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Minute-scale oscillatory sequences in medial 
entorhinal cortex

     
Soledad Gonzalo Cogno1 ✉, Horst A. Obenhaus1, Ane Lautrup1, R. Irene Jacobsen1, 
Claudia Clopath2, Sebastian O. Andersson1,4, Flavio Donato1,3,5, May-Britt Moser1,5 ✉ & 
Edvard I. Moser1,5 ✉

The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for 
spatial navigation and episodic memory, operations that require neural activity to  
be organized across long durations of experience1. Whereas location is known to be 
encoded by spatially tuned cell types in this brain region2,3, little is known about how 
the activity of entorhinal cells is tied together over time at behaviourally relevant time 
scales, in the second-to-minute regime. Here we show that MEC neuronal activity has 
the capacity to be organized into ultraslow oscillations, with periods ranging from 
tens of seconds to minutes. During these oscillations, the activity is further organized 
into periodic sequences. Oscillatory sequences manifested while mice ran at free pace 
on a rotating wheel in darkness, with no change in location or running direction and 
no scheduled rewards. The sequences involved nearly the entire cell population,  
and transcended epochs of immobility. Similar sequences were not observed in 
neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequences in 
MEC may have the potential to couple neurons and circuits across extended time 
scales and serve as a template for new sequence formation during navigation and 
episodic memory formation.

Brain function emerges from the dynamic coordination of intercon-
nected neurons4–7. At sub-second time scales, cells are coordinated 
within and across brain regions by way of neuronal oscillations8. Studies 
have also reported oscillations at slower time scales, with frequencies 
lower than 0.1 Hz and periods lasting from tens of seconds to minutes 
(ultraslow oscillations), in individual neurons9–11 and in local field poten-
tials12–14. However, it remains unknown how pervasive these ultraslow 
oscillations are. Moreover, it remains to be determined whether and 
how they organize the activity of participating neurons in space and 
time across the neural circuit.

We directed our search for ultraslow oscillations to the MEC, a brain 
circuit that by containing many of the elements involved in naviga-
tional behaviour1–3 and episodic memory formation1,15, may possess 
mechanisms to organize neural activity at behavioural time scales, 
from seconds to minutes. Activity was recorded from hundreds of 
MEC cells at the same time using either two-photon calcium imaging 
or Neuropixels probes (Extended Data Fig. 1). To rule out variations in 
external stimuli as sources of modulation, we allowed head-fixed mice 
to run on a rotating wheel for 30 or 60 min, in darkness and with no 
scheduled rewards16,17 (Fig. 1a and Extended Data Fig. 2a).

Ultraslow oscillations in MEC neurons
To determine whether neural activity in MEC exhibits ultraslow oscil-
lations, for each recorded cell we deconvolved the calcium signal and 

binarized the obtained signal (‘calcium activity’, bin size = 129 ms). For 
each cell, we then calculated the autocorrelation of the calcium activity  
and the corresponding power spectral density (PSD). Autocorrelation 
diagrams for stacks of cells from the same session showed vertical 
bands (Fig. 1b), suggesting that the calcium activity of many cells was 
oscillatory and oscillated at similar frequencies. Some cells had only 
one prominent peak in their PSD (Fig. 1c), suggesting that they were 
active at a fixed frequency. Other cells had several peaks, often with the 
higher frequencies appearing as harmonics of a fundamental frequency  
(Fig. 1d). In the example session in Fig. 1b, for most of the cells (72%, 
348 out of 484) the frequency at which the PSD peaked (the ‘primary 
frequency’) was lower than 0.01 Hz (44% of the cells had a primary fre-
quency within the range 0.006–0.008 Hz), and there were no cells whose 
PSD peaked at frequencies higher than 0.1 Hz. In the complete dataset 
(15 sessions over 5 mice), the oscillations were detectable in the major-
ity of the recorded neurons (91%, 5,691 out of 6,231) but not in shuffled 
versions of the same data (Extended Data Fig. 3 and Methods). Although 
there was some variation in frequencies across sessions and mice, the 
primary frequency was always below 0.1 Hz (all oscillatory 5,691 cells; 
range of maximum frequencies across 15 sessions: 0.036–0.057 Hz).

To verify that the ultraslow oscillations manifest in spiking activity, we 
implanted two mice with Neuropixels 2.0 probes in the MEC (Extended 
Data Fig. 1d). Similar to the calcium imaging data, we observed oscil-
lations at frequencies lower than 0.1 Hz in the majority of the units 
(78%, 683 out of 879 units, bin size = 120 ms; Fig. 1e,f).
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Oscillatory sequences in MEC activity
To determine whether the ultraslow oscillations of different cells are 
coordinated at the neural population level, we first calculated, for the 
calcium imaging data, instantaneous correlations between the calcium 
activity of all pairs of cells. The cell pair with the highest correlation 
value was identified and one of the two cells was defined as the ‘seed’ 
cell. The remaining cells were sorted based on their correlation value 
with the seed cell, in a descending manner. Using this sorting procedure, 
we observed periodic sequences of neuronal activation (Fig. 2a and 
Extended Data Fig. 4a). The sequences unfolded successively with no 
interruption for tens of minutes (Fig. 2a). Because sequences of activity 
constitute low-dimensional dynamics, we also sorted the cells using 
dimensionality reduction methods, which do not depend on hyperpa-
rameters. For each recording session, we applied principal component 
analysis (PCA) to the matrix of calcium activity and measured, for each 
cell, the angle of the vector defined by the pair of loadings on principal 
components 1 and 2, and sorted the neurons based on these angles 
in a descending manner (Extended Data Fig. 4b). This sorting (‘PCA 
method’) revealed the same stereotyped periodic sequences of neu-
ronal activation, which we hereafter refer to as oscillatory sequences; 
however, the sequential organization was now more salient (Fig. 2b and 
Extended Data Fig. 5a). When projecting the population activity onto 
a two-dimensional embedding, the manifold resembled a ring (Fig. 2c 
and Extended Data Fig. 4c). The instantaneous population activity 
was estimated from the position on the ring (‘phase of the oscillation’, 
Fig. 2d). The oscillatory sequences were not evident if cells were not 
sorted, nor if the PCA method was applied to shuffled data (Extended 
Data Fig. 4d). The sequences were similarly apparent when neurons 

were sorted according to non-linear dimensionality reduction tech-
niques (Extended Data Fig. 4d), as well as when the neurons were sorted 
using subsets of data (Extended Data Fig. 4e and Methods), and when 
the neurons’ calcium activity was visualized using the unprocessed 
calcium signals (Fig. 2e).

We also observed ultraslow oscillatory sequences in the data from 
two mice with Neuropixels probes (469 and 410 units, respectively), 
indicating that our findings do not reflect factors unique to calcium 
imaging (Fig. 2f and Extended Data Fig. 4f,g). Some of the Neuropixels 
sequences were noisier than those of the calcium imaging data, possibly 
reflecting a broader mix of cell types located more ventrally and across 
several cell layers (Extended Data Fig. 1d). To maximize the number of 
cells recorded in layer II, and to minimize variability, we focused on 
calcium imaging data for the rest of the study.

Although striking oscillatory sequences were observed across mul-
tiple sessions and mice, the population activity exhibited considerable 
variability (Extended Data Figs. 4f,g and 5a–c). To capture this vari-
ability, we calculated an oscillation score that ranged from 0 (no oscil-
lations) to 1 (oscillations throughout the session). The distribution of 
scores in the calcium imaging data was bimodal (Extended Data Fig. 5d), 
with oscillatory sequences showing up in 15 sessions (Extended Data 
Fig. 5a). All Neuropixels sessions were classified as oscillatory (Fig. 2f 
and Extended Data Fig. 4f,g). For each oscillatory session, we identi-
fied all sequences (Extended Data Fig. 6a–c) and found that sequence 
durations ranged from tens of seconds to minutes (Fig. 2g), with high 
variability across sessions and mice but little variability within indi-
vidual sessions (Extended Data Fig. 6d–g). Inter-sequence intervals 
(ISI) were similarly present at different lengths, ranging from 0 s when 
sequences were consecutive (279 out of 406 ISIs (69%)) to a maximum 
of 452 s (Fig. 2h and Extended Data Fig. 6h,i).

MEC neurons are locked to the sequences
To determine the extent to which calcium activity was tuned to the oscil-
latory sequences, we computed for each neuron its degree of locking 
to the phase of the oscillation, which ranged from 0 (no locking) to 1 
(perfect locking). Significant locking degrees were observed for the vast 
majority of the recorded cells (Fig. 3a, left; 458 out of 484 significantly 
locked neurons (95%)). Results were upheld with the mutual informa-
tion between calcium events and phase of the oscillation (Fig. 3a, right 
and Extended Data Fig. 7a). The predominance of phase-locked neurons 
was observed in all 15 oscillatory sessions (Fig. 3b, 5,841 out of 6,231 
locked neurons (93.7%)). Each locked neuron exhibited a preference 
for activity within a narrow range of phases of the oscillation (‘preferred 
phase’, Fig. 3c and Extended Data Fig. 7b–e). Although sequences were 
still observed if high phase locking neurons were excluded, suggesting 
that sequences recruit widespread networks, the more cells that were 
excluded the more difficult it was to observe the sequences, indicat-
ing that the dynamics manifests more clearly at the neural population 
level (Extended Data Fig. 7f). Because the oscillatory sequences involve 
the vast majority of neurons recorded in MEC, and multiple cell types 
can be recorded within fields of view (FOV) of comparable size18,19, the 
sequences most probably include a mixture of functional cell types 
such as grid and head-direction cells, with grid cells spanning more 
than one module.

Not all neurons participated in each individual sequence. We quan-
tified the degree to which cells skipped sequences through a partici-
pation index (Extended Data Fig. 7g). Participation index variability 
was observed both within and across oscillatory sessions (Fig. 3d and 
Extended Data Fig. 7h).

MEC sequences are not travelling waves
We next explored whether the oscillatory sequences in MEC could have 
features of travelling waves, in which the population activity moves 
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Fig. 1 | Ultraslow oscillations in MEC neurons. a, Neural activity was recorded 
through a prism from GCaMP6m-expressing neurons of the MEC in head-fixed 
mice running in darkness on a non-motorized wheel. Cartoon of a running 
mouse on the right created with BioRender.com. b, Stacked z-scored 
autocorrelations of single-cell calcium activity for one example session (484 
neurons), plotted as a function of time lag. Neurons are sorted according to the 
maximum power of the PSD calculated on each autocorrelation separately, in 
descending order. c, PSD (left) calculated on the autocorrelation (right) of one 
example cell’s calcium activity. The dashed red line indicates the frequency at 
which the PSD peaks (0.0066 Hz). d, As in c but for another example cell. The 
PSD peaks at 0.0066 Hz and has harmonics at 0.0132, 0.0207 and 0.0273 Hz. 
e,f, As in c,d but for two example cells recorded using Neuropixels probes. The 
PSDs peak at 0.016 Hz (e) and 0.015 Hz (f).
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progressively across anatomical space20,21. First, we found that cells 
with similar and dissimilar preferred phases were anatomically inter-
mingled (Fig. 3e, Extended Data Fig. 8a and Supplementary Video 1), 
suggesting the absence of travelling waves with a constant direction 
in the propagation of activity across sequences. We next investigated 
the presence of travelling waves in individual sequences by calculating 
the preferred phase of each cell in the sequence and correlating, for 
all cell pairs, their difference in preferred phases with their anatomical 
distance (Fig. 3f). Across sequences, the correlation values were very 
small, ranging from −0.068 to 0.147, and below the level of statistical 
significance (Fig. 3g, 421 sequences across 15 oscillatory sessions over 
5 mice), suggesting a lack of topographical organization (see comple-
mentary analyses in Extended Data Fig. 8b,c and Methods). In agree-
ment with the proposed absence of travelling waves, we observed that 
during a single sequence, the neural activity spread across the entire 
FOV, and that the distance traversed by the centre of mass was similar 
in experimental and shuffled data (Extended Data Fig. 8d–f).

Sequential activation of ensembles
To quantify the sequential activation of neural activity in the popu-
lation, and to average out single-cell variability, we next studied 
ensembles of co-active cells (Extended Data Fig. 9a,b). We assigned 
neurons to a total of 10 ensembles, based on their proximity in the 
sorting obtained through the PCA method (Extended Data Fig. 9c) and 

then calculated the probability by which activity transitioned between 
ensembles across adjacent time bins (Extended Data Fig. 9d–f), with 
probabilities displayed in a transition matrix (Extended Data Fig. 9g). 
Transitions occurred mostly between adjacent ensembles and with a 
preferred directionality (Extended Data Fig. 9g,h). In the oscillatory 
sessions the sequential activation of three or more ensembles was 2.3 
times more likely in the recorded data than in shuffled data (Extended 
Data Fig. 9i). The probability of observing sequential activation of three 
or more ensembles (‘sequence score’) was significant in 100% of the 
oscillatory sessions (15 out of 15). Significant sequential activity was 
demonstrated also in 41% of the non-oscillatory sessions (5 out of 12, 
Extended Data Fig. 9j).

Sequences do not map position
Fast oscillations and single-cell firing in the entorhinal-hippocampal 
system can be modulated by a number of movement-associated 
parameters, such as position and running state2,3,22,23. We next investi-
gated whether similar dependencies are present for the minute-scale 
oscillatory sequences (Fig. 4a). We first calculated the probability of 
observing the oscillatory sequences given that the mouse was either 
running (mouse moves along the wheel) or immobile (position on the 
wheel remains unchanged) (Extended Data Fig. 2a). The oscillatory 
sequences were predominant during running bouts, but they were also 
observed during immobility (Fig. 4b). During immobility, oscillatory 
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Fig. 2 | Ultraslow oscillations are organized into oscillatory sequences. 
 a, Raster plot of calcium activity of all cells recorded in the example session 
shown in Fig. 1b (bin size = 129 ms, n = 484 cells). Time bins with calcium events 
are indicated with black dots; those without calcium events are indicated with 
white dots. Cells were sorted according to their correlation values with one 
arbitrary cell, in a descending manner. The example sequence indicated in red 
is 121 s long. b, As in a but now with neurons sorted according to the PCA 
method. c, Projection of neural activity of the session in a,b onto the first two 
principal components of PCA (left), and the first two dimensions of a Laplacian 
eigenmaps (LEM) analysis (right). Time is colour coded. One sequence is 
equivalent to one rotation along the ring-shaped manifold. d, Raster plot as in 

b. The phase of the oscillation, overlaid in red, was used to track the position of 
the population activity on the sequence. e, As in b, but showing the z-scored 
fluorescence calcium signals. f, Raster plot of binarized spiking activity of  
all units recorded in one example session using Neuropixels probes (bin 
size = 120 ms, n = 469 units). Neurons are sorted according to the PCA method. 
g, Distribution of sequence durations across 15 oscillatory sessions over 5 mice 
(imaging data only; one mouse did not have detectable sequences; 421 
sequences in total). Each count is one sequence. h, Distribution of ISI (406 ISIs 
in total across 15 oscillatory sessions). Each count is an ISI. During periodic 
sequences the ISI is 0. Note that the y axis has a log scale.
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sequences were continuous for durations spanning from 1 s to 258 s 
(Fig. 4c and Extended Data Fig. 2b). The continued presence of the 
oscillatory sequences during long epochs of immobility suggests that 
behavioural state and running distance have a limited role in driving the 
progression of the sequences in MEC, in contrast to previous observa-
tions in CA1 of the hippocampus16. In line with this result, the number of 
laps the mice completed on the wheel during one sequence was highly 
heterogeneous, ranging from 0 to 86 laps per sequence across all mice 
(lap length = 53.7 cm, Fig. 4d and Extended Data Fig. 2c).

Sequences took place during a wide range of speed and acceleration 
values (Extended Data Fig. 2d,e). Although we found no difference in 
speed 10 s before and after sequence onset (Extended Data Fig. 2f–j), 
new epochs of sequences were more likely to be initiated during run-
ning bouts (onset of sequences was 3.1 times more frequent in running 
bouts than in immobility bouts).

Sequences are specific to MEC
Since ultraslow oscillations have been reported in widely different 
brain areas9–14, we investigated whether the oscillatory sequences were 
observed in other regions too. We recorded the activity of hundreds of 
cells in two regions: (1) the parasubiculum (PaS), a parahippocampal 
region abundant with grid and head-direction cells but with a different 
circuit structure than MEC24 (25 sessions over 4 mice, Extended Data 
Fig. 10a,b), and (2) the visual cortex (VIS), which differs from MEC25 in its 
network architecture and in the high dimensionality of its neural popu-
lation activity26 (19 sessions over 3 mice, Extended Data Fig. 10c). The 
mice performed the same minimalistic self-paced running task as in the 
MEC recordings. We found that while the calcium activity of a fraction 

of cells in both brain areas was ultraslow and periodic (Fig. 5a–d), in 
neither brain region were these oscillations organized into oscilla-
tory sequences (Fig. 5e,f and Extended Data Fig. 11a–h), and for all 
sessions the oscillation scores were lower than the threshold defined 
from the MEC data to classify sessions as oscillatory (Extended Data 
Fig. 11i, threshold = 0.72) (Fig. 5g). Moreover, data from VIS were more 
synchronous than PaS data (Extended Data Fig. 11j,k), consistent with 
previous observations17. Finally, calcium activity was more correlated 
with the speed of the mouse in VIS than in MEC and PaS (Extended Data 
Fig. 11l), suggesting that ultraslow oscillations in VIS might reflect slow 
changes in the running speed of the mouse. Altogether, these results 
suggest that MEC has network mechanisms for sequential coordination 
of single-cell oscillations that are not present in PaS or VIS.

Sequences may enable specific patterns
The ultraslow time scale of the oscillatory sequences raises questions 
as to their possible function. To determine whether they could serve 
as a scaffold—or ‘template’—for the formation of new activity patterns, 
we developed a simple model. In this model, 500 units that fired in a 
sequential manner, the template, were connected to an output neuron 
(Extended Data Fig. 12a; the results can be generalized to more output 
neurons). We trained the weights of the connections to enable a specific 
‘target’ activity pattern in the output neuron. As example targets we 
considered first a ramp of activity (Extended Data Fig. 12b, left), mir-
roring activity observed in many neurons in decision making tasks27 or 
during free foraging28, and second a less stereotyped target generated 
with a stochastic process (Extended Data Fig. 12b, right). The output 
unit could reproduce the target activity when the input sequence was 
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slower or as slow as the target pattern, but not when the input sequences 
were faster (Extended Data Fig. 12c,d). These results suggest that neural 
activity patterns that unfold at behavioural time scales may only be 
supported by sequences that unfold at similarly slow or slower time 
scales—that is, over durations of many seconds or more.

Discussion
Our experiments identify sequences of neural activity in MEC that 
repeat periodically during running as well as during intermittent 
periods of rest. Across recording sessions, the duration of individual 
sequences can range from tens of seconds to minutes, but the time scale 
is generally fixed within an individual recording session. In Neuropixels 
data, the sequences were somewhat noisier than in the calcium imaging 
data, as expected when sampling from multiple layers, across a wider 
dorso–ventral range, and with better capture of the fast dynamics of 
interneurons. The ultraslow periodic sequences observed in our data 
stand out from instances of slow sequential neural activity that have 
not been described in terms of oscillations. In the hippocampus, neural 
activity in CA1 cells that is organized into stereotypic sequences29,30 is 
more coupled to ongoing behavioural activity and running distance 
than in our data16. Moreover, whereas nearly 94% of MEC neurons in the 
present study were significantly locked to the oscillatory sequences, 
reported hippocampal sequences involve only a small fraction of the 
network (5% in ref. 16). This difference in participation would be in 

agreement with the view that the MEC supports a low-dimensional 
population code where the cells’ responses covary across environ-
ments31, whereas the hippocampus supports a more high-dimensional 
population code that may orthogonalize distinct experiences32,33. The 
MEC oscillatory sequences also differ from travelling waves20,21, which 
move progressively through anatomical space.

The widespread nature of the ultraslow oscillatory activity in indi-
vidual neurons would be consistent with a role for ascending neuro-
modulatory arousal-associated brain-stem circuits in controlling these 
oscillations14,34,35. In contrast to the oscillations, sequential organiza-
tion of neural population activity was only present in MEC, pointing to 
MEC as having unique network mechanisms for sequence formation. 
The oscillatory sequences of the MEC are consistent with dynamics 
expected in a ring-shaped continuous attractor network36,37. However, 
sequential activity could also be generated in recurrently connected 
networks38 or in feedforward networks through synfire chains or rate 
propagation39,40, or by plasticity rules operating on slow time scales41.

The oscillatory sequences might have a role in large-scale coordi-
nation of entorhinal circuit elements5, either by synchronizing faster 
oscillatory activity, such as theta and gamma1,4,6,8, or by organizing 
neural activity across functionally dissociable cell classes, such as 
grid and head-direction cells2,3. Coordination may help functional 
cell classes, for example different grid cell modules, keeping the same 
phase relationships over time, enabling a consistent readout of position 
or other variables represented in MEC activity42,43. As illustrated by our 
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model, the oscillatory sequences may also act as a template to enable 
the formation of new firing patterns over long and behaviourally rel-
evant time scales. By doing so, they may facilitate storage of memories 
associated with one-time experiences in downstream networks17,44,45. 
Downstream sequences may be generated via plasticity in connections 
from MEC, in reminiscence of sequence formation during zebra finch 
song learning46. The MEC sequences may also serve a role in temporal 
coding during extended behavioural experiences, by enabling the 
circuit to keep track of time47,48 or by facilitating the slowly drifting 
neural population activity in lateral entorhinal cortex28.

