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The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for
spatial navigation and episodic memory, operations that require neural activity to

be organized across long durations of experience'. Whereas location is known to be
encoded by spatially tuned cell types in this brain region??, little is known about how
the activity of entorhinal cells is tied together over time at behaviourally relevant time
scales, in the second-to-minute regime. Here we show that MEC neuronal activity has
the capacity to be organized into ultraslow oscillations, with periods ranging from
tens of seconds to minutes. During these oscillations, the activity is further organized
into periodic sequences. Oscillatory sequences manifested while mice ran at free pace

onarotating wheel in darkness, with no change inlocation or running direction and
noscheduled rewards. The sequences involved nearly the entire cell population,
and transcended epochs of immobility. Similar sequences were not observed in
neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequencesin
MEC may have the potential to couple neurons and circuits across extended time
scales and serve as atemplate for new sequence formation during navigation and
episodic memory formation.

Brain function emerges from the dynamic coordination of intercon-
nected neurons*”. At sub-second time scales, cells are coordinated
within and across brain regions by way of neuronal oscillations®. Studies
havealso reported oscillations at slower time scales, with frequencies
lower than 0.1 Hz and periods lasting from tens of seconds to minutes
(ultraslow oscillations), inindividual neurons® *and inlocal field poten-
tials> ™. However, it remains unknown how pervasive these ultraslow
oscillations are. Moreover, it remains to be determined whether and
how they organize the activity of participating neurons in space and
time across the neural circuit.

Wedirected our search for ultraslow oscillations to the MEC, abrain
circuit that by containing many of the elements involved in naviga-
tional behaviour' and episodic memory formation""*, may possess
mechanisms to organize neural activity at behavioural time scales,
from seconds to minutes. Activity was recorded from hundreds of
MEC cells at the same time using either two-photon calcium imaging
or Neuropixels probes (Extended Data Fig.1). Torule out variationsin
external stimuli as sources of modulation, we allowed head-fixed mice
to run on a rotating wheel for 30 or 60 min, in darkness and with no
scheduled rewards'®" (Fig. 1a and Extended Data Fig. 2a).

Ultraslow oscillations in MEC neurons

To determine whether neural activity in MEC exhibits ultraslow oscil-
lations, for each recorded cell we deconvolved the calcium signal and

binarized the obtained signal (‘calcium activity’, bin size =129 ms). For
each cell, we then calculated the autocorrelation of the calcium activity
and the corresponding power spectral density (PSD). Autocorrelation
diagrams for stacks of cells from the same session showed vertical
bands (Fig. 1b), suggesting that the calcium activity of many cells was
oscillatory and oscillated at similar frequencies. Some cells had only
one prominent peak in their PSD (Fig. 1c), suggesting that they were
active atafixed frequency. Other cells had several peaks, often with the
higher frequencies appearing as harmonics of afundamental frequency
(Fig.1d). Inthe example session in Fig. 1b, for most of the cells (72%,
348 out of 484) the frequency at which the PSD peaked (the ‘primary
frequency’) was lower than 0.01 Hz (44% of the cells had a primary fre-
quency withinthe range 0.006-0.008 Hz), and there were no cellswhose
PSD peaked at frequencies higher than 0.1 Hz. Inthe complete dataset
(15sessions over 5mice), the oscillations were detectable in the major-
ity oftherecorded neurons (91%, 5,691 out of 6,231) but not in shuffled
versions of the same data (Extended Data Fig. 3 and Methods). Although
there was some variation in frequencies across sessions and mice, the
primary frequency was always below 0.1 Hz (all oscillatory 5,691 cells;
range of maximum frequencies across 15 sessions: 0.036-0.057 Hz).

To verify that the ultraslow oscillations manifestin spiking activity, we
implanted two mice with Neuropixels 2.0 probesin the MEC (Extended
Data Fig. 1d). Similar to the calcium imaging data, we observed oscil-
lations at frequencies lower than 0.1 Hz in the majority of the units
(78%, 683 out of 879 units, bin size =120 ms; Fig. 1e,f).
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Fig.1|Ultraslow oscillationsin MEC neurons. a, Neural activity was recorded
through a prism from GCaMP6m-expressing neurons of the MEC in head-fixed
mice running indarkness on anon-motorized wheel. Cartoon ofarunning
mouseon therightcreated with BioRender.com.b, Stacked z-scored
autocorrelations of single-cell calcium activity for one example session (484
neurons), plotted as afunction of time lag. Neurons are sorted according to the
maximum power of the PSD calculated on each autocorrelation separately, in
descendingorder.c, PSD (left) calculated on the autocorrelation (right) of one
example cell’s calcium activity. The dashed red line indicates the frequency at
which the PSD peaks (0.0066 Hz).d, Asin cbut for another example cell. The
PSD peaks at 0.0066 Hz and has harmonics at 0.0132,0.0207 and 0.0273 Hz.
e,f,Asinc,dbut for two example cellsrecorded using Neuropixels probes. The
PSDs peakat 0.016 Hz (e) and 0.015 Hz (f).

Oscillatory sequences in MEC activity

To determine whether the ultraslow oscillations of different cells are
coordinated at the neural population level, we first calculated, for the
calciumimaging data, instantaneous correlations between the calcium
activity of all pairs of cells. The cell pair with the highest correlation
value was identified and one of the two cells was defined as the ‘seed’
cell. The remaining cells were sorted based on their correlation value
withtheseed cell,inadescending manner. Using this sorting procedure,
we observed periodic sequences of neuronal activation (Fig. 2a and
Extended Data Fig. 4a). The sequences unfolded successively with no
interruption for tens of minutes (Fig. 2a). Because sequences of activity
constitute low-dimensional dynamics, we also sorted the cells using
dimensionality reduction methods, which do not depend on hyperpa-
rameters. For eachrecording session, we applied principal component
analysis (PCA) to the matrix of calciumactivity and measured, for each
cell, the angle of the vector defined by the pair of loadings on principal
components1and 2, and sorted the neurons based on these angles
in a descending manner (Extended Data Fig. 4b). This sorting (‘(PCA
method’) revealed the same stereotyped periodic sequences of neu-
ronal activation, which we hereafter refer to as oscillatory sequences;
however, the sequential organization was now more salient (Fig. 2b and
Extended Data Fig. 5a). When projecting the population activity onto
atwo-dimensional embedding, the manifold resembled aring (Fig.2c
and Extended Data Fig. 4c). The instantaneous population activity
was estimated from the position on the ring (‘phase of the oscillation’,
Fig. 2d). The oscillatory sequences were not evident if cells were not
sorted, nor if the PCA method was applied to shuffled data (Extended
Data Fig. 4d). The sequences were similarly apparent when neurons

were sorted according to non-linear dimensionality reduction tech-
niques (Extended DataFig.4d), as well as when the neurons were sorted
using subsets of data (Extended Data Fig. 4e and Methods), and when
the neurons’ calcium activity was visualized using the unprocessed
calcium signals (Fig. 2e).

We also observed ultraslow oscillatory sequences in the data from
two mice with Neuropixels probes (469 and 410 units, respectively),
indicating that our findings do not reflect factors unique to calcium
imaging (Fig. 2f and Extended Data Fig. 4f,g). Some of the Neuropixels
sequences were noisier than those of the calciumimaging data, possibly
reflectingabroader mix of cell types located more ventrally and across
several celllayers (Extended Data Fig.1d). To maximize the number of
cells recorded in layer I, and to minimize variability, we focused on
calciumimaging data for the rest of the study.

Although striking oscillatory sequences were observed across mul-
tiple sessions and mice, the population activity exhibited considerable
variability (Extended Data Figs. 4f,g and 5a-c). To capture this vari-
ability, we calculated an oscillation score that ranged from O (no oscil-
lations) to1(oscillations throughout the session). The distribution of
scoresinthe calciumimaging data was bimodal (Extended Data Fig. 5d),
with oscillatory sequences showing up in 15 sessions (Extended Data
Fig.5a). All Neuropixels sessions were classified as oscillatory (Fig. 2f
and Extended Data Fig. 4f,g). For each oscillatory session, we identi-
fied all sequences (Extended Data Fig. 6a-c) and found that sequence
durations ranged from tens of seconds to minutes (Fig. 2g), with high
variability across sessions and mice but little variability within indi-
vidual sessions (Extended Data Fig. 6d-g). Inter-sequence intervals
(ISI) were similarly present at different lengths, ranging from O swhen
sequences were consecutive (279 out of 406 ISIs (69%)) to amaximum
of 452 s (Fig. 2h and Extended Data Fig. 6h,i).

MEC neurons are locked to the sequences

To determine the extent to which calciumactivity was tuned to the oscil-
latory sequences, we computed for each neuron its degree of locking
to the phase of the oscillation, which ranged from 0 (no locking) to 1
(perfectlocking).Significant locking degrees were observed for the vast
majority of therecorded cells (Fig. 3a, left; 458 out of 484 significantly
locked neurons (95%)). Results were upheld with the mutual informa-
tion between calcium events and phase of the oscillation (Fig. 3a, right
and Extended DataFig. 7a). The predominance of phase-locked neurons
was observed in all 15 oscillatory sessions (Fig. 3b, 5,841 out of 6,231
locked neurons (93.7%)). Each locked neuron exhibited a preference
foractivity within anarrow range of phases of the oscillation (‘preferred
phase’, Fig. 3c and Extended Data Fig. 7b-e). Although sequences were
still observed if high phase locking neurons were excluded, suggesting
that sequencesrecruit widespread networks, the more cells that were
excluded the more difficult it was to observe the sequences, indicat-
ing that the dynamics manifests more clearly at the neural population
level (Extended DataFig. 7f). Because the oscillatory sequencesinvolve
the vast majority of neurons recorded in MEC, and multiple cell types
canbe recorded within fields of view (FOV) of comparable size'®*, the
sequences most probably include a mixture of functional cell types
such as grid and head-direction cells, with grid cells spanning more
than one module.

Not all neurons participated in each individual sequence. We quan-
tified the degree to which cells skipped sequences through a partici-
pation index (Extended Data Fig. 7g). Participation index variability
was observed both within and across oscillatory sessions (Fig. 3d and
Extended Data Fig. 7h).

MEC sequences are not travelling waves

We next explored whether the oscillatory sequences in MEC could have
features of travelling waves, in which the population activity moves
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Fig.2|Ultraslow oscillations are organized into oscillatory sequences.

a, Raster plot of calcium activity of all cellsrecorded in the example session
showninFig.1b (binsize =129 ms, n =484 cells). Time bins with calcium events
areindicated with black dots; those without calcium events are indicated with
whitedots. Cellswere sorted accordingto their correlation values with one
arbitrary cell,inadescending manner. The example sequenceindicated inred
is121slong.b,Asinabut now with neuronssorted accordingto the PCA
method. ¢, Projection of neural activity of the sessionina,b onto the first two
principal components of PCA (left), and the first two dimensions of a Laplacian
eigenmaps (LEM) analysis (right). Timeis colour coded. One sequenceis
equivalenttoonerotationalongthe ring-shaped manifold. d, Raster plot asin

progressively across anatomical space?*?. First, we found that cells
with similar and dissimilar preferred phases were anatomically inter-
mingled (Fig. 3e, Extended Data Fig. 8a and Supplementary Video 1),
suggesting the absence of travelling waves with a constant direction
inthe propagation of activity across sequences. We next investigated
the presence of travelling wavesinindividual sequences by calculating
the preferred phase of each cell in the sequence and correlating, for
allcell pairs, their difference in preferred phases with their anatomical
distance (Fig. 3f). Across sequences, the correlation values were very
small, ranging from -0.068 to 0.147, and below the level of statistical
significance (Fig.3g, 421 sequences across 15 oscillatory sessions over
Smice), suggesting alack of topographical organization (see comple-
mentary analyses in Extended Data Fig. 8b,c and Methods). In agree-
mentwiththe proposed absence of travelling waves, we observed that
during a single sequence, the neural activity spread across the entire
FOV, and that the distance traversed by the centre of mass was similar
in experimental and shuffled data (Extended Data Fig. 8d-f).

Sequential activation of ensembles

To quantify the sequential activation of neural activity in the popu-
lation, and to average out single-cell variability, we next studied
ensembles of co-active cells (Extended Data Fig. 9a,b). We assigned
neurons to a total of 10 ensembles, based on their proximity in the
sorting obtained through the PCA method (Extended Data Fig.9c) and
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b. The phase of the oscillation, overlaid inred, was used to track the position of
the populationactivity onthesequence.e,Asinb, but showing the z-scored
fluorescence calcium signals. f, Raster plot of binarized spiking activity of
allunitsrecorded in one example session using Neuropixels probes (bin

size =120 ms, n =469 units). Neurons are sorted according to the PCA method.
g, Distribution of sequence durations across 15 oscillatory sessions over 5 mice
(imaging dataonly; one mouse did not have detectable sequences; 421
sequencesintotal). Each countisonesequence. h, Distribution of ISI (406 ISIs
intotal across15 oscillatory sessions). Each countis anISI. During periodic
sequencesthelSlis 0. Note thattheyaxishasalogscale.

then calculated the probability by which activity transitioned between
ensembles across adjacent time bins (Extended Data Fig. 9d-f), with
probabilities displayed in a transition matrix (Extended Data Fig. 9g).
Transitions occurred mostly between adjacent ensembles and with a
preferred directionality (Extended Data Fig. 9g,h). In the oscillatory
sessions the sequential activation of three or more ensembles was 2.3
times more likely inthe recorded datathaninshuffled data (Extended
DataFig.9i). The probability of observing sequential activation of three
or more ensembles (‘sequence score’) was significant in 100% of the
oscillatory sessions (15 out of 15). Significant sequential activity was
demonstrated also in 41% of the non-oscillatory sessions (5 out of 12,
Extended Data Fig. 9j).

Sequences do not map position

Fast oscillations and single-cell firing in the entorhinal-hippocampal
system can be modulated by a number of movement-associated
parameters, such as position and running state**>**?*, We next investi-
gated whether similar dependencies are present for the minute-scale
oscillatory sequences (Fig. 4a). We first calculated the probability of
observing the oscillatory sequences given that the mouse was either
running (mouse moves along the wheel) orimmobile (position on the
wheel remains unchanged) (Extended Data Fig. 2a). The oscillatory
sequences were predominant during running bouts, but they were also
observed during immobility (Fig. 4b). During immobility, oscillatory
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Fig.3|Nearly allMEC neurons are locked to the oscillatory sequences.

a, Left, locking degrees of neurons from the session shownin Fig. 2a. Black dots
indicate locked neurons; red dotsindicate non-locked neurons; and grey dots
showthe 99th percentiles of the corresponding shuffle distributions, one

per cell (458 out of 484 cells were significantly locked to the phase of the
oscillation). Right, similar to left, but for mutual information (MI) between
phase ofthe oscillation and count of calcium events. Black dots indicate Ml and
grey dots show the estimated biasin the MI. For all cells, the Ml is larger than the
bias. Neuronsare sorted according to ascending locking degree (left) or MI
(right). b, Box plot showing percentage of locked neurons over all oscillatory
sessions (median = 94%; two-sided Wilcoxon signed-rank test, n=15sessions,
P=6.1x10°, W=120).Red line shows median across sessions; blue bottom and
toplinesdelineate bottomand top quartiles, respectively; whiskers extend to
1.5times theinterquartile range; and red crosses show outliers exceeding 1.5
times theinterquartile range. ¢, Each row shows the tuning curve (colour
coded) to the phase of the oscillation of one locked neuronin Fig.2a (n=458)

sequences were continuous for durations spanning from1sto 258 s
(Fig. 4c and Extended Data Fig. 2b). The continued presence of the
oscillatory sequences during long epochs ofimmobility suggests that
behavioural state and running distance have alimited roleindriving the
progression of the sequencesin MEC, in contrast to previous observa-
tionsin CAlofthe hippocampus'. Inline with this result, the number of
laps the mice completed on the wheel during one sequence was highly
heterogeneous, ranging from O to 86 laps per sequence across all mice
(lap length =53.7 cm, Fig. 4d and Extended Data Fig. 2c).

Sequences took place during awide range of speed and acceleration
values (Extended Data Fig. 2d,e). Although we found no difference in
speed 10 s before and after sequence onset (Extended Data Fig. 2f-j),
new epochs of sequences were more likely to be initiated during run-
ning bouts (onset of sequences was 3.1times more frequentin running
bouts than inimmobility bouts).

Sequences are specific to MEC

Since ultraslow oscillations have been reported in widely different
brainareas®*, we investigated whether the oscillatory sequences were
observedinotherregionstoo. Werecorded the activity of hundreds of
cellsin two regions: (1) the parasubiculum (PaS), a parahippocampal
regionabundant with grid and head-direction cells but with adifferent
circuit structure than MEC?* (25 sessions over 4 mice, Extended Data
Fig.10a,b), and (2) the visual cortex (VIS), which differs from MECZ iniits
network architecture and in the high dimensionality of its neural popu-
lation activity® (19 sessions over 3 mice, Extended Data Fig. 10c). The
mice performed the same minimalistic self-paced running task asin the
MEC recordings. We found that while the calcium activity of afraction
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participationindexes across neuronsinthe sessionin Fig.2a (n =484 cells, left)
and across all 15 oscillatory sessions (n = 6,231 cells, right). e, Anatomical
distribution of neuronsinthe FOV of the sessionin Fig. 2a. Neuronal preferred
phaseiscolourcoded. Neuronsinred are notsignificantly locked. Dorsal MEC
ontop, medial ontheright.f, A two-dimensional histogram of differencesin
preferred phase between pairs of neurons for sequence no.19 of the sessionin
Fig.2a, and their distanceinthe FOV.Inthe presence of travelling waves, high
values along the diagonal would be expected. Normalized frequency is colour
coded.Each countisa cell pair (n=116,886 cell pairs for 484 recorded cells).
Correlation = 0.0026, cutoff for significance = 0.0099. g, Distribution of
correlation values between differences in preferred phase and anatomical
distancein experimental data (blue bars, n=421sequencesacross15
oscillatory sessions) and shuffled data (orange dotted line, n=42,100,100
shufflediterations per sequence) (Methods). ***P< 0.001, **P < 0.01, *P< 0.05;
NS, not significant (P> 0.05).

of cells in both brain areas was ultraslow and periodic (Fig. 5a-d), in
neither brain region were these oscillations organized into oscilla-
tory sequences (Fig. Se,f and Extended Data Fig. 11a-h), and for all
sessions the oscillation scores were lower than the threshold defined
from the MEC data to classify sessions as oscillatory (Extended Data
Fig.11i, threshold = 0.72) (Fig. 5g). Moreover, data from VIS were more
synchronous than PaS data (Extended Data Fig. 11j,k), consistent with
previous observations". Finally, calcium activity was more correlated
withthe speed of the mouse in VIS thanin MEC and PaS (Extended Data
Fig.11l), suggesting that ultraslow oscillations in VIS might reflect slow
changes in the running speed of the mouse. Altogether, these results
suggest that MEC has network mechanisms for sequential coordination
of single-cell oscillations that are not present in PaS or VIS.

Sequences may enable specific patterns

The ultraslow time scale of the oscillatory sequences raises questions
as to their possible function. To determine whether they could serve
asascaffold—or ‘template’—for the formation of new activity patterns,
we developed a simple model. In this model, 500 units that fired in a
sequential manner, the template, were connected to an output neuron
(Extended Data Fig.12a; the results can be generalized to more output
neurons). We trained the weights of the connections to enable a specific
‘target’ activity pattern in the output neuron. As example targets we
considered first a ramp of activity (Extended Data Fig. 12b, left), mir-
roring activity observed in many neurons in decision making tasks® or
during free foraging®, and second aless stereotyped target generated
with a stochastic process (Extended Data Fig. 12b, right). The output
unit could reproduce the target activity when the input sequence was
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signed-rank test, n=10 sessions over 3 mice, P=0.002, W=55).c, Fraction of

slower or as slow as the target pattern, but not when the input sequences
were faster (Extended DataFig.12¢,d). These results suggest that neural
activity patterns that unfold at behavioural time scales may only be
supported by sequences that unfold at similarly slow or slower time
scales—that is, over durations of many seconds or more.

Discussion

Our experiments identify sequences of neural activity in MEC that
repeat periodically during running as well as during intermittent
periods of rest. Across recording sessions, the duration of individual
sequences canrange from tens of seconds to minutes, but the time scale
isgenerally fixed withinanindividual recording session. In Neuropixels
data, the sequences were somewhat noisier thanin the calcium imaging
data, as expected when sampling from multiple layers, across awider
dorso-ventral range, and with better capture of the fast dynamics of
interneurons. The ultraslow periodic sequences observed in our data
stand out from instances of slow sequential neural activity that have
notbeendescribedin terms of oscillations. In the hippocampus, neural
activity in CAl cells that is organized into stereotypic sequences®*°is
more coupled to ongoing behavioural activity and running distance
thaninour data’. Moreover, whereas nearly 94% of MEC neurons in the
present study were significantly locked to the oscillatory sequences,
reported hippocampal sequences involve only a small fraction of the
network (5% inref. 16). This difference in participation would be in
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immobility epochs with oscillatory sequences as a function of length of the
immobility epoch (dataare mean +s.d.). Foreachlength bin, the fraction of
epochswasaveraged across sessions. Orange, recorded data (n =10 perlength
bin); blue: shuffled data (n=35,000 perlengthbin, 500 shuffled realizations
persession). Recorded versus shuffled data: P<2.62x107%,4.7< Z<47.5,
two-sided Wilcoxon rank-sum test. d, Number of completed laps as afunction
of sequence number for one mouse. Each dotindicates one sequence. Dashed
linesindicate separation between recorded sessions.

agreement with the view that the MEC supports a low-dimensional
population code where the cells’ responses covary across environ-
ments®, whereas the hippocampus supports amore high-dimensional
population code that may orthogonalize distinct experiences®?*. The
MEC oscillatory sequences also differ from travelling waves®*?, which
move progressively through anatomical space.

