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Encoding a magic state with beyond 
break-even fidelity

Riddhi S. Gupta1,2, Neereja Sundaresan1, Thomas Alexander1, Christopher J. Wood1, 
Seth T. Merkel1, Michael B. Healy1, Marius Hillenbrand3, Tomas Jochym-O’Connor1,2, 
James R. Wootton4, Theodore J. Yoder1, Andrew W. Cross1, Maika Takita1 & 
Benjamin J. Brown1,5 ✉

To run large-scale algorithms on a quantum computer, error-correcting codes must 
be able to perform a fundamental set of operations, called logic gates, while isolating 
the encoded information from noise1–8. We can complete a universal set of logic gates 
by producing special resources called magic states9–11. It is therefore important to 
produce high-fidelity magic states to conduct algorithms while introducing a minimal 
amount of noise to the computation. Here we propose and implement a scheme to 
prepare a magic state on a superconducting qubit array using error correction. We 
find that our scheme produces better magic states than those that can be prepared 
using the individual qubits of the device. This demonstrates a fundamental principle 
of fault-tolerant quantum computing12, namely, that we can use error correction to 
improve the quality of logic gates with noisy qubits. Moreover, we show that the  
yield of magic states can be increased using adaptive circuits, in which the circuit 
elements are changed depending on the outcome of mid-circuit measurements. This 
demonstrates an essential capability needed for many error-correction subroutines. 
We believe that our prototype will be invaluable in the future as it can reduce the 
number of physical qubits needed to produce high-fidelity magic states in large-scale 
quantum-computing architectures.

We distil magic states to complete a universal set of fault-tolerant 
logic gates that is needed for large-scale quantum computing with 
low-density parity-check code architectures13–18. High-fidelity magic 
states are produced9–11 by processing noisy input magic states with 
fault-tolerant distillation circuits; experimental progress in prepar-
ing input magic states using trapped-ion architectures is described 
in refs. 3,7. It is expected that a considerable number of the qubits of a 
quantum computer will be occupied performing magic-state distilla-
tion schemes and, as such, it is valuable to find ways of reducing its cost. 
One way to reduce the cost is to improve the fidelity of input states11,19–26, 
such that magic states can be distilled with less resource-intensive 
circuits.

Here we propose and implement an error-suppressed encoding cir-
cuit to prepare a state that is input to magic-state distillation using a 
heavy-hexagonal lattice of superconducting qubits4,5,27. Our circuit 
prepares an input magic state, which we call a CZ state, encoded on a 
four-qubit error-detecting code. We explain how our encoded magic 
state can be used in large-scale quantum-computing architectures11,28 
in the section ‘Using CZ states in large-scale quantum-computing archi-
tectures’. Our circuit is capable of detecting any single error during 
state preparation, as such, the infidelity of the encoded state is sup-
pressed as ε( )2O , where ε is the probability that a circuit element expe-
riences an error. By contrast, a standard encoding circuit prepares an 
input state with infidelity ε( )O . Furthermore, we can improve the yield 

of the prepared magic states with the error-suppressed circuit using 
adaptive circuits that are conditioned in real time on the outcomes of 
mid-circuit measurements. We propose several tomographical exper-
iments to interrogate the preparation of the magic state, including a 
complete set of fault-tolerant projective logical Pauli measurements 
that can also tolerate the occurrence of a single error during readout.

Magic-state preparation and logical tomography
We prepare the CZ state as follows:

∣
∣ ∣ ∣

CZ � ≡
00� + 01� + 10�

3
,

encoded on a distance-2 error-detecting code, in which the distinct bit 
strings label orthogonal computational basis states over two qubits. 
We can achieve the CZ state by, first, preparing the ab++� = ∑ �/2a b, =0,1∣ ∣  
state and, then, projecting it onto the CZ = +1 eigenspace of the 
controlled-phase (CZ) operator CZ = diag(1, 1, 1, −1), that is, 
∣ ∣CZ � ∝ Π ++�+  with the projector � CZΠ = ( + )/2+ . We can perform both 
these operations with the four-qubit code. Specifically, it has a 
fault-tolerant preparation of the |++⟩ state and, as we will show, we can 
make a fault-tolerant measurement of the logical CZ operator to prepare 
an encoded CZ state.
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Encoded states of the four-qubit code lie in the common +1 eigen-
value eigenspace of its stabilizer operators SX = X ⊗ X ⊗ X ⊗ X, 
SZ = Z ⊗ Z ⊗ Z ⊗ Z and SY = SZSX, where X and Z are the standard Pauli 
matrices. The four-qubit code encodes two logical qubits that are read-
ily prepared in a logical + +�∣  state by initializing four data qubits in 
the superposition state, |+⟩ ∝ |0⟩ + |1⟩, and measuring SZ. We note that 
we use bars to indicate we are describing states and operations in the 
logical subspace. We prepare the state with SZ = +1 using either post- 
selection or, alternatively, an adaptive Pauli-X rotation on a single-qubit 
given a random −1 outcome from the SZ measurement.

The four-qubit code has a transversal implementation of the CZ  
gate on its encoded subspace, ≃CZ Z Z Z Z⊗ ⊗ ⊗

† †
, where 

Z i= diag(1, ) . We can measure this operator as follows. We note  
that conjugating SX with the unitary rotation 

∼
T T T T T= ⊗ ⊗ ⊗† † , where 

T i= diag(1, ), gives the Hermitian operator:

∼ ∼
W T S T CZ S≡ ∝ . (1)X X†

Given that we prepare the code with SX = +1, measuring W  effec-
tively gives a reading of CZ .

It is essential to our scheme that we reach the SZ = +1 eigenspace. This 
is because of the non-trivial commutation relations of W  with the sta-
bilizer operators of the code29,30; S W S S W[ , ] = (1 − )X Z X . This commuta-
tor shows that W  only commutes with SX in the SZ = +1 subspace. If SZ = −1, 
we can check that W  and SX anti-commute, and are therefore incompat-
ible observables in this subspace.

We can perform all of the aforementioned measurements, SX, W  and 
SZ, on the heavy-hexagon lattice geometry27. Figure 1 shows one such 
setup. The circuit is fault-tolerant in the sense that a Pauli error intro-
duced by a circuit element, on the support of the circuit element, is always 
detected by a flag qubit or a stabilizer measurement. The verification of 
this is detailed in the section ‘Analysis in terms of single-gate errors’.

We, therefore, present a sequence of measurements that prepare 
the input magic state and, in tandem, identify a single error that may 
have occurred during the preparation procedure. Figure 2 shows the 
sequence and describes its function. As we can detect a single error, 
we expect the infidelity of the output state to be ε( )2O . We compare 
our error-suppressed magic-state preparation scheme to a standard 
scheme for encoding a two-qubit magic state, as well as a circuit that 
prepares the magic state on two physical qubits. Both of these schemes 
are described in the section ‘Standard magic-state preparation circuits’.

We verify our state-preparation schemes by performing two vari-
ants of quantum-state tomography to reconstruct the logical state. 

The first method uses fault-tolerant circuits that directly measure the 
logical operators; we refer to this tomographical method as ‘logical 
tomography’. For the second method, which we refer to as ‘physical 
tomography’, we perform standard state tomography on the full state 
of the four data qubits of the system and then project the reconstructed 
state onto the logical subspace. Logical tomography with the four-qubit 
code is shown in Fig. 2b,c. All of our logical tomography circuits can 
tolerate a single error at the readout stage, by repeating the measure-
ment of logical operators and by comparing measurement outcomes 
to earlier readings of stabilizer measurements.

Logical tomography is more efficient than physical tomography 
because we are directly measuring and reconstructing the encoded 
logical state, rather than the physical state. In the case of the four-qubit 
code, this requires only 7 distinct circuits, whereas physical tomogra-
phy requires 81 different measurement circuits.