It remains an open question whether the ultraslow oscillatory 
sequences are present across a broader spectrum of behaviours, includ-
ing sleep and free exploration, and in the presence of salient visual 
feedback. If so, it is possible that the sequences reset in the presence of 
strong landmarks or sensory stimulation and that only subpopulations 
of the neurons demonstrate it. The potentially richer dynamics of the 
periodic sequences during more natural behaviours must interface 
with the dynamics of MEC cells on a number of manifolds, such as in 
ensembles of head-direction cells and grid cells25,49,50.
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Methods

All experiments were performed in accordance with the Norwegian 
Animal Welfare Act and the European Convention for the Protection 
of Vertebrate Animals used for Experimental and Other Scientific Pur-
poses, Permit numbers 18011 and 29893.

Subjects
Male C57/Bl6 mice were housed in social groups of 2–6 individuals per 
cage (calcium imaging experiments) or individually (electrophysiol-
ogy experiments, after implantation). The mice had access to nesting 
material and a planar running wheel and were kept on a 12 h light/12 h 
darkness schedule in a temperature and humidity-controlled vivarium. 
Food and water were provided ad libitum. Two-photon calcium imag-
ing data were collected from a cohort of 12 mice (5 implanted in MEC, 
4 in PaS, and 3 in VIS). Electrophysiological data from the MEC were 
collected from 2 mice.

Surgeries
For all surgeries, anaesthesia was induced by placing the subjects in a 
plexiglass chamber filled with isoflurane vapour (5% isoflurane in medi-
cal air, flow of 1 l min−1). Surgery was performed on a heated surgery 
table (38 °C). Air flow was kept at 1 l min−1 with 1–3% isoflurane as deter-
mined from physiological monitoring of breathing and heartbeat. The 
mice were allowed to recover from surgery in a heated chamber (33 °C) 
until they regained complete mobility and alertness. Postoperative 
analgesia was given in the form of subcutaneous injections of Metacam 
(5 mg kg−1) 24 and 48 h after the first Metacam injection as long as was 
deemed necessary. Additionally, the mice were given subcutaneous 
injections or oral administration of Temgesic (0.05–0.1 mg kg−1) with 
6- to 8-h (injections) or 12-h (oral) intervals for the first 36 h after the 
first Temgesic injection.

Surgeries for calcium imaging. Surgeries were performed according 
to a two-step protocol. During the first procedure, newborn pups or 
adult mice were injected in MEC or PaS, or adult mice were injected in 
VIS with a virus carrying a construct for the expression of the calcium 
indicator GCaMP6m. The virus (for all injections: AAV1-Syn-GcaMP6m; 
titre 3.43 × 1013 genome copies per ml, AV-1-PV2823, UPenn Vector 
Core, University of Pennsylvania, USA) was diluted 1:1 in sterile DPBS  
(1× Dulbecco’s Phosphate Buffered Saline, Gibco, ThermoFisher).  
During the second procedure, two weeks later, a microprism was  
implanted to gain optical access to infected neurons located in MEC 
and PaS, or a glass window was inserted to obtain similar access in VIS.

Virus injection and microprism implantation in MEC and PaS. In 
the first surgical procedure, newborn pups received injections of 
AAV1-Syn-GCaMP6m one day after birth51. An analgesic was provided 
immediately before the surgery (Rymadil, Pfizer, 5 mg kg−1). Pre-heated 
ultrasound gel (39 °C, Aquasonic 100, Parker) was generously applied 
on the pup’s head in order to create a large medium for the transmission 
of ultrasound waves. Real-time ultrasound imaging (Vevo 1100 System, 
Fujifilm Visualsonics) allowed for targeted delivery of the viral mixture 
to specific areas of the brain. During ultrasound imaging, the pup was 
immobilized through a custom-made mouth adapter. The ultrasound 
probe (MS-550S) was lowered to be in close contact with the gel and 
thus the pup’s head to allow visualization of the targeted structures. 
The probe was kept in place for the whole duration of the procedure via 
the VEVO injection mount (VEVO Imaging Station. Imaging in B-Mode, 
frequency: 40 MHz; power: 100%; gain: 29 dB; dynamic range: 60 dB). 
Target regions were identified by structural landmarks: the MEC or PaS 
were identified in the antero–posterior and medio–lateral axis by the 
appearance of the aqueduct of Sylvius and the lateral sinus. The target 
area for injection was comparable to a coronal section at ∼−4.7 mm 
from bregma in the adult mouse. The solution containing the virus 

(250 ± 50 nl per injection) was injected in the target regions via beveled 
glass micropipettes (Origio, custom made; outer tip opening: 200 μm; 
inner tip opening: 50 μm) using a pressure-pulse system (Visualsonics, 
5 pulses, 50 nl per pulse). The pipette tip was pushed through the brain 
without any incision on the skin, or a craniotomy, and, to reduce the 
duration of the procedure, retracted immediately after depositing the 
virus in the target area. The anatomical specificity of the infection was 
verified by imaging serial sections of the infected hemispheres after 
experiment completion (see ‘Histology of calcium imaging mice and 
reconstruction of field-of-view location’).

Two weeks after the viral injection, we performed a second pro-
cedure, in which a microprism was implanted in the left hemisphere 
to gain optical access to the superficial layers of MEC and PaS52. The 
implanted microprism was a right-angle prism with 2 mm side length 
and reflective enhanced aluminium coating on the hypotenuse (Tower 
Optical). The prism was glued to a 4-mm-diameter (CS-4R, thickness 
no. 1) round coverslip with UV-curable adhesive (Norland). On the day 
of surgery, mice were anaesthetized with isoflurane (IsoFlo, Zoetis, 5%  
isoflurane vapourised in medical air delivered at 0.8–1 l min−1) after 
which two analgesics were provided through intraperitoneal injec-
tion (Metacam, Boehringer Ingelheim, 5 mg kg−1 or Rimadyl, Pfizer, 
5 mg kg−1, and Temgesic, Indivior, 0.05–0.1 mg kg−1) and one local anal-
gesic was applied underneath the skin covering the skull (Marcain, 
Aspen, 1–3 mg kg−1). Their scalp was removed with surgical scissors and 
the surface of the bone was dried before being generously covered with 
optibond (Kerr). To increase the thickness and stability of the skull and 
overall preparation, a thin layer of dental cement (Charisma, Kulzer) was 
applied on the exposed skull, except in the location above the implant, 
where a 4-mm-wide circular craniotomy was made. The craniotomy was 
positioned over the dorsal surface of the cortex and cerebellum, with 
the centre positioned ∼ 4 mm lateral from the centre of the medial sinus, 
and above the transverse sinus just above the MEC and PaS. After the 
dura was removed above the cerebellum, the lower edge of the prism 
was slowly pushed in the empty space between the forebrain and the 
cerebellum, just posterior to the transverse sinus. The edges of the 
coverslip were secured to the surrounding skull with UV-curable dental 
cement (Venus Diamond Flow, Kulzer). A custom-designed steel head-
bar was attached to the dorsal surface of the skull, centred upon and 
positioned parallel to the top face of the microprism. All exposed areas 
of the skull, including the headbar, were finally covered with dental 
cement (Paladur, Kulzer) and made opaque by adding carbon powder 
(Sigma Aldrich) until the dental cement powder became dark grey.

Virus injection and glass window implantation in VIS. In a different 
cohort of mice than those used for MEC/PaS imaging, we induced the 
expression of GCaMP6m in neurons of the adult VIS for subsequent 
imaging. We targeted the injection of the same AAV1-Syn-GCaMP6m 
viral solution used in the developing MEC and PaS to the primary visual  
cortex. On the day of surgery, 3- to 5-month-old mice were anaes-
thetized with isoflurane (IsoFlo, Zoetis, 5 % isoflurane vapourized  
in medical air delivered at 0.8–1 l min−1) after which two analgesics were 
provided through intraperitoneal injection (Metacam, Boehringer  
Ingelheim, 5 mg kg−1 or Rimadyl, Pfizer, 5 mg kg−1, and Temgesic, Indivior,  
0.05–0.1 mg kg−1) and one local anaesthetic was applied underneath 
the skin covering the skull (Marcain, Aspen, 1–3 mg kg−1). The virus was 
injected at three locations in VIS, all of which were within the following 
anatomical ranges in the right hemisphere: 2.3–2.5 mm lateral from 
the midline, 0.9–1.3 mm anterior from lambda53. At each injection site, 
50 nl of the virus was injected 0.5 mm below the dura and the pipette 
was left in place for 3–4 min to enable the virus to diffuse. The pipette 
was then brought to 0.3 mm below the dura and another 50 nl was  
injected. The pipette was then left in place for 5–10 min before retracting 
it completely. The speed of the injections was 5 nl s−1.

Two weeks after the viral injection, a surgery to chronically implant 
a glass window over VIS was performed. The mice were handled as 
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previously described for the prism surgery in MEC/PaS, including 
anaesthesia, delivery of analgesics, and scalp removal. Optibond was 
applied to the exposed skull except in the location of the craniotomy. 
A 4-mm-wide craniotomy was made, centred on the virus injection 
coordinates, and a 4-mm glass window was placed underneath the 
skull edges of the craniotomy. The glass was slightly larger than the 
craniotomy, so after it was manoeuvred in place, the upward pres-
sure exerted by the brain secured it in place against the skull, thereby 
minimizing the presence of empty gaps that might favour tissue and 
bone regrowth. The edges of the window were secured with UV-curable 
dental cement and superglue before the positioning of the headbar 
as described for the MEC–PaS implantation. All exposed areas of the 
skull, including the headbar, were finally covered with dental cement 
(Paladur, Kulzer) that was made opaque by adding carbon powder 
(Sigma Aldrich) until the dental cement powder became dark grey.

Neuropixels probe implants. Two adult mice (4 to 5 months old) were 
implanted with four-shank Neuropixels 2.0 silicon probes54 targeting 
the superficial layers of MEC in the left hemisphere. Prior to the sur-
gery, the mice were given general analgesics (Metacam, Boehringer 
Ingelheim, 5 mg kg−1 and Temgesic, Indivior, 0.05–0.1 mg kg−1) subcu-
taneously and one local anaesthetic was applied underneath the skin 
covering the skull (Marcain, Aspen, 1–3 mg kg−1). After incision, a hole 
was drilled over the cerebellum for an anchor screw connected to a 
ground wire. Craniotomies were then drilled. Probes targeting the MEC 
were lowered from the surface to depths between 2.5 mm and 2.7 mm 
relative to the dura mater. They were implanted with the most medial 
shank placed on the brain surface 3.2 mm lateral to the midline and 
0.4 mm anterior to the transverse sinus edge. The four shanks were 
oriented with the electrode sites on the posterior side. In one of the 
two mice (no. 104638), the probe was first rotated 7° in the horizontal 
plane (angle with reference to the coronal plane), with the most lateral 
shank in the most posterior position such that the shanks were parallel 
to the transverse sinus. The four shanks were then lowered vertically 
from this position.

The Neuropixels probe of the second mouse (no. 102335) was not 
rotated in the horizontal plane—that is, all shanks had the same anterior– 
posterior coordinates. The electrode shanks of this mouse were lowered 
from the surface with a 2° angle relative to the coronal plane, such that 
the shank tips were the most posterior. The shanks remained within 
the same sagittal plane as they were lowered. This second mouse was 
also implanted with a probe targeting the CA1 region in the right hemi-
sphere, 1.225–1.975 mm relative to the midline, at a depth of 3 mm rela-
tive to dura mater, with all shanks 2.1 mm posterior to bregma. The 
hippocampal data were not used in the present study. The probes were 
secured to the skull using an adhesive (OptiBond, Kerr), UV-curable 
dental cement (Venus Diamond Flow, Kulzer), and dental cement  
(Meliodent, Kulzer). A headbar was attached as described above for 
the calcium imaging studies.

Self-paced running behaviour under sensory-minimized 
conditions
Training of mice began 2 days after the prism implantation in MEC 
and PaS, 12 days after the implantation of a cranial window in VIS, 
and 5–7 days after Neuropixels probe implantation. All mice used for 
calcium imaging recordings and one Neuropixels-implanted mouse  
(no. 104638) were head-restrained by a headbar with their limbs resting 
on a freely rotating styrofoam wheel with a metal shaft fixed through 
the centre. The radius of the wheel was ∼85 mm and the width 70 mm. 
Low friction ball bearings (HK 0608, Kulelager) were affixed to the 
ends of the metal shaft and held in place on the optical table using a 
custom mount. This arrangement allowed the mice to self-regulate 
their movement. The position of the mouse on the rotating wheel was 
measured using a rotary encoder (E6B2-CWZ3E, YUMO) attached to 
its centre axis. Step values of the encoder (4,096 per full revolution, 

∼130 μm resolution) were digitized by a microcontroller (Teensy 3.5, 
PJRC) and recorded using custom Python scripts at 40–50 Hz. Wheel 
tracking was triggered at the start of imaging and synchronized to the 
ongoing image acquisition through a digital input from the 2-photon 
microscope. In a subset of mice recorded with calcium imaging (3 out 
of 12; 2 implanted in MEC, 1 implanted in PaS), the precise synchroni-
zation was not available to us and these data were hence not used for 
comparison of movement and imaging data. A T-slot photo interrupter 
(EE-SX672, Omron) served as a lap (full revolution) counter. Design 
and code of the wheel are publicly available under https://github.com/
kavli-ntnu/wheel_tracker.

The other Neuropixels probe-implanted mouse (no. 102335) was 
head-restrained by a headbar while resting on a circular disc coated 
with rubber spray. The radius of this wheel was ∼85 mm. The mouse was 
allowed self-paced movement on the wheel. Three-dimensional motion 
capture (OptiTrack Flex 6 cameras and Motive recording software) 
was used to track the rotation of the wheel by tracking retroreflective 
markers placed on the wheel edge. Digital pulses were generated using 
an Arduino microcontroller which were used to align the Neuropixels 
acquisition system and the OptiTrack system via direct TTL input and 
infra-red LEDs.

In all mice, the self-paced task was performed under conditions of 
minimal sensory stimulation, in darkness, and with no rewards to signal  
elapsed time or distance run16,17. Prior to the imaging sessions, the 
calcium imaging mice were accustomed to the setup through daily 
exposures over the course of between 5 and 15 sessions, one session 
per day. Neuropixels-implanted mice were habituated to the setup 
by gradually increasing the time spent on the wheel over four days. In 
each session, after the mice were positioned on the wheel, they were 
gently head-restrained and free to run or rest55,56 for 30, 45 or 60 min.

Recording sessions of Neuropixels-implanted mice also consisted 
of trials where the mice were freely foraging in a 80 cm × 80 cm open 
field arena for 30 min. These open field trials preceded the self-paced 
wheel trials and were not used in the present study.

Two-photon imaging in head-fixed mice
A custom-built 2-photon benchtop microscope (Femtonics, Hungary) 
was used for 2-photon imaging of the target areas (that is, superficial 
layers of MEC, PaS and VIS). A Ti:Sapphire laser (MaiTai Deepsee eHP 
DS, Spectra-Physics) tuned to a wavelength of 920 nm was used as the 
excitation source. Average laser power at the sample (after the objec-
tive) was 50–120 mW. Emitted GCaMP6m fluorescence was routed to 
a GaAsP detector through a 600 nm dichroic beamsplitter plate and 
490–550 nm band-pass filter. Light was transmitted through a 16×/0.8 
NA water-immersion objective (MRP07220, Nikon) carefully lowered 
in close contact to the coverslip glued to the microprism (for MEC–
PaS imaging) or above the coverslip in contact with the brain surface 
(for VIS imaging). For the microprism-implanted mice, the objective 
lens was aligned to the ventro–lateral corner of the prism, to consist-
ently identify the position of MEC and PaS across mice. Ultrasound 
gel (Aquasonic 100, Parker) or water was used to fill the gap between 
the objective lens and the glass coverslips. The software MESc (v 3.3 
and 3.5, Femtonics, Hungary) was used for microscope control and 
data acquisition. Imaging time series of either ∼30 min or ∼60 min 
were acquired at 512 × 512 pixels (sampling frequency: 30.95 Hz, frame 
duration: ∼32 ms; pixel size: either 1.78 × 1.78 μm2 or 1.18 × 1.18 μm2). 
Time series acquisition was initiated arbitrarily after the mouse was 
head-restrained on the setup.

Neuropixels recordings in head-fixed mice
Signals were recorded using a Neuropixels acquisition system as 
described previously25,57. In short, the electrophysiological signal was 
amplified with a gain of 80, low-pass-filtered at 0.5 Hz, high-pass-filtered 
at 10 kHz, and digitized at 30 kHz on the probe circuit board. The digi-
tized signal was then multiplexed by the ‘headstage’ circuit board and 
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transmitted along a 5 m tether cable using twisted pair wiring to a Neu-
ropixels PXIe acquisition module. The data was visualized and recorded 
using SpikeGLX version 20201103 software (https://billkarsh.github.
io/SpikeGLX).

Histology
Histology of calcium imaging mice and reconstruction of field- 
of-view location. On the last day of imaging, after the imaging session, 
the mice were anaesthetized with isoflurane (IsoFlo, Zoetis) and then 
received an overdose of sodium pentobarbital before transcardial 
perfusion with freshly prepared PFA (4% in PBS). After perfusion, the 
brain was extracted from the skull and kept in 4% PFA overnight for 
post-fixation. The PFA was then exchanged with 30% sucrose to cryo-
protect the tissue.

To verify the anatomical location of the imaged FOVs in the 
microprism-implanted mice, we used small, custom-made pins, 
derived from a thin piano wire coated with a solution of 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI; DiIC18(3)) 
(ThermoFischer), to mark the location of the imaged tissue in relation 
to the prism footprint. A DiI-coated pin was inserted into the brain tis-
sue at the location left empty by the prism footprint, and specifically 
targeted to the ventro–lateral corner of the footprint (see ‘Surgeries’). 
The pin was left in place to favour transfer of DiI from the metal pin 
to the brain tissue, and to leave a fluorescent mark on the location of 
the imaged FOV. After 30 to 60 s, the pin was removed and the brain 
was sliced on a cryostat in 30–50 μm thick sagittal sections. All slices 
were collected sequentially in a 24-well plate filled with PBS, before 
being mounted in their appropriate anatomical order on a glass slide 
in custom-made mounting medium. For confocal imaging, a Zeiss LSM 
880 microscope (Carl Zeiss) was used to scan through the whole series 
of slices and locate the position of the DiI fluorescent mark. Images were 
then acquired using an EC Plan-Neofluar 20×/0.8 NA air immersion, 
40×/1.3 oil immersion, or 63×/1.4 oil immersion objective (Zeiss, laser 
power: 2–15%; optical slice: 1.28–1.35 airy units, step size: 2 μm). Before 
acquisition, gain and digital offset were established to optimize the 
dynamic range of acquisition to the dynamic range of the GCaMP6m 
and DiI signals. Settings were kept constant during acquisition across 
brains. Based on the location of the red fluorescent mark, we could infer 
where, on the medio–lateral and dorso–ventral extent of the brain, the 
ventro–lateral corner of the microprism (and hence the 2-photon FOV 
aligned to it) was located.

We used the Paxinos mouse brain atlas53 to produce a reference flat 
map representing the medio–lateral and dorso–ventral extent of the 
MEC and PaS. Flat maps helped delineate the extent of the FOV that 
fell within the anatomical boundaries of either the MEC and adjacent 
PaS, and allowed for a standardized comparison across mice. For each 
imaged mouse, we mapped the dorso–ventral and medio–lateral loca-
tion of the DiI mark on the refence flat map (Extended Data Fig. 1c). Mice 
were assigned to ‘MEC imaging’ or ‘PaS imaging’ groups depending on 
the location of the FOV: a mouse would be further analysed as being 
part of the MEC imaging group if more than 50% of the area of the FOV 
occupied by GCaMP6m-expressing cells could be located in the MEC.

To verify the anatomical location of the FOVs in VIS in the glass 
window implanted mice, we sliced the brain until we reached the ana-
tomical coordinates at which the virus was infused (see ‘Surgeries’). 
Coronally cut slices of 50 μm thickness were collected sequentially 
in a 24-well plate, and immediately mounted in their appropriate ana-
tomical order on a glass slide in custom-made mounting medium. For 
confocal imaging, a Zeiss LSM 880 microscope (Carl Zeiss) was used 
according to the same specification as described above for MEC/PaS.

