimizer* (learning rate = 0.005), mean squared error as
loss function, a batch size of 128, and early stopping with patience of
five epochs.

To account for variance between different training runs and improve
the accuracy and robustness of the models, we trained three replicate
models on each held-out test fold (that is, 30 models for each pseudo
bulks tissue). After analysing the variance in predictions, and remov-
ing the model runs that did not converge (PCC onthetestset < 0.1), we
averaged the predictions of the replicate models per test set.

Model performance. The performance of each model was evaluated
onthe held-out test chromosomes of each fold. We used the PCC across
all bins for a quantitative genome-wide evaluation.

Prediction on full Drosophila genome. We extracted 1,001 bp
sequences tiled across the Drosophila dmé genome (downloaded
from https://hgdownload.soe.ucsc.edu/goldenPath/dmé6/bigZips/
dmeé.fa.gz) with a stride of 20 bp using bedtools makewindows
(parameters-w1001-s20’) and bedtools getfasta®®. For each model, we
next predicted the accessibility of each genomic window and averaged
these per nucleotide to obtain genome-wide coverage.

Nucleotide contributions. We used DeepExplainer (the DeepSHAP
implementation of DeepLIFT, see refs. 22-24 update from https://
github.com/AvantiShri/shap/blob/master/shap/explainers/deep/deep_
tf.py) to compute contribution scores for all nucleotides in all
sequences with respect to the accessibility predictions. We used 100
dinucleotide-shuffled versions of each input sequence as reference
sequences. For each sequence, the obtained hypothetical impor-
tance scores were multiplied by the one-hot encoded matrix of the
sequences to derive the final nucleotide contribution scores. We
used one replicate model for each of the 10 folds of cross-validation
and averaged the scores for each sequence in each cell type across
all the 10 folds. The nucleotide contribution scores were visual-
ized using the ggseqlogo function from the R package ggseglogo
(v.0.124).

Motif discovery using TF-Modisco. To find important predictive
motifs, weran TF-Modisco (v.0.5.12.0 (ref. 21)) on the nucleotide contri-
bution scores of one model fold for each tissue type separately, using
the respective accessible regions. We specified the following param-
eters: sliding_window_size=15, flank_size=5, max_seqlets_per_meta-
cluster=50000 and TfModiscoSeqletsToPatternsFactory(trim_to_
window size=15, initial flank_to_add=5, final_min_cluster size=30).
We trimmed the PWM motifs by removing flanking positions with an
information content lower than 0.4. The TF-Modisco discovered motifs
aredetailed in Extended Data Fig. 2, the converted PWM logo and the
closest match fromthe transcription factor motif database available at
https://github.com/bernardo-de-almeida/motif-clustering® (similarity
assessed using TOMTOM?®® with the following command: tomtom -dist
kullback -motif-pseudo 0.1 -text -min-overlap 1).

Transcription factor motif analyses across tissues. For the tran-
scription factors that we could assign to the identified motifs, we
retrieved their RNA in situ expression data at Drosophila embryogen-
esis stage 13-16 from the Berkeley Drosophila Genome Project (BDGP;
https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl) and matched their tis-
sue annotation with the tissues used for the sequence-to-accessibility
model (see Supplementary Fig. 1b for summary results across tis-
sues and Supplementary Table 1 for full annotation). In addition, we
retrieved the transcription factors expression in matched single-cell
RNA-seq clusters from the same publication where we retrieved the
single-cell ATAC-seq data'®. The cluster assignment was done through
nonnegative least square matrix factorization (see respective pub-
lication for details and data; https://shendure-web.gs.washington.
edu/content/members/DEAP_website/public/). Transcription factor
expression across tissues is displayed in Supplementary Fig. 1c and
Supplementary Table1.
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Deep learning sequence-to-activity models