Experimental results
We performed our experiments using the first-generation real-time 
control system architecture of IBM Quantum deployed on ibm_peek-
skill; one of the IBM Quantum Falcon Processors (https://quantum.ibm.
com/). Device characterization can be found in the section ‘Device over-
view’. The control system architectures give access to dynamic circuit 
operations, such as real-time adaptive circuit operations that depend 
on the outcomes of mid-circuit measurements, that is, feedforward 
(see section ‘Real-time feedforward control of qubits’).
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Fig. 1 | A fault-tolerant circuit to make parity measurements. a, A circuit  
that measures SX, SZ and W  using flag qubits on the heavy-hexagonal lattice 
architecture. b, The four-qubit code is encoded on qubits with even indices  
and the other qubits are used to make the fault-tolerant parity measurement. 
The circuit measures SX by setting �U =  and SZ by setting U = H, where H is the 
Hadamard gate. The circuit measures W  if we set U = T. The measurement 
outcome M gives the reading of the parity measurement. Essential to the 
fault-tolerant procedure are flag fault-tolerant readout circuits4,5,27,51 that 
identify errors that occur during the parity measurement. Outcomes f and g  
are flag qubit readings that indicate that the circuit may have introduced a 
logical error to the data qubits.
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Fig. 2 | Fault-tolerant schemes for magic-state preparation and logical 
tomography. a, Preparation of a CZ state on a four-qubit code in three steps.  
In the code-preparation step, the four-qubit code is prepared in the logical + +�∣  
state by measuring + � ⊗4∣  with the SZ operator. We can use adaptive circuits or 
post-selection to correct for SZ = −1 outcomes. In the magic-state initialization 
step, we measure the W  operator and post-select on the +1 outcome. In the final 
error-detection step, we identify the errors that may have occurred during 
preparation. We measure W  a second time to identify if a measurement error 
occurred during the magic-state initialization step. We finally measure SX  
and SZ a second time to identify Pauli errors that may have occurred, and to 
determine if the initial SZ measurement gave a readout error. b,c, We replace 
the parity measurements in the dashed box of a with circuits b and c to make 
logical tomographic measurements and, at the same time, infer a complete set 
of stabilizer data for error detection. For example, if we set SQ = SX and measure 
qubits in the R = Z basis, we infer the value of SZ, as in a, and we also obtain 
readings of the logical Z1, Z2 and Z Z1 2. Likewise, we can set SQ = SZ with either R = X 
to infer SX as well as logical Pauli operators X1, X2 and X X1 2, or R = Y to infer SY as 
well as logical Pauli operators X Z1 2, Z X1 2 and Y Y1 2. In c, we include a Yj  measurement  
for logical qubit j = 1, 2 to measure logical operators of the form Yj , Y Xj k and Y Zj k 
with k ≠ j and k = 1, 2, where we take an appropriate choice of R. The Y j operator 
is measured twice to identify the occurrence of measurement errors. Operators  
Yj  are supported on three of the data qubits and can therefore be read out with 
an appropriate modification of the circuit shown in Fig. 1.

https://quantum.ibm.com/
https://quantum.ibm.com/
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Our results are shown in Fig. 3, in which we present state infidelities 
for various state-preparation schemes calculated using both logical 
tomography and physical tomography. For results provided in the 
main text, we model the reconstructed state assuming that the read-
out is conducted with projective measurements. We also present an 
alternative analysis in the section ‘State tomography with readout error 
mitigation using noisy positive-operator-valued measurements’, in 
which we combine the readout error characterization with tomographic 
reconstruction using noisy positive-operator-valued measurements.

To accommodate drift in device parameters over the data collec-
tion period, a complete set of tomography circuits was interleaved 
and submitted in batches of about 104 shots until a total of about 106 
shots were collected over several days. The resulting counts database 
is uniformly sampled with a replacement for 10 bootstrap trials with 
a batch size limited to 20% of the total database before post-selection. 
The standard deviation, σ, of these bootstrapped trials is plotted as 
an error bar in all data figures.

The tomographic fitting was done using positive semi-definite con-
strained weight-least-squares convex optimization using the Qiskit 
Experiments tomography module31. For logical tomography, the fitting 
weights were set proportional to the inverse of the standard errors for 
each logical Pauli expectation value estimate. These weights accommo-
date the different logical yield rates for each logical Pauli measurement. 

The logical yield for each basis measurement is shown in Fig. 4 and 
discussed in more detail below.

We first compare the state-preparation scheme using dynamic 
circuits with the same preparation scheme executed with static cir-
cuits and post-selection. This comparison is conducted using logical 
tomography. These are the left and middle data points shown in blue 
in Fig. 3. We find that the infidelities are commensurate in these two 
experiments. Using dynamic circuits with feedforward operations, we 
encode a two-qubit error-suppressed input magic state with a logical 
infidelity (1.87 ± 0.16) × 10−2. In the post-selection experiment, we obtain 
an infidelity of (1.23 ± 0.11) × 10−2. The feedforward operations in our 
experiment can introduce idling periods, of the order of hundreds of 
nanoseconds, during which additional errors can accumulate. To lead-
ing order we attribute the difference in fidelity between these prepara-
tion schemes to errors that occur while the control system is occupied 
performing the dynamical feedforward operation. In return for this 
loss in fidelity, we find that the use of dynamical circuits significantly 
increases the yield of magic states (Fig. 4).

We can analyse the commonly occurring errors in fault-tolerant cir-
cuits using syndrome outcomes to infer the events that are likely to 
have caused them32. This is done using the method detailed in the 
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Fig. 3 | Infidelities measured in magic-state preparation experiments.  
State infidelity for error-suppressed (error supp.) and standard schemes are 
shown in blue and orange, respectively. On the x-axis, a state is reconstructed 
with either logical or physical tomography. The correction for the initial SZ 
measurement in Fig. 2a is implemented using either real-time feedforward  
(FF) or post-selection (PS). For the physical data points, the state from physical 
tomography is projected onto the logical subspace before computing the 
infidelity by fitting to ideal projectors. Error bars represent 1σ from 
bootstrapping. For all tomographic methods, the error-suppressed scheme 
achieves a lower state infidelity compared with the standard scheme. The 
unencoded magic state prepared directly on two physical qubits gives an 
average (avg.) infidelity across 28 qubit pairs as approximately 6.2 × 10−2  
(green dashed line) using 18 repetitions over a 24-h period with 105 shots per 
circuit. Of these, the best-performing pair yields a minimum (min.) infidelity  
of (2.354 ± 0.271) × 10−2 (red solid line) found over all repetitions for all qubit 
pairs. In all cases, the error-suppressed scheme exceeds the fidelity of the best 
two-qubit unencoded magic state.
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Fig. 4 | Magic-state yield for feedforward versus post-selection. Yield is 
calculated for logical tomography circuits shown in Fig. 2b,c for the 
error-suppressed (error supp.) scheme with feedforward (blue circles) versus 
post-selection (blue squares); a standard scheme is shown for reference 
(orange squares). All rates use datasets reported in Fig. 3 where error bars 
represent 1σ from bootstrapping. The shaded area of the graph shows the 
increase in yield for the error-suppressed scheme using feedforward (FF) 
compared with the post-selection (PS) scheme or the standard scheme. The 
optimal acceptance rate assuming no noise is 75% for the feedforward scheme, 
37.5% for the post-selection scheme and 25% for the standard scheme. The 
observed acceptance rates are because of the additional detection of errors. 
We estimate the yield in the presence of noise in the section ‘Estimates for 
magic-state yield’. We observe a stark difference in yields between experiments 
conducted with the logical tomography circuit shown in Fig. 2b,c, shown to the 
left and right of the dashed line, respectively. We can attribute this to the depth 
of the logical tomography circuit, in which deeper circuits, such as those shown 
in Fig. 2c, are more likely to introduce detectable errors. This is discussed in the 
section ‘Estimates for magic-state yield’.
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section ‘Analysis in terms of single-gate errors’ using the results of the 
error-suppressed scheme without any post-selection. Assuming an 
uncorrelated error model, we find that the average probability per 
single-error event is 0.19% with a standard deviation of 0.11%. The sin-
gle most-likely error event occurs with probability 1.2%. This event 
corresponds to an error occurring during the X stabilizer measurement 
that spreads to and is detected by a flag qubit. Similar errors in other 
stabilizer measurements show the probability increasing from 0.35% 
for the initial Z measurement to 0.41% and 0.45% for the two W  meas-
urements. This suggests that, rather than being caused by Pauli errors, 
these results might be caused by other effects such as an accumulation 
of leakage on the flag qubits.