The widespread nature of the ultraslow oscillatory activity in indi-
vidual neurons would be consistent with a role for ascending neuro-
modulatory arousal-associated brain-stem circuits in controlling these
oscillations***, In contrast to the oscillations, sequential organiza-
tion of neural population activity was only presentin MEC, pointing to
MEC as having unique network mechanisms for sequence formation.
The oscillatory sequences of the MEC are consistent with dynamics
expected inaring-shaped continuous attractor network®**. However,
sequential activity could also be generated in recurrently connected
networks® or in feedforward networks through synfire chains or rate
propagation®*°, or by plasticity rules operating on slow time scales*.

The oscillatory sequences might have arole in large-scale coordi-
nation of entorhinal circuit elements’, either by synchronizing faster
oscillatory activity, such as theta and gamma'*®%, or by organizing
neural activity across functionally dissociable cell classes, such as
grid and head-direction cells**. Coordination may help functional
cellclasses, for example different grid cellmodules, keeping the same
phaserelationships over time, enabling a consistent readout of position
orother variables represented in MEC activity***, Asillustrated by our
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model, the oscillatory sequences may also act as a template to enable
the formation of new firing patterns over long and behaviourally rel-
evant time scales. By doing so, they may facilitate storage of memories
associated with one-time experiences in downstream networks™”*#4,
Downstream sequences may be generated via plasticity in connections
fromMEC, in reminiscence of sequence formation during zebrafinch
songlearning*®. The MEC sequences may also servearolein temporal
coding during extended behavioural experiences, by enabling the
circuit to keep track of time**® or by facilitating the slowly drifting
neural population activity in lateral entorhinal cortex®,

It remains an open question whether the ultraslow oscillatory
sequences are present across abroader spectrum of behaviours, includ-
ing sleep and free exploration, and in the presence of salient visual
feedback.If so, itis possible that the sequences resetin the presence of
stronglandmarks or sensory stimulation and that only subpopulations
of the neurons demonstrate it. The potentially richer dynamics of the
periodic sequences during more natural behaviours must interface
with the dynamics of MEC cells on a number of manifolds, such as in
ensembles of head-direction cells and grid cells****°,
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Methods

All experiments were performed in accordance with the Norwegian
Animal Welfare Act and the European Convention for the Protection
of Vertebrate Animals used for Experimental and Other Scientific Pur-
poses, Permit numbers 18011 and 29893.

Subjects

Male C57/Bl6 mice were housed in social groups of 2-6 individuals per
cage (calcium imaging experiments) or individually (electrophysiol-
ogy experiments, after implantation). The mice had access to nesting
material and a planar running wheel and were kept ona12 hlight/12 h
darkness schedulein atemperature and humidity-controlled vivarium.
Food and water were provided ad libitum. Two-photon calcium imag-
ing data were collected from a cohort of 12 mice (5 implanted in MEC,
4inPaS, and 3 in VIS). Electrophysiological data from the MEC were
collected from 2 mice.

Surgeries

For all surgeries, anaesthesia was induced by placing the subjectsina
plexiglass chamber filled with isoflurane vapour (5% isoflurane in medi-
cal air, flow of 11 min™). Surgery was performed on a heated surgery
table (38 °C). Air flow was keptat11 minwith1-3% isoflurane as deter-
mined from physiological monitoring of breathing and heartbeat. The
micewere allowed to recover fromsurgery in aheated chamber (33 °C)
until they regained complete mobility and alertness. Postoperative
analgesiawas givenin the form of subcutaneousinjections of Metacam
(5 mg kg™ 24 and 48 hafter the first Metacaminjection as long as was
deemed necessary. Additionally, the mice were given subcutaneous
injections or oral administration of Temgesic (0.05-0.1 mg kg™) with
6-t0 8-h (injections) or 12-h (oral) intervals for the first 36 h after the
first Temgesic injection.

Surgeries for calcium imaging. Surgeries were performed according
to a two-step protocol. During the first procedure, newborn pups or
adult mice were injected in MEC or PaS, or adult mice were injected in
VIS withavirus carrying a construct for the expression of the calcium
indicator GCaMP6m. The virus (for allinjections: AAV1-Syn-GcaMP6m;
titre 3.43 x 10" genome copies per ml, AV-1-PV2823, UPenn Vector
Core, University of Pennsylvania, USA) was diluted 1:1in sterile DPBS
(1x Dulbecco’s Phosphate Buffered Saline, Gibco, ThermoFisher).
During the second procedure, two weeks later, a microprism was
implanted to gain optical access to infected neurons located in MEC
and PaS, oraglass window was inserted to obtain similar accessin VIS.

Virus injection and microprism implantation in MEC and PaS. In
the first surgical procedure, newborn pups received injections of
AAV1-Syn-GCaMP6é6m one day after birth®. An analgesic was provided
immediately before the surgery (Rymadil, Pfizer, 5 mg kg™). Pre-heated
ultrasound gel (39 °C, Aquasonic 100, Parker) was generously applied
onthepup’sheadinorderto create alarge medium for the transmission
of ultrasound waves. Real-time ultrasound imaging (Vevo 1100 System,
Fujifilm Visualsonics) allowed for targeted delivery of the viral mixture
tospecificareas of the brain. During ultrasound imaging, the pup was
immobilized through a custom-made mouth adapter. The ultrasound
probe (MS-550S) was lowered to be in close contact with the gel and
thus the pup’s head to allow visualization of the targeted structures.
The probe was keptinplace for the whole duration of the procedure via
the VEVOinjection mount (VEVO Imaging Station. Imaging in B-Mode,
frequency: 40 MHz; power:100%; gain: 29 dB; dynamic range: 60 dB).
Target regions were identified by structural landmarks: the MEC or PaS
wereidentified in the antero-posterior and medio-lateral axis by the
appearance of the aqueduct of Sylvius and the lateral sinus. The target
area for injection was comparable to a coronal section at ~—4.7 mm
from bregmain the adult mouse. The solution containing the virus

(250 + 50 nl perinjection) was injected in the target regions via beveled
glass micropipettes (Origio, custom made; outer tip opening: 200 um;
inner tip opening: 50 pm) using a pressure-pulse system (Visualsonics,
5pulses, 50 nl per pulse). The pipette tip was pushed through the brain
without any incision on the skin, or a craniotomy, and, to reduce the
duration of the procedure, retracted immediately after depositing the
virusinthetarget area. The anatomical specificity of theinfection was
verified by imaging serial sections of the infected hemispheres after
experiment completion (see ‘Histology of calcium imaging mice and
reconstruction of field-of-view location’).

Two weeks after the viral injection, we performed a second pro-
cedure, in which a microprism was implanted in the left hemisphere
to gain optical access to the superficial layers of MEC and PaS*. The
implanted microprism was aright-angle prism with 2 mm side length
andreflective enhanced aluminium coating on the hypotenuse (Tower
Optical). The prism was glued to a 4-mm-diameter (CS-4R, thickness
no.1) round coverslip with UV-curable adhesive (Norland). On the day
of surgery, mice were anaesthetized with isoflurane (IsoFlo, Zoetis, 5%
isoflurane vapourised in medical air delivered at 0.8-11min™) after
which two analgesics were provided through intraperitoneal injec-
tion (Metacam, Boehringer Ingelheim, 5 mg kg™ or Rimadyl, Pfizer,
5mg kg™, and Temgesic, Indivior, 0.05-0.1 mg kg™) and onelocal anal-
gesic was applied underneath the skin covering the skull (Marcain,
Aspen,1-3 mg kg™). Their scalp was removed with surgical scissors and
thesurface of the bone was dried before being generously covered with
optibond (Kerr). Toincrease the thickness and stability of the skull and
overall preparation, athinlayer of dental cement (Charisma, Kulzer) was
applied onthe exposed skull, exceptinthelocation above theimplant,
where a4-mm-wide circular craniotomy was made. The craniotomy was
positioned over the dorsal surface of the cortex and cerebellum, with
the centre positioned ~4 mmlateral fromthe centre of the medial sinus,
and above the transverse sinus just above the MEC and PaS. After the
durawas removed above the cerebellum, the lower edge of the prism
was slowly pushed in the empty space between the forebrain and the
cerebellum, just posterior to the transverse sinus. The edges of the
coverslip were secured to the surrounding skull with UV-curable dental
cement (Venus Diamond Flow, Kulzer). A custom-designed steel head-
bar was attached to the dorsal surface of the skull, centred upon and
positioned parallel to the top face of the microprism. Allexposed areas
of the skull, including the headbar, were finally covered with dental
cement (Paladur, Kulzer) and made opaque by adding carbon powder
(Sigma Aldrich) until the dental cement powder became dark grey.

Virus injection and glass window implantation in VIS. In a different
cohort of mice than those used for MEC/PaS imaging, we induced the
expression of GCaMP6m in neurons of the adult VIS for subsequent
imaging. We targeted the injection of the same AAV1-Syn-GCaMPé6m
viral solution usedin the developing MEC and PaS to the primary visual
cortex. On the day of surgery, 3- to 5-month-old mice were anaes-
thetized with isoflurane (IsoFlo, Zoetis, 5 % isoflurane vapourized
in medical air delivered at 0.8-11min™) after which two analgesics were
provided through intraperitoneal injection (Metacam, Boehringer
Ingelheim, 5 mg kg™ or Rimadyl, Pfizer, 5 mg kg, and Temgesic, Indivior,
0.05-0.1 mg kg™) and one local anaesthetic was applied underneath
the skin covering the skull (Marcain, Aspen,1-3 mg kg™). The virus was
injected atthreelocationsin VIS, all of which were within the following
anatomical ranges in the right hemisphere: 2.3-2.5 mm lateral from
the midline, 0.9-1.3 mmanterior fromlambda®?. At each injection site,
50 nl of the virus was injected 0.5 mm below the dura and the pipette
was leftin place for 3-4 min to enable the virus to diffuse. The pipette
was then brought to 0.3 mm below the dura and another 50 nl was
injected. The pipette was thenleftin place for 5-10 minbeforeretracting
it completely. The speed of the injections was 5nls™.

Two weeks after the viralinjection, asurgery to chronically implant
aglass window over VIS was performed. The mice were handled as
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previously described for the prism surgery in MEC/PaS, including
anaesthesia, delivery of analgesics, and scalp removal. Optibond was
applied to the exposed skull exceptinthe location of the craniotomy.
A 4-mm-wide craniotomy was made, centred on the virus injection
coordinates, and a 4-mm glass window was placed underneath the
skull edges of the craniotomy. The glass was slightly larger than the
craniotomy, so after it was manoeuvred in place, the upward pres-
sure exerted by the brain secured it in place against the skull, thereby
minimizing the presence of empty gaps that might favour tissue and
boneregrowth. The edges of the window were secured with UV-curable
dental cement and superglue before the positioning of the headbar
as described for the MEC-PaS implantation. All exposed areas of the
skull, including the headbar, were finally covered with dental cement
(Paladur, Kulzer) that was made opaque by adding carbon powder
(Sigma Aldrich) until the dental cement powder became dark grey.

Neuropixels probe implants. Two adult mice (4 to 5months old) were
implanted with four-shank Neuropixels 2.0 silicon probes* targeting
the superficial layers of MEC in the left hemisphere. Prior to the sur-
gery, the mice were given general analgesics (Metacam, Boehringer
Ingelheim, 5 mg kg™ and Temgesic, Indivior, 0.05-0.1 mg kg™) subcu-
taneously and one local anaesthetic was applied underneath the skin
covering the skull (Marcain, Aspen,1-3 mg kg™). After incision, a hole
was drilled over the cerebellum for an anchor screw connected to a
ground wire. Craniotomies were then drilled. Probes targeting the MEC
were lowered from the surface to depths between 2.5 mmand 2.7 mm
relative to the dura mater. They were implanted with the most medial
shank placed on the brain surface 3.2 mm lateral to the midline and
0.4 mm anterior to the transverse sinus edge. The four shanks were
oriented with the electrode sites on the posterior side. In one of the
two mice (no.104638), the probe was first rotated 7° in the horizontal
plane (angle with reference to the coronal plane), with the most lateral
shankinthe most posterior position such that the shanks were parallel
to the transverse sinus. The four shanks were then lowered vertically
from this position.

The Neuropixels probe of the second mouse (no.102335) was not
rotatedinthe horizontal plane—thatis, allshankshad the same anterior-
posterior coordinates. The electrode shanks of this mouse were lowered
fromthe surface witha2° anglerelative to the coronal plane, such that
the shank tips were the most posterior. The shanks remained within
the same sagittal plane as they were lowered. This second mouse was
alsoimplanted witha probe targeting the CAlregionin the right hemi-
sphere, 1.225-1.975 mmrelative to the midline, at adepth of 3 mmrela-
tive to dura mater, with all shanks 2.1 mm posterior to bregma. The
hippocampal datawere not used in the present study. The probes were
secured to the skull using an adhesive (OptiBond, Kerr), UV-curable
dental cement (Venus Diamond Flow, Kulzer), and dental cement
(Meliodent, Kulzer). A headbar was attached as described above for
the calcium imaging studies.

Self-paced running behaviour under sensory-minimized
conditions

Training of mice began 2 days after the prism implantationin MEC
and PaS, 12 days after the implantation of a cranial window in VIS,
and 5-7 days after Neuropixels probe implantation. All mice used for
calcium imaging recordings and one Neuropixels-implanted mouse
(no.104638) were head-restrained by aheadbar with their limbs resting
on afreely rotating styrofoam wheel with a metal shaft fixed through
the centre. The radius of the wheel was ~85 mm and the width 70 mm.
Low friction ball bearings (HK 0608, Kulelager) were affixed to the
ends of the metal shaft and held in place on the optical table using a
custom mount. This arrangement allowed the mice to self-regulate
their movement. The position of the mouse on the rotating wheel was
measured using a rotary encoder (E6B2-CWZ3E, YUMO) attached to
its centre axis. Step values of the encoder (4,096 per full revolution,

~130 um resolution) were digitized by a microcontroller (Teensy 3.5,
PJRC) and recorded using custom Python scripts at 40-50 Hz. Wheel
tracking was triggered at the start ofimaging and synchronized to the
ongoing image acquisition through a digital input from the 2-photon
microscope. Inasubset of mice recorded with calciumimaging (3 out
of12; 2 implanted in MEC, 1implanted in PaS), the precise synchroni-
zation was not available to us and these data were hence not used for
comparison of movement and imaging data. A T-slot photointerrupter
(EE-SX672, Omron) served as a lap (full revolution) counter. Design
and code of the wheel are publicly available under https://github.com/
kavli-ntnu/wheel _tracker.

The other Neuropixels probe-implanted mouse (no.102335) was
head-restrained by a headbar while resting on a circular disc coated
with rubber spray. The radius of this wheel was ~85 mm. The mouse was
allowed self-paced movement on the wheel. Three-dimensional motion
capture (OptiTrack Flex 6 cameras and Motive recording software)
was used to track the rotation of the wheel by tracking retroreflective
markers placed onthe wheel edge. Digital pulses were generated using
an Arduino microcontroller which were used to align the Neuropixels
acquisition system and the OptiTrack system viadirect TTLinputand
infra-red LEDs.

In all mice, the self-paced task was performed under conditions of
minimal sensory stimulation, in darkness, and with no rewards to signal
elapsed time or distance run'®”. Prior to the imaging sessions, the
calcium imaging mice were accustomed to the setup through daily
exposures over the course of between 5 and 15 sessions, one session
per day. Neuropixels-implanted mice were habituated to the setup
by gradually increasing the time spent on the wheel over four days. In
each session, after the mice were positioned on the wheel, they were
gently head-restrained and free to run or rest®*¢ for 30, 45 or 60 min.

Recording sessions of Neuropixels-implanted mice also consisted
of trials where the mice were freely foraging ina 80 cm x 80 cm open
field arenafor 30 min. These open field trials preceded the self-paced
wheel trials and were not used in the present study.

Two-photon imagingin head-fixed mice

A custom-built 2-photon benchtop microscope (Femtonics, Hungary)
was used for 2-photon imaging of the target areas (that is, superficial
layers of MEC, PaS and VIS). A Ti:Sapphire laser (MaiTai Deepsee eHP
DS, Spectra-Physics) tuned to awavelength of 920 nm was used as the
excitation source. Average laser power at the sample (after the objec-
tive) was 50-120 mW. Emitted GCaMP6é6m fluorescence was routed to
a GaAsP detector through a 600 nm dichroic beamsplitter plate and
490-550 nm band-passfilter. Light was transmitted through a16x/0.8
NA water-immersion objective (MRP07220, Nikon) carefully lowered
in close contact to the coverslip glued to the microprism (for MEC-
PaS imaging) or above the coverslip in contact with the brain surface
(for VIS imaging). For the microprism-implanted mice, the objective
lens was aligned to the ventro-lateral corner of the prism, to consist-
ently identify the position of MEC and PaS across mice. Ultrasound
gel (Aquasonic 100, Parker) or water was used to fill the gap between
the objective lens and the glass coverslips. The software MESc (v 3.3
and 3.5, Femtonics, Hungary) was used for microscope control and
data acquisition. Imaging time series of either ~30 min or ~60 min
were acquired at 512 x 512 pixels (sampling frequency: 30.95 Hz, frame
duration: ~32 ms; pixel size: either 1.78 x 1.78 pm? or 1.18 x 1.18 um?).
Time series acquisition was initiated arbitrarily after the mouse was
head-restrained on the setup.

Neuropixels recordings in head-fixed mice

Signals were recorded using a Neuropixels acquisition system as
described previously®¥. Inshort, the electrophysiological signal was
amplified with again of 80, low-pass-filtered at 0.5 Hz, high-pass-filtered
at10 kHz, and digitized at 30 kHz on the probe circuit board. The digi-
tized signal was then multiplexed by the ‘headstage’ circuit board and
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transmitted along a5 mtether cable using twisted pair wiring to a Neu-
ropixels PXle acquisitionmodule. The data was visualized and recorded
using SpikeGLX version 20201103 software (https://billkarsh.github.
io/SpikeGLX).

Histology

Histology of calcium imaging mice and reconstruction of field-
of-view location. On the last day ofimaging, after theimaging session,
the mice were anaesthetized with isoflurane (IsoFlo, Zoetis) and then
received an overdose of sodium pentobarbital before transcardial
perfusion with freshly prepared PFA (4% in PBS). After perfusion, the
brain was extracted from the skull and kept in 4% PFA overnight for
post-fixation. The PFA was then exchanged with 30% sucrose to cryo-
protect thetissue.

To verify the anatomical location of the imaged FOVs in the
microprism-implanted mice, we used small, custom-made pins,
derived fromathin piano wire coated with asolution of 1,1’-dioctadecyl-
3,3,3’,3’-tetramethylindocarbocyanine perchlorate (Dil; DilC18(3))
(ThermoFischer), to mark the location of theimaged tissuein relation
to the prismfootprint. ADil-coated pin was inserted into the brain tis-
sue at the location left empty by the prism footprint, and specifically
targeted tothe ventro-lateral corner of the footprint (see ‘Surgeries’).
The pin was left in place to favour transfer of Dil from the metal pin
to the brain tissue, and to leave a fluorescent mark on the location of
the imaged FOV. After 30 to 60 s, the pin was removed and the brain
was sliced on a cryostat in 30-50 pm thick sagittal sections. All slices
were collected sequentially in a 24-well plate filled with PBS, before
being mounted in their appropriate anatomical order on a glass slide
in custom-made mounting medium. For confocalimaging, aZeiss LSM
880 microscope (Carl Zeiss) was used to scan through the whole series
of slices and locate the position of the Dil fluorescent mark. Images were
then acquired using an EC Plan-Neofluar 20x/0.8 NA air immersion,
40x%/1.3 oilimmersion, or 63%/1.4 oilimmersion objective (Zeiss, laser
power:2-15%; opticalsslice:1.28-1.35 airy units, step size: 2 pum). Before
acquisition, gain and digital offset were established to optimize the
dynamic range of acquisition to the dynamic range of the GCaMP6m
and Dil signals. Settings were kept constant during acquisition across
brains. Based onthelocation of the red fluorescent mark, we could infer
where, onthe medio-lateraland dorso-ventral extent of the brain, the
ventro-lateral corner of the microprism (and hence the 2-photon FOV
aligned toit) was located.