Data preparation. Weretrieved the in vivo enhancer activity datafrom
the CAD4 database (availablein supplementary table 13 in ref. 33), which
also includes all enhancer activity data from the Vienna Tiles library
(https://enhancers.starklab.org/). For each of the 5 tissues of interest
(CNS, epidermis, gut, muscle, brain-specific), we defined sequences as
activeifthey wereactive between stages13and16 inany of the related
tissue annotation terms. CNS: ventral nerve cord, neuroblast of ventral
nerve cord primordium, embryonic brain, embryonic central brain,
embryonic central brain glial cell, embryonic central brain neuron;
epidermis: embryonic dorsal epidermis, embryonic ventral epider-
mis, embryonic head epidermis, lateral head epidermis, embryonic
lateral epidermis, embryonic ventral trunk epidermis, ventral head
epidermis, dorsal head epidermis, embryonic epidermis; gut: embry-
onic hindgut, embryonic midgut chamber, hindgut, embryonic/larval
midgut, foregut, midgut interstitial cell; muscle: embryonic/larval
somatic muscle, somatic muscle, embryonic somatic muscle, visceral
muscle, embryonic/larval visceral muscle, circular visceral muscle
fibre, longitudinal visceral muscle fibre, oesophageal visceral muscle,
embryonic/larval muscle system, muscle system, dorsal pharyngeal
muscle; brain-specific: embryonic brain, embryonic central brain,
embryonic central brainglial cell, embryonic central brain neuron AND
inactive in the VNC: ventral nerve cord, neuroblast of ventral nerve
cord primordium. All the remaining sequences were considered inac-
tive for the respective tissues. For data augmentation, we tiled every
sequencein1,001 bpwindows and added also the reverse complement
of each original sequence, with the same output, ending up with 176,424
examples (352,848 post-augmentation). Separately for each tissue, we
further filtered for active sequences that overlap (minimum overlap of
151 bp) accessibility peaks of the respective tissue to obtain a cleaner
positive set. For negative fragments, we selected only at most five dif-
ferent sequences to keep reasonable class imbalances.

Cross-validation scheme. We used the same cross-validation folds for
training, validation and testing from the accessibility models. Hence,
for eachfold, the test sets are completely held-out across both stages
of training.

Model architecture and training. The architecture and weights learned
in the first model of the respective tissue were used to initialize this
second CNN model to classify DNA sequences based on their activity
invivo, an approach known as transfer learning. For muscle we initial-
ized the model with the visceral muscle accessibility model because it
led to aslightly higher performance thaninitializing with the somatic
muscle model (AUPRC of 0.14 vs. 0.12, respectively). We kept all layers
trainable and changed the last layer to a sigmoid activation. The mod-
els were trained using the Adam optimizer™ (with smaller learning
rate =0.0001), binary cross-entropy as loss function, a batch size of
128, and early stopping with patience of twenty epochs.

Toaccountfor variance between different training runs and improve
theaccuracy and robustness of the models, we trained threereplicate
models on each held-out test fold (that is, 30 models for each of the
five tissues, total of 150 models). After analysing the variance in pre-
dictions, and removing the model runs that did not converge (area
under the curve < 0.7), we averaged the predictions of the replicate
models per test set.

Model performance. We assessed the model performance of the mod-
els of each tissue only on the original, non-augmented Vienna Tiles
data, to have amore unbiased set of active and inactive sequences. To
have a confident set of positive sequences, we considered as active
sequences only the accessibility peaks of the respective tissue that fall
(minimum overlap of 201 bp) withintiles active in the respective tissue.
Asnegative sequences we considered both the accessibility peaks that

fall (minimum overlap of 201 bp) withinttiles inactive in the respective
tissue, as well as all other sequencesininactive tiles. We computed the
predictions for each sequence using the respective cross-validation
set where the sequence is held-out for testing. Using this set of active
and inactive tiles per tissue, model performance was accessed using
the AUPRC, accuracy, F1-scores (all calculated using confusionMatrix
fromR package caret v.6.0-90 (ref. 60)), and by estimating the positive
predictive value (percentage of validated active sequences among all
positive predictions) at different prediction thresholds.