We verify the performance of our logical tomography procedure 
by comparing our results with the infidelity obtained using physical 
tomography for the magic-state preparation procedure, in which we 
obtain the SZ = +1 eigenspace with post-selection. The fitter weights 
in this case are the standard Gaussian weights based on the observed 
frequencies of each projective measurement outcome of each basis 
element. In physical tomography, the yield after post-selection is 
constant in all 81 measurement bases. We find an acceptance rate of 
14.9 ± 0.1% for the error-suppressed scheme using physical tomog-
raphy, in which the standard deviation represents variation over 81 
physical Pauli directions.

To compare the infidelity obtained with physical tomography 
even-handedly with that obtained using logical tomography, we recon-
struct the logical subspace from the density matrix obtained from 
physical tomography on the data qubits of the code, ρphys. The logical 
subspace is obtained by projecting ρphys onto the logical subspace33,34. 
We obtain the elements of the density matrix of the logical subspace 
ρ using the equation

ρ
k l ρ m n

P
=

� �
, (2)

kl mn
L

,
phys∣ ∣

where k, l, m, n = 0, 1 specify orthogonal vectors in the logical subspace 
and ∣ ∣P k l ρ k l= ∑ � �L k l,  is the probability that the state we prepare  
is in the logical subspace. Using this method, we obtain the pro-
jected logical infidelity  for the error-suppressed procedure as 
(1.70 ± 0.35) × 10−2 with the probability of finding ρphys in the logical 
subspace PL = 0.898 ± 0.008. An average post-selection acceptance 
rate over all physical Pauli directions is found to be 14.9 ± 0.1%. This 
projected logical infidelity is shown as the rightmost blue data point in 
Fig. 3 to be compared with the central blue data point. This comparison 
demonstrates the consistency between logical tomography and phys-
ical tomography. For reference, raw state fidelities from physical 
tomography before logical projection are reported in the section ‘State 
tomography with readout error mitigation using noisy positive- 
operator-valued measurements’.

We compare our error-suppressed magic-state preparation proce-
dure with a standard static circuit that encodes a physical copy of the 
magic state into the four-qubit code. We show infidelity data points for 
the standard scheme in Fig. 3 with orange markers. Our experiments 
consistently demonstrate that our error-suppressed encoding scheme 
has an infidelity at least four times smaller than a standard scheme to 
encode magic states. We show yields using different logical tomography 
experiments for the standard preparation scheme with orange markers 
in Fig. 4. In the case of physical tomography, the encoded state on the 
four data qubits has a post-selection acceptance rate of 20.9 ± 0.1%, 
and the reconstructed density matrix is found in the code space with 
probability PL = 0.789 ± 0.004.

Finally, we compare our error-suppressed preparation procedure 
with a state-preparation experiment performed using physical qubits. 
We mark the lowest infidelity obtained over all of the adjacent pairs 
of physical qubits on the 27 qubit device, (2.4 ± 0.3) × 10−2, with a red 
line in Fig. 3. Remarkably, all fidelities for all of our error-suppressed 

magic-state preparation schemes exceed the fidelity of a simple experi-
ment to prepare the CZ state with physical qubits.

Discussion
We have presented a scheme that encodes an input magic state with a 
fidelity higher than we can achieve with any pair of physical qubits on 
the same device using basic entangling operations. This improvement 
in fidelity, which is beyond the break-even point set by basic physical 
qubit operations, can be attributed to quantum error correction that 
suppresses the noise that accumulates during state preparation.

The yield of magic states benefited from the use of dynamic circuits 
in which mid-circuit measurements condition gate operations in real 
time. Remarkably, we find that the operation is sufficiently rapid that 
its execution came at only a small cost in output state fidelity on the 
superconducting device. These dynamic circuits are essential to future 
quantum-computing architectures as they will be needed, for exam-
ple, to perform magic-state distillation circuits9–11 and gate teleporta-
tion35,36, as well as many other measurement-based methods13,17–19,37–48 
that have been proposed to complete a universal set of logic gates.

We have shown that experimental progress has reached a point at 
which we can make prototype gadgets that can affect the resource cost 
of large-scale quantum computers. In the Methods, we explain how our 
prototype can be used together with magic-state distillation. It will be 
interesting to continue to design, develop and test new gadgets with 
real hardware that will improve the performance of the key subrou-
tines needed for fault-tolerant quantum computing. Further develop-
ments in the theory of pieceable fault tolerance44 might show us ways 
of producing better magic states with small devices. Error-suppressed 
magic states could improve the time cost of recent proposals49,50 for 
error-corrected circuits that are supplemented by error-mitigation 
techniques to complete non-Clifford operations. Ultimately, experi-
mental progress that we make to this end in the near term can benefit 
large-scale quantum-computing architectures.
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Methods

Using CZ states in large-scale quantum-computing 
architectures
Magic states are distilled to complete a universal set of fault-tolerant 
logic gates (see Extended Data Fig. 1 for an overview of the details 
of a generic magic-state distillation protocol). In any such protocol, 
input magic states with some inherent error are encoded on quantum 
error-correcting codes. The encoded magic states are then used in dis-
tillation circuits to produce better magic states with higher fidelity. We 
can use magic states with near-perfect fidelity to perform fault-tolerant 
logic gates.

We choose different magic-state distillation protocols depending 
on the magic states we prepare. In the next section, we review details 
on how we can use CZ states in large-scale fault-tolerant quantum 
computing. Specifically, we can convert CZ states into Toffoli states 
using Pauli measurements and Clifford operations28, such that we 
can adopt well-known magic-state distillation protocols for further 
rounds of distillation11. This conversion technique is probabilistic, as 
it depends on obtaining the correct outcome from a Pauli measure-
ment. In addition to these results, we show how we can recover a CZ 
state from the output state, assuming we get the incorrect outcome 
of the Pauli measurement, thereby conserving the available resource 
states.

We also provide some examples of how we can inject small codes into 
larger codes in the section ‘Injecting small codes into larger codes’, as it 
will be required to take the encoded state we prepared in the main text 
and use it in subsequent rounds of magic-state distillation. Specifically, 
we show how to take distance-2 codes and encode their state on the 
surface code, the heavy-hex code and the colour code with a higher 
distance. Notably, the heavy-hex code is readily implemented on the 
heavy-hex lattice geometry on which we conducted the experiment. 
For each of these injection schemes, we argue that we can detect any 
single error that may occur. This is important to maintain the error 
suppression obtained when preparing the CZ state.

In the case of the colour-code state-injection protocol, we inject the 
error-detecting code described in the main text directly into the larger 
code. In the case of the surface code and heavy-hex code, however, 
we inject a related code, that we call the [[4, 1, 2]] code. To complete 
these injection protocols, we need to take the CZ state prepared on the 
error-detecting code and copy its logical state onto two copies of the 
[[4, 1, 2]] code. We give a fault-tolerant procedure for this transforma-
tion in the section ‘Encoding the CZ state on two [[4, 1,  2]] codes using 
the heavy-hex lattice geometry’.

Magic-state distillation with the CZ state. Although magic-state 
distillation for the CZ state has not been well-studied in the literature, it 
is known that two copies of the state can be probabilistically converted 
into a Toffoli state using Pauli measurements and Clifford operations28. 
Given there are known methods for distilling Toffoli states11, let us 
review how the Toffoli state is produced from the copies of the CZ 
state. In the following sections, we show how to inject the CZ state into 
larger quantum error-correcting codes that are capable of perform-
ing fault-tolerant Clifford operations17,18,45 to complete these circuits.