We used the Paxinos mouse brain atlas®® to produce a reference flat
map representing the medio-lateral and dorso-ventral extent of the
MEC and PaS. Flat maps helped delineate the extent of the FOV that
fell within the anatomical boundaries of either the MEC and adjacent
PaS, and allowed for a standardized comparison across mice. For each
imaged mouse, we mapped the dorso-ventral and medio-lateral loca-
tion of the Dil mark on the refence flat map (Extended Data Fig. 1c). Mice
were assigned to‘MECimaging’ or ‘PaSimaging’ groups dependingon
the location of the FOV: a mouse would be further analysed as being
part of the MECimaging group if more than 50% of the area of the FOV
occupied by GCaMP6m-expressing cells could be located in the MEC.

To verify the anatomical location of the FOVs in VIS in the glass
window implanted mice, we sliced the brain until we reached the ana-
tomical coordinates at which the virus was infused (see ‘Surgeries’).
Coronally cut slices of 50 um thickness were collected sequentially
ina24-well plate, and immediately mounted in their appropriate ana-
tomical order onaglassslide in custom-made mounting medium. For
confocal imaging, a Zeiss LSM 880 microscope (Carl Zeiss) was used
according to the same specification as described above for MEC/PasS.

Histology and reconstruction of Neuropixels probe placement.
After the end of experiments, the mice were anaesthetized and
received an overdose of isoflurane (IsoFlo, Zoetis) before transcardial
perfusion with saline followed by 4% formaldehyde. The brain was

either extracted after perfusion or kept overnightin4% formaldehyde
for post-fixation before extraction. The brains were then stored in
4% formaldehyde. Frozen 30 um thick sagittal sections were cut on a
cryostat, mounted on glass, and stained with Cresyl violet (Nissl). To
estimate the shanklocations, we used an Axio Scan.Z1(Carl Zeiss) slide
scanner microscope for brightfield detection at 20x magnification.
We used Paxinos mouse brain atlas® and the Allen Mouse Brain Com-
mon Coordinate Framework® version 3 through the siibra-explorer
(Forschungszentrum Juelich, https://atlases.ebrains.eu/viewer/) to
estimate anatomical location of recording sites. A map of the probe
shank was aligned to the histology assuming that the cutting plane
was near-parallel to the sagittal plane. When possible, the anatomical
locations were calculated using the tip of the probe shanks and the
intersection of the shank with the brain surface as reference frames.
When this was not possible, the profile of a nearby brain region (for
example, the hippocampus) was used to estimate the MEC implant
site. We observed theta-rhythmicity of neural activity on all recorded
shanks, as expected for recording locations in the MEC.

Analysis ofimaging time series

Imaging time series data were analysed using the Suite2p® Python
library (https://github.com/MouselLand/suite2p). We used its built-in
routines for motion correction, region of interests (ROI) extraction,
neuropil signal estimation, and spike deconvolution. Non-rigid motion
correction was chosen to align each frame iteratively to a template.
Quality was assessed by visual inspection of the corrected stacks and
built-inmotion correction metrics. The Suite2p GUI was used to manu-
ally sub-select putative neurons based on anatomical and signal char-
acteristics and to discard obvious artefacts that accumulated during
the analysis—for example, ROIs with footprints spanning large areas of
the FOV, ROIs that did not have clearly delineated circumferencesinthe
generated maximum intensity projection, or ROIs that were extracted
automatically but showed no visible calcium transients.

Raw fluorescence calcium traces of each ROl were neuropil-corrected
tocreate afluorescence calciumsignal F,, by subtracting 0.7 times the
neuropil signal from the raw fluorescence traces. We used the Suite2p
integrated version of non-negative deconvolution® with tau=1sto
deconvolve F,,,, yielding the basis for the binarized sequences that we
refer toasthe calciumactivity (see ‘Binary deconvolved calcium activ-
ity and matrix of calciumactivity’). Due to the absence of ground truth
dataforour combination of indicator, region, and imaging conditions,
we used a decay tau that was at the lower end of biologically plausible
values (tau =1s), whichallowed even short and low amplitude spiking
responses to be picked up by the analysis and therefore did not bias
our analysis towards large-amplitude calcium transients (presumed
bursting responses). To estimate the signal-to-noise ratio (SNR) of each
cellindividually, we further thresholded the calcium activity (without
binarization) at1s.d. over the mean, yielding filtered calcium activity,
and classified the remaining activity as noise. We additionally ensured
that noise was temporally well segregated from filtered calcium activity
by requiring data points classified as noise to be separated by at least
onesecond before and ten seconds after filtered calcium activity. The
SNR of the cell was then estimated as the ratio of the mean amplitude
of F,,, during episodes of filtered calcium activity over the s.d. of F,,
during episodes of noise. If no data points remained after the filtering
of calcium activity, the cell was assigned a SNR of zero.

Binary deconvolved calcium activity and matrix of calcium
activity

In order to denoise the recorded fluorescence calcium signals and
have good temporal resolution, all analyses in the study were per-
formed using the deconvolved calcium activity of the recorded cells.
For each cell whose SNR was larger than 4, the deconvolved calcium
activity (see ‘Analysis of imaging time series’) was downsampled by
afactor of 4 by calculating the mean over time windows of ~129 ms
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(original sampling frequency = 30.95 Hz, sampling frequency used in
the analyses = 7.73 Hz). Because the ultraslow oscillations and periodic
sequences unfolded at the time scales of seconds to minutes, this down-
sampling step gave agood temporal resolution for all quantifications
while allowing us to work with smaller arrays (ultraslow oscillations
and the oscillatory sequences were also detectable when using the
original sampling frequency), which in some of the analyses reduced
the computing time. Next, the downsampled deconvolved calcium
activity was averaged over time and its s.d. was calculated. A thresh-
old equal to this average plus 1.5 times the s.d. was used to convert
the deconvolved calcium activity into a binary deconvolved calcium
activity, such thatall values above the threshold were set to1(calcium
events), and all values below or equal to that threshold were set to O.
Unless stated otherwise, for allanalyses throughout the study we used
the deconvolved and binary calciumactivity, to which for simplicity we
refer to as ‘deconvolved calcium activity’ or simply ‘calcium activity’.
The calcium activity of all cellsin asession with SNR > 4 was stacked to
construct a binary matrix of calcium activity which had as many rows
asneurons, and as many columns as time bins sampled at 7.73 Hz. The
population vectors are the columns of the matrix of calcium activity.

Note that the recorded calcium signals likely reflect a combination
of groups of single spikes and higher-frequency bursts, although it
was not possible to distinguish between the two types of firing. The
sensitivity of the calciumindicator was likely not high enough to detect
subthreshold potentials.

Spike Sorting and single-unit selection

Spike sorting of Neuropixels data was performed using a version of
KiloSort 2.5 (ref. 54) with some customizations toimprove performance
onrecordings from the MEC region as described previously?. All trials
inasession were clustered together. Single units were discarded from
analysis based on a <20% estimated contamination rate with spikes
from other neurons. These units were automatically labelled by the
KiloSort 2.5 algorithm as ‘good’ units. In the example session from
mouse no. 104638 only good units were considered. In the example
session of mouse no. 102335, because the number of good units was
lower (<250), we also used multi-unit activity (MUA).

Autocorrelations and spectral analysis of single-cell calcium
activity

To determine if the calcium activity of single cells displays ultraslow
oscillations, for each neuron the PSD was calculated on the autocor-
relation of its calcium activity. The PSD was computed using Welch’s
method (pwelch, built-in Matlab function), with Hamming windows
of'17.6 min (8,192 bins of 129 ms in each window) and 50% of overlap
between consecutive windows. Note that when calculating the PSD a
large window was needed to identify oscillation frequencies «0.1 Hz.

Tovisualize whether specific oscillatory patterns at fixed frequencies
were present in the neural population, all autocorrelations from one
session were sorted and stacked into amatrix, where rows are cells and
columns are time lags. The sorting of autocorrelations was performed
according to the maximum power of each PSDina descending manner.
The frequency at which the PSD peaked was used as an estimate of the
oscillatory frequency of the cell’s calcium activity.

In order to determine significance for the peak of the PSD, we con-
sidered two extreme and opposite shuffling procedures: On the one
hand, giventhat circularly shuffling the data preserves allinter calcium
events (Extended Data Fig. 3c,d), taking this approach would preserve
the shape andthe position of the peakin the PSD calculated on exper-
imental data. On the other hand, destroying the inter calcium event
intervals by assigning a random position to each calcium event in the
time series would lead to a flat PSD (Extended Data Fig. 3¢,d). In the
latter approach, all cells would be classified as oscillatory. To bridge
these two approaches we developed a new shuffling procedure.
For each cell we divided its calcium activity vector into n epochs of

length W, withn=T /(W «SF), where Tis the total number of time bins
sampled atafrequency SF =7.73 Hz (that s, bin size =129 ms). We next
shuffled those epochs (and preserved the ordering of the time bins
within each epoch). This method preserved the inter calcium event
interval, but at the same time disrupted the periodicity. In the limit
where W=129 ms, this method coincides with shuffling all calcium
events without preserving the inter calcium event intervals; in the limit
where W= T/SF, this method is equivalent to circularly shuffling the
data. For each of the 200 shuffled realizations we calculated the PSD
and the fraction of cells for which the peak of the PSD in experimental
datawas above the 95th percentile of ashuffled distribution built with
the values of the PSDs calculated on shuffled data (and at the frequency
at which the PSD computed on experimental data peaked). Here we
present the results for 5 different epoch lengths:

W=1s:6226 oscillatory cells out of 6231 (99%)

W=10s: 6153 oscillatory cells out of 6231 (99%)

W=20s:5695 oscillatory cells out of 6231 (91%)

W=350s:4642 oscillatory cells out of 6231 (74%)

W =100 s: 3521 oscillatory cells out of 6231 (56%)

When Wis below the typical duration of the sequences (W <505s),
the great majority of cells are classified as having a peak inthe PSD. As
expected, when Wis similar to the duration of the sequences (W= 50s),
the fraction of oscillatory cells quickly drops. This fractionis nolonger
significantly above a chance level of 5%.

This approach was used for determining the fraction of oscillatory
cellsbothin calciumimaging and in Neuropixels data. In the main text
we present the results corresponding to W=20s.

Finally, we note that there was some variability in the frequency at
whichthe PSD peaked across cells within a session. For example, inthe
example session shown in Fig. 1b—-d and Fig. 2a, some single-cell PSDs
peaked atafrequency of 0.0066 Hz, while others did so at afrequency
of 0.0075 Hz. However, in many cases the PSDs were wide enough to
exhibit high power in neighbouring frequencies too, providing support
to the frequencies being rather clustered among a subset of values,
with some slight variability around those values. When all cells were
analysed (n = 6,231 cells pooled across 15 oscillatory sessions, 5mice),
inapproximately half of the MEC data the oscillatory frequency at the
single-celllevel was very similar to the frequency at the populationlevel
(Extended DataFig. 7e). This finding points to asmall variability in the
frequency of single-cell activity in MEC, as expected in the presence
of recurring sequences.

Correlation and PCA sorting methods

To determine whether neural population activity exhibits temporal
structure we visualized the population activity by means of raster plots
inwhich we sorted all cells according to different methods.

Correlation method. This method sorts cells such that those that are
nearbyinthe sorting are more synchronized than those that are further
away. First, each calcium activity was downsampled by a factor 4 by
calculating the mean over counts of calcium events in bins of 0.52 s.
The obtained calcium activity was then smoothed by convolving it with
agaussian kernel of width equal to four times the oscillation bin size,
abinsize that was representative of the temporal scale of the popula-
tion dynamics (see ‘Oscillation bin size’). The cross correlations
between all pairs of cells were calculated using time bins as data points,
and amaximum time lag of 10 time points, equivalent to ~5s. This small
time lag allowed us to identify near instantaneous correlation while
keeping information about the temporal order of activity between cell
pairs. The maximum value of the cross-correlation between cell i and
celljwas storedintheentry (i, /) of the correlation matrix C, whichwas
asquare matrix of N rows and N columns, where Nwas the total number
of recorded neuronsin the session with SNR > 4. If the cross-correlation
peaked atanegative time lag the valuein the entry (i, j) was multiplied



by -1. The entry with the highest cross-correlation value was identified
and its row, denoted by i,,, was used as the ‘seed’ cell for the sorting
procedure and chosento bethefirst cellin the sorting. Cellswere then
sorted according tothe valuesintheentries (ipay, /) J=1,2, ..., Nj # i
thatis, their correlations with the seed cell, in adescending manner.

PCA method. Computing correlations from the calciumactivity or the
calciumsignals can be noisy due to fine tuning of hyperparameters (for
example, the size of the kernel used to smooth the calcium activity of all
cells). Toavoid this, we leveraged the fact that the periodic sequences
of neural activity constitute low-dimensional dynamics with intrinsic
dimensionality equalto1, and sorted the cellsbased on an unsupervised
dimensionality reduction® approach (a similar approach was used in
ref. 62). For each recording session, PCA was applied to the matrix of
calciumactivity (bin size =129 ms; using Matlab’s built-in pca function),
including all epochs of movement and immobility and using the rows
(neurons) as variables and the columns (time bins) as observations. The
firsttwo principal components (PCs) were kept, since 2 is the minimum
number of components needed to embed non-linear 1-dimensional
dynamics. Cellswere sorted according to their loadings in PCland PC2,
expecting that therelationship between these loadings would express
the orderingin cell activation during the sequences.

The plane spanned by PC1 and PC2 was named the PC1-PC2 plane.
Inthe PC1-PC2 plane, the loadings of each neuron (the components of
the eigenvectors without being multiplied by the eigenvalues) defined
avector, for which we computed its angle 6= arctg ’l‘ﬂ € [-T, ),
1<i<N,withrespect to the axis of PC1, where l;,cj isthe lP(c)lading of cell
ion P(j. Cells were sorted according to their angle 8in a descending
manner.

Note that while we keep the first 2 principal components to sort the
neurons, all principal components and the full matrices of calcium
activity were used inthe analyses (except for visualization purposes—
forexample, see ‘Manifold visualization for MEC sessions’). Finally, note
thatbecausein PCA aprincipal componentisequivalentto-1timesthe
principal component, the sorting and an inversion of the sorting are
equivalent. The sorting was chosen so that sequences would progress
from the bottomto the top in the raster plot.

The PCA method was used throughout the paper for sorting the
recorded cells unless otherwise stated.

Random sorting of cell identities. Arandom ordinal integer €[1, N1,
where Nisthe totalnumber of recorded cells with SNR > 4, was assigned
to each neuron without repetition across cells. Neurons were sorted
according tothose assigned numbers (see example session in Extend-
ed DataFig.4d, top row).

Sorting of circularly shuffled data. A shuffled matrix of calciumactiv-
ity was built by circularly shuffling the calcium activity of each cell
separately. For each cellarandom ordinalinteger €[1, T'], where Tis the
total number of time bins (bin size = 129 ms), was chosen and the cal-
cium activity was rigidly shifted by this integer using periodic bound-
ary conditions. The assignment of random ordinal integers was made
separately for each cell. The PCA method was then applied to the shuf-
fled matrix of calcium activity (see example session in Extended Data
Fig.4d, second row).

Sorting of temporally shuffled data. Because circularly shuffling the
data preserves the oscillations in the single-cell calcium activity, asec-
ond shuffling approach was considered (for single-cell data shuffling
procedures see ‘Autocorrelations and spectral analysis of single-cell
calcium activity’). A shuffled matrix of calcium activity was built by
temporally shuffling the calcium activity of each cell separately. For
each cell, each time bin of the calcium activity was assigned arandom
ordinal integer €[1, T]without repetition across time bins, where T'is
the total number of time bins (bin size =129 ms), and time bins were

ordered accordingtotheirassigned number. The assignment of random
ordinalintegers was made separately for each cell, so that the obtained
random orderings were not shared across cells. The PCA method was
then applied to the shuffled matrix of calcium activity.

Sortings are preserved when different portions of data are used
for obtaining the sortings. To determine whether using different por-
tions of the session for sorting the neurons lead to different sortings,
the PCA method was applied to: (i) all data within a session; (ii) the
first half of the session; and (iii) the second half of the session. This
procedure gave three sortings per session. Next, for each cell pairina
session the distance between the two cellsin each of the three sortings

was calculated. We illustrate this calculation with a toy example: if 5

neurons were recorded, and sorting (i) was: (1,4,5,2,3), the distance

between cells1and 5 was 2, because those two cells were 2 positions

apartinthesorting. The distance between cells1and 3was1land not 4,

however, because in the calculation of distances we took into account

that the sorting mirrors the position of the cells in the ring, which has
periodicboundary conditions.

We next calculated the correlation between the distancesin: sorting
(i) versus sorting (i), sorting (i) versus sorting (iii) and sorting (ii) versus
sorting (iii). If sortings obtained with different portions of data preserve
theordering of the neurons, we would expect high correlation values.
We compared the obtained correlation values with the 95th percentile
ofashuffled distribution obtained by assigning, to each cell,arandom
positionin each of the sortings.

« Sorting (i) versus sorting (ii): 15 of 15 oscillatory sessions (see ‘Oscilla-
tionscore’) were above the cutoff of significance. Correlation values
inexperimental dataranged from 0.38 to 0.85. The 95th percentile of
shuffled dataranged from 0.004 to 0.015 (n = 15inboth experimental
and shuffled data).

« Sorting (i) versus sorting (iii): 15 of 15 oscillatory sessions were above
the cutoff of significance. Correlation values in experimental data
ranged from 0.52to0 0.86. The 95th percentile of shuffled dataranged
from 0.005t0 0.013 (n =15 in both experimental and shuffled data).

« Sorting (ii) versus sorting (iii): 15 of 15 oscillatory sessions were above
the cutoff of significance. Correlation values in experimental data
ranged from 0.17to 0.53. The 95th percentile of shuffled data ranged
from 0.005t0 0.013 (n=15in both experimental and shuffled data).

The high correlation values obtained provide support for what is
illustrated in Extended Data Fig. 4e: using different portions of data
for sorting the cells unveils the same dynamics.

Sorting methods based on non-linear dimensionality reduction
techniques

The PCA method for sorting cells relies on a two-dimensional linear
embedding. This linearembedding might not be optimalif the popula-
tion vectors describe temporal trajectories that, despite being
low-dimensional, lie on a curved surface. Totake into account potential
non-linearities, four additional sorting methods were implemented,
based on the following non-linear dimensionality reduction tech-
niques®: t-distributed stochastic neighbour embedding (¢-SNE), LEM,
Isomap and uniform manifold approximationand projection (UMAP)**
(see parameters below). First, to express in the sortings the ordering
ofthe cells during the slow temporal progression of the sequences, the
four methods used aresampled matrix of calcium activity as input. To
compute this matrix, for each session, we downsampled each calcium
activity by afactor 4 by calculatingits meanin bins of 0.52 s. The calcium
activity of all cells was then smoothed by convolving them with a gauss-
ian kernel whose width was given by the oscillation bin size (see ‘Oscil-
lation bin size’). After applying ¢-SNE, LEM, Isomap or UMAP to the
resampled matrix of calcium activity, we kept the first two dimensions
obtained with each method, for the same reasons as presented for the
PCA sorting method. To obtain the sorting, the following procedure
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was applied: We let Dimland Dim2 be the first two dimensions obtained
withthe chosen dimensionality reduction technique that we had applied
to the resampled matrix. In analogy with the PCA method, the Dim1-
Dim2 plane was spanned by Dim1 and Dim2 and for each cell the com-
ponents on those dimensions defined a vector in this plane for which
the angle 8 € [-T, 1) with respect to the axis of Dim1 was computed.
Cellswerethensorted accordingtotheir anglesinadescending manner.

Toapply t-SNE to the population activity we used a perplexity value
of 50. First, we applied PCA to the resampled matrix of calcium activity,
and then we used the projection of the neural activity onto the first 50
principal components as input to ¢-SNE. To apply LEM to the popula-
tion activity, we used as hyperparameters k=15 and o = 2. Similarly,
we used k =15 for running isomap. Finally, we used n_neighbors=30,
min_dist=0.3 and correlation as metric for running UMAP.

We used the MATLAB implementation of UMAP® and the Matlab
Toolbox for Dimensionality Reduction (https://lvdmaaten.github.
io/drtoolbox/). Finally, when displaying the raster plots that resulted
from the different sortings, the first cell (located at the bottom of the
raster plot) was always the same. This was accomplished by circularly
shifting the cells in the different sortings such that the initial cell in
all sortings coincided with the initial cell of the sorting obtained with
the PCA method.

Manifold visualization for MEC sessions

Sorting the cells and visualizing their combined neural activity through
raster plots revealed the presence of oscillatory sequences of neural
activityintherecorded data. To visualize the topology of the manifold
underlying the oscillatory sequences of activity, both PCA and LEM
were used.