We also evaluated the sequence-to-activity models for known
tissue-specific enhancers in marker gene loci of each tissue (enhanc-
ersinour database presentin+50kb fromthe transcription start site):
elav (CNS), grh (epidermis), GATAe (gut), Mef2 (muscle) and ¢/l (brain)
(Extended DataFig. 6). There were no enhancersinepidermis wglocus,
sowereplaced it by the epidermis marker gene grh.

Comparison with different model initializations. For each of the five
tissues, we compared the performance of the fine-tuned models with
transfer learning with (1) models pre-trained on DNA accessibility of a
differenttissue (salivary gland, sinceithas very different profileswhen
compared with the five tissues of interest; see Extended Data Fig.1a) and
(2) models directly trained on the invivo enhancer activity datastarting
fromrandominitialization (no fine-tuning). Model architecture, train-
ing and cross-validation schemes, as well as performance evaluation
were identical to the ones described above for the main model.

Nucleotide contributions. Same as described for the accessibility
models above.

Computational design of Drosophila enhancers

Three billion random 501 bp DNA sequences were generated in bash
with the following code: cat /dev/urandom | tr -dc ‘ACGT’ | fold -w 501 |
head -n3000000000 and flanked left and right with random 250 bp
sequences to obtain 1,001 bp long sequences. We predicted these
sequences’ activities and accessibilities with one replicate model per
tissue (taking less than 10 min for 100,000 sequences per model on a
single CPU) until we had -15,000 sequences predicted to be specifically
activeandaccessibleinthe five target tissues (CNS, epidermis, gut, mus-
cle, brain). Fromthe top 3,000 candidates, we randomly sampled 100
and computed the nucleotide contribution scores for visual inspection
of motif content and arrangement, alongside the candidates’ predic-
tionscores. We made sure the predicted activity isindependent of the
+250 bp flanks by predicting the activity of each of the selected mid-
dle 501-bp sequences with 100 different £251 bp flanks. Based on this
combinedinformation, we then manually selected eight candidates per
tissue for testing in vivo (Supplementary Table 2). We searched the can-
didate synthetic enhancers against the Drosophila genome (taxid:7227)
using Blastn via NIH NCBI Blast https://blast.ncbi.nlm.nih.gov/Blast.
cgi with default parameters, except for word size of 7 (smallest and
thus most sensitive setting) and expectation value (E value) threshold
of 10. Two candidates (active muscle_synth5 and inactive gut_synth9)
had matches with E values of 0.032, which corresponds to 22/501 bp
shared sequence; no other candidate had matches with E value <0.1.

Distribution of prediction scores in random sequences. We scored
100,000 random 1,001 bp sequences with the sequence-to-activity
transfer-learned models as well as activity models directly trained on
theinvivo enhancer activity data starting from randomiinitialization.
We used the same replicate model of the random sequence selection
abovefor eachtissue. We calculated the percentiles of the final 40 syn-
thetic enhancersinthe distributions of the two modelsin each tissue.

Final enhancer activity scores of the selected 40 candidates.
To obtain the final expected enhancer activities (= final scores) for
the selected 40 candidates, we placed the 501 bp sequences of each
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candidate within the £250 bp flanks of the actual reporter construct
and scored the resultant 1-kb sequences with the transfer learning
enhancer-to-activity models of each tissue. We used one replicate
model for each of the ten folds of cross-validation and averaged the
predictions across folds.

Nucleotide contributions. Same as described for the accessibility mod-
elsabove but using the 501 bp synthetic sequences flanked by the actual
sequence of the plasmid where they were inserted for testing in vivo.

Cloning of synthetic Drosophila enhancers

The 501-bp synthetic sequences (designed above; Supplementary
Table 2) were ordered from Twist Bioscience flanked by 20-bp linkers
for Gibson assembly (5/, GAATTGGGAATTCGTTAACA; 3, TGGTCTA
GAGCCCGGGCGAA). Sequences were cloned upstream of a minimal
hsp70 promoter driving a lacZ reporter gene in an attB-containing
plasmid™®, linearized with Bglll using Gibson Assembly. Plasmids were
verified by Sanger sequencing. 27 pg per plasmid (45 pl; 600 ng pl™)
were sent to BestGene for injection in Drosophila embryos (integra-
tion site: http://flybase.org/reports/FBst0024482.html) and positive
transformants were selected. All constructs were injected intoembryos
accordingto standard methods and inserted into the attP landing site
line M{3xP3-RFP.attP’}ZH-51C via PhiC31lintegrase insertion, yielding
integration at chromosomal position 51C1.