Histology and reconstruction of Neuropixels probe placement. 
After the end of experiments, the mice were anaesthetized and  
received an overdose of isoflurane (IsoFlo, Zoetis) before transcardial 
perfusion with saline followed by 4% formaldehyde. The brain was 

either extracted after perfusion or kept overnight in 4% formaldehyde 
for post-fixation before extraction. The brains were then stored in 
4% formaldehyde. Frozen 30 μm thick sagittal sections were cut on a 
cryostat, mounted on glass, and stained with Cresyl violet (Nissl). To 
estimate the shank locations, we used an Axio Scan.Z1 (Carl Zeiss) slide 
scanner microscope for brightfield detection at 20x magnification. 
We used Paxinos mouse brain atlas53 and the Allen Mouse Brain Com-
mon Coordinate Framework58 version 3 through the siibra-explorer 
(Forschungszentrum Juelich, https://atlases.ebrains.eu/viewer/) to 
estimate anatomical location of recording sites. A map of the probe 
shank was aligned to the histology assuming that the cutting plane 
was near-parallel to the sagittal plane. When possible, the anatomical 
locations were calculated using the tip of the probe shanks and the 
intersection of the shank with the brain surface as reference frames. 
When this was not possible, the profile of a nearby brain region (for 
example, the hippocampus) was used to estimate the MEC implant 
site. We observed theta-rhythmicity of neural activity on all recorded 
shanks, as expected for recording locations in the MEC.

Analysis of imaging time series
Imaging time series data were analysed using the Suite2p59 Python 
library (https://github.com/MouseLand/suite2p). We used its built-in 
routines for motion correction, region of interests (ROI) extraction, 
neuropil signal estimation, and spike deconvolution. Non-rigid motion 
correction was chosen to align each frame iteratively to a template. 
Quality was assessed by visual inspection of the corrected stacks and 
built-in motion correction metrics. The Suite2p GUI was used to manu-
ally sub-select putative neurons based on anatomical and signal char-
acteristics and to discard obvious artefacts that accumulated during 
the analysis—for example, ROIs with footprints spanning large areas of 
the FOV, ROIs that did not have clearly delineated circumferences in the 
generated maximum intensity projection, or ROIs that were extracted 
automatically but showed no visible calcium transients.

Raw fluorescence calcium traces of each ROI were neuropil-corrected 
to create a fluorescence calcium signal Fcorr by subtracting 0.7 times the 
neuropil signal from the raw fluorescence traces. We used the Suite2p 
integrated version of non-negative deconvolution60 with tau = 1 s to 
deconvolve Fcorr, yielding the basis for the binarized sequences that we 
refer to as the calcium activity (see ‘Binary deconvolved calcium activ-
ity and matrix of calcium activity’). Due to the absence of ground truth 
data for our combination of indicator, region, and imaging conditions, 
we used a decay tau that was at the lower end of biologically plausible 
values (tau = 1 s), which allowed even short and low amplitude spiking 
responses to be picked up by the analysis and therefore did not bias 
our analysis towards large-amplitude calcium transients (presumed 
bursting responses). To estimate the signal-to-noise ratio (SNR) of each 
cell individually, we further thresholded the calcium activity (without 
binarization) at 1 s.d. over the mean, yielding filtered calcium activity, 
and classified the remaining activity as noise. We additionally ensured 
that noise was temporally well segregated from filtered calcium activity 
by requiring data points classified as noise to be separated by at least 
one second before and ten seconds after filtered calcium activity. The 
SNR of the cell was then estimated as the ratio of the mean amplitude 
of Fcorr during episodes of filtered calcium activity over the s.d. of Fcorr 
during episodes of noise. If no data points remained after the filtering 
of calcium activity, the cell was assigned a SNR of zero.

Binary deconvolved calcium activity and matrix of calcium 
activity
In order to denoise the recorded fluorescence calcium signals and 
have good temporal resolution, all analyses in the study were per-
formed using the deconvolved calcium activity of the recorded cells. 
For each cell whose SNR was larger than 4, the deconvolved calcium 
activity (see ‘Analysis of imaging time series’) was downsampled by 
a factor of 4 by calculating the mean over time windows of ∼129 ms 
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(original sampling frequency = 30.95 Hz, sampling frequency used in 
the analyses = 7.73 Hz). Because the ultraslow oscillations and periodic 
sequences unfolded at the time scales of seconds to minutes, this down-
sampling step gave a good temporal resolution for all quantifications 
while allowing us to work with smaller arrays (ultraslow oscillations 
and the oscillatory sequences were also detectable when using the 
original sampling frequency), which in some of the analyses reduced 
the computing time. Next, the downsampled deconvolved calcium 
activity was averaged over time and its s.d. was calculated. A thresh-
old equal to this average plus 1.5 times the s.d. was used to convert 
the deconvolved calcium activity into a binary deconvolved calcium 
activity, such that all values above the threshold were set to 1 (calcium 
events), and all values below or equal to that threshold were set to 0. 
Unless stated otherwise, for all analyses throughout the study we used 
the deconvolved and binary calcium activity, to which for simplicity we 
refer to as ‘deconvolved calcium activity’ or simply ‘calcium activity’. 
The calcium activity of all cells in a session with SNR > 4 was stacked to 
construct a binary matrix of calcium activity which had as many rows 
as neurons, and as many columns as time bins sampled at 7.73 Hz. The 
population vectors are the columns of the matrix of calcium activity.

Note that the recorded calcium signals likely reflect a combination 
of groups of single spikes and higher-frequency bursts, although it 
was not possible to distinguish between the two types of firing. The 
sensitivity of the calcium indicator was likely not high enough to detect 
subthreshold potentials.

Spike Sorting and single-unit selection
Spike sorting of Neuropixels data was performed using a version of 
KiloSort 2.5 (ref. 54) with some customizations to improve performance 
on recordings from the MEC region as described previously25. All trials 
in a session were clustered together. Single units were discarded from 
analysis based on a < 20% estimated contamination rate with spikes 
from other neurons. These units were automatically labelled by the 
KiloSort 2.5 algorithm as ‘good’ units. In the example session from 
mouse no. 104638 only good units were considered. In the example 
session of mouse no. 102335, because the number of good units was 
lower (<250), we also used multi-unit activity (MUA).

Autocorrelations and spectral analysis of single-cell calcium 
activity
To determine if the calcium activity of single cells displays ultraslow 
oscillations, for each neuron the PSD was calculated on the autocor-
relation of its calcium activity. The PSD was computed using Welch’s 
method (pwelch, built-in Matlab function), with Hamming windows 
of 17.6 min (8,192 bins of 129 ms in each window) and 50% of overlap 
between consecutive windows. Note that when calculating the PSD a 
large window was needed to identify oscillation frequencies ≪0.1 Hz.

To visualize whether specific oscillatory patterns at fixed frequencies 
were present in the neural population, all autocorrelations from one 
session were sorted and stacked into a matrix, where rows are cells and 
columns are time lags. The sorting of autocorrelations was performed 
according to the maximum power of each PSD in a descending manner. 
The frequency at which the PSD peaked was used as an estimate of the 
oscillatory frequency of the cell’s calcium activity.

In order to determine significance for the peak of the PSD, we con-
sidered two extreme and opposite shuffling procedures: On the one 
hand, given that circularly shuffling the data preserves all inter calcium 
events (Extended Data Fig. 3c,d), taking this approach would preserve 
the shape and the position of the peak in the PSD calculated on exper-
imental data. On the other hand, destroying the inter calcium event 
intervals by assigning a random position to each calcium event in the 
time series would lead to a flat PSD (Extended Data Fig. 3c,d). In the 
latter approach, all cells would be classified as oscillatory. To bridge 
these two approaches we developed a new shuffling procedure.  
For each cell we divided its calcium activity vector into n epochs of 

length W, with ∙n T W= /( SF), where T is the total number of time bins 
sampled at a frequency SF = 7.73 Hz (that is, bin size = 129 ms). We next 
shuffled those epochs (and preserved the ordering of the time bins 
within each epoch). This method preserved the inter calcium event 
interval, but at the same time disrupted the periodicity. In the limit 
where W = 129 ms, this method coincides with shuffling all calcium 
events without preserving the inter calcium event intervals; in the limit 
where W = T/SF, this method is equivalent to circularly shuffling the 
data. For each of the 200 shuffled realizations we calculated the PSD 
and the fraction of cells for which the peak of the PSD in experimental 
data was above the 95th percentile of a shuffled distribution built with 
the values of the PSDs calculated on shuffled data (and at the frequency 
at which the PSD computed on experimental data peaked). Here we 
present the results for 5 different epoch lengths:

W = 1 s: 6226 oscillatory cells out of 6231 (99%)
W = 10 s: 6153 oscillatory cells out of 6231 (99%)
W = 20 s: 5695 oscillatory cells out of 6231 (91%)
W = 50 s: 4642 oscillatory cells out of 6231 (74%)
W = 100 s: 3521 oscillatory cells out of 6231 (56%)

When W is below the typical duration of the sequences (W < 50 s), 
the great majority of cells are classified as having a peak in the PSD. As 
expected, when W is similar to the duration of the sequences (W ≥ 50 s), 
the fraction of oscillatory cells quickly drops. This fraction is no longer 
significantly above a chance level of 5%.

This approach was used for determining the fraction of oscillatory 
cells both in calcium imaging and in Neuropixels data. In the main text 
we present the results corresponding to W = 20 s.

Finally, we note that there was some variability in the frequency at 
which the PSD peaked across cells within a session. For example, in the 
example session shown in Fig. 1b–d and Fig. 2a, some single-cell PSDs 
peaked at a frequency of 0.0066 Hz, while others did so at a frequency 
of 0.0075 Hz. However, in many cases the PSDs were wide enough to 
exhibit high power in neighbouring frequencies too, providing support 
to the frequencies being rather clustered among a subset of values, 
with some slight variability around those values. When all cells were 
analysed (n = 6,231 cells pooled across 15 oscillatory sessions, 5 mice), 
in approximately half of the MEC data the oscillatory frequency at the 
single-cell level was very similar to the frequency at the population level 
(Extended Data Fig. 7e). This finding points to a small variability in the 
frequency of single-cell activity in MEC, as expected in the presence 
of recurring sequences.

Correlation and PCA sorting methods
To determine whether neural population activity exhibits temporal 
structure we visualized the population activity by means of raster plots 
in which we sorted all cells according to different methods.

Correlation method. This method sorts cells such that those that are 
nearby in the sorting are more synchronized than those that are further 
away. First, each calcium activity was downsampled by a factor 4 by 
calculating the mean over counts of calcium events in bins of 0.52 s. 
The obtained calcium activity was then smoothed by convolving it with 
a gaussian kernel of width equal to four times the oscillation bin size, 
a bin size that was representative of the temporal scale of the popula-
tion dynamics (see ‘Oscillation bin size’). The cross correlations  
between all pairs of cells were calculated using time bins as data points, 
and a maximum time lag of 10 time points, equivalent to ∼ 5 s. This small 
time lag allowed us to identify near instantaneous correlation while 
keeping information about the temporal order of activity between cell 
pairs. The maximum value of the cross-correlation between cell i and 
cell j was stored in the entry (i, j) of the correlation matrix C, which was 
a square matrix of N rows and N columns, where N was the total number 
of recorded neurons in the session with SNR > 4. If the cross-correlation 
peaked at a negative time lag the value in the entry (i, j) was multiplied 



by −1. The entry with the highest cross-correlation value was identified 
and its row, denoted by imax, was used as the ‘seed’ cell for the sorting 
procedure and chosen to be the first cell in the sorting. Cells were then 
sorted according to the values in the entries i j( , )max , j N= 1,2, …, , j ≠ imax, 
that is, their correlations with the seed cell, in a descending manner.

PCA method. Computing correlations from the calcium activity or the 
calcium signals can be noisy due to fine tuning of hyperparameters (for 
example, the size of the kernel used to smooth the calcium activity of all 
cells). To avoid this, we leveraged the fact that the periodic sequences 
of neural activity constitute low-dimensional dynamics with intrinsic 
dimensionality equal to 1, and sorted the cells based on an unsupervised 
dimensionality reduction61 approach (a similar approach was used in 
ref. 62). For each recording session, PCA was applied to the matrix of 
calcium activity (bin size = 129 ms; using Matlab’s built-in pca function), 
including all epochs of movement and immobility and using the rows 
(neurons) as variables and the columns (time bins) as observations. The 
first two principal components (PCs) were kept, since 2 is the minimum 
number of components needed to embed non-linear 1-dimensional 
dynamics. Cells were sorted according to their loadings in PC1 and PC2, 
expecting that the relationship between these loadings would express 
the ordering in cell activation during the sequences.

The plane spanned by PC1 and PC2 was named the PC1–PC2 plane. 
In the PC1–PC2 plane, the loadings of each neuron (the components of 
the eigenvectors without being multiplied by the eigenvalues) defi ned 
a vector, for which we computed its angle  
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manner.

Note that while we keep the first 2 principal components to sort the 
neurons, all principal components and the full matrices of calcium 
activity were used in the analyses (except for visualization purposes—
for example, see ‘Manifold visualization for MEC sessions’). Finally, note 
that because in PCA a principal component is equivalent to −1 times the 
principal component, the sorting and an inversion of the sorting are 
equivalent. The sorting was chosen so that sequences would progress 
from the bottom to the top in the raster plot.

The PCA method was used throughout the paper for sorting the 
recorded cells unless otherwise stated.

Random sorting of cell identities. A random ordinal integer N∈[1, ], 
where N is the total number of recorded cells with SNR > 4, was assigned 
to each neuron without repetition across cells. Neurons were sorted 
according to those assigned numbers (see example session in Extend-
ed Data Fig. 4d, top row).

Sorting of circularly shuffled data. A shuffled matrix of calcium activ-
ity was built by circularly shuffling the calcium activity of each cell 
separately. For each cell a random ordinal integer T∈[1, ], where T is the 
total number of time bins (bin size = 129 ms), was chosen and the cal-
cium activity was rigidly shifted by this integer using periodic bound-
ary conditions. The assignment of random ordinal integers was made 
separately for each cell. The PCA method was then applied to the shuf-
fled matrix of calcium activity (see example session in Extended Data 
Fig. 4d, second row).

Sorting of temporally shuffled data. Because circularly shuffling the 
data preserves the oscillations in the single-cell calcium activity, a sec-
ond shuffling approach was considered (for single-cell data shuffling 
procedures see ‘Autocorrelations and spectral analysis of single-cell 
calcium activity’). A shuffled matrix of calcium activity was built by 
temporally shuffling the calcium activity of each cell separately. For 
each cell, each time bin of the calcium activity was assigned a random 
ordinal integer T∈[1, ] without repetition across time bins, where T is 
the total number of time bins (bin size = 129 ms), and time bins were 

ordered according to their assigned number. The assignment of random 
ordinal integers was made separately for each cell, so that the obtained 
random orderings were not shared across cells. The PCA method was 
then applied to the shuffled matrix of calcium activity.

Sortings are preserved when different portions of data are used 
for obtaining the sortings. To determine whether using different por-
tions of the session for sorting the neurons lead to different sortings, 
the PCA method was applied to: (i) all data within a session; (ii) the 
first half of the session; and (iii) the second half of the session. This 
procedure gave three sortings per session. Next, for each cell pair in a 
session the distance between the two cells in each of the three sortings 
was calculated. We illustrate this calculation with a toy example: if 5 
neurons were recorded, and sorting (i) was: (1,4,5,2,3), the distance 
between cells 1 and 5 was 2, because those two cells were 2 positions 
apart in the sorting. The distance between cells 1 and 3 was 1 and not 4, 
however, because in the calculation of distances we took into account 
that the sorting mirrors the position of the cells in the ring, which has 
periodic boundary conditions.

We next calculated the correlation between the distances in: sorting 
(i) versus sorting (ii), sorting (i) versus sorting (iii) and sorting (ii) versus 
sorting (iii). If sortings obtained with different portions of data preserve 
the ordering of the neurons, we would expect high correlation values. 
We compared the obtained correlation values with the 95th percentile 
of a shuffled distribution obtained by assigning, to each cell, a random 
position in each of the sortings.
•	Sorting (i) versus sorting (ii): 15 of 15 oscillatory sessions (see ‘Oscilla-

tion score’) were above the cutoff of significance. Correlation values 
in experimental data ranged from 0.38 to 0.85. The 95th percentile of 
shuffled data ranged from 0.004 to 0.015 (n = 15 in both experimental 
and shuffled data).

•	Sorting (i) versus sorting (iii): 15 of 15 oscillatory sessions were above 
the cutoff of significance. Correlation values in experimental data 
ranged from 0.52 to 0.86. The 95th percentile of shuffled data ranged 
from 0.005 to 0.013 (n = 15 in both experimental and shuffled data).

•	Sorting (ii) versus sorting (iii): 15 of 15 oscillatory sessions were above 
the cutoff of significance. Correlation values in experimental data 
ranged from 0.17 to 0.53. The 95th percentile of shuffled data ranged 
from 0.005 to 0.013 (n = 15 in both experimental and shuffled data).

The high correlation values obtained provide support for what is 
illustrated in Extended Data Fig. 4e: using different portions of data 
for sorting the cells unveils the same dynamics.

Sorting methods based on non-linear dimensionality reduction 
techniques
The PCA method for sorting cells relies on a two-dimensional linear 
embedding. This linear embedding might not be optimal if the popula-
tion vectors describe temporal trajectories that, despite being 
low-dimensional, lie on a curved surface. To take into account potential 
non-linearities, four additional sorting methods were implemented, 
based on the following non-linear dimensionality reduction tech-
niques63: t-distributed stochastic neighbour embedding (t-SNE), LEM, 
Isomap and uniform manifold approximation and projection (UMAP)64 
(see parameters below). First, to express in the sortings the ordering 
of the cells during the slow temporal progression of the sequences, the 
four methods used a resampled matrix of calcium activity as input. To 
compute this matrix, for each session, we downsampled each calcium 
activity by a factor 4 by calculating its mean in bins of 0.52 s. The calcium 
activity of all cells was then smoothed by convolving them with a gauss-
ian kernel whose width was given by the oscillation bin size (see ‘Oscil-
lation bin size’). After applying t-SNE, LEM, Isomap or UMAP to the 
resampled matrix of calcium activity, we kept the first two dimensions 
obtained with each method, for the same reasons as presented for the 
PCA sorting method. To obtain the sorting, the following procedure 
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was applied: We let Dim1 and Dim2 be the first two dimensions obtained 
with the chosen dimensionality reduction technique that we had applied 
to the resampled matrix. In analogy with the PCA method, the Dim1–
Dim2 plane was spanned by Dim1 and Dim2 and for each cell the com-
ponents on those dimensions defined a vector in this plane for which 
the angle θ ∈ [−π, π) with respect to the axis of Dim1 was computed. 
Cells were then sorted according to their angles in a descending manner.

To apply t-SNE to the population activity we used a perplexity value 
of 50. First, we applied PCA to the resampled matrix of calcium activity, 
and then we used the projection of the neural activity onto the first 50 
principal components as input to t-SNE. To apply LEM to the popula-
tion activity, we used as hyperparameters k = 15 and σ = 2. Similarly, 
we used k = 15 for running isomap. Finally, we used n_neighbors=30, 
min_dist=0.3 and correlation as metric for running UMAP.

We used the MATLAB implementation of UMAP65 and the Matlab 
Toolbox for Dimensionality Reduction (https://lvdmaaten.github.
io/drtoolbox/). Finally, when displaying the raster plots that resulted 
from the different sortings, the first cell (located at the bottom of the 
raster plot) was always the same. This was accomplished by circularly 
shifting the cells in the different sortings such that the initial cell in 
all sortings coincided with the initial cell of the sorting obtained with 
the PCA method.

Manifold visualization for MEC sessions
Sorting the cells and visualizing their combined neural activity through 
raster plots revealed the presence of oscillatory sequences of neural 
activity in the recorded data. To visualize the topology of the manifold 
underlying the oscillatory sequences of activity, both PCA and LEM 
were used.

PCA was applied to the matrix of calcium activity, which first had 
each row convolved with a gaussian kernel of width equal to four times 
the oscillation bin size (see ‘Oscillation bin size’). The manifold was 
visualized by plotting the neural activity projected onto the embed-
ding defined by PC1 and PC2. In Fig. 2c (left) the neural activity of the 
entire session was projected onto the low-dimensional embedding. In 
Extended Data Fig. 4c, the neural activity corresponding to the concat-
enated epochs of uninterrupted oscillatory sequences was projected 
onto the embedding.

For the LEM approach, first PCA was applied to the matrix of calcium 
activity, which was previously resampled to bins of 0.52 s as in ‘Sorting 
methods based on non-linear dimensionality reduction techniques’, 
and the first five principal components were kept. Next LEM was applied 
to the matrix composed of the 5 principal components, using as param-
eters k = 15 and σ = 2. We decided to keep 5 principal components prior 
to applying LEM to denoise the data, for which we leveraged the fact 
that sequences of activity constitute low-dimensional dynamics with 
intrinsic dimensionality equal to 1, and therefore truncating the data 
to the first 5 principal components should preserve the sequential 
activity. The manifold was visualized by plotting the neural activity 
projected onto the embedding defined by the first two LEM dimensions. 
In Fig. 2c (right) the neural activity of the entire session was projected 
onto the embedding.

Both approaches revealed a ring-shaped manifold along which the 
population activity propagated repeatedly with periodic boundary 
conditions. One sequence was equivalent to one full turn of the popula-
tion activity along the ring-shaped manifold. Finally, we note that when 
using PCA for visualizing the manifold, in some sessions the ring was 
less evident (Extended Data Fig. 4c). This is because the population 
activity had more variations from sequence to sequence, which resulted 
on the rings that corresponded to each sequence not completely over-
lapping in the PC1 versus PC2 plane. While recovering rings with PCA 
is challenging due to PCA being a linear method, using a non-linear 
method would have helped in visualizing the ring (as in Fig. 2c, right), 
but we decided not to do this for all quantifications because non-linear 
methods require more fine tuning and are usually harder to interpret.