PCA was applied to the matrix of calcium activity, which first had
eachrow convolved with agaussian kernel of width equal to four times
the oscillation bin size (see ‘Oscillation bin size’). The manifold was
visualized by plotting the neural activity projected onto the embed-
ding defined by PC1and PC2. In Fig. 2¢ (left) the neural activity of the
entire session was projected onto the low-dimensional embedding. In
Extended Data Fig. 4c, the neural activity corresponding to the concat-
enated epochs of uninterrupted oscillatory sequences was projected
onto the embedding.

For the LEM approach, first PCA was applied to the matrix of calcium
activity, which was previously resampled to bins of 0.52 sasin ‘Sorting
methods based on non-linear dimensionality reduction techniques’,
andthefirst five principal components were kept. Next LEM was applied
to the matrix composed of the 5 principal components, using as param-
etersk=15ando=2.Wedecided tokeep 5 principal components prior
to applying LEM to denoise the data, for which we leveraged the fact
that sequences of activity constitute low-dimensional dynamics with
intrinsic dimensionality equal to 1, and therefore truncating the data
to the first 5 principal components should preserve the sequential
activity. The manifold was visualized by plotting the neural activity
projected onto the embedding defined by the first two LEM dimensions.
InFig. 2c (right) the neural activity of the entire session was projected
onto the embedding.

Both approaches revealed a ring-shaped manifold along which the
population activity propagated repeatedly with periodic boundary
conditions. One sequence was equivalent to one full turn of the popula-
tionactivity along thering-shaped manifold. Finally, we note that when
using PCA for visualizing the manifold, in some sessions the ring was
less evident (Extended Data Fig. 4c). This is because the population
activity had more variations from sequence to sequence, whichresulted
ontheringsthat correspondedto each sequence not completely over-
lapping in the PC1 versus PC2 plane. While recovering rings with PCA
is challenging due to PCA being alinear method, using a non-linear
method would have helped in visualizing the ring (as in Fig. 2¢, right),
butwe decided not to do this for all quantifications because non-linear
methods require more fine tuning and are usually harder tointerpret.

Phase of the oscillation

Totrack the progression of the population activity over time, we lever-
aged the low dimensionality of the ring-shaped manifold and the cir-
cular nature of the population activity, and parametrized the
populationactivity with asingle time-dependent parameter, whichwe
called the phase of the oscillation. Hence, the phase of the oscillation
varied asafunction of time (bin size =129 ms) and tracked the progres-
sion of the neural population activity during the oscillatory sequences.
Theneural activity was projected onto atwo-dimensional plane using
PCA.Theuse of PCA avoided the selection of hyperparameters, which
isrequiredinallnon-linear dimensionality reduction techniquesinclud-
ing LEM. LetPCi, (¢) be the projection of the neural population activity
onto principal component i (PCi). The neural population activity at
time point ¢t projected onto the plane defined by PC1 and PC2 is then
given by (PC1,(¢), PC2,(¢)), which defines a vector in this plane. The
phase of the oscillationis defined as the angle of this vector with respect
to the PCl axis and is given by

PC2t(t)j M

Q)= arCtg(PCIt(t)

During one sequence, the phase of the oscillation continuously tra-
versed the range[-m, t)rad, which was consistent with the population
activity propagating through the network and describing one turn
along the ring-shaped manifold. The repetitive and almost linear
dependence between the phase of the oscillation and time illustrates
how stereotyped the sequences were (Fig. 2d).

We note that the quantity ¢ (¢) is always defined, regardless of
whether the session is or is not classified as oscillatory. In the case of
the oscillatory sessions, @ (t) tracks the progression of the oscillatory
sequences.

Jointdistribution of cross-correlation time lag and angular
distancein the PCA sorting

To further characterize the sequential activation in the MEC neural
population and to introduce a score that would determine the extent
to which a session exhibited oscillatory sequences (see ‘Oscillation
score’), we determined the relationship between the time lags that
maximized the cross-correlation between the calcium activity of two
cells (r) and their angular distancesin the PCA sorting (d). Inthe plane
generated by PC1 and PC2, the loadings of each neuron defined
avector, for which we computed the angle §,= arctg ffcz € [-1, ),
1<i<N,withrespect to the axis of PC1, where l{,Cj isthe Ip(glading of cell
ionPCjand Nisthe total number of recorded neurons (see ‘Correlation
and PCA sorting methods’). The angular distance d between any two
cellsinthe PCA sorting was calculated as the difference between their
angleswrappedintheinterval [, ) (see Extended DataFig. 5b, left),

d;=(6,-6), @

wherel<i<N,1<j<N.TheMatlab functionangdiff was used for com-
puting this distance. Note that the angular distance maps how far apart
two cells are in the raster plot when cells are sorted according to the
PCA method.

To estimate the joint distribution of cross-correlation time lags and
angular distances in the PCA sorting, the cross correlations between
all pairs of cells were calculated using a maximum time lag of 248 s. For
eachcell pair the time lag at which the cross-correlation peaked (7) and
theangular distance inthe PCA sorting (d) were calculated. A discrete
representation was used for these two variables: in all analyses, and
unless stated otherwise, the range of possible 7 values—that is,
[-248,248] s—was discretized into 96 bins of size AT = 432 ® -5sandthe
range of possible d values—that is, [-1t, ) rad—was discretized into 11

bins of size Ad = 21—;[ ~0.57 rad. Using those bins, the joint distribution
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of rand d was expressed as a two-dimensional histogram that counted
the number of cell pairs observed for every combination of Tbins and
dbins, normalized by the total number of cell pairs.

An example of joint distribution of cross-correlation time lags and
angular distances in the PCA sorting is presented in Extended Data
Fig.5b, right, built on the example session shownin Fig.2a.In sessions
with clear periodic sequences, the time lag Tincreased with the dis-
tance d. This dependence was observed a discrete number of times in
each session, which indicated that cells were active periodically and
at afixed frequency or at an integer multiple of it (see Extended Data
Fig.5c, top for another example with adifferent time scale). In sessions
without detectable periodic sequences suchstructure wasnot observed
(Extended DataFig. 5c, bottom).

Oscillation score

Whilesstriking oscillatory sequences were observed in multiple sessions
and mice, the population activity exhibited considerable variability,
ranging fromnon-patterned activity to highly stereotypic and periodic
sequences (Extended Data Fig. 5a). This variability prompted us to quan-
tify, for each session, the extent to which the population activity was
oscillatory, which we did by computing an oscillation score. For each
session, we first calculated the phase of the oscillation ¢(¢) (bin
size =129 ms, equation (1)), which tracks the progression of the popula-
tionactivity in the presence of oscillatory sequences (see ‘Phase of the
oscillation”and Fig. 2d). Next the PSD of sin (¢ (¢) ) was calculated using
Welch’s method with Hamming windows of 17.6 min (8,192 bins of 129 ms
in each window) and 50% of overlap between consecutive windows
(pwelch Matlab function, see ‘Autocorrelations and spectral analysis of
single-cell calciumactivity’). If the PSD peaked at 0 Hzand the PSD was
strictly decreasing, the phase of the oscillation was not oscillatory and
hencethe population activity was not periodic inthe analysed session.
Inthis case the oscillation score was set to zero. Otherwise, prominent
peaksinthe PSD atafrequency larger than O Hz wereidentified. In order
to disentangle large-amplitude peaks from small fluctuations in the
PSD, apeak at frequency f,,.,. was considered prominent and indicative
of periodicactivity ifitsamplitude was larger than (1) 9 times the mean
of the tail of the PSD (that is, <PSD(f> f,..,)>, where <x>indicates the
average over frequencies x) and (2) 9 times the minimum of the PSD
between 0 Hz and f,,,,, (thatis, min(PSD(f < f.,.))). If no peakin the PSD
met these criteria the oscillation score was set to zero. Otherwise, the
presence of a prominent peak in the PSD calculated onsin(¢ (¢)) was
considered indicative of periodic activity at the population level. Yet a
crucial component for observing oscillatory sequencesis that cells fire
periodically and that the time lag that maximizes the cross correlations
between the calcium activity of pairs of cells that are located at a fixed
distanceinthe sequence comesininteger multiples of aminimumtime
lag, which ensures that cells oscillate at a fixed frequency and that the
calcium activity of one cell is temporally shifted with respect to the
other. To quantify the extent to which these features were present in
the data, we computed the joint distribution of time lags and angular
distance in the PCA sorting (r was discretized into 240 bins and d was
discretized into11bins, see ‘Joint distribution of cross-correlation time
lag and angular distance in the PCA sorting’). Next for each bin i of
d,1<i<11, wecalculated the PSD of the distribution of 7 conditioned
onthedistancebini(Welch’s methods, Hamming windows of 128 bins
with 50% overlap between consecutive windows, pwelch Matlab func-
tion). The presence of a peak in this signal indicated that for bini of d,
the time lag that maximizes the cross correlations between cells was
oscillatory (that is, it peaked at multiples of one specific time lag), as
expected when cells are active periodically with an approximately fixed
frequency and also with harmonics of the primary frequency (see exam-
plejointdistributionin Extended DataFig. 5b, right). The presence (or
absence) of a peak that satisfied the condition of being larger than (1)
10 times the mean of the tail of the PSD (same definition as above), and
(2) 4.5times larger than the minimum between 0 Hz and the frequency

atwhich the PSD peaked, was identified (same definition as above, the
parameters are different from the ones used above because the signals
arevery different). The oscillation score was then calculated as the frac-
tion of angular distance bins for which a peak was identified.

Based on the bimodal distribution of oscillation scores obtained in
the calciumimaging data from MEC (Extended DataFig.5d), asession
was considered to express oscillatory sequences if the oscillation score
was >0.72. This cutoff (0.72) corresponded to the smallest oscillation
score within the group with high scores (shown in green in Extended
Data Fig. 5d). Note that because the distribution of oscillation scores
was bimodal any other choice of threshold between 0.27 and 0.72 would
have led to the same results. Using as cutoff 0.72 was also equivalent
to asking that at least 8 out of the 11 distributions of 7 conditioned on
biniofd,1<i<11,hadasignificant peakintheir PSD, whichaccounted
for the fact that for distancesin the PCA sorting that are close to zero,
cells exhibit instantaneous co-activity rather than co-activity shifted
by some specific time lag, which makes the conditional probability not
oscillatory. After applying the cutoff, 15 of 27 calcium imaging sessions
in MEC in 5 mice were classified as oscillatory (Extended Data Fig. 5d,
shownin green), and among those 15 sessions, 10 were recorded with
synchronized behavioural tracking (see ‘Self-paced running behaviour
under sensory-minimized conditions’). The number of recorded cells
inthe calciumimaging oscillatory sessions ranged from 207 to0 520. In
therest of the calciumimaging data, 0 of 25 PaS sessions in 4 mice were
classified as oscillatory,and 0 of 19 VIS sessions in 3 mice were classified
asoscillatory.

Oscillation bin size
The oscillatory sequences progressed at frequencies <0.1 Hz that
varied from session to session. The oscillation bin size was atemporal
bin size representative of the time scale of the oscillatory sequences
ineach session. It was used to quantify single-cell and neural population
dynamics, for which describing the neural activity at the right time
scale was fundamental (for example, see ‘Transition probabilities’).
For each oscillatory session the period of the oscillatory sequences,
denoted by P, was calculated as the inverse of the frequency f,,,, at
which the PSD of the signal sin(¢ (¢)) peaked (see equation (1) and
‘Oscillation score’), thatis, P, . :f;ax . Note that this estimate of the
period was reliable when during most of the session the network
engaged in the oscillatory sequences, in which case the estimate was
equivalent to the length of the session divided by the total number of
sequences. However, it became less reliable the more interrupted the
oscillatory sequences were.

The oscillation bin size T ;. was computed as the period of the oscil-
latory sequences divided by 10,

_ Posc _ 1
Tosc_ 10 - W (3)

max

This choice of bin size was made so that each sequence would pro-
gress across ~10 time points. Across 15 oscillatory sessions, the oscil-
lation bin size ranged from 3 to 17 s (see Extended Data Fig. 9d).

In sessions without oscillatory sequences, there was not a well-
defined peakinthe PSD of sin(¢(t)), and therefore the oscillation bin
size was not possible or meaningful to calculate. Yet, to perform the
quantifications of network dynamics at temporal scales similar to the
onesinvestigated in oscillatory sessions, the mean oscillationbin size
computed across all oscillatory sessions was used (mean oscillation
binsize=8.5s).

Unless otherwise indicated, the utilized bin size was 129 ms.

Identification of individual sequences

The characterization of the oscillatory sequences required multiple
analyses that relied on identifying individual sequences, for example
to quantify the duration of the sequences and their variability. The



Article

procedure for identifying individual sequences was based on finding
the time points at which each sequence began (visualized typically at
the bottom of the raster plot) and ended (visualized typically at the
top of the raster plot, see Extended Data Fig. 6a). Note that the begin-
ningand the end of the sequence are arbitrary because of the periodic
boundary conditions in the sequence progression, and therefore a
different pair of phases that are 2m apart could have been used for
defining the beginning and the end of the sequence.

One sequence was equivalent to one full turn of the population activ-
ity around the ring-shaped manifold—that s, during one sequence the
phase of the oscillation traversed 2 (see ‘Phase of the oscillation’). To
calculate the phase of the oscillation and determine the time epochs
during which it traversed 21, we smoothed the calcium activity of all
cells (bin size =129 ms) using a gaussian kernel of width equal to the
oscillation bin size. Next, the phase of the oscillation was calculated
and discretized into 10 bins (that is, the range [-Tt, T) was discretized
into 10 bins). Time points at which the phase of the oscillation belonged
toabinthat was 3 or more bins away fromthe binin the previous time
pointwere considered as discontinuity points and were used to define
thebeginning and the end of putative sequences. Putative sequences
were classified as sequences if the phase of the oscillation smoothly
traversed the range [-Tr, Tr) rad in an ascending manner. To account
for variability, decrements of up to 1bin of the phase of the oscillation
were allowed. This means that there could be fluctuations of up to
0.6 rad in the phase within one individual sequence, and still be con-
sidered a sequence. Points of sustained activity were disregarded.
Segments of sequences in which the phase of the oscillation covered
atleast 5 bins (that is, 50% or more of the range [T, 1) rad) were also
identified.

Sequence duration, sequence frequency and ISI

The duration of individual sequences was defined as the amount of
time thatit takes the phase of the oscillation to cover the range [-T1, 1)
inasmooth and increasing manner, which is consistent with the pop-
ulation activity completing one full turn along the ring-shaped mani-
fold. To calculate the sequence duration, the timeinterval between the
beginning and the end of the sequence was determined (see ‘Identifi-
cation of individual sequences’).

To quantify the variability in sequence duration within and between
sessions, two approaches were adopted. Inapproach1 (Extended Data
Fig. 6fleft), thes.d. of sequence durations was computed for each oscil-
latory session. To estimate significance, in each of 500 iterations all
sequences across 15 oscillatory sessions were pooled (421 sequences
in total) and randomly assigned to each session while keeping the
original number of sequences per session unchanged. For each itera-
tionthes.d. ofthe sequence durations randomly assigned to each ses-
sion was calculated. In approach 2 (Extended Data Fig. 6f, right), for
eachsessioni,1<i<15,wherel5isthetotal number of oscillatory ses-
sions, we considered all pairs of sequences within session i (within
session group) or alternatively all pairs of sequences such that one
sequence belongs tosessioniand the other sequencetosession j,j # i
(between session group). For each sequence pair in each group, the
ratio between the shortest sequence durationand the longest sequence
duration was calculated. The mean was computed over pairs of
sequences in each group for each session separately. Notice that the
larger this ratio the more similar the sequence durations are.

Thesequence frequency was calculated as the total number of iden-
tified individual sequences in a session, divided by the total amount
of time the network engaged in the oscillatory sequences during the
session, which was computed as the length of the temporal window of
concatenated sequences.

ThelSIwas defined as the length of the epoch from the termination
of one sequence and the beginning of the next one. In other words, the
ISIwas calculated as the amount of time that elapsed between the time
pointat which the phase of the oscillation reached mt (after completing

oneturnalongthe ring-shaped manifold), and the time point at which
itis equal to -t (prior to initiating the next turn along the ring).

Mean event rate during segments of the sequences

To determine how population activity varied during individual
sequences (Extended Data Fig. 6¢), the following approach was
adopted. For each oscillatory session (see ‘Oscillation score’) all indi-
vidual sequences were identified (see ‘Identification of individual
sequences’). Each sequence was divided into ten segments of equal
length. For each sequence segment, the mean event rate was calcu-
lated as the total number of calcium events across cells divided by
sequence segment duration and number of cells. For each session the
mean event rate per segment was calculated over sequences. Across
sessions we found that the percentage rate change from the segment
with the minimum event rate to the segment with the maximum rate
was no more than 18% (Extended Data Fig. 6¢).

Analysis of Neuropixels data

Neuropixels data was different from the calcium imaging data in that
it consisted of spike times and not calcium traces. Despite this fun-
damental difference, for most of the analyses we applied the same
methods to both datasets. When this was not possible (see below), we
tried tominimize the differences between the two analyses pipelines.

Spike matrices. In order to create arrays that were similar to the
matrices of calcium activity, for each recorded unit a spike train was
built using a bin size of 120 ms (similar to the bin size used in calcium
imaging data, 129 ms). Each time bin contained the number of spikes
produced by the recorded unitin that bin. Spike matrices were built by
stacking the spike trains of all recorded units (469 unitsin the example
session presented in Fig. 2f, 410 units in the example session shown in
Extended Data Fig. 4g).

Calciumtraces are temporally correlated due to the slow dynamics
ofthe calciumindicator. Inaddition, the observed periodic sequences
unfolded over a time scale of minutes. To take these two factors into
account, we smoothed the spike train of each recorded unit with a
Gaussian kernel of width equal to5s.

Both the original spike matrix and the smoothed spike matrix were
then binarized using, for each spike train, a threshold equal to the
mean plus either 1 or 1.5 times the s.d. (1 for smoothed matrices; 1.5
for non-smoothed matrices; as a reference, the threshold for binari-
zation used in calcium data was the mean plus 1.5 times the s.d.; see
‘Binary deconvolved calcium activity and matrix of calcium activity’).

In the calcium imaging experiment, it took approximately 5 min to
initiate the recording after the mouse was positioned on the wheel
(mainly due to the time that was needed to find the imaging planes).
In the Neuropixels data there was no such delay between positioning
the mice on the wheel and starting the data acquisition. In order to
make both datasets as comparable as possible, and in order to remove
any effects due to arousal, the first 5 min of the Neuropixels sessions
were discarded.

Autocorrelation and spectral analysis. The autocorrelations were
calculated on the spike trains (without smoothing), and the PSD was
calculated on the autocorrelations. Methods and parameters used for
calculating the autocorrelation and PSDs were the same as in calcium
imaging data (‘Autocorrelations and spectral analysis of single-cell
calcium activity’).

Calculation of oscillation score. As in the calcium imaging data, in
order to quantify the amount of oscillatory activity in the Neuropixels
sessions, anoscillation score was computed. Because in the Neuropixels
recordings (unlike in the calciumimaging data) there were some long
periods of non-sequence activity between bouts of periodic sequences,
possibly due to small differences in training protocol, we computed



the oscillation score not on the full spike matrix but on the matrix of
concatenated sequences (built by identifying all individual sequences
inthe smoothed spike matrix and concatenating them as described for
the calciumimaging datain ‘Identification of individual sequences’ and
‘Sequence duration, sequence frequency and ISI’ above).

Sorting calculation and raster plot visualization. Neural popula-
tion activity was visualized by means of raster plots, for which units
were sorted using the PCA method (‘Correlation and PCA sorting
methods’). The sorting was calculated on the smoothed spike matrix
(Fig.2f and Extended Data Fig. 4g, top), and the obtained sorting was
applied also to the non-smoothed spike matrices (Extended Data
Fig. 4f,g, bottom).

While the sorting and visualization of neural population activity were
performed as we did in calciumimaging data, there was one difference
in how the two datasets were analysed. Because in the Neuropixels
datathe periodic sequences were more salient in some subsets of the
sessions than others, for visualization purposes we calculated the
sorting on a subset of the smoothed transition matrices. Those sub-
setsaregivenby[1,200,1,700] s for the example session of mouse no.
104368 (Fig. 2f) and [1,100, 1,400] s for the example session of mouse
no.102335 (Extended Data Fig. 4g). Note, however, that sequences
were identified outside these session subsets too, indicating that the
sorting unveils stereotyped sequences also outside the used subsets
of data (see ‘Sortings are preserved when different portions of data
are used for obtaining the sortings’).

Locking to the phase of the oscillation

To calculate the extent to whichindividual cellsin the calciumimaging
experiments were tuned to the oscillatory sequences, two quantities
were used: the locking degree and the mutual information between
the calcium event counts and the phase of the oscillation. For each
oscillatory session, the phase of the oscillation ¢ (¢) was computed
(seeequation (1)) and individual sequences were identified (see ‘Iden-
tification of individual sequences’). Next, the time points that cor-
responded to all individual sequences in one session were
concatenated, which generated a new signal with the phase of the
oscillation for all consecutive sequences, and anew matrix of calcium
activity in which the network engaged in the oscillatory sequences
uninterruptedly.