Suchreporter systems provide an opportunity to measure enhancer
activitiesand the enhancers’ spatio-temporal activity patternsina con-
stant and controlled environment**>¢!, The hsp70 core promoter has
been widely used for transgene expression and enhancer testing (for
example, ref. 33) and functions highly similarly as other developmental
promoters (for example, DSCP)®2. While controlled reporter systems
differ from endogenous gene regulation, we previously found that 82%
of the enhancer-activity patterns reflect the enhancers’ endogenous
activities®*.

Embryo fixation forimaging

Embryos of the respective genotypes were washed off collection plates
intoa collection bottle with amesh at the bottom using paintbrushes
and water. Afterwards, the embryos were dechorionated for 2 minin
50% bleach. Following dechorionation, embryos were washed exten-
sively with water and were collected eventually on the mesh of the
collectionbottle with1x PBT (PBS, 0.1% Triton X-100). After drying the
embryos onthe mesh on a piece of tissue paper they were transferred
into a 1.5-ml reaction tube with 1 volume fixation solution (4% (v/v)
formaldehyde in PBS) and 1 volume heptane. Embryos were fixed for
20 minonahorizontal shaker at 500 rpm. To devitellinize the embryos
thefixation solution was aspirated and 1volume methanol was added to
thetube, followed by extensive shaking. The heptane phase and excess
methanol were removed, leaving the devitellinized embryos at the
bottom of the tube. Embryos were washed three times with methanol
and stored in methanol or ethanol at -20 °C.

FISHin Drosophila embryos

Whole-mount Drosophila RNA in situ hybridization experiments
were carried out as described previously®. Digoxigenin-labelled RNA
anti-sense probes for elav, wg, GATAe, mef2 as well as tllwere prepared
from corresponding EST clones fromthe DGRC collections (Drosophila
Genomics Resource Center (NIH Grant 2P400D010949)) using the
DIG labelling mix (Roche, 11175033910) and T3, T7 or SP6 RNA poly-
merase (Roche) according to the manufacturer’s instructions.
Fluorescein-labelled RNA anti-sense probe for lacZ was prepared
from a PCR fragment that has been amplified from a pGEMT easy
plasmid containing the lacZ gene using the Fluorescein labelling mix
(Roche, 11685619910) and T7 RNA polymerase (Roche) according to
the manufacturer’sinstructions. mRNA expression was visualized from
these probes using anti-Digoxigenin-Peroxidase (Roche 11633716001)

and anti-Fluorescein-Peroxidase (Roche 1142634 6910) (all antibod-
ies diluted 1:2,000) coupled with the TSA Plus Cyanine 3 (Akoya Bio-
sciences, NEL744001KT) and TSA Plus Fluorescein (Akoya Biosciences,
NEL741001KT) kits.

Qualitative visual pattern assessment and imaging of
representative FISH-stained embryos

Two-hundred to three-hundred double FISH-stained embryos with the
respective genetic background were mounted in ProLong Gold mount-
ing medium with DAPI (ThermoFisher Scientific P36931) and scored
individually for lacZ reporter expression in embryonic stage 13-14. If
asynthetic enhancer-driven lacZ expression pattern was observed in
allhomozygous embryosinareproducible manner, the enhancer was
scored as active. For these, one representative homozygous embryo was
selected and azstack (1 um step size, between 7-12 slices per embryo)
was imaged on a Zeiss LSM 880 Airyscan Fast confocal microscope
using a Plan Apochromat 20x/0.8 objective. For visualization of the
enhancer-drivenreporter expressioninrelation to the tissue-specific
marker gene expression, amaximum projection of the zstack was per-
formed in Fiji®*.