Phase of the oscillation
To track the progression of the population activity over time, we lever-
aged the low dimensionality of the ring-shaped manifold and the cir-
cular nature of the population activity, and parametrized the 
population activity with a single time-dependent parameter, which we 
called the phase of the oscillation. Hence, the phase of the oscillation 
varied as a function of time (bin size = 129 ms) and tracked the progres-
sion of the neural population activity during the oscillatory sequences. 
The neural activity was projected onto a two-dimensional plane using 
PCA. The use of PCA avoided the selection of hyperparameters, which 
is required in all non-linear dimensionality reduction techniques includ-
ing LEM. Let i tPC ( )t  be the projection of the neural population activity 
onto principal component i (PCi). The neural population activity at 
time point t projected onto the plane defined by PC1 and PC2 is then 
given by ( t tPC1 ( ), PC2 ( )t t ), which defines a vector in this plane. The 
phase of the oscillation is defined as the angle of this vector with respect 
to the PC1 axis and is given by

φ t
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During one sequence, the phase of the oscillation continuously tra-
versed the range [−π, π) rad, which was consistent with the population 
activity propagating through the network and describing one turn 
along the ring-shaped manifold. The repetitive and almost linear 
dependence between the phase of the oscillation and time illustrates 
how stereotyped the sequences were (Fig. 2d).

We note that the quantity φ t( ) is always defined, regardless of 
whether the session is or is not classified as oscillatory. In the case of 
the oscillatory sessions, φ t( )  tracks the progression of the oscillatory 
sequences.

Joint distribution of cross-correlation time lag and angular 
distance in the PCA sorting
To further characterize the sequential activation in the MEC neural 
population and to introduce a score that would determine the extent 
to which a session exhibited oscillatory sequences (see ‘Oscillation 
score’), we determined the relationship between the time lags that 
maximized the cross-correlation between the calcium activity of two 
cells (τ) and their angular distances in the PCA sorting (d). In the plane 
generated by PC1 and PC2, the loadings of each neuron defined  
a vector, for which we computed the angle  
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1 ≤ i ≤ N, with respect to the axis of PC1, where l j
i
PC  is the loading of cell 

i on PCj and N is the total number of recorded neurons (see ‘Correlation 
and PCA sorting methods’). The angular distance d between any two 
cells in the PCA sorting was calculated as the difference between their 
angles wrapped in the interval [−π, π) (see Extended Data Fig. 5b, left),

d θ θ= ( − ), (2)i j i j,

where i N j N1 ≤ ≤ , 1 ≤ ≤ . The Matlab function angdiff was used for com-
puting this distance. Note that the angular distance maps how far apart 
two cells are in the raster plot when cells are sorted according to the 
PCA method.

To estimate the joint distribution of cross-correlation time lags and 
angular distances in the PCA sorting, the cross correlations between 
all pairs of cells were calculated using a maximum time lag of 248 s. For 
each cell pair the time lag at which the cross-correlation peaked (τ) and 
the angular distance in the PCA sorting (d) were calculated. A discrete 
representation was used for these two variables: in all analyses, and 
unless stated otherwise, the range of possible τ values—that is, 
[−248,248] s—was discretized into 96 bins of size ∆τ = ~ 5 s496 s

96  and the 
range of possible d values—that is, [−π, π) rad—was discretized into 11 
bins of size ∆d = ~ 0.57 rad2π

11 . Using those bins, the joint distribution 
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of τ and d was expressed as a two-dimensional histogram that counted 
the number of cell pairs observed for every combination of τ bins and 
d bins, normalized by the total number of cell pairs.

An example of joint distribution of cross-correlation time lags and 
angular distances in the PCA sorting is presented in Extended Data 
Fig. 5b, right, built on the example session shown in Fig. 2a. In sessions 
with clear periodic sequences, the time lag τ increased with the dis-
tance d. This dependence was observed a discrete number of times in 
each session, which indicated that cells were active periodically and 
at a fixed frequency or at an integer multiple of it (see Extended Data 
Fig. 5c, top for another example with a different time scale). In sessions 
without detectable periodic sequences such structure was not observed 
(Extended Data Fig. 5c, bottom).

Oscillation score
While striking oscillatory sequences were observed in multiple sessions 
and mice, the population activity exhibited considerable variability, 
ranging from non-patterned activity to highly stereotypic and periodic 
sequences (Extended Data Fig. 5a). This variability prompted us to quan-
tify, for each session, the extent to which the population activity was 
oscillatory, which we did by computing an oscillation score. For each 
session, we first calculated the phase of the oscillation φ t( ) (bin 
size = 129 ms, equation (1)), which tracks the progression of the popula-
tion activity in the presence of oscillatory sequences (see ‘Phase of the 
oscillation’ and Fig. 2d). Next the PSD of φ tsin( ( ))  was calculated using 
Welch’s method with Hamming windows of 17.6 min (8,192 bins of 129 ms 
in each window) and 50% of overlap between consecutive windows 
(pwelch Matlab function, see ‘Autocorrelations and spectral analysis of 
single-cell calcium activity’). If the PSD peaked at 0 Hz and the PSD was 
strictly decreasing, the phase of the oscillation was not oscillatory and 
hence the population activity was not periodic in the analysed session. 
In this case the oscillation score was set to zero. Otherwise, prominent 
peaks in the PSD at a frequency larger than 0 Hz were identified. In order 
to disentangle large-amplitude peaks from small fluctuations in the 
PSD, a peak at frequency fmax was considered prominent and indicative 
of periodic activity if its amplitude was larger than (1) 9 times the mean 
of the tail of the PSD (that is, <PSD(f > fmax)>, where <x> indicates the 
average over frequencies x) and (2) 9 times the minimum of the PSD 
between 0 Hz and fmax (that is, min(PSD(f < fmax))). If no peak in the PSD 
met these criteria the oscillation score was set to zero. Otherwise, the 
presence of a prominent peak in the PSD calculated on φ tsin( ( ))  was 
considered indicative of periodic activity at the population level. Yet a 
crucial component for observing oscillatory sequences is that cells fire 
periodically and that the time lag that maximizes the cross correlations 
between the calcium activity of pairs of cells that are located at a fixed 
distance in the sequence comes in integer multiples of a minimum time 
lag, which ensures that cells oscillate at a fixed frequency and that the 
calcium activity of one cell is temporally shifted with respect to the 
other. To quantify the extent to which these features were present in 
the data, we computed the joint distribution of time lags and angular 
distance in the PCA sorting (τ was discretized into 240 bins and d was 
discretized into 11 bins, see ‘Joint distribution of cross-correlation time 
lag and angular distance in the PCA sorting’). Next for each bin i of  
d, i1 ≤ ≤ 11, we calculated the PSD of the distribution of τ conditioned 
on the distance bin i (Welch’s methods, Hamming windows of 128 τ bins 
with 50% overlap between consecutive windows, pwelch Matlab func-
tion). The presence of a peak in this signal indicated that for bin i of d, 
the time lag that maximizes the cross correlations between cells was 
oscillatory (that is, it peaked at multiples of one specific time lag), as 
expected when cells are active periodically with an approximately fixed 
frequency and also with harmonics of the primary frequency (see exam-
ple joint distribution in Extended Data Fig. 5b, right). The presence (or 
absence) of a peak that satisfied the condition of being larger than (1) 
10 times the mean of the tail of the PSD (same definition as above), and 
(2) 4.5 times larger than the minimum between 0 Hz and the frequency 

at which the PSD peaked, was identified (same definition as above, the 
parameters are different from the ones used above because the signals 
are very different). The oscillation score was then calculated as the frac-
tion of angular distance bins for which a peak was identified.

Based on the bimodal distribution of oscillation scores obtained in 
the calcium imaging data from MEC (Extended Data Fig. 5d), a session 
was considered to express oscillatory sequences if the oscillation score 
was ≥0.72. This cutoff (0.72) corresponded to the smallest oscillation 
score within the group with high scores (shown in green in Extended 
Data Fig. 5d). Note that because the distribution of oscillation scores 
was bimodal any other choice of threshold between 0.27 and 0.72 would 
have led to the same results. Using as cutoff 0.72 was also equivalent 
to asking that at least 8 out of the 11 distributions of τ conditioned on 
bin i of d, i1 ≤ ≤ 11, had a significant peak in their PSD, which accounted 
for the fact that for distances in the PCA sorting that are close to zero, 
cells exhibit instantaneous co-activity rather than co-activity shifted 
by some specific time lag, which makes the conditional probability not 
oscillatory. After applying the cutoff, 15 of 27 calcium imaging sessions 
in MEC in 5 mice were classified as oscillatory (Extended Data Fig. 5d, 
shown in green), and among those 15 sessions, 10 were recorded with 
synchronized behavioural tracking (see ‘Self-paced running behaviour 
under sensory-minimized conditions’). The number of recorded cells 
in the calcium imaging oscillatory sessions ranged from 207 to 520. In 
the rest of the calcium imaging data, 0 of 25 PaS sessions in 4 mice were 
classified as oscillatory, and 0 of 19 VIS sessions in 3 mice were classified 
as oscillatory.

Oscillation bin size
The oscillatory sequences progressed at frequencies <0.1 Hz that  
varied from session to session. The oscillation bin size was a temporal 
bin size representative of the time scale of the oscillatory sequences 
in each session. It was used to quantify single-cell and neural population 
dynamics, for which describing the neural activity at the right time 
scale was fundamental (for example, see ‘Transition probabilities’). 
For each oscillatory session the period of the oscillatory sequences, 
denoted by Posc, was calculated as the inverse of the frequency fmax at 
which the PSD of the signal φ tsin( ( ))  peaked (see equation (1) and  
‘Oscillation score’), that is, P f=osc max

−1 . Note that this estimate of the 
period was reliable when during most of the session the network 
engaged in the oscillatory sequences, in which case the estimate was 
equivalent to the length of the session divided by the total number of 
sequences. However, it became less reliable the more interrupted the 
oscillatory sequences were.

The oscillation bin size Tosc was computed as the period of the oscil-
latory sequences divided by 10,
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This choice of bin size was made so that each sequence would pro-
gress across ∼10 time points. Across 15 oscillatory sessions, the oscil-
lation bin size ranged from 3 to 17 s (see Extended Data Fig. 9d).

In sessions without oscillatory sequences, there was not a well- 
defined peak in the PSD of φ tsin( ( )) , and therefore the oscillation bin 
size was not possible or meaningful to calculate. Yet, to perform the 
quantifications of network dynamics at temporal scales similar to the 
ones investigated in oscillatory sessions, the mean oscillation bin size 
computed across all oscillatory sessions was used (mean oscillation 
bin size = 8.5 s).

Unless otherwise indicated, the utilized bin size was 129 ms.

Identification of individual sequences
The characterization of the oscillatory sequences required multiple 
analyses that relied on identifying individual sequences, for example 
to quantify the duration of the sequences and their variability. The 
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procedure for identifying individual sequences was based on finding 
the time points at which each sequence began (visualized typically at 
the bottom of the raster plot) and ended (visualized typically at the 
top of the raster plot, see Extended Data Fig. 6a). Note that the begin-
ning and the end of the sequence are arbitrary because of the periodic 
boundary conditions in the sequence progression, and therefore a 
different pair of phases that are 2π apart could have been used for 
defining the beginning and the end of the sequence.

One sequence was equivalent to one full turn of the population activ-
ity around the ring-shaped manifold—that is, during one sequence the 
phase of the oscillation traversed 2π (see ‘Phase of the oscillation’). To 
calculate the phase of the oscillation and determine the time epochs 
during which it traversed 2π, we smoothed the calcium activity of all 
cells (bin size = 129 ms) using a gaussian kernel of width equal to the 
oscillation bin size. Next, the phase of the oscillation was calculated 
and discretized into 10 bins (that is, the range [−π, π) was discretized 
into 10 bins). Time points at which the phase of the oscillation belonged 
to a bin that was 3 or more bins away from the bin in the previous time 
point were considered as discontinuity points and were used to define 
the beginning and the end of putative sequences. Putative sequences 
were classified as sequences if the phase of the oscillation smoothly 
traversed the range [−π, π)  rad in an ascending manner. To account 
for variability, decrements of up to 1 bin of the phase of the oscillation 
were allowed. This means that there could be fluctuations of up to 
0.6 rad in the phase within one individual sequence, and still be con-
sidered a sequence. Points of sustained activity were disregarded. 
Segments of sequences in which the phase of the oscillation covered 
at least 5 bins (that is, 50% or more of the range [−π, π) rad) were also 
identified.

Sequence duration, sequence frequency and ISI
The duration of individual sequences was defined as the amount of 
time that it takes the phase of the oscillation to cover the range [−π, π)  
in a smooth and increasing manner, which is consistent with the pop-
ulation activity completing one full turn along the ring-shaped mani-
fold. To calculate the sequence duration, the time interval between the 
beginning and the end of the sequence was determined (see ‘Identifi-
cation of individual sequences’).

To quantify the variability in sequence duration within and between 
sessions, two approaches were adopted. In approach 1 (Extended Data 
Fig. 6f left), the s.d. of sequence durations was computed for each oscil-
latory session. To estimate significance, in each of 500 iterations all 
sequences across 15 oscillatory sessions were pooled (421 sequences 
in total) and randomly assigned to each session while keeping the 
original number of sequences per session unchanged. For each itera-
tion the s.d. of the sequence durations randomly assigned to each ses-
sion was calculated. In approach 2 (Extended Data Fig. 6f, right), for 
each session i, 1 ≤ i ≤ 15, where 15 is the total number of oscillatory ses-
sions, we considered all pairs of sequences within session i (within 
session group) or alternatively all pairs of sequences such that one 
sequence belongs to session i and the other sequence to session j j i, ≠  
(between session group). For each sequence pair in each group, the 
ratio between the shortest sequence duration and the longest sequence 
duration was calculated. The mean was computed over pairs of 
sequences in each group for each session separately. Notice that the 
larger this ratio the more similar the sequence durations are.

The sequence frequency was calculated as the total number of iden-
tified individual sequences in a session, divided by the total amount 
of time the network engaged in the oscillatory sequences during the 
session, which was computed as the length of the temporal window of 
concatenated sequences.

The ISI was defined as the length of the epoch from the termination 
of one sequence and the beginning of the next one. In other words, the 
ISI was calculated as the amount of time that elapsed between the time 
point at which the phase of the oscillation reached π (after completing 

one turn along the ring-shaped manifold), and the time point at which 
it is equal to −π (prior to initiating the next turn along the ring).

Mean event rate during segments of the sequences
To determine how population activity varied during individual 
sequences (Extended Data Fig. 6c), the following approach was 
adopted. For each oscillatory session (see ‘Oscillation score’) all indi-
vidual sequences were identified (see ‘Identification of individual 
sequences’). Each sequence was divided into ten segments of equal 
length. For each sequence segment, the mean event rate was calcu-
lated as the total number of calcium events across cells divided by 
sequence segment duration and number of cells. For each session the 
mean event rate per segment was calculated over sequences. Across 
sessions we found that the percentage rate change from the segment 
with the minimum event rate to the segment with the maximum rate 
was no more than 18% (Extended Data Fig. 6c).

Analysis of Neuropixels data
Neuropixels data was different from the calcium imaging data in that 
it consisted of spike times and not calcium traces. Despite this fun-
damental difference, for most of the analyses we applied the same 
methods to both datasets. When this was not possible (see below), we 
tried to minimize the differences between the two analyses pipelines.

Spike matrices. In order to create arrays that were similar to the  
matrices of calcium activity, for each recorded unit a spike train was 
built using a bin size of 120 ms (similar to the bin size used in calcium 
imaging data, 129 ms). Each time bin contained the number of spikes 
produced by the recorded unit in that bin. Spike matrices were built by 
stacking the spike trains of all recorded units (469 units in the example 
session presented in Fig. 2f, 410 units in the example session shown in 
Extended Data Fig. 4g).

Calcium traces are temporally correlated due to the slow dynamics 
of the calcium indicator. In addition, the observed periodic sequences 
unfolded over a time scale of minutes. To take these two factors into 
account, we smoothed the spike train of each recorded unit with a 
Gaussian kernel of width equal to 5 s.

Both the original spike matrix and the smoothed spike matrix were 
then binarized using, for each spike train, a threshold equal to the 
mean plus either 1 or 1.5 times the s.d. (1 for smoothed matrices; 1.5 
for non-smoothed matrices; as a reference, the threshold for binari-
zation used in calcium data was the mean plus 1.5 times the s.d.; see 
‘Binary deconvolved calcium activity and matrix of calcium activity’).

In the calcium imaging experiment, it took approximately 5 min to 
initiate the recording after the mouse was positioned on the wheel 
(mainly due to the time that was needed to find the imaging planes). 
In the Neuropixels data there was no such delay between positioning 
the mice on the wheel and starting the data acquisition. In order to 
make both datasets as comparable as possible, and in order to remove 
any effects due to arousal, the first 5 min of the Neuropixels sessions 
were discarded.

Autocorrelation and spectral analysis. The autocorrelations were 
calculated on the spike trains (without smoothing), and the PSD was 
calculated on the autocorrelations. Methods and parameters used for 
calculating the autocorrelation and PSDs were the same as in calcium 
imaging data (‘Autocorrelations and spectral analysis of single-cell 
calcium activity’).

Calculation of oscillation score. As in the calcium imaging data, in 
order to quantify the amount of oscillatory activity in the Neuropixels 
sessions, an oscillation score was computed. Because in the Neuropixels 
recordings (unlike in the calcium imaging data) there were some long 
periods of non-sequence activity between bouts of periodic sequences, 
possibly due to small differences in training protocol, we computed 



the oscillation score not on the full spike matrix but on the matrix of 
concatenated sequences (built by identifying all individual sequences 
in the smoothed spike matrix and concatenating them as described for 
the calcium imaging data in ‘Identification of individual sequences’ and 
‘Sequence duration, sequence frequency and ISI’ above).

Sorting calculation and raster plot visualization. Neural popula-
tion activity was visualized by means of raster plots, for which units 
were sorted using the PCA method (‘Correlation and PCA sorting 
methods’). The sorting was calculated on the smoothed spike matrix 
(Fig. 2f and Extended Data Fig. 4g, top), and the obtained sorting was 
applied also to the non-smoothed spike matrices (Extended Data 
Fig. 4f,g, bottom).

While the sorting and visualization of neural population activity were 
performed as we did in calcium imaging data, there was one difference 
in how the two datasets were analysed. Because in the Neuropixels 
data the periodic sequences were more salient in some subsets of the 
sessions than others, for visualization purposes we calculated the 
sorting on a subset of the smoothed transition matrices. Those sub-
sets are given by [1,200, 1,700] s for the example session of mouse no. 
104368 (Fig. 2f) and [1,100, 1,400] s for the example session of mouse 
no. 102335 (Extended Data Fig. 4g). Note, however, that sequences 
were identified outside these session subsets too, indicating that the 
sorting unveils stereotyped sequences also outside the used subsets 
of data (see ‘Sortings are preserved when different portions of data 
are used for obtaining the sortings’).

Locking to the phase of the oscillation
To calculate the extent to which individual cells in the calcium imaging 
experiments were tuned to the oscillatory sequences, two quantities 
were used: the locking degree and the mutual information between 
the calcium event counts and the phase of the oscillation. For each 
oscillatory session, the phase of the oscillation φ t( )  was computed 
(see equation (1)) and individual sequences were identified (see ‘Iden-
tification of individual sequences’). Next, the time points that cor-
responded to all individual sequences in one session were 
concatenated, which generated a new signal with the phase of the 
oscillation for all consecutive sequences, and a new matrix of calcium 
activity in which the network engaged in the oscillatory sequences 
uninterruptedly.

The locking degree was computed for each cell as the mean resultant 
vector length over the phases of the oscillatory sequences at which 
the calcium events occurred (bin size = 129 ms, function circ_r from 
the Circular Statistics Toolbox for Matlab66). The locking degree has 
a lower bound of 0 and upper bound of 1. It is equal to 1 if all oscilla-
tion phases at which the calcium events occurred are the same (that 
is, perfect locking), and equal to zero if all phases at which the calcium 
events occurred are evenly distributed (total absence of locking). To 
estimate significance, for each cell a null distribution of locking degrees 
was built by temporally shuffling the calcium activity of that cell 1,000 
times while the phase of the oscillation remained unchanged, and by 
computing, for each shuffle realization, the locking degree (shuffling 
was performed as in ‘Sorting of temporally shuffled data’). The 99th 
percentile of the estimated null distribution was used as a threshold 
for significance.