Thelocking degree was computed for each cell as the mean resultant
vector length over the phases of the oscillatory sequences at which
the calcium events occurred (bin size =129 ms, function circ_r from
the Circular Statistics Toolbox for Matlab®®). The locking degree has
alower bound of 0 and upper bound of 1. It is equal to 1if all oscilla-
tion phases at which the calcium events occurred are the same (that
is, perfectlocking), and equal to zeroif all phases at which the calcium
events occurred are evenly distributed (total absence of locking). To
estimate significance, for each cellanull distribution of locking degrees
was built by temporally shuffling the calcium activity of that cell1,000
times while the phase of the oscillation remained unchanged, and by
computing, for each shuffle realization, the locking degree (shuffling
was performed as in ‘Sorting of temporally shuffled data’). The 99th
percentile of the estimated null distribution was used as a threshold
for significance.

Inorderto assessthe robustness of the locking degree, the obtained
results were compared with a second measure based on information
theory®”: the mutual information between the counts of calcium events
(event counts) and the phase of the oscillation (bin size = 0.52s). To
estimate the reduction in uncertainty about the phase of the oscilla-
tion (P) given the event counts of the calcium activity (§), Shannon’s
mutual information was computed as follows®;

MI(S, P) = pzs Prob(p, s)log, Prob(p)Prob(s)’

whereProb(p, s) is the joint probability of observing a phase of the
oscillation p and an event count s, Prob (s) is the marginal probability
of event counts and Prob (p) is the marginal probability of the phase
of the oscillation. All probability distributions were estimated from
the data using discrete representations of the phase of the oscillation
and the event counts. The event counts were partitioned into Sy, +1
bins to account for the absence of event counts as well as all possible
event counts, where s,,, is the maximum number of event counts per
cellina0.52 sbin, and the phase of the oscillation was discretized into
10 bins of size 2.

The mutual information is a non-negative quantity that is equal
to zero only when the two variables are independent—that is, when
the joint probability is equal to the product of the marginals
Prob(p, s) =Prob(p)Prob(s). However, limited sampling can lead to
anoverestimation in the mutual informationin the form of abias®. In
orderto correct for this bias, the calcium activity was temporally shuf-
fled (asin ‘Sorting of temporally shuffled data’) and the mutual infor-
mation between the event counts of the shuffled calcium activity and
the phase of the oscillation, which remained unchanged, was calcu-
lated. This procedure, which destroyed the pairing between event
counts and phase of the oscillation, was repeated 1,000 times and the
average mutualinformationacross the 1,000 iterations was computed
and used as an estimation of the bias in the mutual information calcu-
lation. Intheright panel of Fig. 3a, we report both the mutual informa-
tion and the bias. In Extended Data Fig. 7a, the corrected mutual
informationwas reported (MI.), where the bias ((Mlg)icerations) WaSs Sub-
tracted out from the Shannon’s mutual information (MI):
MI. = MI = {Mlst)icerations-

Note that the locking degree and the mutual information between
the event counts and the phase of the oscillation yielded consistent
results (see Fig. 3a and Extended Data Fig. 7a).

Tuning of single cells to the phase of the oscillation
Theselectivity of each cell to the phase of the oscillation in the calcium
imaging data was visualized through tuning curves and quantified
through their preferred phase. As in the analysis of ‘Locking to the
phase of the oscillation’, the phase of the oscillation ¢ (t) was computed,
individual sequences were identified, and the time points of the phase
ofthe oscillation and the matrix of calciumactivity that corresponded
toallindividual sequences in one session were concatenated.

Tuning curves. The range of phases [-Tr, Tr) rad was partitioned into
40 bins of size 2™ rad. For each cell the tuning curve in the phase binjj,
Jj=0,...,39, was calculated as the total number of event counts that
occurred at phases within the range [—n +jo, T (i 1)i—g) divided
by the total number of event counts during the concatenated oscil-
latory sequences.

Preferred phases. The preferred phase of each cell was calculated
as the circular mean over the oscillation phases at which the calcium
events occurred (function circ_ mean from the Circular Statistics Tool-
box for Matlab®®). In most of the analysis the preferred phase was cal-
culated, for eachcell, after concatenating all sequences. However, ina
subset of analyses (see ‘Anatomical distribution of preferred phases’),
the preferred phase was also calculated for individual sequences, as the
circular mean over the oscillation phases at which the calcium events
occurredineach sequence.

Unless otherwise stated, the preferred phase refers to the calcula-
tion performed on concatenated sequences (and not on individual
sequences).

Distribution of preferred phases. To determine the extent to which
the preferred phases acrosslocked cells were uniformly distributed in
one recorded session, the distribution of the cells’ preferred phases,
that we shall denote Q, was estimated by discretizing the preferred



Article

phases ilnto 10 bins of size 2" rad. The entropy of this distribution
Hy=- ZX:I Q(x)log,(Q(x)) was calculated and used to compute the
entropy ratio H,,;,, which quantifies how much Q departs from a flat
distribution:

Ho

Hoio= >
ratio
Hﬂat

&)

where Hp,, is the entropy of a flat distribution using 10 bins—that s,
Hp,.=3.32bits. The closer H,,;, is to 1the flatter Qis, and therefore all
preferred phases tend to be equally represented. The smaller H,,, is,
the more uneven Qis and some preferred phases tend to be more rep-
resented than others.

Toestimate significance, for each session the procedure for calculat-
ing H,,;, was repeated for 1,000 iterations of a shuffling procedure
where the preferred phase of the cells was calculated after the values
of the phase of the oscillation were temporally shuffled. In Extended
DataFig. 7c, both panels, for each session the 1,000 shuffle realizations
were averaged.

Participationindex

The Participation Index (PI) quantifies the extent to which a cell’s
calcium events were distributed across all sequences, or rather
concentrated in a few sequences. For neurons that were active only
in a few sequences the participation index was small (participation
index ~ 0), and for neurons that were reliably active during most
of the sequences the participation index was high (participation
index ~ 1; Extended Data Fig. 7g shows three example neurons of the
sessionin Fig. 2a).

The participationindex was calculated for each cell separately as the
fraction of sequences needed to account for 90% of the total number
of calcium events. To compute the participation, individual sequences
were identified (see ‘Identification of individual sequences’), and for
each cell the number of calcium events per sequence was calculated
and normalized by the total number of calcium events across all con-
catenated sequences, which yields the fraction of calcium events
per sequence. This quantity was sorted in an ascending manner
and its cumulative sum was calculated. The participation index is
the minimum fraction of the total number of sequences for which
the cumulative sum of the fraction of calcium events per sequence
>0.9 (results remain unchanged when the cumulative sumis required
tobe >0.95).

Relationship between tuning to the phase of the oscillation and
single-cell oscillatory frequency

To determine whether the frequency of oscillation of single-cell
calcium activity was correlated with the extent to which the cell
was locked and participated in the oscillatory sequences, for each
cell the ratio between its oscillatory frequency (see ‘Autocorrela-
tions and spectral analysis of single-cell calcium activity’) and the
sequence frequency (see ‘Sequence duration, sequence frequency
and ISI’) was calculated and denoted relative frequency. Next, for
each session cells were divided into two groups: one group had cells
with relative frequency ~1 (cells whose oscillatory frequencies were
most similar to the sequence frequency), and the other group had
cells with relative frequency #1 (cells whose oscillatory frequencies
were most different from the sequence frequency). The size of each
group was the same and was given by a percentage a of the total num-
ber of recorded cells in a session. For each group the locking degree
(see ‘Locking to the phase of the oscillation’) and the participation
index (see ‘Participation index’) were compared. For the quantifica-
tion across all 15 oscillatory sessions, the mean locking degree and
participationindex were calculated for each group separately and for
each session separately, and all 15 sessions were pooled. a varied from
5% to 50%.

Anatomical distribution of preferred phases

To determine whether the entorhinal oscillatory sequences resem-
bled travelling waves, during which neural population activity moves
progressively across anatomical space?®?7°7* we took three compli-
mentary approaches.

Correlation between differences in preferred phase and anatomical
distance. Preferred phases calculated using data from the entire
session (after concatenating individual sequences). For each of the
15oscillatory sessions (across 5 mice) the Pearson correlation between
the anatomical distance between cellsin the FOV and the differencein
their preferred phases (see ‘Tuning of single cells to the phase of the
oscillation’) was calculated. In order not to count the same datatwice,
each correlation value was calculated using N x (N - 1)/2samples (each
sample was acell pair), where Nwas the total number of cells recorded
inthe session. Inthe presence of travelling waves, asignificant correla-
tion between differences in preferred phase and anatomical distance
between cellswithinthe FOVisto be expected. To determine statistical
significance the cells’ preferred phase were shuffled within the FOV100
times, and for each shuffled realization the correlation values were cal-
culated. Because we were interested in significant correlations, regard-
less of whether they were positive or negative, both in experimental and
shuffled data we took the absolute value of the correlations. Next, the
95th percentile of the shuffled distribution (100 shuffled realizations
per session) was used as cutoff for significance and compared with the
correlation value in experimental data.

In order to rule out that the small correlation values observed in

experimental data could be masking a dependency such that forlarger
distancesthe differencesin preferred phaseincreasedin absolute value,
the same calculations were repeated but now taking the absolute value
ofthe differencein preferred phase. Statistical significance was deter-
mined as in the previous paragraph.
Preferred phases calculated using datafromindividual sequences.
Travelling waves could still be present if they move in different direc-
tions from sequence to sequence. To test for the presence of travelling
waves without assuming similar wave directions across successive
sequences, the quantification of correlation between the difference
in preferred phase as a function of pairwise anatomical distance was
repeated for each sequence separately. To calculate the preferred phase
ofeach cellineach sequence (see ‘Tuning of single cells to the phase of
the oscillation’), the mean phase at which the calcium events occurred
inthatindividual sequence was computed. In each sequence, only cells
that had at least 5 calcium events were included in the analysis. This
analysis was performed separately on 421 sequences across 15 oscilla-
tory sessions. Similarly to the analysis described above, whensequences
were concatenated within a session, the calculations were repeated
after taking the absolute value of differences in preferred phase.

Results are presented in Fig. 3f,g. InFig. 3f, the correlation value was
also non-significant when calculated using the absolute value of the dif-
ferencesin preferred phase (correlation=0.0028, cutofffor significance
ofthe correlation=0.0146). In Fig.3g, inthe experimental datathe abso-
lute value of the correlations ranged from 6.4 x 107 to 0.147 (n = 421).
Outof 421 sequences, 27 were classified as significant when compared
to the 95th percentile of a shuffled distribution (cutoffs ranged from
0.007t00.237,n=421). The fraction 27/421 was slightly above a chance
level of 0.05(0.05 x 421 = 21 sequences), yet for those 27 sequences the
correlation values were very low, ranging from 0.008 to 0.137.

Calculation of local gradients of preferred phase. Previous studies
haveinvestigated the presence of travelling waves by computing local
anatomical gradients of the phase of the oscillation, when the phase
is calculated through the Hilbert transform applied to the activity of
each electrode (for example, ref. 75, Ecog data). In order to perform a
similar analysis but applied to each sequence separately, two different
approaches were taken.



Similarity of preferred phases in spatial bins of the FOV. First, the
similarity in preferred phases of all cells within spatial bins of the FOV
was used as a proxy for local gradients. The similarity in preferred
phases was calculated as the mean vector length (MVL) of the distri-
bution of preferred phases within each bin of the FOV. The analysis was
performed for individual sequences separately.

For each of the 15 oscillatory sessions (over 5 mice), the FOV was
divided into spatial bins of 100 um x 100 um (6 x 6 bins in 10 sessions,
10 x10binsin5 sessions), or 200 um x 200 pm (3 x 3binsin 10 sessions,
5x5binsin 5 sessions) (note that for 10 of the 15 oscillatory sessions
the FOV was 600 um x 600 pm, mice no. 60355, no. 60584, no. 60585;
while for 5 of the 15 oscillatory sessions the FOV was 1,000 um x1,000
Km, mouse no. 59914; mouse no. 59911 did not show the oscillatory
sequences). Next, the preferred phase of each cell per sequence was
calculated (as we did in ‘Correlation between differences in preferred
phase and anatomical distance’) and for each sequence and every spa-
tial bin of the FOV the MVL was computed (only spatial bins with 10 or
more cellswere considered). Ifthe MVL was O, then all preferred phases
inthatbin were differentand homogeneously distributed between -1t
andm, whereasifthe MVLwas1thenall preferred phases were the same.
In the presence of a travelling wave, each bin should have a high MVL
value compared to chance levels. Statistical significance was deter-
mined by repeating the same MVL calculation after shuffling the cells’
preferred phases within the FOV 200 times, and using, for each spatial
bin, a cutoff for significant of 95th percentile of the shuffled distribu-
tion. A non-significant fraction of spatial bins had a MVL value above
the cutoff for significance.

Differences in preferred phase among pairs of cells in small neigh-
bourhoods of the spatial domain. The analysis presented above is
focused onthe degree of similarity between preferred phasesin spatial
bins. In order to avoid small cell sample effects, and effects of adding
athreshold number of cells for bins to be included when calculating
similarity with the MVL measure above, we decided to also calculate
the differencein preferred phases for all pairs of cells that were located
withinsmall neighbourhoodsin the FOV, expecting thatinthe presence
oftravelling waves the differencesin preferred phases of cell pairs within
small neighbourhoods would be smaller than expected by chance. For
each cell in the FOV, all other cells that were located within a circular
neighbourhood of radius 50, 100 or 200 pm were identified and the
differences in preferred phase between cell pairs within those areas
were calculated. Next, for each sequence and each radius separately
all phase differences were pooled, and the mean and the median of the
obtained distributions were calculated. To determine significance, the
preferred phases across all cells were shuffled 200 times and for each
shuffled realizationadistribution of differences in preferred phase was
obtained and used to calculate the mean and median. Because in the
presence of travelling waves smaller differencesin preferred phases than
inthe shuffled datawere expected, the meanand median calculated on
experimental data were compared with the 5th percentile of the distri-
bution of means and medians obtained from shuffled data. This com-
parison was performed for each sequence and each radius separately.

Centre-of-mass calculation of the population activity. To determine
whether the population calcium activity was anatomically localized, as
expected in the presence of travelling waves, we calculated its centre
of mass (COM). First, allindividual sequences were identified and the
neural datawas averaged intime bins of 5s. We chose bins of 5 s because
the sequences are very slow, however, results remain unchanged if
bins of 1s or 2 s are used instead. For each time point (binsize=5s)
and for each sequence separately the COM of the population activity
was calculated as:

COM= myx;,

E\
M=

I
—

where Nis the total number of recorded cells in the session, r;is the
position of neuroniinthe FOV, m;is the total number of calcium events
of neuroniwithinthe 5 stimebin,and M= Y,_, m. The COM was visual-
ized for one example sequence both in experimental data, and after
randomly shuffling the position of the cells within the FOV (Extended
DataFig. 8d). To quantify the temporal trajectory of the COM across
individual sequences, we calculated the cumulative distance travelled
by the COM as the sum of the distances travelled by the COM between
consecutive time points (binsize =5 s). The cumulative distance trav-
elled calculated on experimental datawas compared with the 5thand
95th percentile of a distribution built by shuffling the positions of the
cellsin the FOV 500 times.

Procedure for merging steps

In order to average out the variability observed in single cells at the
level of locking degree and participation index while preserving the
temporal properties of the oscillatory sequences, aniterative process
that defines new variables from combining the calcium activity of cells
wasimplemented for each session separately (Extended Data Fig. 9a).
This process is similar to a coarse-graining approach’.

First, the Nrecorded cells in one session were sorted according to
the PCAmethod. Inthefirstiteration of the procedure, named merging
step one, the calcium activity (see ‘Binary deconvolved calciumactiv-
ity and matrix of calcium activity’) of pairs of cells that were positioned
nextto each otherinthe PCAsorting wereadded up (mergingsteplin
Extended DataFig. 9a). This resulted in ¥ new variables, which in merg-
ing step 2were grouped together in pairs of adjacent variables by add-
ing up their activity, whichyielded ¥ new variables. Note that because
in the PCA sorting cells whose activity is synchronous are positioned
adjacentto eachother, the new variables consist of groups of co-active
cells.

In general, mergmg stepj generates varlables by adding up the
activity of pairs of 2 varlables from mergmg stepj—1,j>1,witheach
new variable defmed as:

~_ Oy t0y N

0;= T [=1,..., 2j

where g; is the ith new variable that results from adding ,;_; and o,;,
which were computed in the previous merging step, j- 1. In merging
step1, 0,;_;and 0,;are the calcium activity of cellsin the position 2i -1
and2i,1<i<N,inthesorting obtained with the PCA method.

This procedure was repeated 6 times until -10 variables were obtained
ineachsession (the exact number of variables depended on the number
of recorded cells, N, in each session). If N was an odd number, the last
cellin the sorting obtained with the PCA method was discarded and
the procedure was applied tothe first V- 1cellsinthe sorting.Inevery
merging step the participationindex (see ‘Participationindex’) of each
new variable was calculated (see Extended Data Fig. 9b).

Division of cells into ensembles

After 5Smerging steps (and for approximately 10 variables), the partici-
pationindexreached a plateau (Extended Data Fig. 9b). This motivated
the decision tosplit the recorded cellsinto 10 variables, which we later
used to quantify the population dynamics (see ‘Analysis of population
dynamics using ensembles of co-active cells’). From now on we will refer
tothose variables as ensembles, to highlight the fact that cellsineach
ensemble are co-active. The same number of ensembles was used in
sessions that did not exhibit oscillatory sequences.

To distribute cells into 10 ensembles, cells were sorted accord-
ing to the PCA method. If ¥ 10 is an integer, where N is the total
number of cells in one session, then each ensemble contains T)
cells and the set of cells that belong to ensemble i, 1<i<10, is

{(l—l)x +1, (i— 1)><—+2 IX% lf%lsnotanmtegerthen

ensembleslto9conta|n{ JcellsandensemblelOcontalnsN 9><L J
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cells,where|x | = max{m € N/m < x} and Nis the set of natural numbers.
Inthis case the set of cells that belongs to each ensemble is:

{(i—l) XL%PI, (i-1) XL%PZ, IXL%J} 1<ensemble<9

N N
{9 x {EJ* 1,9x% {EJ+ 2,..., N}, ensemble =10

Note that each cell was assigned to only one ensemble.

After each cell was assigned to one of the ten ensembles, the activ-
ity of each ensemble as a function of time was calculated as the mean
calcium activity across cells in that ensemble.

Finally, to calculate the oscillation frequency of ensemble activity, the
PSD was calculated (Welch’s methods, 8.8 min Hamming window with
50% overlap between consecutive windows, pwelch Matlab function).
The oscillation frequency was estimated as the frequency at which the
PSD peaked. For each session, the oscillation frequency of the activity
ofthe ensembles was compared to the sequence frequency, which was
computed as the total number of sequences in the session divided by
theamountoftime the network engaged in the oscillatory sequences.
Thelatter was calculated as the length of the temporal window of con-
catenated sequences (see ‘Identification of individual sequences’).

Analysis of population dynamics using ensembles of co-active
cells

We adopted an ensemble approach to quantify the population dynam-
ics (see ‘Procedure for merging steps’ and ‘Division of cells into
ensembles’). With a total of 10 ensembles this approach averaged
out the variability observed in single-cell locking degree and partici-
pation index while keeping the temporal progression of the oscilla-
tory sequences (Extended Data Fig. 9f). In sessions with oscillatory
sequences, all individual sequences were identified (see ‘Identifica-
tion of individual sequences’) and the corresponding time bins were
concatenated, whichyielded anew matrix of calcium activity in which
the oscillatory sequences were uninterrupted. Next, cells were divided
into ensembles (see ‘Division of cells into ensembles’) and ensemble
activity was downsampled using as bin size the oscillation bin size of
the session (see ‘Oscillationbinsize’). This procedure yielded a matrix,
the ensemble matrix, with the activity of each ensemble corresponding
to asingle row (10 rows in total), and as many columns as time points
sampled at the oscillation bin size. In non-oscillatory sessions, the full
matrix of calcium activity was used and the temporal downsampling
was conducted at the mean oscillation bin size computed across all 15
oscillatory sessions; that is, bin size = 8.5 s (see ‘Oscillation bin size’
for a description of the bin size used in non-oscillatory sessions). For
both types of sessions (with and without oscillations), the activity of
the 10 ensembles was described through a vector expressing, at each
time point, the ensemble number with the highest activity at that time
point (see Extended DataFig. 9e,f). This vector was used to perform the
following analyses: transition probabilities, probability of sequential
activation of ensembles, and sequence score.

Transition probabilities. The transition probability from ensemble i
toensemblejwas quantified as the number of times the transitioni > j
was observed inthe data of one session, normalized by the total number
of transitions in one session. Transitions were identified from the
vector that contained the ensemble number with maximum activity at
eachtime point (transitions to the same ensemble between consecutive
time points were disregarded). Transitions were allocated in a matrix
of transition probabilities T of size 10 x 10, since 10 ensembles were
used. Inthis matrix, the component (i, j) expressed the transition prob-
ability from ensemble i to ensemble;.