Quantification of tissue-specific enhancer activity in
FISH-stained embryos

For the quantification of enhancer activity in the predicted tissue we
analysed itsreporter expression patterninspatial relation to the respec-
tive tissue-specific marker expression and calculated a PCC. For this
purpose, we imaged z-stacks (1 um step size, between 7-12 slices per
embryo) of 4 double FISH-stained embryos of the respective genotype
with low-resolution (256 x 256 Pixel) on a Zeiss LSM 880 Airyscan Fast
confocal microscope using a Plan Apochromat 20x/0.8 objective. Sub-
sequently, we calculated the PCC between the two channels with Fiji¢*
utilizing the JACoP plugin® with standard parameters. As controls we
used either double FISH-stained embryos that showed no reporter
expression or embryos double FISH-stained for the unrelated Myosin
heavy chain (MHC, muscle) and cacophony (cac, CNS) genes.

Statistics and data visualization

Allstatistical calculations and graphical displays have been performed
inRstatistical computing environment (v.3.5.1 (ref. 66)) and using the
R package ggplot2 (v.3.2.1 (ref. 67)). Coverage data tracks have been
visualized in the UCSC Genome Browser®® and used to create displays
of representative genomicloci. Inallboxplots, the central line denotes
the median, thebox encompasses 25thto 75th percentile (interquartile
range) and the whiskers extend to 1.5 interquartile range.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The transcription factor motif database is available at https://github.
com/bernardo-de-almeida/motif-clustering. The final pre-trained
accessibility and enhancer activity models, as well as the data used to
trainand evaluate the models, are available at https://doi.org/10.5281/
zen0do.8011697. All reporter DNA constructs and transgenic flies for
active synthetic enhancers are available from the Vienna Drosophila
Resource Center (VDRC) at https://shop.vbc.ac.at/vdrc_store/vdrc-fly-
stocks/other-resources/a-stark-stocks-as-stock.html.

Code availability

Codeusedtotrainthemodelsand to make predictionsonnewsequences
is available on GitHub (https://github.com/bernardo-de-almeida/
DeepSTARR_embryo).
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from (A).Scatter plots of predicted versus observed DNA accessibility signal
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tissue. Color reflects point density. PCC, Pearson correlation coefficient using
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Extended DataFig.2| TF motifs predictive of DNA accessibility discovered
by TF-Modisco. a-f) Motifs discovered by TF-Modisco? * by summarizing
recurring predictive sequence patterns from the respective accessible regions
of each pseudo-bulk tissue. Motifs are ranked by TF-Modisco predictive value
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plus two additional controls: models trained directly on the in vivo enhancer
activity datastarting from randomi initialization and models pre-trained on
ATAC-seqdatafromanunrelated tissue (salivary gland). Respective areas
under the precision-recall curve (AUC) are shown. Predictions for allmodels
were computed for each sequence only using the respective cross-validation
setwhere the sequenceis held-out for testing.
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Extended DataFig.10|Predicted scoresforsyntheticsequencesand
quantitative validations. a) Predicted enhancer activity scores by the
sequence-to-activity transfer learning models for candidate synthetic
enhancers pertissue.Sequences are colored based on their validated in vivo
activity: correcttissue expression, incorrect tissue expression and inactive.
b) Quantitative validations for each candidate synthetic sequence per tissue.
Pixel-wise Pearson Correlation Coefficient (PCC) between the marker genes
and the synthetic enhancers calculated across the entire embryo volume are
shown for 4 embryos per sequence (dots). Barplots represent the respective
medianvalueacrossthe 4 embryos. For epidermis, gut, and brain, the PCCs
between the marker genesand oneinactive candidate per tissue (grey) are

displayed. NA: PCCs not quantified for these inactive candidates. Asan
additional control, PCCs between two unrelated genes are shown (black; see
Methods). Sequences are colored based on their validated in vivo activity:
correcttissue expression, incorrect tissue expressionand inactive. Same order
ofsequences asin (A). P-values from two-sided t-test between the PCCs of each
sequence and the PCCs of two unrelated genes are shown for each sequence:
****p-value <0.0001, ***<0.001, **<0.01, *<0.05, n.s. non-significant. The
tworectanglesrepresent theinterval of PCC values (between minimum

and maximum) for theinactive (grey) and unrelated pattern (black) control
sequences.
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Policy information about availability of computer code

Data collection  NA

Data analysis Code used to train the models as well as to make predictions on new sequences will is available on GitHub (https://github.com/bernardo-de-
almeida/DeepSTARR_embryo).