In order to assess the robustness of the locking degree, the obtained 
results were compared with a second measure based on information 
theory67: the mutual information between the counts of calcium events 
(event counts) and the phase of the oscillation (bin size = 0.52 s). To 
estimate the reduction in uncertainty about the phase of the oscilla-
tion (P) given the event counts of the calcium activity (S), Shannon’s 
mutual information was computed as follows68:

∑S P p s
p s

p s
MI( , ) = Prob( , )log

Prob( , )
Prob( )Prob( )

,
p s,

2

where p sProb( , )  is the joint probability of observing a phase of the 
oscillation p and an event count s, sProb( )  is the marginal probability 
of event counts and pProb( )  is the marginal probability of the phase 
of the oscillation. All probability distributions were estimated from 
the data using discrete representations of the phase of the oscillation 
and the event counts. The event counts were partitioned into smax + 1 
bins to account for the absence of event counts as well as all possible 
event counts, where smax is the maximum number of event counts per 
cell in a 0.52 s bin, and the phase of the oscillation was discretized into 
10 bins of size 2π

10
.

The mutual information is a non-negative quantity that is equal  
to zero only when the two variables are independent—that is, when  
the joint probability is equal to the product of the marginals 

p s p sProb( , ) = Prob( )Prob( ). However, limited sampling can lead to 
an overestimation in the mutual information in the form of a bias69. In 
order to correct for this bias, the calcium activity was temporally shuf-
fled (as in ‘Sorting of temporally shuffled data’) and the mutual infor-
mation between the event counts of the shuffled calcium activity and 
the phase of the oscillation, which remained unchanged, was calcu-
lated. This procedure, which destroyed the pairing between event 
counts and phase of the oscillation, was repeated 1,000 times and the 
average mutual information across the 1,000 iterations was computed 
and used as an estimation of the bias in the mutual information calcu-
lation. In the right panel of Fig. 3a, we report both the mutual informa-
tion and the bias. In Extended Data Fig. 7a, the corrected mutual 
information was reported (MIc), where the bias (⟨MIsh⟩iterations) was sub-
tracted out from the Shannon’s mutual information (MI): 
MIc = MI − ⟨MIsh⟩iterations.

Note that the locking degree and the mutual information between 
the event counts and the phase of the oscillation yielded consistent 
results (see Fig. 3a and Extended Data Fig. 7a).

Tuning of single cells to the phase of the oscillation
The selectivity of each cell to the phase of the oscillation in the calcium 
imaging data was visualized through tuning curves and quantified 
through their preferred phase. As in the analysis of ‘Locking to the 
phase of the oscillation’, the phase of the oscillation φ t( ) was computed, 
individual sequences were identified, and the time points of the phase 
of the oscillation and the matrix of calcium activity that corresponded 
to all individual sequences in one session were concatenated.

Tuning curves. The range of phases [−π, π)  rad was partitioned into 
40 bins of size 2π

40
 rad. For each cell the tuning curve in the phase bin j, 

j = 0,…,39, was calculated as the total number of event counts that  
occurred at phases within the range  )j j−π + , − π + ( + 1)2π

40
2π
40

 divided 
by the total number of event counts during the concatenated oscil-
latory sequences.

Preferred phases. The preferred phase of each cell was calculated 
as the circular mean over the oscillation phases at which the calcium 
events occurred (function circ_mean from the Circular Statistics Tool-
box for Matlab66). In most of the analysis the preferred phase was cal-
culated, for each cell, after concatenating all sequences. However, in a 
subset of analyses (see ‘Anatomical distribution of preferred phases’), 
the preferred phase was also calculated for individual sequences, as the 
circular mean over the oscillation phases at which the calcium events 
occurred in each sequence.

Unless otherwise stated, the preferred phase refers to the calcula-
tion performed on concatenated sequences (and not on individual 
sequences).

Distribution of preferred phases. To determine the extent to which 
the preferred phases across locked cells were uniformly distributed in 
one recorded session, the distribution of the cells’ preferred phases, 
that we shall denote Q, was estimated by discretizing the preferred 
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phases into 10 bins of size 2π

10
 rad. The entropy of this distribution 

∑H Q x Q x= − ( )log ( ( ))Q x=1
10

2  was calculated and used to compute the 
entropy ratio Hratio which quantifies how much Q departs from a flat 
distribution:

H
H

H
= (5)Q

ratio
flat

where Hflat is the entropy of a flat distribution using 10 bins—that is, 
H = 3.32flat  bits. The closer Hratio is to 1 the flatter Q is, and therefore all 
preferred phases tend to be equally represented. The smaller Hratio is, 
the more uneven Q is and some preferred phases tend to be more rep-
resented than others.

To estimate significance, for each session the procedure for calculat-
ing Hratio was repeated for 1,000 iterations of a shuffling procedure 
where the preferred phase of the cells was calculated after the values 
of the phase of the oscillation were temporally shuffled. In Extended 
Data Fig. 7c, both panels, for each session the 1,000 shuffle realizations 
were averaged.

Participation index
The Participation Index (PI) quantifies the extent to which a cell’s 
calcium events were distributed across all sequences, or rather 
concentrated in a few sequences. For neurons that were active only 
in a few sequences the participation index was small (participation 
index ∼ 0), and for neurons that were reliably active during most 
of the sequences the participation index was high (participation 
index ∼ 1; Extended Data Fig. 7g shows three example neurons of the  
session in Fig. 2a).

The participation index was calculated for each cell separately as the 
fraction of sequences needed to account for 90% of the total number 
of calcium events. To compute the participation, individual sequences 
were identified (see ‘Identification of individual sequences’), and for 
each cell the number of calcium events per sequence was calculated 
and normalized by the total number of calcium events across all con-
catenated sequences, which yields the fraction of calcium events 
per sequence. This quantity was sorted in an ascending manner  
and its cumulative sum was calculated. The participation index is 
the minimum fraction of the total number of sequences for which 
the cumulative sum of the fraction of calcium events per sequence 
≥0.9 (results remain unchanged when the cumulative sum is required  
to be ≥0.95).

Relationship between tuning to the phase of the oscillation and 
single-cell oscillatory frequency
To determine whether the frequency of oscillation of single-cell 
calcium activity was correlated with the extent to which the cell 
was locked and participated in the oscillatory sequences, for each 
cell the ratio between its oscillatory frequency (see ‘Autocorrela-
tions and spectral analysis of single-cell calcium activity’) and the 
sequence frequency (see ‘Sequence duration, sequence frequency 
and ISI’) was calculated and denoted relative frequency. Next, for 
each session cells were divided into two groups: one group had cells 
with relative frequency ~1 (cells whose oscillatory frequencies were 
most similar to the sequence frequency), and the other group had 
cells with relative frequency ≠1 (cells whose oscillatory frequencies 
were most different from the sequence frequency). The size of each 
group was the same and was given by a percentage α of the total num-
ber of recorded cells in a session. For each group the locking degree 
(see ‘Locking to the phase of the oscillation’) and the participation 
index (see ‘Participation index’) were compared. For the quantifica-
tion across all 15 oscillatory sessions, the mean locking degree and 
participation index were calculated for each group separately and for 
each session separately, and all 15 sessions were pooled. α varied from  
5% to 50%.

Anatomical distribution of preferred phases
To determine whether the entorhinal oscillatory sequences resem-
bled travelling waves, during which neural population activity moves 
progressively across anatomical space20,21,70–74, we took three compli-
mentary approaches.
Correlation between differences in preferred phase and anatomical 
distance. Preferred phases calculated using data from the entire 
session (after concatenating individual sequences). For each of the 
15 oscillatory sessions (across 5 mice) the Pearson correlation between 
the anatomical distance between cells in the FOV and the difference in 
their preferred phases (see ‘Tuning of single cells to the phase of the 
oscillation’) was calculated. In order not to count the same data twice, 
each correlation value was calculated using N × (N − 1)/2 samples (each 
sample was a cell pair), where N was the total number of cells recorded 
in the session. In the presence of travelling waves, a significant correla-
tion between differences in preferred phase and anatomical distance 
between cells within the FOV is to be expected. To determine statistical 
significance the cells’ preferred phase were shuffled within the FOV 100 
times, and for each shuffled realization the correlation values were cal-
culated. Because we were interested in significant correlations, regard-
less of whether they were positive or negative, both in experimental and 
shuffled data we took the absolute value of the correlations. Next, the 
95th percentile of the shuffled distribution (100 shuffled realizations 
per session) was used as cutoff for significance and compared with the 
correlation value in experimental data.

In order to rule out that the small correlation values observed in 
experimental data could be masking a dependency such that for larger 
distances the differences in preferred phase increased in absolute value, 
the same calculations were repeated but now taking the absolute value 
of the difference in preferred phase. Statistical significance was deter-
mined as in the previous paragraph.
Preferred phases calculated using data from individual sequences. 
Travelling waves could still be present if they move in different direc-
tions from sequence to sequence. To test for the presence of travelling 
waves without assuming similar wave directions across successive 
sequences, the quantification of correlation between the difference 
in preferred phase as a function of pairwise anatomical distance was 
repeated for each sequence separately. To calculate the preferred phase 
of each cell in each sequence (see ‘Tuning of single cells to the phase of 
the oscillation’), the mean phase at which the calcium events occurred 
in that individual sequence was computed. In each sequence, only cells 
that had at least 5 calcium events were included in the analysis. This 
analysis was performed separately on 421 sequences across 15 oscilla-
tory sessions. Similarly to the analysis described above, when sequences 
were concatenated within a session, the calculations were repeated 
after taking the absolute value of differences in preferred phase.

Results are presented in Fig. 3f,g. In Fig. 3f, the correlation value was 
also non-significant when calculated using the absolute value of the dif-
ferences in preferred phase (correlation = 0.0028, cutoff for significance 
of the correlation = 0.0146). In Fig. 3g, in the experimental data the abso-
lute value of the correlations ranged from 6.4 × 10−6 to 0.147 (n = 421). 
Out of 421 sequences, 27 were classified as significant when compared 
to the 95th percentile of a shuffled distribution (cutoffs ranged from 
0.007 to 0.237, n = 421). The fraction 27/421 was slightly above a chance 
level of 0.05 (0.05 × 421 = 21 sequences), yet for those 27 sequences the 
correlation values were very low, ranging from 0.008 to 0.137.

Calculation of local gradients of preferred phase. Previous studies 
have investigated the presence of travelling waves by computing local 
anatomical gradients of the phase of the oscillation, when the phase 
is calculated through the Hilbert transform applied to the activity of 
each electrode (for example, ref. 75, Ecog data). In order to perform a 
similar analysis but applied to each sequence separately, two different 
approaches were taken.



Similarity of preferred phases in spatial bins of the FOV. First, the 
similarity in preferred phases of all cells within spatial bins of the FOV 
was used as a proxy for local gradients. The similarity in preferred 
phases was calculated as the mean vector length (MVL) of the distri-
bution of preferred phases within each bin of the FOV. The analysis was 
performed for individual sequences separately.

For each of the 15 oscillatory sessions (over 5 mice), the FOV was 
divided into spatial bins of 100 μm x 100 μm (6 × 6 bins in 10 sessions, 
10 × 10 bins in 5 sessions), or 200 μm x 200 μm (3 × 3 bins in 10 sessions, 
5 × 5 bins in 5 sessions) (note that for 10 of the 15 oscillatory sessions 
the FOV was 600 μm x 600 μm, mice no. 60355, no. 60584, no. 60585; 
while for 5 of the 15 oscillatory sessions the FOV was 1,000 μm × 1,000 
μm, mouse no. 59914; mouse no. 59911 did not show the oscillatory 
sequences). Next, the preferred phase of each cell per sequence was 
calculated (as we did in ‘Correlation between differences in preferred 
phase and anatomical distance’) and for each sequence and every spa-
tial bin of the FOV the MVL was computed (only spatial bins with 10 or 
more cells were considered). If the MVL was 0, then all preferred phases 
in that bin were different and homogeneously distributed between −π 
and π, whereas if the MVL was 1 then all preferred phases were the same. 
In the presence of a travelling wave, each bin should have a high MVL 
value compared to chance levels. Statistical significance was deter-
mined by repeating the same MVL calculation after shuffling the cells’ 
preferred phases within the FOV 200 times, and using, for each spatial 
bin, a cutoff for significant of 95th percentile of the shuffled distribu-
tion. A non-significant fraction of spatial bins had a MVL value above 
the cutoff for significance.
Differences in preferred phase among pairs of cells in small neigh-
bourhoods of the spatial domain. The analysis presented above is 
focused on the degree of similarity between preferred phases in spatial 
bins. In order to avoid small cell sample effects, and effects of adding 
a threshold number of cells for bins to be included when calculating 
similarity with the MVL measure above, we decided to also calculate 
the difference in preferred phases for all pairs of cells that were located 
within small neighbourhoods in the FOV, expecting that in the presence 
of travelling waves the differences in preferred phases of cell pairs within 
small neighbourhoods would be smaller than expected by chance. For 
each cell in the FOV, all other cells that were located within a circular 
neighbourhood of radius 50, 100 or 200 μm were identified and the 
differences in preferred phase between cell pairs within those areas 
were calculated. Next, for each sequence and each radius separately 
all phase differences were pooled, and the mean and the median of the 
obtained distributions were calculated. To determine significance, the 
preferred phases across all cells were shuffled 200 times and for each 
shuffled realization a distribution of differences in preferred phase was 
obtained and used to calculate the mean and median. Because in the 
presence of travelling waves smaller differences in preferred phases than 
in the shuffled data were expected, the mean and median calculated on  
experimental data were compared with the 5th percentile of the distri-
bution of means and medians obtained from shuffled data. This com-
parison was performed for each sequence and each radius separately.

Centre-of-mass calculation of the population activity. To determine 
whether the population calcium activity was anatomically localized, as 
expected in the presence of travelling waves, we calculated its centre 
of mass (COM). First, all individual sequences were identified and the 
neural data was averaged in time bins of 5 s. We chose bins of 5 s because 
the sequences are very slow, however, results remain unchanged if 
bins of 1 s or 2 s are used instead. For each time point (bin size = 5 s) 
and for each sequence separately the COM of the population activity 
was calculated as:

∑M
mCOM =

1
,

i

N

i i
=1

r

where N is the total number of recorded cells in the session, ri is the 
position of neuron i in the FOV, mi is the total number of calcium events 
of neuron i within the 5 s time bin, and ∑M m= i

N
i=1 . The COM was visual-

ized for one example sequence both in experimental data, and after 
randomly shuffling the position of the cells within the FOV (Extended 
Data Fig. 8d). To quantify the temporal trajectory of the COM across 
individual sequences, we calculated the cumulative distance travelled 
by the COM as the sum of the distances travelled by the COM between 
consecutive time points (bin size = 5 s). The cumulative distance trav-
elled calculated on experimental data was compared with the 5th and 
95th percentile of a distribution built by shuffling the positions of the 
cells in the FOV 500 times.

Procedure for merging steps
In order to average out the variability observed in single cells at the 
level of locking degree and participation index while preserving the 
temporal properties of the oscillatory sequences, an iterative process 
that defines new variables from combining the calcium activity of cells 
was implemented for each session separately (Extended Data Fig. 9a). 
This process is similar to a coarse-graining approach76.

First, the N recorded cells in one session were sorted according to 
the PCA method. In the first iteration of the procedure, named merging 
step one, the calcium activity (see ‘Binary deconvolved calcium activ-
ity and matrix of calcium activity’) of pairs of cells that were positioned 
next to each other in the PCA sorting were added up (merging step 1 in 
Extended Data Fig. 9a). This resulted in N

2
 new variables, which in merg-

ing step 2 were grouped together in pairs of adjacent variables by add-
ing up their activity, which yielded N

4
 new variables. Note that because 

in the PCA sorting cells whose activity is synchronous are positioned 
adjacent to each other, the new variables consist of groups of co-active 
cells.

In general, merging step j generates N

2 j
 variables by adding up the 

activity of pairs of N

2 j−1
 variables from merging step j − 1, j > 1, with each 

new variable defined as:

σ
σ σ

i
N

=
+

2
= 1, …,

2i
i i

j
2 −1 2∼

where σi
∼ is the ith new variable that results from adding σ i2 −1 and σ i2 , 

which were computed in the previous merging step, j − 1. In merging 
step 1, σ i2 −1 and σ i2  are the calcium activity of cells in the position i2 − 1 
and i2 , i N1 ≤ ≤ , in the sorting obtained with the PCA method.

This procedure was repeated 6 times until ~10 variables were obtained 
in each session (the exact number of variables depended on the number 
of recorded cells, N, in each session). If N was an odd number, the last 
cell in the sorting obtained with the PCA method was discarded and 
the procedure was applied to the first N − 1 cells in the sorting. In every 
merging step the participation index (see ‘Participation index’) of each 
new variable was calculated (see Extended Data Fig. 9b).

Division of cells into ensembles
After 5 merging steps (and for approximately 10 variables), the partici-
pation index reached a plateau (Extended Data Fig. 9b). This motivated 
the decision to split the recorded cells into 10 variables, which we later 
used to quantify the population dynamics (see ‘Analysis of population 
dynamics using ensembles of co-active cells’). From now on we will refer 
to those variables as ensembles, to highlight the fact that cells in each 
ensemble are co-active. The same number of ensembles was used in 
sessions that did not exhibit oscillatory sequences.

To distribute cells into 10 ensembles, cells were sorted accord-
ing  to the PCA method. If N

10
 is an integer, where N is the total  

number of cells in one session, then each ensemble contains N
10

  
cells and the set of cells that belong to ensemble i, 1 ≤ i ≤ 10, is 

{ }i i i( − 1) × + 1, ( − 1) × + 2, …, ×N N N
10 10 10

. If N
10

 is not an integer then  

ensembles 1 to 9 contain N
10





 cells and ensemble 10 contains N − 9 × N

10
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cells, where ⌊ ⌋x m m x= max{ ∈ / ≤ }N  and N is the set of natural numbers. 
In this case the set of cells that belongs to each ensemble is:
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, 1 ≤ ensemble ≤ 9

9 ×
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+ 1, 9 ×
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+ 2, …, , ensemble = 10

Note that each cell was assigned to only one ensemble.
After each cell was assigned to one of the ten ensembles, the activ-

ity of each ensemble as a function of time was calculated as the mean 
calcium activity across cells in that ensemble.

Finally, to calculate the oscillation frequency of ensemble activity, the 
PSD was calculated (Welch’s methods, 8.8 min Hamming window with 
50% overlap between consecutive windows, pwelch Matlab function). 
The oscillation frequency was estimated as the frequency at which the 
PSD peaked. For each session, the oscillation frequency of the activity 
of the ensembles was compared to the sequence frequency, which was 
computed as the total number of sequences in the session divided by 
the amount of time the network engaged in the oscillatory sequences. 
The latter was calculated as the length of the temporal window of con-
catenated sequences (see ‘Identification of individual sequences’).

Analysis of population dynamics using ensembles of co-active 
cells
We adopted an ensemble approach to quantify the population dynam-
ics (see ‘Procedure for merging steps’ and ‘Division of cells into 
ensembles’). With a total of 10 ensembles this approach averaged 
out the variability observed in single-cell locking degree and partici-
pation index while keeping the temporal progression of the oscilla-
tory sequences (Extended Data Fig. 9f). In sessions with oscillatory 
sequences, all individual sequences were identified (see ‘Identifica-
tion of individual sequences’) and the corresponding time bins were 
concatenated, which yielded a new matrix of calcium activity in which 
the oscillatory sequences were uninterrupted. Next, cells were divided 
into ensembles (see ‘Division of cells into ensembles’) and ensemble 
activity was downsampled using as bin size the oscillation bin size of 
the session (see ‘Oscillation bin size’). This procedure yielded a matrix, 
the ensemble matrix, with the activity of each ensemble corresponding 
to a single row (10 rows in total), and as many columns as time points 
sampled at the oscillation bin size. In non-oscillatory sessions, the full 
matrix of calcium activity was used and the temporal downsampling 
was conducted at the mean oscillation bin size computed across all 15 
oscillatory sessions; that is, bin size = 8.5 s (see ‘Oscillation bin size’ 
for a description of the bin size used in non-oscillatory sessions). For 
both types of sessions (with and without oscillations), the activity of 
the 10 ensembles was described through a vector expressing, at each 
time point, the ensemble number with the highest activity at that time 
point (see Extended Data Fig. 9e,f). This vector was used to perform the 
following analyses: transition probabilities, probability of sequential 
activation of ensembles, and sequence score.

Transition probabilities. The transition probability from ensemble i 
to ensemble j was quantified as the number of times the transition i j→  
was observed in the data of one session, normalized by the total number  
of transitions in one session. Transitions were identified from the  
vector that contained the ensemble number with maximum activity at 
each time point (transitions to the same ensemble between consecutive 
time points were disregarded). Transitions were allocated in a matrix 
of transition probabilities T of size 10 × 10, since 10 ensembles were 
used. In this matrix, the component i j( , ) expressed the transition prob-
ability from ensemble i to ensemble j.

To establish statistical significance of the transition probabilities, 
the data was shuffled 500 times. In each shuffle realization, each row 
of the matrix of calcium activity (with concatenated sequences in the 

case of oscillatory sessions) was temporally shuffled (as in ‘Sorting of 
temporally shuffled data’), and the procedure for calculating the ensem-
ble matrix and transition probabilities was applied to the shuffled data. 
For each transition, i j→  the 95th percentile of the shuffled distribution 
was used to define a cutoff.