To establish statistical significance of the transition probabilities,
the data was shuffled 500 times. In each shuffle realization, each row
of the matrix of calcium activity (with concatenated sequencesin the

case of oscillatory sessions) was temporally shuffled (asin ‘Sorting of
temporally shuffled data’), and the procedure for calculating the ensem-
ble matrix and transition probabilities was applied to the shuffled data.
Foreachtransition,i > jthe 95th percentile of the shuffled distribution
was used to define a cutoff.

Probability of sequential activation of ensembles. We calculated
the probability of sequential ensemble activation according to the fol-
lowing procedure. From the vector expressing the ensemble number
with the highestactivity at each time point (sampled at the oscillation
binsize), strictly increasing sequences of all possible lengths (from 2
to 10 ensembles) were identified. The number of ensembles in each
sequence was the number of ensembles that were active in consecutive
time points (epochs of sustained activity were disregarded). While the
sequences had to be strictly increasing, they did not have to be con-
tinuous. Sequences could skip ensembles, in which case the maximum
number of ensembles in one sequence was less than 10. The probability
of the sequential activation of k ensembles, k=2,...,10, was next esti-
mated as the number of times a sequence of k ensembles was found,
normalized by the total number of identified sequences. Note that all
subsequences were alsoincluded in this estimation. For example, if the
ensembles1,2and3 wereactivein consecutive time points, asequence
ofthree ensembles wasidentified, as well as three subsequences of two
ensembleseach:1,2,aswellas2,3and1,3.

In order to test for significance, the shuffled data from ‘Transition
probabilities’ was used. The procedure to compute the probability
of sequential activation of ensembles was applied to each of the 500
shufflerealizations performed per session. Shuffled datawas compared
withrecorded data.

Sequence score. The sequence score measures how sequential the
ensemble activity is. It is calculated from the probability of sequential
activation of ensembles as the probability of observing sequences of
three or more ensembles. The sequence score was calculated for each
session of the dataset separately. To determine if the obtained scores
were significant, for each session the 500 shuffle realizations used in
‘Probability of sequential activation of ensembles’ for assessing sig-
nificance of the probability of sequential activation of ensembles were
used to calculate the sequence score on shuffled data. Those values
were used to build a shuffled distribution, and the 99" percentile of
this distribution was chosen as the threshold for significance.

Estimation of number of completed laps on the wheel, speed
and acceleration

Features of the mouse’s behaviour were used to determine whether the
MEC oscillatory sequences were modulated by running.

Thewheel had aradius of 8.54 cm (see ‘Self-paced running behaviour
under sensory-minimized conditions’) and a perimeter of 53.66 cm.
Therefore mice had to run for ~53.7 cm to complete one lap on the
wheel. For each session, we estimated the number of completed laps
onthe wheel from the position onthe wheel recorded as a function of
time. The number of completed laps during one sequence (see ‘Iden-
tification of individual sequences’) was calculated as the total distance
run during the sequence divided by 53.7 cm.

The speed of the mouse was numerically calculated as the first deriva-
tive of the position on the wheel as a function of time (the sampling
frequency of the position was 40 Hz for mice 60355 (MEC), 60353,
60354 and 60356 (PaS). The sampling frequency was 50 Hz for mice
60584 and 60585 (MEC), 60961, 92227 and 92229 (VIS). For mice 59911,
59914 (MEC) and 59912 (PaS), the wheel tracking was not synchronized
to the ongoing image acquisition; see ‘Self-paced running behaviour
under sensory-minimized conditions’. The obtained speed signal from
the former two groups of mice wasinterpolated so that the speed values
matched the downsampled imaging time points (sampling frequency
=7.73 Hz),and smoothed using asquare kernel of 2 swidth. A threshold



was applied such that all speed values that were smaller than2 cms™
were set to zero and all speed values larger than 2 cm s™ remained
unchanged. We decided to threshold for immobility at a non-zero
speedvalue (2 cms™)inorder to avoid classifying as running behaviour
frames that only had minor movements of the wheel (‘twitches’), which
were detected when mice slightly moved on the wheel but did not fully
engage in locomotion. The threshold that we used is consistent with
the one used in other studies, asin ref. 16.

The speed signal obtained after applying the threshold was used to
defineimmobility (running) bouts as the set of consecutive time points
(bin size =129 ms) for which the speed was equal to (larger than) zero
(asimilar approach was used in ref. 16). We found that the median of
velocitieswas 0 cm s when all velocity values across the 10 MEC oscilla-
tory sessions (over 3 mice) for which we had imaging data synchronized
with behavioural data were pooled. This is because for some of the
sessions the mice were immobile for most of the session.

When the threshold for immobility (2 cm s™, see above) was dis-
carded (that s, set to 0 cm s ™), the median was 1.3 cm s'—that is, still
very low. In the absence of a threshold, our main result, which is that
theoscillatory sequences traverse epochs of running and immobility,
remained the same (median of probability of sequences during running
=0.85; median of probability of sequences during immobility = 0.65;
two sample Wilcoxon signed-rank test on the probability of sequences
for running versus immobility, n =10 oscillatory sessions over the 3
mice that had the tracking synchronized toimaging, P= 0.002, W=55).

The acceleration was numerically calculated as the first derivative of
the speed signal. Notice thatin this case nointerpolation was needed.

Because the available data did not have enough statistical power, it
was not possible to compare the behaviour of the mice, for example
in terms of its running speed and acceleration, between periods with
and without ongoing oscillatory sequences.

Finally, mice that were imaged from the PaS or VIS performed the
same minimalistic self-paced running task as the mice that wereimaged
from the MEC recordings. The range of speed valuesin PaS or VIS mice
across sessions = 0-58.6 cms™ (PaS) or 0-60.3 cm s™ (VIS); median
number of completed laps on rotating wheel in PaS or VIS mice across
sessions = 145 (PaS) or 104 (VIS); maximum number of completed laps
onrotating wheelin PaS or VIS mice across sessions = 502 (PaS) or 1,743
(VIS). These values are reported for MEC micein thelegend of Extended
DataFig. 2a.

Estimation of the probability of observing oscillatory sequences
To determine whether the MEC oscillatory sequences were observed
during different behavioural states, the probability of observing the
oscillatory sequences was calculated conditioned on whether the
mouse was running or immobile. For each oscillatory session with
behavioural tracking synchronized to theimaging data (10 sessions over
3 mice, see ‘Self-paced running behaviour under sensory-minimized
conditions’ and ‘Oscillation score’), all individual sequences were
identified (see ‘Identification of individual sequences’). The subset
oftimebinsthat belonged to individual sequences were extracted and
labelled as oscillation (bin size =129 ms). The fraction of bins labelled as
oscillationbinswas 0.73 + 0.07 (mean +s.e.m.,n =10 sessions). Next, a
second label was assigned to the time bins depending on whether they
occurred during running orimmobility bouts (bins labelled ‘running’
or ‘immobility’, respectively, see ‘Estimation of number of completed
laps onthe wheel, speed and acceleration’). The fraction of binslabelled
as running = 0.43 £ 0.09, mean * s.e.m., n =10 sessions. After apply-
ing this procedure, each time bin had two labels, one indicating the
running behaviour, and one indicating the presence (or absence) of
oscillatory sequences. To estimate the probability of observing the
oscillatory sequences conditioned on the mouse’s running behaviour,
allbinslabelled as running orimmobility were identified and fromeach
subset, the fraction of bins labelled as oscillation was calculated. These
probabilities were computed for each session separately.

Sequences during immobility bouts of different lengths

The oscillatory sequences occurred both during running and immo-
bility bouts. To quantify the extent to which individual sequences
progressed during different lengths of immobility bouts, the follow-
ing procedure was adopted. First, for each session, allimmobility
bouts were identified and assigned to bins of different lengths (see
‘Estimation of number of completed laps on the wheel, speed and
acceleration’; lengthbins=0-3s,3-55s,5-105,10-155,15-20 5,>2555).
Second, all individual sequences were identified (see ‘Identification
ofindividual sequences’). Third, for each session and each length bin,
the fraction of immobility bouts that were fully occupied by uninter-
rupted sequences was calculated. To estimate significance, for each
session the time bins that belonged to all individual sequences were
temporally shuffled. The third step of the procedure described above
was performed for 500 shuffle iterations per session. In Fig. 4c, the
recorded datahas10 data points per length bin, and the shuffled data
has 5,000 data points per length bin, since 500 shuffled realizations
per session were pooled.

Analysis of speed and sequence onset

Todetermine whether the onset of the MEC oscillatory sequences was
modulated by the mouse’s running speed, changesin speed before and
after sequence onset were investigated. For each session allindividual
sequences were identified (see ‘Identification of individual sequences’)
and for each sequence the mean speed over windows of 10 s before
and after sequence onset was calculated. Because no differences in
themean speed were observed before and after onset (Extended Data
Fig.2fleft panel), we next determined whether changes in speed were
correlated with the onset of sequence epochs, which were defined as
epochswith uninterrupted sequences—thatis, epochs with recurring
sequences. The same analysis described above was repeated but only
for the subset of sequences that were 10 s or more apart—that is, for
sequences that belonged to different epochs.

The obtained results remained unchanged when the analysis was
performed for 2 s windows before and after sequence onset.

We complemented this analysis by investigating whether new epochs
of sequences were more likely to be initiated during running bouts.
In each of the 10 oscillatory sessions we first identified all running
and immobility bouts that were 20 s long, or longer. We then counted
the number of times that a sequence onset occurred in each behav-
ioural state. For this analysis we only considered sequences that were
not preceded by other sequences (sequences that were 10 s apart or
more). Results were upheld with running and immobility bouts 0of 40 s
or longer, in which case sequence onset was 2.8 times more frequent
during running.

Manifold visualization for example session in VIS and PaS
Tovisualize whether the topology of the manifold underlying the popu-
lation activity in example sessions recorded in VIS and PaS was also a
ring, PCA was used and a similar procedure to the one described in
‘Manifold visualization for MEC sessions’ was adopted.

For each example session, one corresponding to VIS and one cor-
respondingto PaS (Fig. Se,f), PCAwas applied to the matrix of calcium
activity, which first had each row convolved with a gaussian kernel of
width equal to four times 8.5 s, which is the mean oscillation bin size
computed across oscillatory sessions (see ‘Oscillation bin size’). Neural
activity was projected onto the embedding generated by PCland PC2.
Extended Data Fig.11d,e shows the absence of a ring-shaped manifold
in VIS and PaS example sessions.

Co-activity and synchronizationin PaS and VIS sessions
Sessionsrecorded in PaS and VIS did not exhibit oscillatory sequences.
To further characterize their population activity, synchronization and
neural co-activity were calculated.
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Synchronization. Neural synchronization was calculated as the
absolute value of the Pearson correlation between the calcium activ-
ity of pairs of cells (bin size =129 ms). For each session, the Pearson
correlation was calculated for all pairs of calcium activity (correla-
tions with the same calcium activity were not considered) and used
to build a distribution of synchronization values. In Extended Data
Fig.11j, these distributions were averaged across sessions for each
brain areaseparately.

Co-activity. For each time bin in a session (bin size =129 ms) the
co-activity was calculated as the number of cells that had simultane-
ous calciumevents divided by the total number of recorded cellsin the
session. This number represented the fraction of cells that was active
in individual time bins. Using all time bins of the session, a distribu-
tion of co-activity values was calculated. In Extended Data Fig. 11k,
the distributions were averaged across sessions for each brain area
separately.

Model

To determine whetherlong sequences actas atemplate for the forma-
tion of given activity patterns inaneural population, we built asimple
perceptron model in which 500 units were connected to an output
unit (Extended Data Fig. 12a). There was a total of 500 weights in the
network, one per input unit. The total simulation time was 120 s, with
3,588 simulation steps and a time step of 33.44 ms (original time step
was 129 ms, tomimic the bin size used in calcium data, rescaled so that
thelength of one of the input sequences was120 s, similar to the length
ofthesequencesinFig.2b). The response of the output unit was given
by R = WX, where Wwas the vector of weights, and X the matrix of input
activity (each columnisatimesstep, each rowis the activity of oneinput
unit). The weights were trained such that the output unit performed
one of two target responses (see below). For each target, we trained
the model using as input periodic sequences with 5 different lengths
(one length per training), covering the range from very slow to very
fastas compared to the characteristic time scale of the targets (100 s).

Inputs. (Th?Zactivity of input unit i was represented by a Gaussian:
-y

x(t)=e 20 ,1<i<500, 0<t<240s,0,=0=7.6s, Vi. Across input

units, the means of the Gaussians p, were temporally displaced such

that, all together: (1) units fired in a sequence, and (2) the distance

between the means of two consecutive cells in the sequence was the

same for all pairs of consecutive cells.

This sequence was the slowest of the 5 sequence lengths we con-
sidered. Using this sequence as template, in order to build slower
and periodic sequences we compressed the template and repeated it
periodically by afactor of 2, 3,4 and 8, to generate faster and periodic
sequences of lengths 120, 60, 40 and 30 s respectively.

Targets. Two target responses were considered: ramp and Ornstein—
Uhlenbeck process.

Ramp. The output neuronlinearly increased its activity such thatit was
equaltoOattimestep=0(0s),and tolattimestep=2,990 (1005s).

t

Ornstein-Uhlenbeck process. Unlike the first target, which was
deterministic, the second target was stochastic and generated by an
Ornstein-Uhlenbeck process.

dFoy Moy~ Foul®)
— = ——— 40, £t
de T ot (0)
where i, =1denotes thelong-term mean, is awhite noise of zeromean
and variance g, =0.005, and 7 =25.6 s denotes the correlation time.

Training of weights. The weights between the inputs and the output
unit were trained such that the output unit performed one of the two
targetresponses explained above. At the end each of the1,000 learning
iterations, the weights were updated through the perceptron learning
rule Aw; = nex;, wherex;was the inputfromneuroni,1<i<500,andn=1
was the learning rate. In each learning iteration, the error e was calcu-
lated as the sum over time steps t of the difference between the target
response and the output response—thatis,e=Y, T(t) - WX(t), where
T(t)isthetarget response (either the ramp or the Ornstein-Uhlenbeck
process) at time point ¢, and X(t) is the vector of input activity at time
point t. The mean total error plotted in Extended Data Fig. 12d was
calculated as the mean error over the last 100 learning iterations.

Data analysis and statistical analysis
Data analyses were performed with custom-written scriptsin Python
and Matlab (R2021b). Results were expressed asthe mean + s.e.m. unless
indicated otherwise. Statistical analysis was performed using MATLAB
and Pvaluesareindicatedinthe figure legends and figures (NS: P> 0.05;
*P<0.05,*P<0.01,**P< 0.001). For data that displayed no Gaussian
distribution and that was unpaired, the Wilcoxon rank-sum test was
used. For paired data or one-sampled data, the Wilcoxon signed-rank
test was used. Two-tailed tests were used unless otherwise indicated.
Correlations were determined using Pearson or Spearman correlations.
Friedman tests were used for analyses between groups. The Bonferroni
correction was used when multiple comparisons were performed.
Power analysis was not used to determine sample sizes. The study
did notinvolve any experimental subject groups; therefore, random
allocation and experimenter blinding did not apply and were not
performed.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datasets generated during the current study will be available after
publication, on EBRAINS (https://doi.org/10.25493/SKKX-4W3). Source
data are provided with this paper.

Code availability

Code for reproducing the analyses in this article are available
through this link: https://github.com/soledadgcogno/Ultraslow-
oscillatory-sequences.git.
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Extended DataFig.1|Histology showingimaginglocations for each animal
inthe MECgroup. a. Left: Representative image indicating GCaMP6m
expressioninthesuperficial layers of the MEC uponlocal viralinjection at
postnatal day P1 (sagittal section).Images were acquired with a20x objective
mounted ona confocallaser scanning microscope LSM 880 (Zeiss), operated by
ZEN 3 software (blue edition). Red inset, top right: 60x magnification of the
most dorsal portion of the MEC. Bottom right: Fraction of MEC neurons (Nissl +)
expressing GCaMP6m; data are shown for all 5 animals with MEC imaging. Data
arepresented as mean values, error barindicates the S.D. calculated across
multiple (n=8) adjacentslices. Each dot represents oneslice.b. Location of the
ventro-lateral edge of the prismin stereotactic coordinates, and area of the FovV
occupied by cells expressing GCaMP6m. Data are shown for each MEC-imaged
animal. Mouse #59911 had no oscillatory sequences. c. Prism locationinmice
thatunderwent calciumimagingin MECin the left hemisphere. Top: Maximum
of 50 pmthick sagittal brainsections. For each of the 5micein (b), 3sections,
shown from lateral (left) to medial (right), were acquired withan LSM 880, 20x.
ADil-coated piano wire pin was inserted at the ventrolateral corner of FoV to
enableidentification of the FoV on histology sections. Greenis GCaMP6m
signal, redis Dil signal. Scale baris 400 pm. The white stippled line encapsulates
the superficial layers of MEC. The blue dot adjacent to the leftmostimage of the
series marks the location of the ventro-lateral corner of the prism. Bottom:
estimated location of the FoV for two-photonimaging, projected onto aflat
map encompassing MEC (brown outline) and parasubiculum (PaS, orange
outline). The blue dot marks the location of the pinused to demarcate the most

lateral-ventral border of the prism, while the green squareinsetis the
microscope’s FoV.Insetimage shows the maximum intensity projections of the
FoV.Anteroposterior (AP), Mediolateral (ML), and dorso-ventral (DV) axes are
indicatedin panels (a) and (c). d. Micrographs of Cresylviolet stained sagittal
brainsections fromall 2 miceimplanted with four-shank Neuropixels 2.0 silicon
probesintheleft hemisphere.Sections are organised from the most laterally
placed shank(s) (left) to the most medially placed shank(s) (right). Mouse ID,
shank number, and scale bar (1000 pm) are indicated nextto eachsection. The
brain of one mouse (#104638) was damaged during extraction, and parts of the
MEC and cortex are missing from the section. Coloured arrows indicate MEC
borders (dorsal, ventral) and theidentified or estimated probe tipin the
section. Black arrows indicate estimated dorsoventral range of the probe’s
activerecordingsites (asindicated by theinsert). For each section, inserts show
the number of units recorded at each depth of the probe shank (histogram bin
size=60 pm). Note that the anatomical location of probe shanks can only be
approximately estimated, and indicated unitlocations are subject to
measurementerror, e.g., due to the shank tips exiting the cortex, the brain
shrinking during perfusion and errorin estimating the position of the tip of the
probe. Stippled linesindicate borders between brain regions (MEC, medial
entorhinal cortex; LEC, lateral entorhinal cortex; PaS, parasubiculum, HF,
hippocampal formation; PoR, postrhinal cortex; VISpl, posterolateral visual
area; TR, postpiriform transition area; CoA, corticalamygdalar area; PA,
posterior amygdalar nucleus). D =dorsal; V=ventral; A=anterior; P=posterior.
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Extended DataFig.2|Relationship between the oscillatory sequences and
behavior. a. Quantification of the animals’ behavior during head-fixation on
the wheel. Duration of epochs of running (speed > 2 cm/s, left) and immobility
(speed <2 cm/s, right) for 10 oscillatory sessions over the 3 animals in which
behavioral tracking was synchronized withimaging (1289 running bouts and
1286 immobility boutsin total). Each countisanepoch,and oneepochis
obtained by concatenating consecutive time bins with the same behaviour
(running orimmobility, bin size =129 ms). For each of the 10 sessions the
smallest speed value was always O cm/s. The largest speed value ranged from
16.4t075.3 cm/s. The median calculated over the entire session ranged from