The Toffoli state is defined as follows:

∑ j k jkTOF� ∝ � � � = 000� + 010� + 100� + 111�, (3)
j k,

where we sum over the bitwise values j, k = 0, 1.
Given two copies of the CZ state, ∣ ∣CZ CZ� �1,2 3,4, if we project qubits 

2 and 3 onto the Z2Z3 = −1 eigenspace, then we obtain the intermediate 
state

∣ ∣ ∣ ∣ ∣ξ � = ( 0010� + 1010� + 0100� + 0101�)/2. (4)

We then obtain |1�|TOF� with the following unitary circuit

∣ ∣ ∣CX CX CX CX ξ1� TOF� = � , (5)4,3 3,1 2,1 1,3

where indices C and T of the controlled-not gate CXC,T denote the control 
and target qubit, respectively.

We obtain the −1 outcome by measuring Z2Z3 of state ∣ ∣CZ CZ� �  with 
probability 4/9. Beyond the work in ref. 28, we find that we can recover 
a single copy of the CZ state given the Z2Z3 = +1 outcome at this step, 
thereby saving magic resource states. In the event that we obtain this 
measurement outcome, we produce the state

χ � = 0000� + 0001� + 1000� + 1001� + 0110� . (6)∣ ∣ ∣ ∣ ∣ ∣

Applying the unitary operation CX CX χ �2,3 2,4 ∣  and obtaining the 
two-qubit parity measurement outcome Z3Z4 = −1, we obtain the state 

CZ � 01�∣ ∣ . We obtain this state with probability 3/5, assuming we 
obtained the Z2Z3 = +1 outcome previously.

Injecting small codes into larger codes. Magic-state distillation 
takes encoded magic states, and then processes these input states to 
probabilistically prepare a magic state with better fidelity. As such, it 
is necessary to encode magic states into quantum error-correcting 
codes. This process is commonly known as state injection.

Ideally, the injection process will introduce a minimal amount of 
noise to the logical state that is encoded, as this will reduce the noise 
of the output magic state. To this end, we look for ways to inject the 
magic state prepared on the four-qubit error-detecting code in larger 
quantum-error-correcting codes in such a way that local errors can 
be detected.

In what follows, we show how to inject the state encoded on the 
error-detecting code onto the surface code, the heavy-hex code and 
the colour code, thereby increasing the distance of the code that sup-
ports the magic state. Furthermore, we argue that we can detect any 
single error that may occur during the injection procedure. This enables 
us to maintain the error suppression we demonstrated experimentally 
in the main text.

In the main text, we showed how to prepare the CZ state on a four- 
qubit error-detecting code shown in Extended Data Fig. 2 (left). As we 
show later, states on this code can be injected directly onto the colour 
code. Two of the injection schemes, encoding onto the surface code, or 
the heavy-hex code, assume that the two logical qubits of the CZ state 
are encoded on two copies of the [[4, 1, 2]] code, shown in Extended 
Data Fig. 2 (right). In the following section, we show how to encode the 
magic state prepared on the error-detecting code onto two copies of 
the [[4, 1, 2]] code, in a fault-tolerant way such that any single error can 
be detected. For the remainder of this section, we assume the magic 
state has been prepared over two copies of the [[4, 1, 2]] code.

To distinguish the two small error-detecting codes of interest consist-
ently, throughout the Methods we will refer to the error-detecting code 
used in the main text as the [[4, 2, 2]] code to contrast this code with 
the [[4, 1, 2]] code. Specifically, we label the codes by their encoding 
parameters [[n, k, d]]. Both of these codes have a distance d = 2 using 
n = 4 physical qubits. The two codes differ by the number of logical 
qubits they each encode. The [[4, 2, 2]] code encodes k = 2 logical qubits 
and the [[4, 1, 2]] code encodes k = 1 logical qubit.

The theory of code deformations. We inject a state into a larger 
code11,19–26,41,52 using code deformation19,46,53. In what follows, we describe 
the theory of code deformations using the stabilizer formalism. We 
remark that more general theories of code deformations can be found 
elsewhere in the literature46,53. The theory we present is sufficient to 
describe the state-injection operations of interest.

We describe code deformations using the stabilizer formalism54. 
Quantum error-correcting codes can be described with an Abelian 



subgroup of Pauli operators called the stabilizer group S. The encoded 
state lies in the common +1 eigenvalue eigenspace of the elements of 
the stabilizer group. We call this subspace the code space. Stabilizer 
codes also have associated logical operators L that can be generated by 
a set of mutually anti-commuting pairs X Z, ∈j j L  with 1 ≤ j ≤ k. These 
Pauli operators commute with the stabilizer group but are not them-
selves stabilizer operators. The distance of the code d is the weight of 
the least-weight logical operator. We can detect any single error if the 
code has a distance of at least d = 2. We give examples of small stabilizer 
codes, together with their logical operators in Extended Data Fig. 2. 
These examples will be relevant for the following discussion on state 
injection.

We measure the stabilizer operators to identify the errors. As the 
encoded state is specified by specific eigenstates of a list of commuting 
Pauli operators, finding a measurement of one or more of these opera-
tors in the incorrect eigenspace indicates that an error has occurred. 
By arguing that we can detect any single error, we must have a distance 
of at least d = 2.

A code deformation is where we perform a measurement that pro-
jects a stabilizer code onto another. Specifically, we assume we have 
prepared an initial code in which, once prepared, we start measuring 
the stabilizer operators of a second code that we call the final code. 
This projects the initial code onto the final code. Let us denote these 
two codes by their stabilizer group initS  and finS , respectively. We assume 
errors may have occurred on the qubits of the initial state that must be 
detected by measuring the stabilizers of the final code. As such, this 
operation has an associated code distance, according to the number 
of local error events that must occur for an undetectable logical error 
to affect the encoded space.

We detect the errors by comparing repeated readings of stabilizer 
measurements. Specifically, once we measure the stabilizers finS , we 
look to compare their outcomes to stabilizers prepared in the initial 
code initS . Variations in the values of these stabilizer measurements 
indicate that an error has occurred. As such we are interested in 
code-deformation stabilizers

∩= , (7)def init finS S S

that is, stabilizers that are prepared in the initial system and checked 
again after the code deformation is made, when we measure the stabi-
lizer group Sfin.

Logical information that is preserved over the code deformation has 
coinciding logical operators associated with both Sinit and Sfin. Spe-
cifically, the logical operators that are preserved over the code defor-
mation L are of the form

L L L∩= , (8)init fin

where initL  and finL  are the logical operators for initS  and Sfin, respectively.
Ideally, we should maximize the number of stabilizers that coincide 

in the initial and final codes to maximize the number of errors we detect. 
In practice, physical constraints imposed by hardware may not allow 
us to maximize the intersection between Sinit and finS . Here we concen-
trate on very simple initialization procedures in which the initial sta-
bilizer code is prepared in a product state, or a product state of Bell 
pairs, together with the small four-qubit codes that initially maintain 
the encoded magic state.

Error correction for state injection. In what follows, we will show state 
injection into the surface code, the heavy-hex code and the colour code. 
We will also argue that all of these state-injection protocols are tolerant 
to a single error, thereby maintaining the error suppression achieved 
in the experiment presented in the main text.

We are interested in the general error model, in which a single error 
occurs on a circuit element in the stabilizer readout circuit as we deform 

the initial code onto the final code. However, we argue that for each 
individual example, we need to study only single-qubit errors that occur 
immediately before the code deformation takes place.

In addition to the errors that occur on data qubits, we are also inter-
ested in errors that occur on the auxiliary measurement qubits we 
use to perform parity measurements. In essence, these can lead to 
two types of error: (1) readout errors, in which we obtain the incorrect 
measurement outcome; and (2) hook errors, in which an error during 
a stabilizer readout circuit is copied to several other qubits, thereby 
creating a correlated error. Let us mention how we treat these types 
of error in the following discussion.