Probability of sequential activation of ensembles. We calculated 
the probability of sequential ensemble activation according to the fol-
lowing procedure. From the vector expressing the ensemble number 
with the highest activity at each time point (sampled at the oscillation 
bin size), strictly increasing sequences of all possible lengths (from 2 
to 10 ensembles) were identified. The number of ensembles in each 
sequence was the number of ensembles that were active in consecutive 
time points (epochs of sustained activity were disregarded). While the 
sequences had to be strictly increasing, they did not have to be con-
tinuous. Sequences could skip ensembles, in which case the maximum 
number of ensembles in one sequence was less than 10. The probability 
of the sequential activation of k ensembles, k = 2,…,10, was next esti-
mated as the number of times a sequence of k ensembles was found, 
normalized by the total number of identified sequences. Note that all 
subsequences were also included in this estimation. For example, if the 
ensembles 1, 2 and 3 were active in consecutive time points, a sequence 
of three ensembles was identified, as well as three subsequences of two 
ensembles each: 1, 2, as well as 2, 3 and 1, 3.

In order to test for significance, the shuffled data from ‘Transition 
probabilities’ was used. The procedure to compute the probability 
of sequential activation of ensembles was applied to each of the 500 
shuffle realizations performed per session. Shuffled data was compared 
with recorded data.

Sequence score. The sequence score measures how sequential the 
ensemble activity is. It is calculated from the probability of sequential 
activation of ensembles as the probability of observing sequences of 
three or more ensembles. The sequence score was calculated for each 
session of the dataset separately. To determine if the obtained scores 
were significant, for each session the 500 shuffle realizations used in 
‘Probability of sequential activation of ensembles’ for assessing sig-
nificance of the probability of sequential activation of ensembles were 
used to calculate the sequence score on shuffled data. Those values 
were used to build a shuffled distribution, and the 99th percentile of 
this distribution was chosen as the threshold for significance.

Estimation of number of completed laps on the wheel, speed 
and acceleration
Features of the mouse’s behaviour were used to determine whether the 
MEC oscillatory sequences were modulated by running.

The wheel had a radius of 8.54 cm (see ‘Self-paced running behaviour 
under sensory-minimized conditions’) and a perimeter of 53.66 cm. 
Therefore mice had to run for ∼53.7 cm to complete one lap on the 
wheel. For each session, we estimated the number of completed laps 
on the wheel from the position on the wheel recorded as a function of 
time. The number of completed laps during one sequence (see ‘Iden-
tification of individual sequences’) was calculated as the total distance 
run during the sequence divided by 53.7 cm.

The speed of the mouse was numerically calculated as the first deriva-
tive of the position on the wheel as a function of time (the sampling 
frequency of the position was 40 Hz for mice 60355 (MEC), 60353, 
60354 and 60356 (PaS). The sampling frequency was 50 Hz for mice 
60584 and 60585 (MEC), 60961, 92227 and 92229 (VIS). For mice 59911, 
59914 (MEC) and 59912 (PaS), the wheel tracking was not synchronized 
to the ongoing image acquisition; see ‘Self-paced running behaviour 
under sensory-minimized conditions’. The obtained speed signal from 
the former two groups of mice was interpolated so that the speed values 
matched the downsampled imaging time points (sampling frequency 
= 7.73 Hz), and smoothed using a square kernel of 2 s width. A threshold 



was applied such that all speed values that were smaller than 2 cm s−1 
were set to zero and all speed values larger than 2 cm s−1 remained 
unchanged. We decided to threshold for immobility at a non-zero 
speed value (2 cm s−1) in order to avoid classifying as running behaviour 
frames that only had minor movements of the wheel (‘twitches’), which 
were detected when mice slightly moved on the wheel but did not fully 
engage in locomotion. The threshold that we used is consistent with 
the one used in other studies, as in ref. 16.

The speed signal obtained after applying the threshold was used to 
define immobility (running) bouts as the set of consecutive time points 
(bin size = 129 ms) for which the speed was equal to (larger than) zero  
(a similar approach was used in ref. 16). We found that the median of 
velocities was 0 cm s−1 when all velocity values across the 10 MEC oscilla-
tory sessions (over 3 mice) for which we had imaging data synchronized 
with behavioural data were pooled. This is because for some of the 
sessions the mice were immobile for most of the session.

When the threshold for immobility (2 cm s−1, see above) was dis-
carded (that is, set to 0 cm s−1), the median was 1.3 cm s−1—that is, still 
very low. In the absence of a threshold, our main result, which is that 
the oscillatory sequences traverse epochs of running and immobility, 
remained the same (median of probability of sequences during running 
= 0.85; median of probability of sequences during immobility = 0.65; 
two sample Wilcoxon signed-rank test on the probability of sequences 
for running versus immobility, n = 10 oscillatory sessions over the 3 
mice that had the tracking synchronized to imaging, P = 0.002, W = 55).

The acceleration was numerically calculated as the first derivative of 
the speed signal. Notice that in this case no interpolation was needed.

Because the available data did not have enough statistical power, it 
was not possible to compare the behaviour of the mice, for example 
in terms of its running speed and acceleration, between periods with 
and without ongoing oscillatory sequences.

Finally, mice that were imaged from the PaS or VIS performed the 
same minimalistic self-paced running task as the mice that were imaged 
from the MEC recordings. The range of speed values in PaS or VIS mice 
across sessions = 0–58.6 cm s−1 (PaS) or 0–60.3 cm s−1 (VIS); median 
number of completed laps on rotating wheel in PaS or VIS mice across 
sessions = 145 (PaS) or 104 (VIS); maximum number of completed laps 
on rotating wheel in PaS or VIS mice across sessions = 502 (PaS) or 1,743 
(VIS). These values are reported for MEC mice in the legend of Extended 
Data Fig. 2a.

Estimation of the probability of observing oscillatory sequences
To determine whether the MEC oscillatory sequences were observed 
during different behavioural states, the probability of observing the 
oscillatory sequences was calculated conditioned on whether the 
mouse was running or immobile. For each oscillatory session with 
behavioural tracking synchronized to the imaging data (10 sessions over 
3 mice, see ‘Self-paced running behaviour under sensory-minimized 
conditions’ and ‘Oscillation score’), all individual sequences were 
identified (see ‘Identification of individual sequences’). The subset 
of time bins that belonged to individual sequences were extracted and 
labelled as oscillation (bin size = 129 ms). The fraction of bins labelled as 
oscillation bins was 0.73 ± 0.07 (mean ± s.e.m., n = 10 sessions). Next, a 
second label was assigned to the time bins depending on whether they 
occurred during running or immobility bouts (bins labelled ‘running’ 
or ‘immobility’, respectively, see ‘Estimation of number of completed 
laps on the wheel, speed and acceleration’). The fraction of bins labelled 
as running = 0.43 ± 0.09, mean ± s.e.m., n = 10 sessions. After apply-
ing this procedure, each time bin had two labels, one indicating the 
running behaviour, and one indicating the presence (or absence) of 
oscillatory sequences. To estimate the probability of observing the 
oscillatory sequences conditioned on the mouse’s running behaviour, 
all bins labelled as running or immobility were identified and from each 
subset, the fraction of bins labelled as oscillation was calculated. These 
probabilities were computed for each session separately.

Sequences during immobility bouts of different lengths
The oscillatory sequences occurred both during running and immo-
bility bouts. To quantify the extent to which individual sequences 
progressed during different lengths of immobility bouts, the follow-
ing procedure was adopted. First, for each session, all immobility 
bouts were identified and assigned to bins of different lengths (see 
‘Estimation of number of completed laps on the wheel, speed and 
acceleration’; length bins = 0–3 s, 3–5 s, 5–10 s, 10–15 s, 15–20 s, >25 s). 
Second, all individual sequences were identified (see ‘Identification 
of individual sequences’). Third, for each session and each length bin, 
the fraction of immobility bouts that were fully occupied by uninter-
rupted sequences was calculated. To estimate significance, for each 
session the time bins that belonged to all individual sequences were 
temporally shuffled. The third step of the procedure described above 
was performed for 500 shuffle iterations per session. In Fig. 4c, the 
recorded data has 10 data points per length bin, and the shuffled data 
has 5,000 data points per length bin, since 500 shuffled realizations 
per session were pooled.

Analysis of speed and sequence onset
To determine whether the onset of the MEC oscillatory sequences was 
modulated by the mouse’s running speed, changes in speed before and 
after sequence onset were investigated. For each session all individual 
sequences were identified (see ‘Identification of individual sequences’) 
and for each sequence the mean speed over windows of 10 s before 
and after sequence onset was calculated. Because no differences in 
the mean speed were observed before and after onset (Extended Data 
Fig. 2f left panel), we next determined whether changes in speed were 
correlated with the onset of sequence epochs, which were defined as 
epochs with uninterrupted sequences—that is, epochs with recurring 
sequences. The same analysis described above was repeated but only 
for the subset of sequences that were 10 s or more apart—that is, for 
sequences that belonged to different epochs.

The obtained results remained unchanged when the analysis was 
performed for 2 s windows before and after sequence onset.

We complemented this analysis by investigating whether new epochs 
of sequences were more likely to be initiated during running bouts. 
In each of the 10 oscillatory sessions we first identified all running 
and immobility bouts that were 20 s long, or longer. We then counted 
the number of times that a sequence onset occurred in each behav-
ioural state. For this analysis we only considered sequences that were 
not preceded by other sequences (sequences that were 10 s apart or 
more). Results were upheld with running and immobility bouts of 40 s 
or longer, in which case sequence onset was 2.8 times more frequent 
during running.

Manifold visualization for example session in VIS and PaS
To visualize whether the topology of the manifold underlying the popu-
lation activity in example sessions recorded in VIS and PaS was also a 
ring, PCA was used and a similar procedure to the one described in 
‘Manifold visualization for MEC sessions’ was adopted.

For each example session, one corresponding to VIS and one cor-
responding to PaS (Fig. 5e,f), PCA was applied to the matrix of calcium 
activity, which first had each row convolved with a gaussian kernel of 
width equal to four times 8.5 s, which is the mean oscillation bin size 
computed across oscillatory sessions (see ‘Oscillation bin size’). Neural 
activity was projected onto the embedding generated by PC1 and PC2. 
Extended Data Fig. 11d,e shows the absence of a ring-shaped manifold 
in VIS and PaS example sessions.

Co-activity and synchronization in PaS and VIS sessions
Sessions recorded in PaS and VIS did not exhibit oscillatory sequences. 
To further characterize their population activity, synchronization and 
neural co-activity were calculated.
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Synchronization. Neural synchronization was calculated as the  
absolute value of the Pearson correlation between the calcium activ-
ity of pairs of cells (bin size = 129 ms). For each session, the Pearson 
correlation was calculated for all pairs of calcium activity (correla-
tions with the same calcium activity were not considered) and used 
to build a distribution of synchronization values. In Extended Data 
Fig. 11j, these distributions were averaged across sessions for each 
brain area separately.

Co-activity. For each time bin in a session (bin size = 129 ms) the 
co-activity was calculated as the number of cells that had simultane-
ous calcium events divided by the total number of recorded cells in the 
session. This number represented the fraction of cells that was active 
in individual time bins. Using all time bins of the session, a distribu-
tion of co-activity values was calculated. In Extended Data Fig. 11k, 
the distributions were averaged across sessions for each brain area 
separately.

Model
To determine whether long sequences act as a template for the forma-
tion of given activity patterns in a neural population, we built a simple 
perceptron model in which 500 units were connected to an output 
unit (Extended Data Fig. 12a). There was a total of 500 weights in the 
network, one per input unit. The total simulation time was 120 s, with 
3,588 simulation steps and a time step of 33.44 ms (original time step 
was 129 ms, to mimic the bin size used in calcium data, rescaled so that 
the length of one of the input sequences was 120 s, similar to the length 
of the sequences in Fig. 2b). The response of the output unit was given 
by R = WX, where W was the vector of weights, and X the matrix of input 
activity (each column is a time step, each row is the activity of one input 
unit). The weights were trained such that the output unit performed 
one of two target responses (see below). For each target, we trained 
the model using as input periodic sequences with 5 different lengths 
(one length per training), covering the range from very slow to very 
fast as compared to the characteristic time scale of the targets (100 s).

Inputs. The activity of input unit i was represented by a Gaussian: 

x t( ) = ei
−

t µi
σi

( − )2

2 2 , i t1 ≤ ≤ 500, 0 ≤ ≤ 240 s, σ σ= = 7.6 si , i∀ . Across input  
units, the means of the Gaussians µi were temporally displaced such 
that, all together: (1) units fired in a sequence, and (2) the distance 
between the means of two consecutive cells in the sequence was the 
same for all pairs of consecutive cells.

This sequence was the slowest of the 5 sequence lengths we con-
sidered. Using this sequence as template, in order to build slower 
and periodic sequences we compressed the template and repeated it 
periodically by a factor of 2, 3, 4 and 8, to generate faster and periodic 
sequences of lengths 120, 60, 40 and 30 s respectively.

Targets. Two target responses were considered: ramp and Ornstein–
Uhlenbeck process.
Ramp. The output neuron linearly increased its activity such that it was 
equal to 0 at time step = 0 (0 s), and to 1 at time step = 2,990 (100 s).
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Ornstein–Uhlenbeck process. Unlike the first target, which was 
deterministic, the second target was stochastic and generated by an 
Ornstein–Uhlenbeck process.
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where μOU = 1 denotes the long-term mean, ξ is a white noise of zero mean 
and variance σOU = 0.005, and τ = 25.6 s denotes the correlation time.

Training of weights. The weights between the inputs and the output 
unit were trained such that the output unit performed one of the two 
target responses explained above. At the end each of the 1,000 learning 
iterations, the weights were updated through the perceptron learning 
rule ∆w ηex=i i, where xi was the input from neuron i, i1 ≤ ≤ 500, and η = 1  
was the learning rate. In each learning iteration, the error e was calcu-
lated as the sum over time steps t of the difference between the target 
response and the output response—that is, e T t WX t= ∑ ( ) − ( ),t  where 
T(t) is the target response (either the ramp or the Ornstein–Uhlenbeck 
process) at time point t, and X(t) is the vector of input activity at time 
point t. The mean total error plotted in Extended Data Fig. 12d was 
calculated as the mean error over the last 100 learning iterations.

Data analysis and statistical analysis
Data analyses were performed with custom-written scripts in Python 
and Matlab (R2021b). Results were expressed as the mean ± s.e.m. unless 
indicated otherwise. Statistical analysis was performed using MATLAB 
and P values are indicated in the figure legends and figures (NS: P > 0.05; 
*P < 0.05, **P < 0.01, ***P < 0.001). For data that displayed no Gaussian 
distribution and that was unpaired, the Wilcoxon rank-sum test was 
used. For paired data or one-sampled data, the Wilcoxon signed-rank 
test was used. Two-tailed tests were used unless otherwise indicated. 
Correlations were determined using Pearson or Spearman correlations. 
Friedman tests were used for analyses between groups. The Bonferroni 
correction was used when multiple comparisons were performed.

Power analysis was not used to determine sample sizes. The study 
did not involve any experimental subject groups; therefore, random 
allocation and experimenter blinding did not apply and were not 
performed.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated during the current study will be available after 
publication, on EBRAINS (https://doi.org/10.25493/SKKX-4W3). Source 
data are provided with this paper.

Code availability
Code for reproducing the analyses in this article are available 
through this link: https://github.com/soledadgcogno/Ultraslow- 
oscillatory-sequences.git.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Histology showing imaging locations for each animal 
in the MEC group. a. Left: Representative image indicating GCaMP6m 
expression in the superficial layers of the MEC upon local viral injection at 
postnatal day P1 (sagittal section). Images were acquired with a 20× objective 
mounted on a confocal laser scanning microscope LSM 880 (Zeiss), operated by 
ZEN 3 software (blue edition). Red inset, top right: 60× magnification of the 
most dorsal portion of the MEC. Bottom right: Fraction of MEC neurons (Nissl +) 
expressing GCaMP6m; data are shown for all 5 animals with MEC imaging. Data 
are presented as mean values, error bar indicates the S.D. calculated across 
multiple (n = 8) adjacent slices. Each dot represents one slice. b. Location of the 
ventro-lateral edge of the prism in stereotactic coordinates, and area of the FoV 
occupied by cells expressing GCaMP6m. Data are shown for each MEC-imaged 
animal. Mouse #59911 had no oscillatory sequences. c. Prism location in mice 
that underwent calcium imaging in MEC in the left hemisphere. Top: Maximum 
of 50 μm thick sagittal brain sections. For each of the 5 mice in (b), 3 sections, 
shown from lateral (left) to medial (right), were acquired with an LSM 880, 20×. 
A DiI-coated piano wire pin was inserted at the ventrolateral corner of FoV to 
enable identification of the FoV on histology sections. Green is GCaMP6m 
signal, red is DiI signal. Scale bar is 400 μm. The white stippled line encapsulates 
the superficial layers of MEC. The blue dot adjacent to the leftmost image of the 
series marks the location of the ventro-lateral corner of the prism. Bottom: 
estimated location of the FoV for two-photon imaging, projected onto a flat 
map encompassing MEC (brown outline) and parasubiculum (PaS, orange 
outline). The blue dot marks the location of the pin used to demarcate the most 

lateral-ventral border of the prism, while the green square inset is the 
microscope’s FoV. Inset image shows the maximum intensity projections of the 
FoV. Anteroposterior (AP), Mediolateral (ML), and dorso–ventral (DV) axes are 
indicated in panels (a) and (c). d. Micrographs of Cresylviolet stained sagittal 
brain sections from all 2 mice implanted with four-shank Neuropixels 2.0 silicon 
probes in the left hemisphere. Sections are organised from the most laterally 
placed shank(s) (left) to the most medially placed shank(s) (right). Mouse ID, 
shank number, and scale bar (1000 μm) are indicated next to each section. The 
brain of one mouse (#104638) was damaged during extraction, and parts of the 
MEC and cortex are missing from the section. Coloured arrows indicate MEC 
borders (dorsal, ventral) and the identified or estimated probe tip in the 
section. Black arrows indicate estimated dorsoventral range of the probe’s 
active recording sites (as indicated by the insert). For each section, inserts show 
the number of units recorded at each depth of the probe shank (histogram bin 
size = 60 μm). Note that the anatomical location of probe shanks can only be 
approximately estimated, and indicated unit locations are subject to 
measurement error, e.g., due to the shank tips exiting the cortex, the brain 
shrinking during perfusion and error in estimating the position of the tip of the 
probe. Stippled lines indicate borders between brain regions (MEC, medial 
entorhinal cortex; LEC, lateral entorhinal cortex; PaS, parasubiculum, HF, 
hippocampal formation; PoR, postrhinal cortex; VISpl, posterolateral visual 
area; TR, postpiriform transition area; CoA, cortical amygdalar area; PA, 
posterior amygdalar nucleus). D = dorsal; V = ventral; A = anterior; P = posterior.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Relationship between the oscillatory sequences and 
behavior. a. Quantification of the animals’ behavior during head-fixation on 
the wheel. Duration of epochs of running (speed ≥ 2 cm/s, left) and immobility 
(speed <2 cm/s, right) for 10 oscillatory sessions over the 3 animals in which 
behavioral tracking was synchronized with imaging (1289 running bouts and 
1286 immobility bouts in total). Each count is an epoch, and one epoch is 
obtained by concatenating consecutive time bins with the same behaviour 
(running or immobility, bin size = 129 ms). For each of the 10 sessions the 
smallest speed value was always 0 cm/s. The largest speed value ranged from 
16.4 to 75.3 cm/s. The median calculated over the entire session ranged from 
0 cm/s (in 4 out of 10 sessions) to 18.8 cm/s. Across the 10 sessions, the median 
of speed values was 0 cm/s (indicating that some of the animals spent much of 
the session time being immobile, yet those animals exhibited oscillatory 
sequences too, e.g. animal #60355, Extended Data Fig. 5a; see also Fig. 4a and c).  
The median speed during running epochs was 7.8 cm/s. The acceleration 
values ranged from −86.3 to 108.9 cm/s2, with a median of 0 cm/s2 for all the 
data as well as the running epochs specifically. b. Left: Schematic of the change 
in phase of the oscillation during immobility epochs that were longer than 25 s 
and that occurred during the oscillatory sequences. Right: 44 of these epochs 
from the same 3 mice as in (a). As in the schematic on the left, each line 
represents the progression of the phase of the oscillation (from –π to π rad) as a 
function of time. The start of each immobility epoch is aligned at t = 0, and the 
epoch lasts for as long as the line continues. Different epochs have different 
lengths, covering a range from 25 s to 258 s. For visualization purposes only the 
first 120 s are displayed (3 of the epochs were truncated; these had durations of 
127.9 (first column, second row), 258.2 (third column, bottom row), 136.1 s 
(fourth column, second row)). Sudden transitions from π to –π rad reflect the 
periodic nature of the sequences. c. Number of completed laps on the wheel 
per sequence as a function of the sequence number after pooling sessions 
(range of completed laps on rotating wheel across 10 sessions = 10 to 1164 laps, 
median = 624 laps). Sessions are pooled for each animal separately (mouse 
#60584, 4 sessions; mouse #60585, 3 sessions; the third animal is shown in 
Fig. 4d). Each dot indicates one individual sequence. The dashed line indicates 
separation between sessions. A number of laps equal to 1 would indicate an 
approximate one-to-one mapping between the position on the wheel and the 
progression of one full sequence. d. To determine if sequences are associated 
with specific running speeds, we extracted all time bins participating in 

oscillatory sequences and calculated the distribution of observed speed values 
during those bins (blue bars; n = 167389 time bins concatenated across 314 
sequences pooled over 10 oscillatory sessions, over 3 animals, bin size = 129 ms).  
This distribution was almost identical to the distribution of speed values 
observed during the full length of the sessions, which also included epochs 
without the oscillatory sequences (blue solid line, with and without oscillatory 
sequences; n = 238505 time bins across 10 oscillatory sessions, over 3 animals, 
bin size = 129 ms). e. As in (d) but for the distribution of acceleration values. 
There is no difference in the range of acceleration values during parts of the 
session with oscillatory sequences. f. Left: To determine whether the 
oscillatory sequences are modulated by onset of running we calculated the 
mean running speed during time intervals of 10 s right before and right after 
the sequence onset (one sample Wilcoxon signed-rank test on the difference 
between speed before and after sequence onset, n = 310  equence onsets over 
10 sessions from 3 animals, p = 0.82, W = 25). Right: Same as left but only for 
sequences that were 10 s or more apart, i.e. for sequences belonging to 
different oscillatory epochs (one sample Wilcoxon signed-rank test on the 
difference between speed before and after sequence onset, n = 70 sequence 
onsets over 10 sessions from 3 animals, p = 0.12, W = 857). Note that there is no 
systematic change in speed after onset of sequences. Results remain 
unchanged if the analysis is repeated for 2 s windows before and after sequence 
onset (Analysis for all sequences: one sample Wilcoxon signed-rank test on the 
difference between speed before and after sequence onset, n = 310  equence 
onsets over 10 sessions from 3 animals, p = 0.82, W = 25; Analysis for all 
sequences that were 10 s or more apart, one sample Wilcoxon signed-rank test, 
n = 70 sequence onsets over 10 sessions from 3 animals, p = 1.0, W = 0). g–j. 
Examples of sections of sessions with increased speed after sequence onset 
(exceptions from the general pattern shown in (f)). Top of each panel: Raster 
plots, symbols as in Fig. 2a (bin size = 129 ms). Bottom of each panel: 
Instantaneous speed of the animal during the recording in the top panel. 
Length of the displayed section was 400, 1000, 400 and 500 s, respectively, for 
(g–j). Notice that while speed is higher after onset of the sequence in these 
examples, the increase of speed does not always occur right after sequence 
onset, but sometimes before (g,h), and sometimes tens of seconds after (i,j). 
Analyses were restricted to 10 oscillatory sessions in 3 animals, for which the 
behavioural tracking was synchronized to the imaging (Methods).