0 cm/s (in4 out of 10 sessions) to 18.8 cm/s. Across the 10 sessions, the median
of speed values was 0 cm/s (indicating that some of the animals spent much of
thesessiontimebeingimmobile, yet those animals exhibited oscillatory
sequences too, e.g.animal #60355, Extended DataFig. 5a; see also Fig.4aand ¢).
The medianspeed during running epochs was 7.8 cm/s. The acceleration
values ranged from -86.3t0108.9 cm/s?, withamedian of 0 cm/s?for all the
dataaswell asthe running epochsspecifically. b. Left: Schematic of the change
in phase of the oscillation during immobility epochs that werelonger than25s
and that occurred during the oscillatory sequences. Right: 44 of these epochs
fromthesame3 miceasin (a). Asinthe schematic on theleft, eachline
representsthe progression of the phase of the oscillation (from -rttomrad) asa
function of time. The start of eachimmobility epochisaligned att=0, and the
epochlastsforaslongastheline continues. Different epochs have different
lengths, coveringarange from25sto 258 s. For visualization purposes only the
first120 saredisplayed (3 of the epochs were truncated; these had durations of
127.9 (first column, second row), 258.2 (third column, bottomrow),136.1s
(fourth column, second row)). Sudden transitions from mtto -t rad reflect the
periodic nature of the sequences. c. Number of completed laps on the wheel
persequenceas afunction of the sequence number after pooling sessions
(range of completed laps onrotating wheel across 10 sessions =10 to 1164 laps,
median= 624 laps).Sessions are pooled for each animal separately (mouse
#60584, 4 sessions; mouse #60585, 3 sessions; the third animal isshownin
Fig.4d).Eachdotindicates oneindividual sequence. The dashed lineindicates
separation between sessions. Anumber of laps equal tolwould indicate an
approximate one-to-one mappingbetween the positiononthe wheel and the
progression of one full sequence. d. To determine if sequences are associated
with specific running speeds, we extracted all time bins participating in

oscillatory sequences and calculated the distribution of observed speed values
during those bins (blue bars; n =167389 time bins concatenated across 314
sequences pooled over10 oscillatory sessions, over 3 animals, bin size =129 ms).
This distribution was almostidentical to the distribution of speed values
observed during the full length of the sessions, which also included epochs
without the oscillatory sequences (bluesolid line, with and without oscillatory
sequences; n=238505 time bins across 10 oscillatory sessions, over 3 animals,
binsize=129 ms). e. Asin (d) but for the distribution of acceleration values.
Thereisnodifferenceinthe range of acceleration values during parts of the
session with oscillatory sequences. f. Left: To determine whether the
oscillatory sequences are modulated by onset of running we calculated the
meanrunningspeed during time intervals of 10 sright before and right after
thesequence onset (one sample Wilcoxon signed-rank test on the difference
betweenspeed before and after sequence onset, n=310 equence onsets over
10 sessions from 3 animals, p=0.82, W=25). Right: Same as left but only for
sequences thatwere10sor moreapart,i.e.for sequencesbelongingto
different oscillatory epochs (one sample Wilcoxon signed-rank test on the
difference between speed before and after sequence onset, n=70 sequence
onsets over 10 sessions from 3 animals, p=0.12, W=857). Note that thereisno
systematic change in speed after onset of sequences. Results remain
unchanged ifthe analysisis repeated for 2 s windows before and after sequence
onset (Analysis for all sequences: one sample Wilcoxon signed-rank test on the
difference between speed before and after sequence onset, n=310 equence
onsets over 10 sessions from 3 animals, p=0.82, W=25; Analysis for all
sequences that were10s or more apart, one sample Wilcoxon signed-rank test,
n=70sequence onsetsover 10 sessions from 3 animals, p=1.0, W=0).g-j.
Examples of sections of sessions withincreased speed after sequence onset
(exceptions fromthe general pattern shownin (f)). Top of each panel: Raster
plots, symbolsasinFig.2a (binsize =129 ms). Bottom of each panel:
Instantaneous speed of the animal during the recordingin the top panel.
Lengthofthe displayed sectionwas400,1000,400 and 500 s, respectively, for
(g-j)- Notice that while speed is higher after onset of the sequence in these
examples, theincrease of speed does not always occur right after sequence
onset, but sometimes before (g,h), and sometimes tens of seconds after (i,j).
Analyses wererestricted to 10 oscillatory sessionsin 3 animals, for which the
behavioural tracking was synchronized to the imaging (Methods).
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Extended DataFig. 3| Examples of ultraslow oscillations insingle cell
calcium activity. a. Autocorrelation of 15example cells’ calcium activity
(oneper oscillatory session). b. PSD calculated on the autocorrelation of the
example cellshownin (a). The dashed line indicates the frequency at which the
PSD peaks. Note that the peakisatafrequency <0.1Hz.c.Asin (a) but for the
signal obtained after the calcium activity was circularly shuffled (blue) or
shuffled by destroying the inter calcium eventintervals (red). Note that
circularly shuffling the calcium activity preservesits periodicity.d. PSD
calculated on the autocorrelationsin (c). Blue indicates circularly shuffled

data.Redindicates data that was shuffled by destroying the inter calcium event
intervals. e.Mean z-scored autocorrelation calculated over all recorded cellsin
thesession. Error barsindicateS.E.M. Black: Experimental data. Red: Shuffled
data (obtained by destroying theinter calcium eventintervals). f. Mean
z-scored PSD calculated over allrecorded cellsin the session. For each cell the
PSDwas calculated on the autocorrelation of the cell’s calciumactivity. Error
barsindicate S.E.M. Color conventionasin (e). Eachrow shows datafromone
oscillatory session (15 rows in total, each row corresponds to one oscillatory
session). Animal number and session number areindicated at the top.
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Extended DataFig. 4 |Oscillatory sequences shownby cell sorting based on
correlation or dimensionality reduction. a. Left: Because neural activity
progresses sequentially, the time lag that maximizes the correlation between
the calcium activity of pairs of cellsincreases with their distance in the
correlationsorting. Sorting is performed asin Fig.2a. Timelagisexpressedin
seconds, distanceis expressed as the number of cells between the two cellsin
thesorting. Notice that for large distances (e.g.>300 cells), the time lag to peak
correlationis eitherlarger than 60 s or close to zero. This bimodality is due to
the periodicity of the MEC sequences. The dashed lineindicates alinear
regression (n=301cell pairs, R2=0.17, p=2 x10™, two-sided t-test. The line
wasfitted to the intermediate samples to avoid the effect of the periodic
boundary conditions). Right: The cross correlation between the calcium
activity of pairs of cellsis oscillatory and temporally shifted. Examples are
shown for 3 cell pairs with different distancesin the sorting based on
correlation values. Orange: cells are Scells apart; purple: cellsare 199 cells
apart; green: cellsare 401 cellsapart. The dotted line indicates the time lag at
which the cross correlation peaks within the first peak. Note that the larger the
distancebetweenthe cellsinthe sorting, the larger the time lag that maximizes
thecrosscorrelation. b. Schematicrepresentation of the “PCAmethod”.
Principal component analysis (PCA) was applied to the binarized matrix of
deconvolved calcium activity (“matrix of calciumactivity”) of individual
sessions by considering every neuronasavariable, and every time point asan
observation. The first two principal components (PC1, PC2) were identified. In
the plane defined by PC1and PC2 (left), the loadings of each neuron defines a
vector, which has anassociated angle 0 €[ - 1, ) rad with respect to the axis of
PC1(inthe schematic, neuron N, (orange) is characterized by anangle 6,).
Neuronswere sorted accordingto theirangles 6inadescendingorder (right).
Cyan:neuronsorting before application of the PCA method. Orange: neuron
sorting after the application of the PCA method. c. Projection of neural activity
duringthe oscillatory sequences onto alow-dimensionalembedding
generated by the first two principal components obtained by applying PCA to
the matrix of calciumactivity of each session. Each plot shows one session; all
15oscillatory sessions from the calciumimaging dataset are presented. Timeis
color-coded and shown in minutes, and the temporal range corresponds to all
concatenated epochs with oscillatory sequencesin the session. Neural
trajectories are often circular, with population activity propagatingalonga
ring-shaped manifold. Thering-shaped manifold became even more salient
whenwe applied anon-linear dimensionality reduction method (Laplacian
Eigenmaps, LEM) instead of PCA to the data (Fig. 2¢, right), suggesting that at
least some of the datamight lie on a curved surface. d. Oscillatory sequences

arenotrevealed witharandomsorting of the cells (first row) or when the PCA
sorting method is applied to circularly shuffled data (second row). Oscillatory
sequences similar to those of Fig.2a,b (with correlation sorting or PCA
method) arerecovered when neurons are sorted according to non-linear
dimensionality reduction techniques (UMAP, Isomap, LEM, t-SNE, third to sixth
row). Eachrow of eachraster plotis aneuron, whose calciumactivity is plotted
asafunctionoftime (asinFig. 2a). Every black dot represents atime bin where a
neuronwas active (bin size =129 ms). e. Raster plot of calcium activity of the
session presentedin Fig.2a. Neurons are sorted according to the PCA method.
For calculating the sorting, only the first (top), second (middle) and third
(bottom) third of the datawas used. The portion of the data used for calculating
thesortingisindicatedinred. Otherwise, conventions are asin Fig. 2a. This
visualization was extended to a quantification for all sessions. For each session
we calculated the sortings using (i) all data, (ii) the first half of the data, (iii) the
second half of the data. Next we calculated the correlation between the
distancesinthedifferentsortings. If sortings obtained with different chunks of
datapreserve the ordering of the neurons, we would expect high correlation
values. We compared the obtained correlation values with the 95" percentile of
ashuffled distribution obtained by shuffling the position of the cellsinthe
sortings. When comparing sorting (i) vs. sorting (ii), (i) vs. (iii), and (ii) vs. (iii), all
oscillatory sessions (15 of 15) were above the cutoff of significance

(see Methods). The high correlation values obtained in these distance
estimates provide supportto the fact that using different chunks of data for
sorting the cells unveils the same dynamics. f. Neuropixels recording showing
ultraslow sequences without prior smoothing of the data. Same dataasin
Fig.2f. Whilein Fig. 2f spike trains were first convolved with a Gaussian kernel of
width equalto 5 sand nextbinarized according to the mean plus one standard
deviation (Methods), here the spike trains are not convolved with a Gaussian
kernel. The binsize is120 ms. The threshold for binarization of the spike trains
isequal tothe mean +1.5standard deviations. Sorting and conventions asin
Fig.2f. Example session from animal #104638. Sequences are still visible. This
sessionhad anoscillationscore of 1.0. In this session we identified 12
sequences of durations spanning18-43s. g. Oscillatory sequences froma
Neuropixels recordinginadifferent mouse thanin (f) (and Fig. 2f). Top: Similar
to Fig. 2f, but from mouse #102335 (n = 410 units). Bottom: Similar to (f), but for
thesame session as presented in the top panel, without prior smoothing of the
data. Thissession had an oscillation score 0of 0.91 (see Methods). See
comparable example sessions for calcium datain Extended Data Fig. 5a. In this
session 9 sequences were identified, with durations ranging from 14 to 69 s.
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Extended DataFig. 5|Sorted raster plots for the complete MEC calcium
imaging dataset. a. PCA-sorted raster plots (asin Fig. 2b) for all analysed
sessions across the 5animalsinwhich MEC population activity wasrecorded,
sorted by animals and day of recording. Session numbering starts the first day
ofhabituation onthe wheel, witheither 5 or 15 habituation sessions. One
session wasrecorded per day, and recordings were conducted on consecutive
days. Note that sessions had lengths of approximately 1800sor3600s.
Oscillationscore and sequence score were calculated for each session
separately and areindicated at the top right corner of every plot. Scores
coloredingreen correspond to sessions with oscillatory sequences (see panel
d), scores coloredinred tosessions without oscillatory sequences. b. Left:
Distance dbetween two neuronsinthe PCAsortingis calculated asthe
difference between the angles of the vectors defined by the loadings of each
neurononPCland PC2withrespectto PCl. The schematic shows the distance
betweentwo neurons,oneinorangeand the otheringreen. Thelength of the
vectorsisdisregarded in this quantification. Right: Joint distribution of the
time lag T that maximizes the cross-correlation between the calcium activity of
any given pair of neurons and their distance dinthe PCA sorting. Color code:
normalized frequency, each countisa cell pair. The increasing relationship
betweentanddindicates sequential organization of neural activity. c. Example

sessions with (top) and without (bottom) oscillatory sequences. These
sessions were recorded inthe same area of the MEC in the same animal, but on
different days (Mouse #60355in panel a). Left: Raster plots of the matrices of
calciumactivity. Right: Joint distributions of the time lag r that maximizes the
correlation between the calciumactivity of any given pair of neurons and their
distancedinthe PCAsorting (asin panelb). Color code: normalized frequency,
each countisacell pair. Notice the lack of linear patternin the session without
oscillatory sequences. d. Left: Distribution of oscillation scores for calcium-
imaging sessions recorded in MEC (27 sessions in total over Sanimals). Each
countis asession. The oscillation score quantifies the extent to which single
cell calcium activity is periodic, and ranges from O (no oscillations) to 1
(oscillations). Dashed line: Threshold used for classifying sessions as
oscillatory (oscillation score > 0.72) or non-oscillatory sessions (oscillation
score<0.72). The threshold was chosen based on the bimodal nature of the
distribution (no valuesbetween 0.27 and 0.72).12/27 sessions exhibited scores
between 0and 0.27 (no oscillatory sequences), and 15/27 sessions exhibited
scoresbetween 0.72and 1 (‘oscillatory sessions’). Right: List of sessions sorted
by animal and number of sessions the animals experienced on the wheel.
Sessionnumberingasin (a). Red, sessions classified as not oscillatory; green,
session classified as oscillatory.
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Extended DataFig. 6 | Identification ofindividual sequences and
characterization of the oscillatory sequences. a. Top: Raster plot of the PCA-
sorted matrix of calcium activity of the example sessionin Fig. 2a. Bottom: Phase
ofthe oscillation calculated on the session presented in the top panelis shown
inblack, and phase of individual sequencesis colored in cyan (bin size =129 ms).
Duringonesequencethe phase of the oscillation traversed smoothly [-T, 1)
rad. Weidentified individual sequences by extracting the subset of adjacent
time bins where the phase of the oscillationincreased smoothly within the
range[-m, ) rad. First the phase of the oscillation was calculated across the
entire session, second discontinuities in the succession of such phases were
identified and used to extract putative sequences and third, putative
sequences were classified as sequencesifthe phase of the oscillation
progressed smoothly and in an ascending manner, allowing for the exception
of small fluctuations (lower than10% of 2m, e.g. asin the sequence at 500 s).
Points of sustained activity wereignored. Fractions of sequencesin which the
phase ofthe oscillation traversed 50% or more of the range [T, ) rad were
alsoanalysed (for example at the beginning of this session). b. Total number
ofindividual sequences per session, across 15 oscillatory sessions. Animal
number is color-coded. Note that 4 of 5SMEC calcium imaging animals had
identifiable oscillatory sequences. c. Box plot showing mean eventrateasa
function of sequence segment for all 15 oscillatory sessions. Each sequence was
divided into 10 segments of equal length, and for each sequence segment the
mean event rate was calculated as the total number of calcium events across
cellsdivided by thelength of the segment and the number of recorded cells.
Red linesindicate median across sessions, the bottom and top linesin blue
(bounds of box) indicate lower and upper quartiles, respectively. The length of
the whiskersindicates1.5timestheinterquartile range.Red crosses show
outliers thatlie more than1.5times outside theinterquartile range. The mean
event rateremained approximately constantacross the length of the sequence.
While anon-parametric analysis revealed an overall difference (n =15
oscillatory sessions per segment, p=0.0052, x*=23.5, Friedman test), the rate
change from the segment with minimum to maximum event rate was no more

than18%and there were no significant differencesin the eventrate between
pairs of segments (Wilcoxon rank-sum test with Bonferroni correction, p > 0.05
forall pairs).*** p<0.001,** p<0.01,*p < 0.05,n.s.p>0.05.d. Box plot of
sequence duration, for the15 oscillatory sessions. Note the relatively fixed
duration of sequencesinindividual sessions. Box plot symbols asin (c). e.
Sequence durations shown separately for each animal with oscillatory
sequences (421sequencesintotal over 5 animals, only 4 presented sequences).
For each animal all oscillatory sessions were pooled. Sequence duration was
heterogenous across sessions and animals. f. Left: Box plot of the standard
deviation of sequence duration within asession, in experimental and shuffled
data. Thestandard deviation of sequence durationis smallerin the
experimental data (n=15oscillatory sessions, 7500 shuffle realizations where
sequences wererandomly reassigned to the15sessions, preserving the original
number of sequences per session, p=1.8x1077,Z=5.08, one-tailed Wilcoxon
rank-sumtest). Right: Box plot of the ratio between the shortest sequence
duration and thelongest sequence duration for all pairs of sequences within
and between sessions. This fractionis larger for sequence pairsin the within-
sessiongroup (n=15oscillatory sessions, the mean fraction per sessionand
group was calculated separately, p=1.7 x10™%, Z=4.64, one-tailed Wilcoxon
rank-sum test). Notice that for each sequence pair, the larger this ratio, the
more similar the length of the sequences are. Symbolsasin (c).g.Sequence
durationis not correlated with the number of recorded cellsin the session
(n=421sequencesacross15oscillatory sessions,p=0.02, p=0.64,Spearman
correlation, two-sided t-test). Each dot is asequence. Animal number is color-
codedasin (b). h.Fraction of the session in which the MEC population engaged
inthe oscillatory sequences. Session length was 30 min for mice 59914 and
60355, and 60 min for mice 60584 and 60585. The fraction of session time with
oscillatory sequences varied within and across animals. i. Duration of the
longest epoch with uninterrupted oscillatory sequences. Only epochs that met
thestrictcriterion of no separation between sequences were considered.
Sequences could progress uninterruptedly for minutes in each of the animals
and spanup to 23 consecutive sequences.
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Extended DataFig.7 | Characterization oflocking degree and participation
index. a. Consistency between two measures of phase locking for individual
neurons. Thelocking degree was calculated for each cell as the length of the
mean vector over the distribution of oscillation phases ([-1,i) rad) at which the
calciumevents occurred (binsize =129 ms). Thelocking degree was consistent
with the mutual information between the calcium event counts and the phase
ofthe oscillation (bin size =0.52 s). Scatter plots show the relation between the
twomeasures, with each dot representing one neuron. Left: Datafromthe
examplesessionin Fig.2a (n =484 cells). Right: Allneurons fromall 15
oscillatory sessions are pooled (n = 6231 cells over 5animals). Red dots indicate
neurons thatdid not meetcriteria for locking. The consistency between the
two measures strengthens the conclusion that the vast majority of the neurons
inMEC arelocked to the oscillatory sequences. b. Distribution of preferred
phases (the mean phase at which the calciumevents occurred) inthe
population oflocked neurons for all 15 oscillatory sessions. Black lineindicates
the preferred phases; redintervalsindicate one standard deviation (calculated
over the oscillation phases at which the calcium events of anindividual cell
occurred). Neuronsare sorted according to their preferred phaseinan
ascending manner. Across the 15 oscillatory sessions, the smallest preferred
phasesranged from-3.14 to-3.11rad, and the largest preferred phase ranged
from3.08t03.14 rad, suggesting that the entire range of phases was covered.
c.Phasepreferencesare distributed evenly across the MEC cell population. Left:
The nearly-flat nature of the phase distributionisillustrated by comparing the
entropy of the distribution of preferred phasesinrecorded (y axis) and
shuffled data (x axis). H,,q, is the entropy of the distribution of preferred phases
(calculated asin (b)) estimated from the dataand divided by the entropy of a
flatdistribution (H,,;, =1if the distribution of preferred phases is perfectly flat,
H,., = Oifallneurons have the same preferred phase). Each pointinthe
scatterplotindicates one session (15sessions). Horizontal error bars indicate
oneS.D.acrossshuffled realizations, and are centered around the mean across
shuffled realizations. The black dashed lineindicatesidentical values for
recorded and shuffled data. Animal number if color-coded. Notice the
discontinuity inthe y axisbetween O and 0.85. H,,;, is substantially larger for
recorded datathan for shuffled data. Right: Box plot of H,,;, for recorded and
shuffled data. Foreach session the1000 shuffled realizations were averaged
(n=15oscillatory sessions, p=6x107%,7=4.52, two-sided Wilcoxon rank-sum
test). Redlinesindicate median across sessions, thebottomand top linesin
blue (bounds of box) indicate lower and upper quartiles, respectively. The
length of the whiskersindicates1.5times theinterquartile range. Red crosses
show outliers that lie more than 1.5 times outside the interquartile range. d.
Left: Box plot comparinglocking degree for cells with an oscillatory frequency
that was similar (relative frequency - 1) or different (relative frequency #1) from
thesequence frequencyin the example sessionin Fig.2a (n=48 cellsineach
group fromatotal of 484 cellsin the recorded session, p=3.4x107", 7= 6.63,
two-sided Wilcoxon rank-sum test). Right: As left panel but for the locking
degreeacrossall15oscillatory sessions, including the example in the left panel