First of all, we neglect to discuss hook errors, as we assume that meas-
ures can be taken to mitigate their effects, by either flag qubits or an 
appropriate choice of stabilizer readout circuit. These measures are 
well developed for the codes of interest, see, for example, refs. 27,55–57. 
We completed the experiment presented in the main text using a device 
that is tailored to realize the heavy-hex code using additional flag qubits 
to mitigate the effects of hook errors.

We can detect a measurement error using a generic method, namely, 
the repetition of measurements. By repeating the measurements at 
least once, we can identify a single measurement error if the outcomes 
of two repetitions of the same measurement do not agree. As this 
method is applicable to all of the following injection schemes, we will 
not discuss this error-detection method case by case. Rather, we argue 
now that by measuring the stabilizer generators of Sfin twice we can 
detect any single error. If the measurements of the two rounds of finS  
do not agree, we discard the state we have prepared and repeat the 
state-preparation procedure. Otherwise, assuming the two rounds of 
measurement for finS  do agree, we check the outcomes to determine 
whether any Pauli errors occurred during the preparation of initS , or 
immediately before the finS  stabilizer generators are measured. Assum-
ing no error is detected, we continue to conduct standard error cor-
rection with the final code.

Surface code
Let us start by discussing the example of the surface code58 (Extended 

Data Fig. 3). The stabilizers of the code are shown by the faces in 
Extended Data Fig. 3 (left), in which the light faces mark the support 
of Pauli-X-type stabilizers and the dark faces mark the support of 
Pauli-Z-type stabilizers. We also show the support of a Pauli-X logical 
operator in green and a Pauli-Z logical operator in blue. In the theory 
for code deformation given above, this is the stabilizer group for Sfin.

In Extended Data Fig. 3 (right), we show initS . The figure shows the 
[[4, 1, 2]] code outlined in red in the bottom-left corner of the lattice. 
The remaining qubits are prepared in a product state, such that the 
blue qubits are initialized in the |0〉 state and the green qubits are 
initialized in the |+〉 state. These disentangled qubits can be regarded 
as being in the stabilizer state Zv or Xv. The logical operator of the ini-
tial state can be supported entirely on the [[4, 1, 2]] code. However, 
the initial code shares the logical operators of the final code if we 
multiply the logical operators of the [[4, 1, 2]] code by the product 
state stabilizers.

Importantly, all the qubits support at least one stabilizer operator 
of defS  such that a single error can be detected. We note that the qubits 
that are initialized in a product state need to detect only one type of 
error, because the other type of error acts trivially on the initial state. 
For example, a Pauli-X error acts trivially on a green qubit and a Pauli-Z 
error acts trivially on a blue qubit, whereas, respectively, a Pauli-Z or 
Pauli-X error on the same qubit will be detected by a stabilizer of Sdef. 
Finally, all qubits of the [[4, 1, 2]] code support one of each type of sta-
bilizer of Sdef and as such can also detect both types of Pauli error. By 
inspection then, we see that we can detect any single-qubit error that 
occurs at the initialization step.

Heavy-hex code
We can also inject the [[4, 1, 2]] code into the heavy-hex code. This 

is particularly relevant with respect to the experiment presented in 
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the main text, as the experiment is implemented on hardware that is 
tailored to realize the heavy-hex code. The heavy-hex code is a sub-
system code closely related to the surface code. However, as the code 
is a subsystem code, stabilizers are not measured directly. Rather, we 
have a group of check operators, known as the gauge group, that we 
measure to infer the values of the stabilizer operators. Nevertheless, 
we find the arguments given above are sufficient to show that a state 
can be injected while detecting a single error.

To review, the gauge group of the heavy-hex code includes weight-2 
Pauli-Z terms on adjacent pairs of qubits that share a row. We show one 
such term in Extended Data Fig. 4 (left). The code also has Pauli-X-type 
checks. These are identical to the Pauli-X-type stabilizer operators of 
the surface code (Extended Data Fig. 3). These checks are used to infer 
Pauli-X- and Pauli-Z-type stabilizer operators. The Pauli-X-type stabilizer 
operators are the product of Pauli-X terms on all of the qubits on two 
adjacent rows (Extended Data Fig. 4, left). The Pauli-Z stabilizer oper-
ators are the same as those of the surface code (Extended Data Fig. 3). 
We also show the support of logical Pauli-X and Pauli-Z stabilizer oper-
ators in Extended Data Fig. 4 (left) in green and blue, respectively. Once 
again, this stabilizer group can be regarded as Sfin with respect to the 
simplified code-deformation theory we have presented. Although we 
infer their values from measuring the gauge checks, the basic theory 
of state injection holds for our discussion on error correction.

We show Sinit for the heavy-hex code in Extended Data Fig. 4 (right), 
in which the [[4, 1, 2]] code, highlighted in red, is prepared on qubits 
in the bottom-left corner of the lattice, and the green qubits are pre-
pared in the |+〉v state and the blue qubits are prepared in the |0〉v state. 
These qubits have an associated stabilizer Xv or Zv. Once again, similar 
to the case of surface code, the logical operators that are completely 
supported on the [[4, 1, 2]] code can be multiplied by elements of the 
stabilizer group of Sinit such that they are equivalent to those of Sfin 
shown in Extended Data Fig. 4 (left). As such, the encoded logical infor-
mation is preserved over the state-injection procedure, as these logical 
operators are members of Ldef.

As with the case of the surface code, we argue that we can tolerate 
any single-qubit error during the injection procedure. Every single 
green qubit supports at least one Pauli-X-type stabilizer and every 
single blue qubit supports at least one Pauli-Z-type stabilizer of defS . 
As such, we can detect a single Pauli-Z error on the green qubits and a 
single Pauli-X error on the blue qubits that occurs up to the point the 
code deformation takes place. We are not concerned with Pauli-X errors 
acting on the green qubits and the Pauli-Z errors acting on the blue 
qubits as these errors act trivially on the initial state. Finally, all of the 
qubits of the [[4, 1, 2]] code support both a Pauli-X- and a Pauli-Z-type 
stabilizer of defS , and as such, they can all detect both types of error. 
This accounts for single-qubit errors occurring on all of the qubits of 
the system during the state-injection process with the heavy-hex code.

Colour code
Let us finally discuss the colour code59. This is a particularly interest-

ing example as the [[4, 2, 2]] code can be injected directly into the col-
our code. We show the colour-code lattice in Extended Data Fig. 5. For 
Sfin, each lattice face supports both a Pauli-X- and Pauli-Z-type stabilizer. 
The code supports two logical operators, where XA is the product of 
Pauli-X terms supported on all the qubits along the bottom boundary 
of the lattice and ZA is the product of Pauli-Z terms supported on all the 
qubits along the left boundary of the lattice. Likewise XB is the product 
of Pauli-X terms supported on all the qubits along the left boundary of 
the lattice and ZB is the product of Pauli-Z terms supported on all the 
qubits along the bottom boundary of the lattice. We highlight the sup-
port of the logical operators on the left and bottom boundaries in blue 
and green, respectively, in Extended Data Fig. 5.

We define the stabilizer group for initS  in the caption of Extended 
Data Fig. 5, in which the [[4, 2, 2]] code is placed on a four-qubit face of 
the lattice, and all of the other qubits are prepared in Bell pairs, with 
stabilizer operators XaXb and ZaZb, marked by highlighted edges in the 

figure. We colour the edges either blue or green according to the col-
ouring convention for edges used in ref. 59. Nevertheless, all highlighted 
edges, of both colours, support the same Bell pair.

We can multiply the logical operators of the [[4, 2, 2]] code by ele-
ments of Sinit such that we obtain the logical operators of finS . As such, 
the logical qubits encoded on the error-detecting code are preserved 
over the state-injection process.