Article

Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Examples of ultraslow oscillations in single cell 
calcium activity. a. Autocorrelation of 15 example cells’ calcium activity  
(one per oscillatory session). b. PSD calculated on the autocorrelation of the 
example cell shown in (a). The dashed line indicates the frequency at which the 
PSD peaks. Note that the peak is at a frequency <0.1 Hz. c. As in (a) but for the 
signal obtained after the calcium activity was circularly shuffled (blue) or 
shuffled by destroying the inter calcium event intervals (red). Note that 
circularly shuffling the calcium activity preserves its periodicity. d. PSD 
calculated on the autocorrelations in (c). Blue indicates circularly shuffled 

data. Red indicates data that was shuffled by destroying the inter calcium event 
intervals. e. Mean z-scored autocorrelation calculated over all recorded cells in 
the session. Error bars indicate S.E.M. Black: Experimental data. Red: Shuffled 
data (obtained by destroying the inter calcium event intervals). f. Mean 
z-scored PSD calculated over all recorded cells in the session. For each cell the 
PSD was calculated on the autocorrelation of the cell’s calcium activity. Error 
bars indicate S.E.M. Color convention as in (e). Each row shows data from one 
oscillatory session (15 rows in total, each row corresponds to one oscillatory 
session). Animal number and session number are indicated at the top.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Oscillatory sequences shown by cell sorting based on 
correlation or dimensionality reduction. a. Left: Because neural activity 
progresses sequentially, the time lag that maximizes the correlation between 
the calcium activity of pairs of cells increases with their distance in the 
correlation sorting. Sorting is performed as in Fig. 2a. Time lag is expressed in 
seconds, distance is expressed as the number of cells between the two cells in 
the sorting. Notice that for large distances (e.g. > 300 cells), the time lag to peak 
correlation is either larger than 60 s or close to zero. This bimodality is due to 
the periodicity of the MEC sequences. The dashed line indicates a linear 
regression (n = 301 cell pairs, R = 0.172 , p = 2 × 10−14, two-sided t-test. The line 
was fitted to the intermediate samples to avoid the effect of the periodic 
boundary conditions). Right: The cross correlation between the calcium 
activity of pairs of cells is oscillatory and temporally shifted. Examples are 
shown for 3 cell pairs with different distances in the sorting based on 
correlation values. Orange: cells are 5 cells apart; purple: cells are 199 cells 
apart; green: cells are 401 cells apart. The dotted line indicates the time lag at 
which the cross correlation peaks within the first peak. Note that the larger the 
distance between the cells in the sorting, the larger the time lag that maximizes 
the cross correlation. b. Schematic representation of the “PCA method”. 
Principal component analysis (PCA) was applied to the binarized matrix of 
deconvolved calcium activity (“matrix of calcium activity”) of individual 
sessions by considering every neuron as a variable, and every time point as an 
observation. The first two principal components (PC1, PC2) were identified. In 
the plane defined by PC1 and PC2 (left), the loadings of each neuron defines a 
vector, which has an associated angle θ ∈[ − π, π) rad with respect to the axis of 
PC1 (in the schematic, neuron Ni (orange) is characterized by an angle θi). 
Neurons were sorted according to their angles θ in a descending order (right). 
Cyan: neuron sorting before application of the PCA method. Orange: neuron 
sorting after the application of the PCA method. c. Projection of neural activity 
during the oscillatory sequences onto a low-dimensional embedding 
generated by the first two principal components obtained by applying PCA to 
the matrix of calcium activity of each session. Each plot shows one session; all 
15 oscillatory sessions from the calcium imaging data set are presented. Time is 
color-coded and shown in minutes, and the temporal range corresponds to all 
concatenated epochs with oscillatory sequences in the session. Neural 
trajectories are often circular, with population activity propagating along a 
ring-shaped manifold. The ring-shaped manifold became even more salient 
when we applied a non-linear dimensionality reduction method (Laplacian 
Eigenmaps, LEM) instead of PCA to the data (Fig. 2c, right), suggesting that at 
least some of the data might lie on a curved surface. d. Oscillatory sequences 

are not revealed with a random sorting of the cells (first row) or when the PCA 
sorting method is applied to circularly shuffled data (second row). Oscillatory 
sequences similar to those of Fig. 2a,b (with correlation sorting or PCA 
method) are recovered when neurons are sorted according to non-linear 
dimensionality reduction techniques (UMAP, Isomap, LEM, t-SNE, third to sixth 
row). Each row of each raster plot is a neuron, whose calcium activity is plotted 
as a function of time (as in Fig. 2a). Every black dot represents a time bin where a 
neuron was active (bin size = 129 ms). e. Raster plot of calcium activity of the 
session presented in Fig. 2a. Neurons are sorted according to the PCA method. 
For calculating the sorting, only the first (top), second (middle) and third 
(bottom) third of the data was used. The portion of the data used for calculating 
the sorting is indicated in red. Otherwise, conventions are as in Fig. 2a. This 
visualization was extended to a quantification for all sessions. For each session 
we calculated the sortings using (i) all data, (ii) the first half of the data, (iii) the 
second half of the data. Next we calculated the correlation between the 
distances in the different sortings. If sortings obtained with different chunks of 
data preserve the ordering of the neurons, we would expect high correlation 
values. We compared the obtained correlation values with the 95th percentile of 
a shuffled distribution obtained by shuffling the position of the cells in the 
sortings. When comparing sorting (i) vs. sorting (ii), (i) vs. (iii), and (ii) vs. (iii), all 
oscillatory sessions (15 of 15) were above the cutoff of significance 
(see Methods). The high correlation values obtained in these distance 
estimates provide support to the fact that using different chunks of data for 
sorting the cells unveils the same dynamics. f. Neuropixels recording showing 
ultraslow sequences without prior smoothing of the data. Same data as in 
Fig. 2f. While in Fig. 2f spike trains were first convolved with a Gaussian kernel of 
width equal to 5 s and next binarized according to the mean plus one standard 
deviation (Methods), here the spike trains are not convolved with a Gaussian 
kernel. The bin size is 120 ms. The threshold for binarization of the spike trains 
is equal to the mean + 1.5 standard deviations. Sorting and conventions as in 
Fig. 2f. Example session from animal #104638. Sequences are still visible. This 
session had an oscillation score of 1.0. In this session we identified 12 
sequences of durations spanning 18–43 s. g. Oscillatory sequences from a 
Neuropixels recording in a different mouse than in (f) (and Fig. 2f). Top: Similar 
to Fig. 2f, but from mouse #102335 (n = 410 units). Bottom: Similar to (f), but for 
the same session as presented in the top panel, without prior smoothing of the 
data. This session had an oscillation score of 0.91 (see Methods). See 
comparable example sessions for calcium data in Extended Data Fig. 5a. In this 
session 9 sequences were identified, with durations ranging from 14 to 69 s.
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Extended Data Fig. 5 | Sorted raster plots for the complete MEC calcium 
imaging dataset. a. PCA-sorted raster plots (as in Fig. 2b) for all analysed 
sessions across the 5 animals in which MEC population activity was recorded, 
sorted by animals and day of recording. Session numbering starts the first day 
of habituation on the wheel, with either 5 or 15 habituation sessions. One 
session was recorded per day, and recordings were conducted on consecutive 
days. Note that sessions had lengths of approximately 1800 s or 3600 s. 
Oscillation score and sequence score were calculated for each session 
separately and are indicated at the top right corner of every plot. Scores 
colored in green correspond to sessions with oscillatory sequences (see panel 
d), scores colored in red to sessions without oscillatory sequences. b. Left: 
Distance d between two neurons in the PCA sorting is calculated as the 
difference between the angles of the vectors defined by the loadings of each 
neuron on PC1 and PC2 with respect to PC1. The schematic shows the distance 
between two neurons, one in orange and the other in green. The length of the 
vectors is disregarded in this quantification. Right: Joint distribution of the 
time lag τ that maximizes the cross-correlation between the calcium activity of 
any given pair of neurons and their distance d in the PCA sorting. Color code: 
normalized frequency, each count is a cell pair. The increasing relationship 
between τ and d indicates sequential organization of neural activity. c. Example 

sessions with (top) and without (bottom) oscillatory sequences. These 
sessions were recorded in the same area of the MEC in the same animal, but on 
different days (Mouse #60355 in panel a). Left: Raster plots of the matrices of 
calcium activity. Right: Joint distributions of the time lag τ that maximizes the 
correlation between the calcium activity of any given pair of neurons and their 
distance d in the PCA sorting (as in panel b). Color code: normalized frequency, 
each count is a cell pair. Notice the lack of linear pattern in the session without 
oscillatory sequences. d. Left: Distribution of oscillation scores for calcium-
imaging sessions recorded in MEC (27 sessions in total over 5 animals). Each 
count is a session. The oscillation score quantifies the extent to which single 
cell calcium activity is periodic, and ranges from 0 (no oscillations) to 1 
(oscillations). Dashed line: Threshold used for classifying sessions as 
oscillatory (oscillation score ≥ 0.72) or non-oscillatory sessions (oscillation 
score <0.72). The threshold was chosen based on the bimodal nature of the 
distribution (no values between 0.27 and 0.72). 12/27 sessions exhibited scores 
between 0 and 0.27 (no oscillatory sequences), and 15/27 sessions exhibited 
scores between 0.72 and 1 (‘oscillatory sessions’). Right: List of sessions sorted 
by animal and number of sessions the animals experienced on the wheel. 
Session numbering as in (a). Red, sessions classified as not oscillatory; green, 
session classified as oscillatory.
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Extended Data Fig. 6 | Identification of individual sequences and 
characterization of the oscillatory sequences. a. Top: Raster plot of the PCA-
sorted matrix of calcium activity of the example session in Fig. 2a. Bottom: Phase 
of the oscillation calculated on the session presented in the top panel is shown 
in black, and phase of individual sequences is colored in cyan (bin size = 129 ms). 
During one sequence the phase of the oscillation traversed smoothly [−π, π) 
rad. We identified individual sequences by extracting the subset of adjacent 
time bins where the phase of the oscillation increased smoothly within the 
range [− π, π) rad. First the phase of the oscillation was calculated across the 
entire session, second discontinuities in the succession of such phases were 
identified and used to extract putative sequences and third, putative 
sequences were classified as sequences if the phase of the oscillation 
progressed smoothly and in an ascending manner, allowing for the exception 
of small fluctuations (lower than 10% of 2π, e.g. as in the sequence at 500 s). 
Points of sustained activity were ignored. Fractions of sequences in which the 
phase of the oscillation traversed 50% or more of the range [−π, π) rad were  
also analysed (for example at the beginning of this session). b. Total number  
of individual sequences per session, across 15 oscillatory sessions. Animal 
number is color-coded. Note that 4 of 5 MEC calcium imaging animals had 
identifiable oscillatory sequences. c. Box plot showing mean event rate as a 
function of sequence segment for all 15 oscillatory sessions. Each sequence was 
divided into 10 segments of equal length, and for each sequence segment the 
mean event rate was calculated as the total number of calcium events across 
cells divided by the length of the segment and the number of recorded cells. 
Red lines indicate median across sessions, the bottom and top lines in blue 
(bounds of box) indicate lower and upper quartiles, respectively. The length of 
the whiskers indicates 1.5 times the interquartile range. Red crosses show 
outliers that lie more than 1.5 times outside the interquartile range. The mean 
event rate remained approximately constant across the length of the sequence. 
While a non-parametric analysis revealed an overall difference (n = 15 
oscillatory sessions per segment, p = 0.0052, χ = 23.52 , Friedman test), the rate 
change from the segment with minimum to maximum event rate was no more 

than 18% and there were no significant differences in the event rate between 
pairs of segments (Wilcoxon rank-sum test with Bonferroni correction, p > 0.05 
for all pairs). *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. p > 0.05. d. Box plot of 
sequence duration, for the 15 oscillatory sessions. Note the relatively fixed 
duration of sequences in individual sessions. Box plot symbols as in (c). e. 
Sequence durations shown separately for each animal with oscillatory 
sequences (421 sequences in total over 5 animals, only 4 presented sequences). 
For each animal all oscillatory sessions were pooled. Sequence duration was 
heterogenous across sessions and animals. f. Left: Box plot of the standard 
deviation of sequence duration within a session, in experimental and shuffled 
data. The standard deviation of sequence duration is smaller in the 
experimental data (n = 15 oscillatory sessions, 7500 shuffle realizations where 
sequences were randomly reassigned to the 15 sessions, preserving the original 
number of sequences per session, p = 1.8 × 10−7, Z = 5.08, one-tailed Wilcoxon 
rank-sum test). Right: Box plot of the ratio between the shortest sequence 
duration and the longest sequence duration for all pairs of sequences within 
and between sessions. This fraction is larger for sequence pairs in the within-
session group (n = 15 oscillatory sessions, the mean fraction per session and 
group was calculated separately, p = 1.7 × 10−6, Z = 4.64, one-tailed Wilcoxon 
rank-sum test). Notice that for each sequence pair, the larger this ratio, the 
more similar the length of the sequences are. Symbols as in (c). g. Sequence 
duration is not correlated with the number of recorded cells in the session  
(n = 421 sequences across 15 oscillatory sessions, ρ = 0.02, p = 0.64, Spearman 
correlation, two-sided t-test). Each dot is a sequence. Animal number is color-
coded as in (b). h. Fraction of the session in which the MEC population engaged 
in the oscillatory sequences. Session length was 30 min for mice 59914 and 
60355, and 60 min for mice 60584 and 60585. The fraction of session time with 
oscillatory sequences varied within and across animals. i. Duration of the 
longest epoch with uninterrupted oscillatory sequences. Only epochs that met 
the strict criterion of no separation between sequences were considered. 
Sequences could progress uninterruptedly for minutes in each of the animals 
and span up to 23 consecutive sequences.
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Extended Data Fig. 7 | Characterization of locking degree and participation 
index. a. Consistency between two measures of phase locking for individual 
neurons. The locking degree was calculated for each cell as the length of the 
mean vector over the distribution of oscillation phases ([−π,π) rad) at which the 
calcium events occurred (bin size = 129 ms). The locking degree was consistent 
with the mutual information between the calcium event counts and the phase 
of the oscillation (bin size = 0.52 s). Scatter plots show the relation between the 
two measures, with each dot representing one neuron. Left: Data from the 
example session in Fig. 2a (n = 484 cells). Right: All neurons from all 15 
oscillatory sessions are pooled (n = 6231 cells over 5 animals). Red dots indicate 
neurons that did not meet criteria for locking. The consistency between the 
two measures strengthens the conclusion that the vast majority of the neurons 
in MEC are locked to the oscillatory sequences. b. Distribution of preferred 
phases (the mean phase at which the calcium events occurred) in the 
population of locked neurons for all 15 oscillatory sessions. Black line indicates 
the preferred phases; red intervals indicate one standard deviation (calculated 
over the oscillation phases at which the calcium events of an individual cell 
occurred). Neurons are sorted according to their preferred phase in an 
ascending manner. Across the 15 oscillatory sessions, the smallest preferred 
phases ranged from −3.14 to −3.11 rad, and the largest preferred phase ranged 
from 3.08 to 3.14 rad, suggesting that the entire range of phases was covered.  
c. Phase preferences are distributed evenly across the MEC cell population. Left: 
The nearly-flat nature of the phase distribution is illustrated by comparing the 
entropy of the distribution of preferred phases in recorded (y axis) and 
shuffled data (x axis). Hratio is the entropy of the distribution of preferred phases 
(calculated as in (b)) estimated from the data and divided by the entropy of a 
flat distribution (Hratio = 1 if the distribution of preferred phases is perfectly flat, 
Hratio = 0 if all neurons have the same preferred phase). Each point in the 
scatterplot indicates one session (15 sessions). Horizontal error bars indicate 
one S.D. across shuffled realizations, and are centered around the mean across 
shuffled realizations. The black dashed line indicates identical values for 
recorded and shuffled data. Animal number if color-coded. Notice the 
discontinuity in the y axis between 0 and 0.85. Hratio is substantially larger for 
recorded data than for shuffled data. Right: Box plot of Hratio for recorded and 
shuffled data. For each session the 1000 shuffled realizations were averaged  
(n = 15 oscillatory sessions, p = 6 × 10−6, Z = 4.52, two-sided Wilcoxon rank-sum 
test). Red lines indicate median across sessions, the bottom and top lines in 
blue (bounds of box) indicate lower and upper quartiles, respectively. The 
length of the whiskers indicates 1.5 times the interquartile range. Red crosses 
show outliers that lie more than 1.5 times outside the interquartile range. d. 
Left: Box plot comparing locking degree for cells with an oscillatory frequency 
that was similar (relative frequency ~ 1) or different (relative frequency ≠ 1) from 
the sequence frequency in the example session in Fig. 2a (n = 48 cells in each 
group from a total of 484 cells in the recorded session, p = 3.4 × 10−11, Z = 6.63, 
two-sided Wilcoxon rank-sum test). Right: As left panel but for the locking 
degree across all 15 oscillatory sessions, including the example in the left panel 