(n=15sessionsover 5 animals, p=2.8 x 107, Z=4.19, two-sided Wilcoxon rank-
sumtest). Ten per cent of the total number of cells was used to define each of
the groups withsimilar (relative frequency - 1) and different (relative frequency
#1) oscillatory frequency as compared to the sequence frequency. Relative
frequency was calculated for each cell as the oscillatory frequency of the cell’s
calciumactivity divided by the sequence frequency in the session. Box plot
symbols asin (c). Note that cells with relative frequency similar to 1are more
locked to the phase of the oscillation. For all percentages considered to define
similar and differentgroups (5,10, 20,30, 40, and 50%) the p-values were
significant. e. Histogram showing the distribution of single-cell oscillatory
frequency divided by the sequence frequency of the session (n = 6231 cells
pooledacross15oscillatory sessions). A value of 1.0 indicates that single-cell
and sequence frequency coincide. The left and right dashed linesindicate 25™
(0.52) and 75" (1.08) percentiles respectively. Note that for approximately half
ofthe datathe oscillatory frequency is very similar at single-cell and population
level. f. The oscillatory sequences remain visible after excluding increasing
fractions of neurons and keeping only those with the lowest locking degree.
EachrowshowsaPCA-sorted raster plot (left, rasterplot conventions as in
Fig.2b) and the correspondingjoint distributions of the time lag T that
maximizes the correlation between the calcium activity of neuron pairs and
their distancedinthe PCAsorting (right, symbols asin Extended Data Fig. 5b).
Thefraction of included neuronsisindicated ontop of the raster plot. For
building the raster plots, neurons were sorted according to their locking
degree value and neurons with the highestlocking degrees wereremoved. g.
Examples of different participation degrees in 3 example neurons from the
sessioninFig.2a. Top: PCAsorted raster plot of the calcium matrix shownin
Fig.2a. Calciumevents from the neuron with high participationindex (PI, 0.72)
are highlighted inlight blue, from the neuron with intermediate P1(0.56) in
purple, and from the neuron withlow PI(0.36) in orange. Bottom three panels:
Z-scored fluorescence calcium signals as afunction of time from the above
neurons with high (top), intermediate (middle), and low (bottom) Pls. Colored
arrows represent the time points at which the oscillatory sequences are at the
neuron’s preferred phase. Notice how the neuron with high PItends to exhibita
peakinthe calciumsignal for most of the sequences. Neurons with
intermediate and low Pls demonstrate the same butto alesser extent, with the
calciumsignal not peakingin each sequence. h. Similar to (d), but for the
participationindex. Box plot symbols asin (c). Left: Data from the example
sessionshowninFig.2a(n=48cellsineachgroup, p=0.51,Z=0.66, two-sided
Wilcoxon rank-sum test). Right: As left panel but for data pooled across 15
oscillatory sessions. The mean participationindex was calculated for each
group (“relative frequency ~-1” and “relative frequency #1”) and each session
separately and the datawas then pooled across sessions (n=15sessions, p=0.56,
Z=0.58,two-sided Wilcoxon rank-sum test). For all percentages considered to
define the similar and different groups (5,10, 20,30, 40, and 50%) the p-values
were non-significant.*** p<0.001,n.s.p>0.05.
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Extended DataFig. 8| The oscillatory sequences are not topographically
organized. a. 2D histograms of differences in preferred phase between pairs of
neurons and their anatomical distancein the FoV for all 15 oscillatory sessions
(5animals, of which 4 had oscillatory sequences). Preferred phases were
calculated as the mean oscillation phase at which the calcium events occurred
(after pooling all sequencesinasessionand not on each sequence separately;
seeFig. 3f, g for one individual sequence). Each histogram was built using
N*(N-1)/2samples, where Nis the total number of recorded cellsin the session.
Onecountisacell pair, the color bar indicates normalized frequency. The
absolute Pearson correlation values were calculated for each session, and
ranged from 8.5x107°t0 0.015. Only session 6 from animal #60585 (first row,
fourth column) had a correlation value above the 95" percentile of a shuffled
distribution built by shuffling the preferred phasesin the FoV (1/15, probability
=0.37,binomial probability distribution; not statistically significant ata
chancelevel of 5%). For the participationindex (not shown) the correlation
values were also very small and ranged from 9.3 x107*t0 0.040. Out of 15
oscillatory sessions, 2 sessions (sessions 6 and 8 from animal #60584,
correlation=0.033 and 0.040 respectively) were classified as significant (2/15
sessions, probability = 0.13, binomial distribution, not statistically significant
atachancelevel of 5%).b. Analysis of similarity of preferred phases within
spatial bins for one single example sequence (number19) of the session
presentedin Fig.2a. Similarity was calculated as the mean vector length (MVL)
ofthe distribution of preferred phasesin the spatial bin. In the presence of
travelling waves, large MVL valuesin every binare expected. Top: The FoVis
binned into 6x6 bins, each of size 100 um x100 um. The heat map shows the
number of cells located within each spatial bin. Counts are color coded.
Bottom: Each panelindicatesaspatial bininthe FoV,and shows the shuffled
distribution of MVL values obtained after shuffling the preferred phasesin the
FoV (histogram), the 95" percentile of the shuffled distribution (dotted blue
line), and the MVL calculated on experimental data (dotted red line). To have
good statistics only spatial bins thathad more than10 neurons were included in
the quantifications. The plots that are missing are for bins with 10 or fewer cells,
asindicatedinthe heat map. When using 100 pm x100 pm bins, only 17 bins had
more than10 cells. From the 17 bins, one was classified as having similar phases
(1/17, probability = 0.37, binomial distribution, not statistically significant at a
chancelevel of 5%); when using 200 pm x 200 um, only one bin out of eight with
more than10 cells was classified as having cells with similar phases (1/8,
probability = 0.28, binomial distribution, not statistically significantata
chancelevel of 5%). Whenall sequences across all calcium imaging sessions are
considered (n=421,15oscillatory sessions over 5animals), the MVL values
calculated on experimental dataranged from 0.0082t0 0.98 (the 95™
percentile MVL value was 0.3399, i.e. small), and were larger than the cutoff for
significancein121out of 2448 spatial bins (121/2448, smaller than expected ata
chancelevel of 0.05:122/2448). This analysis was focused on the degree of
similarity between preferred phasesin spatial bins. Inorder to avoid small cell
sample effects, we performed a second analysis based on the differencein
preferred phases for all pairs of cells that were located within small

neighborhoodsin the FoV (Methods). We expected thatin the presence of
travelling waves the mean and median of the distributions of differencesin
preferred phases of cell pairs within small neighborhoods would be smaller
than expected by chance. For neighborhoods of 50 pm, only 16 out of 421
sequences had ameanbelow the cutoff for significance (16/421, smaller than
expected atachancelevel of 0.05:21/421),and 16 out of 421 sequences amedian
below the cutofffor significance (16/421, smaller than expected atachance
level of 0.05:21/421). For neighborhoods of 100 pm, 16 and 19 sequences (out of
421) were below the cutoff for the mean and median, respectively (16/421and
19/451, both below a chancelevel of 0.05: 21/421). For neighborhoods of 200
pm, 25sequences were slightly above the cutoff for the mean and 18 were below
the cutofffor the median (chancelevel of 0.05: 21/421). c. Similar to (b), but with
spatial bins 0f200 pm x 200 pum. For all sequences, the MVL values calculated
on experimental dataranged from 0.0037to 0.975 (the median of MVL values
was 0.3105, i.e.small), and were larger than the cutoff for significance in 115
spatial bins out 0f 2392 (115/2392, smaller than expected at achance level of
0.05:120/2392). The lack of similarity in preferred phases within spatial bins is
inconsistent witha coherent oscillationin that spatial bin, and therefore
inconsistent with the presence of travelling waves. d. Top: Rasterplots showing
one examplesequence fromthe sessioninFig.2a (sequence #19). Y axis:
Neuron #. X axis: Time (s). Each panel shows the same sequence, and a total of
150 s (thelength of theillustrated sequence). Neurons that were activein one
particulartimebin areindicated inred. The visualized timebinisindicated at
thetop of each panel (binsize =1s). Middle: Anatomical distribution of the
population activity in each of the timebinsin the top panel (binsizeisnow5s).
TheFoV (600 pm x 600 pm) was divided into 50x50 square spatial bins. The
total number of calcium events across cells in one spatial binis color coded
(yellowindicates high activity, purple no activity). The bigred dotsindicate the
position of the center-of-mass (COM) of the population activity in that time bin.
Bottom: Similar to the middle panel, but for one shuffle realization in which the
position ofthe cells was randomly shuffled within the FoV. e. Quantification of
the flow of the COM for the example sequence shownin (d). Cumulative
distancetravelled, quantified as the sum of the distances travelled by the COM
between consecutive time points (bin size=5s),in experimental data (dotted
redline), in shuffled data (blue histogram, built by shuffling the positions of
the cellsinthe FoV 500 times), and the 5™ and 95% percentile of the shuffled
distribution (dotted blue and greenlines, respectively). The datashows no
significant difference from cumulative distances expected by chance.f.
Quantification of the flow of the COM for all sequences. Cumulative
normalized frequency of the cumulative distance travelled in experimental
data (n=421sequences, orange) and the median of the shuffled distributions
(n=421sequences, blue). Out of 421sequences, 21 were below the cutoff for
significance (21/421, at the chance level of 0.05:21/421, bin size=5s). The
results are similar when changing the temporal bin size used for the
quantifications (23/421for binsize=1s,23/421for binsize=2s, chance level of
0.05:21/421).
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Extended DataFig. 9| Analysis of ensemble activation during the
oscillatory sequences. a. Schematic of calcium activity merging steps (data
arenotincludedinthis panel). We began by sorting the neurons according to
the PCAmethod. Next, insuccessiveiterations, or merging steps, we added up
the calciumactivity of pairs of consecutive neurons (merging step =1) or
consecutive ensembles (merging step >1). b. Participationindex (PI) as a
function of merging step (mean +S.D.). Black trace, example sessionin Fig. 2a;
redtrace, all15 oscillatory sessions. The more neurons per ensemble, the
higher the participationindex of the ensemble. Note that the participation
index plateaus after S merging steps, which corresponds to approximately 10
ensemblesin most of the sessions (two-sided Wilcoxon rank-sum test to
compare the participationindexesin merging steps 5and 6; Black trace: n=30
Plsin mergingstep 5,n=15PIsinmerging step 6,p=0.23,7=1.20; Red trace:
n=15PIsin mergingstep 5and 6, PIs of each merging step were averaged for each
session separately, p=0.14,7=1.49). c. Schematic of the process for splitting
neuronsintoensembles of co-active cells. Neurons sorted according to the
PCA method are allocated to 10 equally sized ensembles (color-coded). Note
that the participationindex plateaued after S5mergingiterations, consisting of
approximately 10 ensembles depending on the session (panel b). d. To quantify
thetemporal progression of the population activity at the time scale at which
the oscillatory sequences evolved, we calculated, for each session, an
oscillationbinsize. Thisbinsize is proportional to the inverse of the peak
frequency of the PSD calculated on the phase of the oscillation, and hence
capturesthetimescale at which the sequences progress. The oscillation bin
sizeis shown for each of the 15 oscillatory sessions (4 out of 5animals, those
that had oscillatory sequences). e. Schematic of the method used for
quantifying temporal dynamics of ensemble activity. For each sessionand each
ensemble we calculated the mean ensemble activity at each time bin
(oscillation bin size). Only the ensemble with the highest activity withineach
time bin (red rectangle) was considered. The number of transitions between
ensemblesinadjacent timebins divided by the total number of transitions was
used to calculate the transition matricesin (g).f. The ensemble with the highest
activityineachtimebin, indicatedinyellow and calculated asin (e), plotted asa
function of time for the example sessionin Fig. 2a. Allother ensembles are
indicated in purple. Notice that the transformationin (e) preserves the
oscillatory sequences. g. Left: Matrix of transition probabilities between pairs
ofensembles at consecutive time points. Rows indicate the ensemble at time

point¢, columnsindicate theensemble at time point ¢ +1. Dataare from the
examplesessioninFig.2a (binsize =15.12 s). Right: Same as left panel but for
oneshufflerealization. Transition probabilities are color coded. In the left
diagram, note the higher probability of transitions between consecutive
ensembles (increased probabilities near the diagonal), the directionality of
transitions (increased probabilities above diagonal) and the periodic boundary
conditionsinensembleactivation (presence of transitions fromensemble 10
toensemblel). h. Box plot showing transition probabilities between
consecutive ensembles for all 15 oscillatory sessions. The probabilities remain
approximately constantacross transitions between ensemble pairs (n=15
oscillatory sessions per transition, p=0.56, x>=7.77, Friedman test), and there
were no significant differences between pairs of transitions (two-sided
Wilcoxon rank-sum test with Bonferroni correction, p > 0.05 for all transitions).
Transitions from ensemble 10 to ensemble 1were equally frequent as
transitions between consecutive ensembles, as expected from the periodic
nature of the sequences. Red linesindicate median across sessions, the bottom
andtop linesin blue (bounds of box) indicate lower and upper quartiles,
respectively. Thelength of the whiskersindicates 1.5 times the interquartile
range. Red crosses show outliers that lie more than 1.5 times outside the
interquartile range. i. Probability of sequential ensemble activationasa
function of the number of ensembles that are sequentially activated (mean +
S.D.; For3-9 ensembles: n=15oscillatory sessions over 5animals, 7500 shuffle
realizations; p=5.4x10"%,1.0x10,5.9x10™,4.5x10™*,0,0,9.0 x 10722
respectively, range of Zvalues: 6.45t059.18, one-tailed Wilcoxon rank-sum
test). Orange, recorded data; blue, shuffled data. For each session, the
probability of sequential ensemble activation was calculated over 500 shuffled
realizations, and shuffled realizations were pooled across sessions. The
recorded data contained significantly longer sequences than the shuffled
control. Probability of sequential activation of >3 ensemblesinrecorded data
=0.62; probability of sequential activation of >3 ensemblesin shuffled data=
0.27.j.Percentage of sessions with significant sequence score in sessions
classified as oscillatory vs non-oscillatory. In MEC sessions with oscillatory
sequences,100% (15 of 15) of the sessions showed significant sequence scores,
whilein MEC sessions without oscillations, 41% (5 of 12) of the sessions
demonstrated significant sequence scores. For corresponding raster plots, see
Extended DataFig.5a.***p<0.01,ns p>0.05.
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Extended DataFig.10|Histology showingimaginglocationinanimals with
FoVsinparasubiculum and visual cortex. a. Histological determination of
prismlocationin mice that were implanted more medially, touching
parasubiculum more than MEC. Top: Maximum intensity projection of 50 pm
thick sagittal brainsections (sections acquired withan LSM 880, 20x). Three
consecutive sections from the same mouse are shown, from the most lateral
(left) to the most medial (right). Green is GCaMP6m signal, while red is Dil
signal (used to demarcate ventrolateral corner of the prism, asin Extended
DataFig.1).Scalebaris400 pm. The white stippled line encapsulates the
superficial layers of the parasubiculum (PaS). Dorsal PaSon top, layer 1on the
left. Bottom: Estimated location of the field of view (FoV) on a flat map
encompassing MEC (brown outline) and PaS (yellow outline). The blue dot

marks the location of the pinused to demarcate the most lateral-ventral border
ofthe prism, while the green square inset shows the microscope FoV. Inset
images show maximum intensity projections of the FoV. Dorsoventral (DV), and
mediolateral (ML) axes areindicated.b. Location of the ventro-lateral edge of
the prisminstereotactic coordinates, and area of the FoV occupied by cells
expressing GCaMP6m for each PaS-imaged animal. c. Histological
determination ofimaginglocationinthe visual cortex (VIS) of three mice that
underwent calciumimaging. Greenis GCaMP6m signal. Images are taken from
coronalslices,and zoomed inonvisual cortex (Scale baris100 um; L1at the top,
L6 atthe bottom). Dorsal pole of the brain is on top. Maximum intensity
projection, LSM 880, 20x.
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Extended DataFig.11|Lack of oscillatory sequencesin parasubiculumand
visual cortex. a. Alternative sorting methods, asin Extended Data Fig. 4d, but
applied tosessions recorded in the PaS (left) or VIS (right). The PCA sorting
method applied to temporally shuffled data did not unveil oscillatory
sequences (first row). No oscillatory sequences were recovered when neurons
were sorted accordingto their correlation values (second row), or according to
different dimensionality reduction techniques (UMAP, Isomap, LEM, t-SNE).
Eachrow of eachraster plot shows the calciumactivity of asingle neuron, with
activity plotted asafunction of time, asin Fig2a. Every dotindicates thatone
neuronwasactive at one specific time bin (bin size =129 ms). Sequence scores
and oscillation scores are presented in Fig. Se,f. b,c. Joint distributions of time
lag T that maximizes the cross-correlationbetween any given pair of neurons
andtheir distancedinthe PCAsorting (asin Extended DataFig. 5b), applied to
therecordingsinFig. 5e (PaS) and Fig. 5f (VIS). Normalized frequency is color-
coded. Noticelack of linear relationship betweend and 1, in contrast to
Extended DataFig.5b. d,e. Projection of the neural activity onto the low-
dimensional embedding defined by the first two principal components
obtained from applying PCA to the matrix of calciumactivity of the PaS session
(d) and the VIS session (e) shown in Fig. Se, f. Bin size = 8.5 s. Note lack of obvious
ring topology. Timeis color-coded. f. Transition probabilities between
ensembles across consecutive time bins (binsize ~8.5 s, Methods) for the PaS
examplesessionin Fig.5e (left) and the VIS example sessionin Fig. 5f (right). g.
Probability of sequential ensemble activation as a function of the number of
ensembles thatare sequentially activated in PaS (left) and VIS (right) (mean +
S.D.).Orange, recorded data (25 PaS sessions; 19 VIS sessions); blue, shuffled
data.Foreachsession, the probability of sequential ensemble activation was
calculated over 500 shuffled realizations, and shuffled realizations were
pooled across sessions for eachbrain areaseparately. Probability isshownona
log-scale. InPaS the probability of long sequences was significantly larger in
experimental datathaninshuffled data (n=25PaSsessions, 12500 shuffled
realizations; For 2ensembles: p = 0.998,7=-2.90; For 3-7 ensembles: range of
pvalues: 5.7 x10™*t0 0.036, range of Zvalues: 1.80 to 3.25, one-tailed Wilcoxon

rank-sum test). This was not the casein VIS (n =19 VIS sessions, 9500 shuffled
realizations; For 2ensembles: p = 0.106,Z=1.25; For 3-6 ensembles: range of
pvalues:0.087t00.999, range of Zvalues: -3.34 t0 1.36, one-tailed Wilcoxon
rank-sumtest). h. Percentage of sessions with significant sequence score (MEC
oscillatory sessions: 15 of 15, PaS: 7 of 25; VIS: 10f 19). The sequence score
quantifies the probability of observing sequential activation of 3 or more
ensembles.i. Distribution of oscillation scores for the entire calcium imaging
dataset,asin Extended DataFig. 5d (19 VIS sessions over 3 animals, 25 PaS
sessions over 4 animals, 27 MEC sessions of which 15 were classified as
oscillatory, over 5animals). Dashed line indicates threshold for classifying
sessions as oscillatory with reference to the MEC data. Note that the bars for
different brainregions sometimesoverlap, and that bars are colored with
transparency for visualization purposes (e.g. for sessions in PaS with
oscillationscore 0, the countis 24). j. Normalized distribution of the Pearson
correlation values (absolute value) between the activity of cell pairsin VIS
(green) andinPaS (yellow). Each dotindicates the meanacross sessions (25 PaS
sessions, 19 VIS sessions; all sessions in the dataset were used, not only those
with behavioural tracking synchronized toimaging), error barsindicate S.E.M.
Probability isshownonalog-scale. k.Same as (j) but for the distribution of
values of coactivity for all sessions recorded in PaS (yellow) and VIS (green).
Coactivity was estimated for each session separately as the fraction of the
recorded cells that was simultaneously active in129 ms bins. Probability is
shownonalog-scale.l. Cumulative probability of correlation values calculated
between the calcium activity of one cell and the speed of the animalin that
session for MEC (n = 4595 cells from 10 sessions, 3 animals), PaS (n = 6851 cells
from18sessions, 3 animals), VIS (n = 6037 cells from 19 sessions, 3 animals).
Only sessions for which the imaging data was synchronized to behavioural data
were used (VIS-PaS: p=3.15x107%, 7=27.7; VIS-MEC: p=1.05x10"%,Z=19.6,
MEC-PaS: p=5.16 x10™2, 7= 6.80, one tailed Wilcoxon rank-sum test). Calcium
activity wasmore correlated with the speed of the animalin visual cortex than
inMEC and PaS.
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Extended DataFig.12|Ultraslow oscillatory sequences mightserve as
template for generating new activity patterns. a. Schematic of the model.
500inputunits (depictedin purple, ontheleft) are connected to an output unit
(blue dot, ontheright). Eacharrow representsaconnection, and there are 500
connectionsintotal. Theactivity of eachinput unitis represented by a periodic
Gaussianbump. The means of the Gaussians are temporally displaced such
that, alltogether, input units firein asequence (the ‘template’). b. The weights
between the input units and the output unit were trained such that the output
unitreproduced atargetactivity. Two targets were considered: aramp of
activity, whichis deterministic (left), and an Ornstein-Uhlenbeck process,
whichis stochastic (right). Both targets had a characteristic time scale of 100 s.
c.Input (left) and output (right) activity for three different sequence lengths:
sequencesare very slow (top row), slow (middle) or fast (bottom) as compared

tothetargets. Left: Heat map of the activity of the input units as a function of
time, inseconds. Blue indicates no activity, yellow indicates maximal activity.
Top:Sequencesare 400 slong. Middle: Sequencesare 120 slong. Bottom:
Sequencesare 30 slong. Right: Outputresponse correspondingto the three
sequences regimes: very slow, slow and fast sequences. Target response is
showninblue, obtained response after training the networks using the
sequencesasinputisshowninorange. Note that whenthe sequences havea
time scale thatis similar (middle) or slower (top) than the targets, the output
unitcanreproduce the desired target. d. Mean total error, calculated as the
difference between thetarget and the obtained response after training, asa
function of theinput sequence length. Top: Target is the ramp of activity.
Bottom: Targetis the Ornstein-Uhlenbeck process.
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