We finally argue that we can detect any single-qubit error during the 
state injection process. Extended Data Fig. 5 shows the support of the 
stabilizer operators of defS  with coloured faces. Specifically, there is 
both a Pauli-X- and Pauli-Z-type stabilizer on each of the coloured faces. 
By inspection, we see that every qubit supports at least one coloured 
face and, therefore, supports both a Pauli-X- and a Pauli-Z-type stabi-
lizer. We note also that the error-detecting code also supports both a 
Pauli-X- and a Pauli-Z-type stabilizer on its respective face. As such, we 
can detect any single-qubit error over the state-injection process.

Some remarks on state-injection procedures. We have presented 
state-injection protocols for several different codes for the error- 
suppressed magic state we discussed in the main text. We argued that 
we can detect a single error that may occur in any of these protocols, 
such that we maintain the error suppression we have demonstrated 
in our experiment. The injection protocols we have presented can be 
improved by combining them with other methods presented in the 
literature to improve the performance and yield of state injection. For 
instance, in refs. 20,24, two-step preparation procedures are proposed, 
in which a magic state is injected onto an intermediate-sized code, 
where error detection is used to suppress errors, before injecting the 
intermediate-sized code onto a larger code. This method is compatible 
with the injection protocols we have presented here. We might also 
adopt the method presented in ref. 25, in which the authors propose 
estimating the logical error on the injected state in the decoding step 
of state injection.

It is worth remarking that these error-detection protocols can be 
improved by increasing the fraction of error events that can be detected. 
We might, for example, consider better choices of Sinit that can be pre-
pared before the state-injection procedure begins. In the case of sub-
system codes, we might also look for additional error-detection checks 
that can be made between intermediate gauge measurements we make 
to infer the values of the stabilizers, and the stabilizers of the initial 
code, during the preparation procedure.

Encoding the CZ state on two [[4, 1, 2]] codes using the heavy-hex 
lattice geometry. Two of our state-injection protocols described 
above require that the CZ state is encoded on copies of the [[4, 1, 2]] 
code. Here we show how to transform the encoded CZ state prepared 
on the [[4, 2, 2]] code as we have described in the main text onto two 
copies of the [[4, 1, 2]] code. This transformation is made using meas-
urements. In this sense, it can be understood as a code deformation 
similar to that discussed in the previous section. We argue that we 
can detect any one single error over the code deformation process, 
thereby maintaining the error suppression obtained in the main text. 
We also show how this process can be mapped onto the heavy-hex 
lattice geometry. The protocol is outlined in Extended Data Fig. 6, and 
we show how the outline is mapped onto the heavy-hex geometry in 
Extended Data Fig. 7.

Before discussing the transformation, we first briefly review the ideas 
behind state teleportation abstractly. We can view the transformation 
as a small instance of a lattice surgery operation38 in which the gates 
are performed between logical qubits by measuring appropriate logi-
cal degrees of freedom. Furthermore, in this particular instance, we 
can view the operation as a lattice surgery operation between a small 
colour code and a small surface code48,60,61, in which we interpret the 
[[4, 2, 2]] code and the [[4, 1, 2]] code as a small colour code and surface 
code, respectively. After performing a logical parity measurement 



between the two codes, the transformation is completed with a partial  
condensation operation of the small colour code, as described in ref. 48.

To explain the operation, we consider the evolution of the stabiliz-
ers and logical operators of the code at each step of the measurement 
pattern shown in Extended Data Fig. 6 independently from the imple-
mentation of the code. We have three logical qubits indexed A, B and 
C, where, initially, A and B are encoded on the [[4, 2, 2]] code and C is 
encoded on the [[4, 1, 2]] code. In essence, the operation teleports the 
logical state encoded on qubit B onto qubit C, up to a Clifford opera-
tion. Logical qubit A is not involved in the operation, so we concentrate 
on qubits B and C.

The teleportation operation proceeds as follows:
1. Prepare + � C∣ ,
2. Measure XBZC,
3. Measure ZB,
4. Apply Pauli correction.

The operation functions with A and B prepared in some arbitrary 
logical state, but to illustrate the operation we assume they are in a 
product state with ∣ ∣ ∣ψ a b� = + � + − �B B B . We omit qubit A from the 
discussion, as it is unchanged by the transformation, and we leave it as 
an exercise to the reader to verify the general case.

Initially, an arbitrary state in the B subsystem along with a logical 
∣ + �  state on the C subsystem can be described by the following vector 
state: a b( + � + − �) ⊗ + �B C∣ ∣ ∣ , in which we have chosen a convenient 
basis for the vectors on B. Upon measuring the joint logical operator 
XBZC and obtaining measurement outcome m2, the resulting state of 
the joint system is a m b m+ � � + − � 1 ⊕ �B C B C2 2∣ ∣ ∣ ∣ . Finally, upon meas-
uring ZB and obtaining the measurement outcome m3, the resulting 
state is m a m b m� ⊗ ( � + (−1) 1 ⊕ �B C

m
C3 2 2

3∣ ∣ ∣ . An appropriate Pauli cor-
rection depending on the measurement outcomes m2 and m3 enables 
us to recover the state a b0� ⊗ ( 0� + 1� )B C C∣ ∣ ∣ . As such, we see the 
logical information that was originally encoded on the B subsystem in 
the form of the coefficients a and b now lies entirely on the C subsystem. 
Finally, we note that, with this operation, the basis of the logical  
information has been rotated by a Hadamard operation. This can be 
corrected at a later step. Extended Data Fig. 6 shows how this transfor-
mation is conducted between an encoded qubit of the [[4, 2, 2]] code 
and the logical qubit of the [[4, 1, 2]] code by performing logical  
measurements.

We now discuss how to implement the described state teleportation 
on a heavy-hex lattice (Extended Data Fig. 7). We begin by preparing 
the encoded CZ state as explained in the main text, together with an 
encoded [[4, 1, 2]] code. The [[4, 1, 2]] code is prepared in the logical 
state |+〉. We can prepare this state using qubits outlined in the orange 
box shown in Extended Data Fig. 7 (top), in which the four qubits, 4, 
6, 15 and 17 are the data qubits of the code and qubits 5, 10 and 16 are 
used to perform weight-4 parity checks with qubits 5 and 16 used as flag 
qubits. The [[4, 1, 2]] code is prepared in a fault-tolerant manner by ini-
tializing the data qubits in the |+〉 state and then measuring each of the 
Pauli-Z-type stabilizer operators Z4Z6 and Z15Z17. These measurements 
can be facilitated with the ancillary qubits 5 and 16, respectively. Each 
of these operators is measured twice such that we can detect a single 
measurement error during preparation (see also ref. 4).

We transfer a single logical qubit of the [[4, 2, 2]] code onto the 
[[4, 1, 2]] code using logical measurements. In step 3, we perform a 
weight-4 measurement that measures the parity of two logical qubits 
over the two codes. To do this using the heavy-hexagonal lattice geom-
etry, we first transport the codes. This can be performed in two rounds 
of swap gates or teleportation operations, as shown by the arrows in 
Extended Data Fig. 7 (top), in which the blue arrows are performed 
first, in parallel, and the green arrows are performed in parallel after-
wards. It should be noted that these rounds of parallel swap gates are 
fault-tolerant because all individual swap operations involve a single 
data qubit as well as an ancillary qubit. Thus, any potential two-qubit 

gate error is effectively a single-qubit error on the code that would 
be detected. After the swap operation, we facilitate the logical par-
ity measurement with qubits 5, 10 and 16, shown in the green box in 
Extended Data Fig. 7. The logical measurement is performed twice 
to identify a measurement error that may occur in this step. The out-
comes of both of these measurements should agree. An odd parity 
in measurement outcomes indicates that a measurement error has 
occurred.