(n = 15 sessions over 5 animals, p = 2.8 × 10−5, Z = 4.19, two-sided Wilcoxon rank-
sum test). Ten per cent of the total number of cells was used to define each of 
the groups with similar (relative frequency ~ 1) and different (relative frequency 
≠ 1) oscillatory frequency as compared to the sequence frequency. Relative 
frequency was calculated for each cell as the oscillatory frequency of the cell’s 
calcium activity divided by the sequence frequency in the session. Box plot 
symbols as in (c). Note that cells with relative frequency similar to 1 are more 
locked to the phase of the oscillation. For all percentages considered to define 
similar and different groups (5, 10, 20, 30, 40, and 50%) the p-values were 
significant. e. Histogram showing the distribution of single-cell oscillatory 
frequency divided by the sequence frequency of the session (n = 6231 cells 
pooled across 15 oscillatory sessions). A value of 1.0 indicates that single-cell 
and sequence frequency coincide. The left and right dashed lines indicate 25th 
(0.52) and 75th (1.08) percentiles respectively. Note that for approximately half 
of the data the oscillatory frequency is very similar at single-cell and population 
level. f. The oscillatory sequences remain visible after excluding increasing 
fractions of neurons and keeping only those with the lowest locking degree. 
Each row shows a PCA-sorted raster plot (left, rasterplot conventions as in 
Fig. 2b) and the corresponding joint distributions of the time lag τ that 
maximizes the correlation between the calcium activity of neuron pairs and 
their distance d in the PCA sorting (right, symbols as in Extended Data Fig. 5b). 
The fraction of included neurons is indicated on top of the raster plot. For 
building the raster plots, neurons were sorted according to their locking 
degree value and neurons with the highest locking degrees were removed. g. 
Examples of different participation degrees in 3 example neurons from the 
session in Fig. 2a. Top: PCA sorted raster plot of the calcium matrix shown in 
Fig. 2a. Calcium events from the neuron with high participation index (PI, 0.72) 
are highlighted in light blue, from the neuron with intermediate PI (0.56) in 
purple, and from the neuron with low PI (0.36) in orange. Bottom three panels: 
Z-scored fluorescence calcium signals as a function of time from the above 
neurons with high (top), intermediate (middle), and low (bottom) PIs. Colored 
arrows represent the time points at which the oscillatory sequences are at the 
neuron’s preferred phase. Notice how the neuron with high PI tends to exhibit a 
peak in the calcium signal for most of the sequences. Neurons with 
intermediate and low PIs demonstrate the same but to a lesser extent, with the 
calcium signal not peaking in each sequence. h. Similar to (d), but for the 
participation index. Box plot symbols as in (c). Left: Data from the example 
session shown in Fig. 2a (n = 48 cells in each group, p = 0.51, Z = 0.66, two-sided 
Wilcoxon rank-sum test). Right: As left panel but for data pooled across 15 
oscillatory sessions. The mean participation index was calculated for each 
group (“relative frequency ~ 1” and “relative frequency ≠ 1”) and each session 
separately and the data was then pooled across sessions (n = 15 sessions, p = 0.56, 
Z = 0.58, two-sided Wilcoxon rank-sum test). For all percentages considered to 
define the similar and different groups (5, 10, 20, 30, 40, and 50%) the p-values 
were non-significant. *** p < 0.001, n.s. p > 0.05.
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Extended Data Fig. 8 | The oscillatory sequences are not topographically 
organized. a. 2D histograms of differences in preferred phase between pairs of 
neurons and their anatomical distance in the FoV for all 15 oscillatory sessions 
(5 animals, of which 4 had oscillatory sequences). Preferred phases were 
calculated as the mean oscillation phase at which the calcium events occurred 
(after pooling all sequences in a session and not on each sequence separately; 
see Fig. 3f, g for one individual sequence). Each histogram was built using 
N*(N-1)/2 samples, where N is the total number of recorded cells in the session. 
One count is a cell pair, the color bar indicates normalized frequency. The 
absolute Pearson correlation values were calculated for each session, and 
ranged from 8.5 x 10−5 to 0.015. Only session 6 from animal #60585 (first row, 
fourth column) had a correlation value above the 95th percentile of a shuffled 
distribution built by shuffling the preferred phases in the FoV (1/15, probability 
= 0.37, binomial probability distribution; not statistically significant at a 
chance level of 5%). For the participation index (not shown) the correlation 
values were also very small and ranged from 9.3 x 10−4 to 0.040. Out of 15 
oscillatory sessions, 2 sessions (sessions 6 and 8 from animal #60584, 
correlation = 0.033 and 0.040 respectively) were classified as significant (2/15 
sessions, probability = 0.13, binomial distribution, not statistically significant 
at a chance level of 5%). b. Analysis of similarity of preferred phases within 
spatial bins for one single example sequence (number 19) of the session 
presented in Fig. 2a. Similarity was calculated as the mean vector length (MVL) 
of the distribution of preferred phases in the spatial bin. In the presence of 
travelling waves, large MVL values in every bin are expected. Top: The FoV is 
binned into 6×6 bins, each of size 100 um x 100 um. The heat map shows the 
number of cells located within each spatial bin. Counts are color coded. 
Bottom: Each panel indicates a spatial bin in the FoV, and shows the shuffled 
distribution of MVL values obtained after shuffling the preferred phases in the 
FoV (histogram), the 95th percentile of the shuffled distribution (dotted blue 
line), and the MVL calculated on experimental data (dotted red line). To have 
good statistics only spatial bins that had more than 10 neurons were included in 
the quantifications. The plots that are missing are for bins with 10 or fewer cells, 
as indicated in the heat map. When using 100 μm x 100 μm bins, only 17 bins had 
more than 10 cells. From the 17 bins, one was classified as having similar phases 
(1/17, probability = 0.37, binomial distribution, not statistically significant at a 
chance level of 5%); when using 200 μm x 200 μm, only one bin out of eight with 
more than 10 cells was classified as having cells with similar phases (1/8, 
probability = 0.28, binomial distribution, not statistically significant at a 
chance level of 5%). When all sequences across all calcium imaging sessions are 
considered (n = 421, 15 oscillatory sessions over 5 animals), the MVL values 
calculated on experimental data ranged from 0.0082 to 0.98 (the 95th 
percentile MVL value was 0.3399, i.e. small), and were larger than the cutoff for 
significance in 121 out of 2448 spatial bins (121/2448, smaller than expected at a 
chance level of 0.05: 122/2448). This analysis was focused on the degree of 
similarity between preferred phases in spatial bins. In order to avoid small cell 
sample effects, we performed a second analysis based on the difference in 
preferred phases for all pairs of cells that were located within small 

neighborhoods in the FoV (Methods). We expected that in the presence of 
travelling waves the mean and median of the distributions of differences in 
preferred phases of cell pairs within small neighborhoods would be smaller 
than expected by chance. For neighborhoods of 50 μm, only 16 out of 421 
sequences had a mean below the cutoff for significance (16/421, smaller than 
expected at a chance level of 0.05: 21/421), and 16 out of 421 sequences a median 
below the cutoff for significance (16/421, smaller than expected at a chance 
level of 0.05: 21/421). For neighborhoods of 100 μm, 16 and 19 sequences (out of 
421) were below the cutoff for the mean and median, respectively (16/421 and 
19/451, both below a chance level of 0.05: 21/421). For neighborhoods of 200 
μm, 25 sequences were slightly above the cutoff for the mean and 18 were below 
the cutoff for the median (chance level of 0.05: 21/421). c. Similar to (b), but with 
spatial bins of 200 μm x 200 μm. For all sequences, the MVL values calculated 
on experimental data ranged from 0.0037 to 0.975 (the median of MVL values 
was 0.3105, i.e. small), and were larger than the cutoff for significance in 115 
spatial bins out of 2392 (115/2392, smaller than expected at a chance level of 
0.05: 120/2392). The lack of similarity in preferred phases within spatial bins is 
inconsistent with a coherent oscillation in that spatial bin, and therefore 
inconsistent with the presence of travelling waves. d. Top: Rasterplots showing 
one example sequence from the session in Fig. 2a (sequence #19). Y axis: 
Neuron #. X axis: Time (s). Each panel shows the same sequence, and a total of 
150 s (the length of the illustrated sequence). Neurons that were active in one 
particular time bin are indicated in red. The visualized time bin is indicated at 
the top of each panel (bin size = 1 s). Middle: Anatomical distribution of the 
population activity in each of the time bins in the top panel (bin size is now 5 s). 
The FoV (600 μm x 600 μm) was divided into 50×50 square spatial bins. The 
total number of calcium events across cells in one spatial bin is color coded 
(yellow indicates high activity, purple no activity). The big red dots indicate the 
position of the center-of-mass (COM) of the population activity in that time bin. 
Bottom: Similar to the middle panel, but for one shuffle realization in which the 
position of the cells was randomly shuffled within the FoV. e. Quantification of 
the flow of the COM for the example sequence shown in (d). Cumulative 
distance travelled, quantified as the sum of the distances travelled by the COM 
between consecutive time points (bin size = 5 s), in experimental data (dotted 
red line), in shuffled data (blue histogram, built by shuffling the positions of 
the cells in the FoV 500 times), and the 5th and 95th percentile of the shuffled 
distribution (dotted blue and green lines, respectively). The data shows no 
significant difference from cumulative distances expected by chance. f. 
Quantification of the flow of the COM for all sequences. Cumulative 
normalized frequency of the cumulative distance travelled in experimental 
data (n = 421 sequences, orange) and the median of the shuffled distributions 
(n = 421 sequences, blue). Out of 421 sequences, 21 were below the cutoff for 
significance (21/421, at the chance level of 0.05: 21/421, bin size = 5 s). The 
results are similar when changing the temporal bin size used for the 
quantifications (23/421 for bin size = 1 s, 23/421 for bin size = 2 s, chance level of 
0.05: 21/421).
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Extended Data Fig. 9 | Analysis of ensemble activation during the 
oscillatory sequences. a. Schematic of calcium activity merging steps (data 
are not included in this panel). We began by sorting the neurons according to 
the PCA method. Next, in successive iterations, or merging steps, we added up 
the calcium activity of pairs of consecutive neurons (merging step = 1) or 
consecutive ensembles (merging step > 1). b. Participation index (PI) as a 
function of merging step (mean ± S.D.). Black trace, example session in Fig. 2a; 
red trace, all 15 oscillatory sessions. The more neurons per ensemble, the 
higher the participation index of the ensemble. Note that the participation 
index plateaus after 5 merging steps, which corresponds to approximately 10 
ensembles in most of the sessions (two-sided Wilcoxon rank-sum test to 
compare the participation indexes in merging steps 5 and 6; Black trace: n = 30 
PIs in merging step 5, n = 15 PIs in merging step 6, p = 0.23, Z = 1.20; Red trace:  
n = 15 PIs in merging step 5 and 6, PIs of each merging step were averaged for each 
session separately, p = 0.14, Z = 1.49). c. Schematic of the process for splitting 
neurons into ensembles of co-active cells. Neurons sorted according to the 
PCA method are allocated to 10 equally sized ensembles (color-coded). Note 
that the participation index plateaued after 5 merging iterations, consisting of 
approximately 10 ensembles depending on the session (panel b). d. To quantify 
the temporal progression of the population activity at the time scale at which 
the oscillatory sequences evolved, we calculated, for each session, an 
oscillation bin size. This bin size is proportional to the inverse of the peak 
frequency of the PSD calculated on the phase of the oscillation, and hence 
captures the time scale at which the sequences progress. The oscillation bin 
size is shown for each of the 15 oscillatory sessions (4 out of 5 animals, those 
that had oscillatory sequences). e. Schematic of the method used for 
quantifying temporal dynamics of ensemble activity. For each session and each 
ensemble we calculated the mean ensemble activity at each time bin 
(oscillation bin size). Only the ensemble with the highest activity within each 
time bin (red rectangle) was considered. The number of transitions between 
ensembles in adjacent time bins divided by the total number of transitions was 
used to calculate the transition matrices in (g). f. The ensemble with the highest 
activity in each time bin, indicated in yellow and calculated as in (e), plotted as a 
function of time for the example session in Fig. 2a. All other ensembles are 
indicated in purple. Notice that the transformation in (e) preserves the 
oscillatory sequences. g. Left: Matrix of transition probabilities between pairs 
of ensembles at consecutive time points. Rows indicate the ensemble at time 

point t, columns indicate the ensemble at time point t + 1. Data are from the 
example session in Fig. 2a (bin size = 15.12 s). Right: Same as left panel but for 
one shuffle realization. Transition probabilities are color coded. In the left 
diagram, note the higher probability of transitions between consecutive 
ensembles (increased probabilities near the diagonal), the directionality of 
transitions (increased probabilities above diagonal) and the periodic boundary 
conditions in ensemble activation (presence of transitions from ensemble 10 
to ensemble 1). h. Box plot showing transition probabilities between 
consecutive ensembles for all 15 oscillatory sessions. The probabilities remain 
approximately constant across transitions between ensemble pairs (n = 15 
oscillatory sessions per transition, p = 0.56, χ = 7.772 , Friedman test), and there 
were no significant differences between pairs of transitions (two-sided 
Wilcoxon rank-sum test with Bonferroni correction, p > 0.05 for all transitions). 
Transitions from ensemble 10 to ensemble 1 were equally frequent as 
transitions between consecutive ensembles, as expected from the periodic 
nature of the sequences. Red lines indicate median across sessions, the bottom 
and top lines in blue (bounds of box) indicate lower and upper quartiles, 
respectively. The length of the whiskers indicates 1.5 times the interquartile 
range. Red crosses show outliers that lie more than 1.5 times outside the 
interquartile range. i. Probability of sequential ensemble activation as a 
function of the number of ensembles that are sequentially activated (mean ± 
S.D.; For 3–9 ensembles: n = 15 oscillatory sessions over 5 animals, 7500 shuffle 
realizations; p = 5.4 × 10−11, 1.0 × 10−11, 5.9 × 10−13, 4.5 × 10−49, 0, 0, 9.0 × 10−220 
respectively, range of Z values: 6.45 to 59.18, one-tailed Wilcoxon rank-sum 
test). Orange, recorded data; blue, shuffled data. For each session, the 
probability of sequential ensemble activation was calculated over 500 shuffled 
realizations, and shuffled realizations were pooled across sessions. The 
recorded data contained significantly longer sequences than the shuffled 
control. Probability of sequential activation of ≥ 3 ensembles in recorded data 
= 0.62; probability of sequential activation of ≥ 3 ensembles in shuffled data = 
0.27. j. Percentage of sessions with significant sequence score in sessions 
classified as oscillatory vs non-oscillatory. In MEC sessions with oscillatory 
sequences, 100% (15 of 15) of the sessions showed significant sequence scores, 
while in MEC sessions without oscillations, 41% (5 of 12) of the sessions 
demonstrated significant sequence scores. For corresponding raster plots, see 
Extended Data Fig. 5a. ***p < 0.01, ns p > 0.05.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Histology showing imaging location in animals with 
FoVs in parasubiculum and visual cortex. a. Histological determination of 
prism location in mice that were implanted more medially, touching 
parasubiculum more than MEC. Top: Maximum intensity projection of 50 μm 
thick sagittal brain sections (sections acquired with an LSM 880, 20x). Three 
consecutive sections from the same mouse are shown, from the most lateral 
(left) to the most medial (right). Green is GCaMP6m signal, while red is DiI 
signal (used to demarcate ventrolateral corner of the prism, as in Extended 
Data Fig. 1). Scale bar is 400 μm. The white stippled line encapsulates the 
superficial layers of the parasubiculum (PaS). Dorsal PaS on top, layer 1 on the 
left. Bottom: Estimated location of the field of view (FoV) on a flat map 
encompassing MEC (brown outline) and PaS (yellow outline). The blue dot 

marks the location of the pin used to demarcate the most lateral-ventral border 
of the prism, while the green square inset shows the microscope FoV. Inset 
images show maximum intensity projections of the FoV. Dorsoventral (DV), and 
mediolateral (ML) axes are indicated. b. Location of the ventro-lateral edge of 
the prism in stereotactic coordinates, and area of the FoV occupied by cells 
expressing GCaMP6m for each PaS-imaged animal. c. Histological 
determination of imaging location in the visual cortex (VIS) of three mice that 
underwent calcium imaging. Green is GCaMP6m signal. Images are taken from 
coronal slices, and zoomed in on visual cortex (Scale bar is 100 μm; L1 at the top, 
L6 at the bottom). Dorsal pole of the brain is on top. Maximum intensity 
projection, LSM 880, 20x.



Article

Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Lack of oscillatory sequences in parasubiculum and 
visual cortex. a. Alternative sorting methods, as in Extended Data Fig. 4d, but 
applied to sessions recorded in the PaS (left) or VIS (right). The PCA sorting 
method applied to temporally shuffled data did not unveil oscillatory 
sequences (first row). No oscillatory sequences were recovered when neurons 
were sorted according to their correlation values (second row), or according to 
different dimensionality reduction techniques (UMAP, Isomap, LEM, t-SNE). 
Each row of each raster plot shows the calcium activity of a single neuron, with 
activity plotted as a function of time, as in Fig 2a. Every dot indicates that one 
neuron was active at one specific time bin (bin size = 129 ms). Sequence scores 
and oscillation scores are presented in Fig. 5e,f. b,c. Joint distributions of time 
lag τ that maximizes the cross-correlation between any given pair of neurons 
and their distance d in the PCA sorting (as in Extended Data Fig. 5b), applied to 
the recordings in Fig. 5e (PaS) and Fig. 5f (VIS). Normalized frequency is color-
coded. Notice lack of linear relationship between d and τ, in contrast to 
Extended Data Fig. 5b. d,e. Projection of the neural activity onto the low-
dimensional embedding defined by the first two principal components 
obtained from applying PCA to the matrix of calcium activity of the PaS session 
(d) and the VIS session (e) shown in Fig. 5e, f. Bin size = 8.5 s. Note lack of obvious 
ring topology. Time is color-coded. f. Transition probabilities between 
ensembles across consecutive time bins (bin size ~ 8.5 s, Methods) for the PaS 
example session in Fig. 5e (left) and the VIS example session in Fig. 5f (right). g. 
Probability of sequential ensemble activation as a function of the number of 
ensembles that are sequentially activated in PaS (left) and VIS (right) (mean ± 
S.D.). Orange, recorded data (25 PaS sessions; 19 VIS sessions); blue, shuffled 
data. For each session, the probability of sequential ensemble activation was 
calculated over 500 shuffled realizations, and shuffled realizations were 
pooled across sessions for each brain area separately. Probability is shown on a 
log-scale. In PaS the probability of long sequences was significantly larger in 
experimental data than in shuffled data (n = 25 PaS sessions, 12500 shuffled 
realizations; For 2 ensembles: p = 0.998, Z = −2.90; For 3–7 ensembles: range of 
p values: 5.7 × 10−4 to 0.036, range of Z values: 1.80 to 3.25, one-tailed Wilcoxon 

rank-sum test). This was not the case in VIS (n = 19 VIS sessions, 9500 shuffled 
realizations; For 2 ensembles: p = 0.106, Z = 1.25; For 3–6 ensembles: range of  
p values: 0.087 to 0.999, range of Z values: −3.34 to 1.36, one-tailed Wilcoxon 
rank-sum test). h. Percentage of sessions with significant sequence score (MEC 
oscillatory sessions: 15 of 15, PaS: 7 of 25; VIS: 1 of 19). The sequence score 
quantifies the probability of observing sequential activation of 3 or more 
ensembles. i. Distribution of oscillation scores for the entire calcium imaging 
data set, as in Extended Data Fig. 5d (19 VIS sessions over 3 animals, 25 PaS 
sessions over 4 animals, 27 MEC sessions of which 15 were classified as 
oscillatory, over 5 animals). Dashed line indicates threshold for classifying 
sessions as oscillatory with reference to the MEC data. Note that the bars for 
different brain regions sometimes overlap, and that bars are colored with 
transparency for visualization purposes (e.g. for sessions in PaS with 
oscillation score 0, the count is 24). j. Normalized distribution of the Pearson 
correlation values (absolute value) between the activity of cell pairs in VIS 
(green) and in PaS (yellow). Each dot indicates the mean across sessions (25 PaS 
sessions, 19 VIS sessions; all sessions in the data set were used, not only those 
with behavioural tracking synchronized to imaging), error bars indicate S.E.M. 
Probability is shown on a log-scale. k. Same as ( j) but for the distribution of 
values of coactivity for all sessions recorded in PaS (yellow) and VIS (green). 
Coactivity was estimated for each session separately as the fraction of the 
recorded cells that was simultaneously active in 129 ms bins. Probability is 
shown on a log-scale. l. Cumulative probability of correlation values calculated 
between the calcium activity of one cell and the speed of the animal in that 
session for MEC (n = 4595 cells from 10 sessions, 3 animals), PaS (n = 6851 cells 
from 18 sessions, 3 animals), VIS (n = 6037 cells from 19 sessions, 3 animals). 
Only sessions for which the imaging data was synchronized to behavioural data 
were used (VIS-PaS: p = 3.15 × 10−169, Z = 27.7; VIS-MEC: p = 1.05 × 10−85, Z = 19.6, 
MEC-PaS: p = 5.16 × 10−12, Z = 6.80, one tailed Wilcoxon rank-sum test). Calcium 
activity was more correlated with the speed of the animal in visual cortex than 
in MEC and PaS.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Ultraslow oscillatory sequences might serve as 
template for generating new activity patterns. a. Schematic of the model. 
500 input units (depicted in purple, on the left) are connected to an output unit 
(blue dot, on the right). Each arrow represents a connection, and there are 500 
connections in total. The activity of each input unit is represented by a periodic 
Gaussian bump. The means of the Gaussians are temporally displaced such 
that, all together, input units fire in a sequence (the ‘template’). b. The weights 
between the input units and the output unit were trained such that the output 
unit reproduced a target activity. Two targets were considered: a ramp of 
activity, which is deterministic (left), and an Ornstein-Uhlenbeck process, 
which is stochastic (right). Both targets had a characteristic time scale of 100 s. 
c. Input (left) and output (right) activity for three different sequence lengths: 
sequences are very slow (top row), slow (middle) or fast (bottom) as compared 

to the targets. Left: Heat map of the activity of the input units as a function of 
time, in seconds. Blue indicates no activity, yellow indicates maximal activity. 
Top: Sequences are 400 s long. Middle: Sequences are 120 s long. Bottom: 
Sequences are 30 s long. Right: Output response corresponding to the three 
sequences regimes: very slow, slow and fast sequences. Target response is 
shown in blue, obtained response after training the networks using the 
sequences as input is shown in orange. Note that when the sequences have a 
time scale that is similar (middle) or slower (top) than the targets, the output 
unit can reproduce the desired target. d. Mean total error, calculated as the 
difference between the target and the obtained response after training, as a 
function of the input sequence length. Top: Target is the ramp of activity. 
Bottom: Target is the Ornstein-Uhlenbeck process.
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