Peak calling: MASC2
Extracting DNA sequences of genomic windows across the genome: bedtools version 2.27.1.

Deep learning models were implemented and trained in Keras (v.2.2.4) (with TensorFlow v.1.14.0) using the Adam optimizer. DeepExplainer
(the DeepSHAP implementation of DeepLIFT; update from version in https://github.com/AvantiShri/shap/blob/master/shap/explainers/deep/
deep_tf.py) was used to compute contribution scores. TF-Modisco (v.0.5.12.0) used the contribution scores to derive TF motifs.

Sequence alignment was done using Blastn via NIH NCBI Blast https://blast.nchi.nlm.nih.gov/Blast.cgi.
Coverage data tracks have been visualized in the UCSC Genome Browser https://genome.ucsc.edu/.

All statistical calculations and graphical displays have been performed in R statistical computing environment (v.3.5.1) and using the R package
ggplot2 (v.3.2.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Drosophila embryo scATAC-seq data used in this study is publicly available at https://shendure-web.gs.washington.edu/content/members/DEAP_website/
public/. We retrieved sci-ATAC-seq3 mapped reads (dm6) from each of the 18 tissue pseudo-bulk (i.e. mapped reads from all cells combined) at the 10-12 hours
timepoint from ref. (12) (downloaded from https://shendure-web.gs.washington.edu/content/members/DEAP_website/public/ on Feb. 1st 2022, BAM files
available upon request). The Drosophila dm6 genomic sequence was downloaded as a fasta file from https://hgdownload.soe.ucsc.edu/goldenPath/dmé/bigZips/
dmé.fa.gz. The TF motif database is available at https://github.com/bernardo-de-almeida/motif-clustering. TF expression data was retrieved from BDGP (RNA in situ;
https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl) and https://shendure-web.gs.washington.edu/content/members/DEAP_website/public/ (single-cell RNA-seq). The
enhancer activity data from the Vienna Tiles library is available at https://enhancers.starklab.org/, and the enhancer activity database CAD4 is available from REF
PMID: 29539636 (Table S13). The final pre-trained accessibility and enhancer activity models, as well as the data used to train and evaluate the models, can be
found on zenodo at https://doi.org/10.5281/zen0do0.8011697.
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Reporting on sex and gender This study did not involve human participants.

Reporting on race, ethnicity, or NA
other socially relevant

groupings

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size is not relevant for the machine learning models presented in this work. For imaging of FISH-stained embryos, 200-300 of FISH
stained embryos with the respective genetic background were used, of which representative images were chosen. This number of embryos is
sufficient to analyze the consistency of the enhancer activity pattern.

Data exclusions  No data was excluded.

Replication The deep learning models were replicated through 10-fold cross-validation to asses their performance, with similar results. For imaging of the
activity of synthetic enhancers, 200-300 of FISH-stained embryos with the respective genetic background were used and the activity pattern
was consistent across them.

Randomization  Not relevant because the samples were not grouped.

Blinding Researchers were not blind to the identity of the genetic backgrounds of the embryos. For the remaining analyses, it is not relevant because
the samples were not grouped.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Plants
Antibodies
Antibodies used Anti-Digoxigenin-Peroxidase, Roche #11633716001
Anti-Fluorescein-Peroxidase, Roche #11426346910
Validation Commercial antibodies validated in a previous paper (Schor et al, Current Biology 2018).

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Drosophila embryos from FlyC31 strains (genotype M{3xP3-RFP.attP'}ZH-51C) were collected at BestGene Inc. and imaged at in
embryonic stage 13-14.

Wild animals No wild animals were used
Reporting on sex Mixed male and female
Field-collected samples  No filed-collected samples were used

Ethics oversight No approval required

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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