Finally, we measure the logical operator ZB to complete the telepor-
tation operation. We measure this operator on both of its two-qubit 
supports. Specifically, these are Z Z Z=B 2 4 and S Z Z Z=Z

B 13 15, in which 
SZ = Z2Z4Z13Z15 is the weight-4 Pauli-Z stabilizer of the [[4, 2, 2]] code. 
Measuring both of these weight-2 logical operators enables us to detect 
a single error, as the product of their outcomes should agree with the 
value of the Pauli-Z stabilizer SZ. This final measurement completes 
the teleportation operation and, moreover, projects the error-detecting 
code onto a second copy of the [[4, 1, 2]] code. Finally, we remark that 
projecting ZB into a known eigenstate enables us to regard this logical 
operator as a weight-2 stabilizer. As such, we can now regard the 
[[4, 2, 2]] code that we prepared initially as a [[4, 1, 2]] code. We, there-
fore, have the state � H CZ⊗ �∣  encoded on the logical space of two 
[[4, 1, 2]] codes shown in the purple and orange boxes shown in 
Extended Data Fig. 7(bottom).

Analysis in terms of single-gate errors
All circuits considered, both for magic-state preparation and logi-
cal tomography, use redundancy to detect errors. For the mid-circuit 
syndrome measurements, performed with the circuit shown in Fig. 1, 
this redundancy comes, in part, by using flag qubits. These yield an out-
come of 0 unless an error has occurred. These outcomes are, therefore, 
error-sensitive events, allowing errors to be detected.

Additional error-sensitive events come from the results of the syn-
drome measurements themselves. For the circuit shown in Fig. 2b, 
these events are as follows:
1. The results of the two W  measurements should agree.
2. SX should yield 0, because the system is prepared in a +1 eigenstate 

of this operator.
3. Although the first SZ will yield a random outcome, the following 

feedforward means that the resulting state is in the +1 eigenspace 
of SZ. This will then be the expected outcome for the value of final 
SZ measurement.

For concreteness, we will consider the measurement of logical ZZ, for 
which the final SZ measurement is achieved through the final measure-
ment of data qubits. The circuit, then, has eight flag results in addition 
to the above three conditions for syndrome measurements. This gives 
11 error-sensitive events in all. To analyse how errors in the circuit are 
detected, we consider all the possible ways in which Pauli errors can 
be inserted around each gate. Specifically, we consider the insertion 
of X, Y and Z before any single-qubit gate, and all possible single- and 
two-qubit Paulis before any two-qubit gate, on the qubits that support 
the gate. We then simulate each of these circuits to determine how the 
error is detected.

This analysis has two important uses. First, it can be used to verify 
the fault tolerance of the scheme, by confirming that all Pauli errors 
with non-trivial effect are in some way detected by the error-sensitive 
events. Second, it can be used to determine the specific combination 
of error-sensitive events, s, that detect each error. This information can 
then be used to infer the corresponding probabilities εs that such errors 
occurred, by looking at how often the corresponding error signature 
occurs within the outcomes measured.

After performing this analysis, it was found that the circuit is fault- 
tolerant. The only cases in which an error was not detected are those 
where the system was in an eigenstate of the error operator, or where 
its application was immediately followed by a measurement in an 
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eigenbasis of the Pauli error. In both of these cases, the error will have 
a trivial effect on the circuit output.

When calculating the εs, it is important to note that the error signa-
tures, s, are not necessarily unique for each type of error. For exam-
ple, X and Y Paulis inserted immediately before any measurement will 
yield the identical effect of a measurement error. We, therefore, also 
determine the degeneracy, Ns, for each error signature. This is the num-
ber of unique errors that gives rise to the same error signature. With 
this information, we can then analyse the syndrome outcomes from 
experimental data, looking for these signatures and determining the 
probabilities with which they occur32.

Owing to the limited number of error-sensitive events used in this 
experiment, these probabilities can be calculated directly. The com-
bined probability, εs, for all forms of error that lead to a particular signa-
ture is determined using the number of shots for which that signature 
occurs, ns, and the number of shots for which no error is detected, n0. 
The ratio of these numbers of shots will be the ratio of the probability 
that the error occurs with the probability that it does not:

n
n

ε
ε

≈
1 −

. (9)
s s

s0

Simply rearranging this relation gives us the value of εs (ref. 62). We then 
use the degeneracy to obtain the average probability for each possible 
single-qubit Pauli error with this signature: εs/Ns.

Standard magic-state preparation circuits
Here we describe magic-state preparation circuits with no error 
suppression that are compared with our error-suppressed scheme 
described in the main text.

In Extended Data Fig. 8a, we show a circuit that prepares an encoded 
CZ state by, first, preparing a CZ state on two physical qubits and, 
then, encoding the state such that the Pauli observables of the two 
qubits of the CZ state can be represented as logical operators of the 
error-detecting code we encode. Finally, we measure the stabilizer 
operators of the code to encode the state, assuming we obtain the 
correct stabilizer measurement outcomes. The circuit used for the 
preparation step is shown in Extended Data Fig. 8b.

We can make use of the stabilizer operators of the CZ state to simplify 
the preparation circuit shown in Extended Data Fig. 8b. We define a 
stabilizer operator U, with respect to state ∣ψ�, as an operator for which 
the action is trivial on its respective state, that is, ∣ ∣U ψ ψ� = � . We can 
check that the CZ state is invariant under the action of a controlled-not 
gate conditioned on the control qubit in the zero state

CX X′ = 1� �1 ⊗ + 0� �0 ⊗ .∣ ∣ ∣ ∣�

This unitary gate is equivalent to a standard controlled-not gate, 
�CX X= 0� �0 ⊗ + 1� �1 ⊗∣ ∣ ∣ ∣ , followed by a bit flip on the target qubit, 

that is,

�CX X CX′ = ( ⊗ ) .

This observation enables us to simplify the preparation circuit. Once 
the CZ state is prepared, we add the CX ′ gate in the dashed box in 
Extended Data Fig. 8, as the state we have prepared at this stage is 
invariant under this inclusion. The inclusion of this operator enables 
us to simplify the circuit, as the repeated application of the two Pauli-X 
rotations and the repeated application of two controlled-not opera-
tions used in the circuit act like an identity operation. This trivial step 
in the circuit is marked on the figure between vertical dashed lines. We 
can, therefore, omit all of the controlled-not operations and the bit-flip 
operations from the circuit shown in our implementation of this 
method of state preparation. As such, this preparation step includes 
only two entangling gates: a controlled Hadamard gate and a swap 

gate. We perform logical tomography by appending the circuits shown 
in Fig. 2b,c to the end of the circuit shown in Extended Data Fig. 8a. 
Likewise, we can perform physical tomography on the output of the 
circuit shown in Extended Data Fig. 8a.

Moreover, we note that the CZ state is also stabilized by the swap gate:

� X X Y Y Z Zswap = ( + ⊗ + ⊗ + ⊗ )/2,

and CZ as defined in the main text. The CZ state is uniquely stabilized 
by the Abelian stabilizer group generated by the set CZ CX� , ′swap�.

Finally, we also compare our error-suppressed magic-state prepara-
tion scheme to a circuit that prepares the same magic state on two physi-
cal qubits (Extended Data Fig. 8c). We prepare the state on two physical 
qubits using a single entangling gate, together with single-qubit rota-
tions, before measuring the state in varying single-qubit Pauli bases, P 
and Q, to conduct state tomography on the circuit output.

Device overview
Encoded state data collection on ibm_peekskill v.2.4.0 spanned sev-
eral days over a single region. During this time, monitoring experi-
ments were interleaved with tomography data collection trials. Device 
coherence times for all qubits exceed about 100 μs and two-qubit 
errors per gate was found to range from 0.35% to 0.59%. Detailed 
monitoring of readout errors are provided in Extended Data Fig. 9f,g 
and time-averaged readout fidelities ranged from 98.1% to 99.6% 
for all qubits. Average device characterization data are summarized 
in Extended Data Tables 1 and 2. Unencoded magic-state data were 
collected over a single 24-h period on ibm_peekskill v.2.5.4 on all 
physical pairs and the best-performing edge is reported in Extended 
Data Table 2. Although the unencoded magic-state data were not 
interleaved with encoded-state tomography, the best-performing 
pair of physical qubits was found to have a low two-qubit error 
per gate of 0.38%, and this error is comparable with the lowest  
two-qubit error per gate for edges used in the encoded magic-state 
experiments.

Real-time feedforward control of qubits
In the past decade, several experiments were performed that exploit 
fast feedback or real-time control within the execution of a quan-
tum program. Fast feedback has been used for conditional reset63–66, 
state and gate teleportation67–69 with low branching complexity and 
in more demanding algorithms such as the iterative-phase estima-
tion protocol70, to name a few. More recently, there have been dem-
onstrations of quantum error correction using real-time control in 
various systems2,6,71,72. There have also been examples of work toward 
classical-control microarchitectures that enable the seamless integra-
tion of qubits and classical operations with tens of qubits.

Our work was performed with the first-generation real-time control 
system of IBM Quantum, in which we use centralized processing of 
mid-circuit measurement outcomes to classically condition a quan-
tum circuit. The control system architecture is based on a hierarchical 
heterogeneous system of field-programmable gate array controllers 
with computing elements for concurrent real-time processing, micro-
wave control and qubit readout. These are synchronized through a 
global clock and linked with a real-time communication network to 
enable synchronized collective operations such as control flow. Branch-
ing incurs a constant latency penalty to execute the branch (of the 
order of 500 ns). Real-time computations will incur a variable latency 
overhead depending on the complexity of the decision. The system 
provides specialized fast-path control-flow capabilities for rapid and 
deterministic conditional reset operations. Collective control of the 
system requires orchestration through a proprietary heterogene-
ous hardware compiler and code generator. We use an open-access 
platform that is programmable through Qiskit and OpenQASM 3—an 
open-source imperative C-style real-time quantum programming 



language73. All experiments were performed through Qiskit and IBM 
Quantum Services74,75.

Estimates for magic-state yield
Let us attempt to model the error rate of the components of the device 
using the yield we have evaluated experimentally. The yield is a help-
ful figure of merit as it tells us precisely how often a single-error event 
occurs to leading order in the error rate. We first try to model the yield 
using simple three-parameter models that we derive below. We also 
compare the yield to numerical simulations of our circuits. We show 
the estimated yield for different experiments in Extended Data Table 3, 
in comparison with our analytical model and numerical results.

Both of our analyses have good agreement with the experiment if we 
assume a two-qubit gate-error rate and a measurement error rate of the 
order of 2%. This is a high error rate compared with those measured in 
Extended Data Tables 1 and 2. However, we remark that neither our ana-
lytical model nor our simulations account for common error processes 
such as leakage, cross talk, two-level systems and idling errors that 
may occur during slow-circuit processes that will introduce additional 
noise to the system. We suggest discrepancies in our modelling, and 
the experimentally observed yields can be attributed to these details 
that are difficult to model analytically or numerically.

Let us present our analytical model to evaluate the yield. We can 
estimate the magic-state yield as QR, where Q is the probability that 
the random measurement outcomes we obtain throughout our experi-
ment yield the values we need to complete the magic-state preparation 
scheme and R is the probability that the experiment does not experi-
ence a single error.

If we have that εP is the probability that a single parity measurement 
introduces an error and D is the number of parity measurements  
that are conducted in an experiment, that is, the depth, we can write 
R ε= (1 − )P

D, thereby giving the equation

Q εlogical yield = (1 − ) . (10)P
D

We note that Q and D vary for different experiments.
For our rough calculation, we find reasonably good agreement with 

the experimental data if we take εP ≈ 22%. This equates, approximately, 
to a two-qubit gate-error rate and a measurement error rate of about 2%. 
Each parity measurement we perform uses eight entangling gates and 
three mid-circuit measurements. Therefore, neglecting higher-order 
terms, we obtain the probability that a parity measurement introduces 
a single error is

ε ε ε≈ 8 + 3 , (11)P Q M2

where ε2Q is the two-qubit gate-error rate and εM is the probability of a 
measurement error. If we set ε2Q = εM = 2%, we find that εP = 22%.

We also need to predict Q for different experiments. Let us begin 
with the error-suppressed experiment in which we use feedforward. 
Here, in the noiseless case, we have one random measurement outcome, 
in which we initially measure W . It is readily checked that the probabil-
ity that we project the |++⟩ state onto the +1 eigenvalue eigenspace of 
the CZ operator is QFF = ⟨++∣(1 + CZ)∣++⟩/2 = 3/4. In the case that we do 
not use feedforward, in addition to obtaining the correct outcome for 
the W  measurement, we must also post-select on obtaining the correct 
outcome of the initial measurement of SZ. We obtain the +1 eigenvalue 
subspace of this operator with probability 1/2. We, therefore, have 
QPS = 3/4 × 1/2 = 3/8. Finally, in the standard preparation procedure, we 
measure both SZ and SX, and we require that both give the +1 outcome. 
Each measurement gives the correct outcome with probability 1/2. We, 
therefore, have QSTND = 1/2 × 1/2 = 1/4.

Let us comment on the features of this model that agree with the 
experiment. First of all, we observe that the error-suppressed scheme 
using feedforward has a consistently better yield than the other two 

schemes, both the error-suppressed scheme using post-selection and 
the standard preparation scheme. Furthermore, we observe that the 
error-suppressed post-selection scheme and the standard scheme 
have comparable yields, for both tomography circuits shown in Fig. 2.

Furthermore, our model explains the difference in yield between 
different tomography experiments conducted using the two differ-
ent circuits shown in Fig. 2. The tomography circuit in Fig. 2c uses two 
additional parity measurements than that shown in Fig. 2b. As such 
the tomography circuit in Fig. 2c is inherently more noisy than that 
in Fig. 2b. This is reflected in Fig. 4 in which the yield for tomography 
circuits shown in Fig. 2b,c are shown in Fig. 4 (left, right).

Our rudimentary analytical model correctly predicts several quali-
tative features of our experimental data. However, it neglects many 
details of the circuit. As we might expect, we find better agreement 
with the experimentally observed yield if we simulate our circuit. We 
assume an error rate for each of the two-qubit entangling gates and a 
measurement error rate of 2%. These results are also shown in Extended 
Data Table 3. Again, the physical error rate of these circuit elements is 
considerably higher than the observed error rates of these components. 
As mentioned at the beginning of this section, we attribute this to noise 
processes that are not captured by either our analytical model or our 
numerical simulations. In practice, it is extremely difficult to capture 
all of the physical details that occur in an experiment.

State tomography with readout error mitigation using noisy 
positive-operator-valued measurements
The state tomography in the main text uses the Qiskit Experiments 
implementation of state tomography31. A notable change from the 
previous works is that we do not use readout error mitigation in the 
main text. Instead, we perform tomographic fitting assuming ideal 
measurements, which attributes any undetectable measurement 
errors to errors in the reconstructed quantum state. For physical 
tomography, we use the cvxpy_gaussian_lstsq fitter with measurement 
data using the default Pauli-measurement basis on each physical qubit 
to obtain a weighted maximum-likelihood estimate, constrained to 
the space of positive, semi-definite, unit trace density matrices. For 
logical tomography, we use the cvxpy_linea_lstsq fitter with a custom 
measurement basis using Pauli expectation values, rather than Pauli 
eigenstate probabilities. In this case, the custom fitter weights are 
calculated from the inverse of the standard error in the Pauli expec-
tation value estimates for each post-selected logical Pauli operator 
measurement.

Susceptibility to measurement error is a common issue in tomo-
graphic methods. In general, tomographic tools are only as good as 
the noise model of the measurement apparatus, that is, our ability 
to calculate the likelihood representing the conditional probability 
of obtaining a dataset given some test density matrix. In this section, 
we discuss an alternative approach combining readout error charac-
terization with tomographic reconstruction. Although the dominant 
measurement error source in tomography experiments is because of 
qubit readout, it is a common practice to assume local, uncorrelated 
readout errors in the Z basis. A set of noisy positive operator-valued 
measurements (POVMs) on a single-qubit is,

Z
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q
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q
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where p is the probability of assigning outcome 1 to a state initially 
prepared as |0⟩ and q is the probability of assigning outcome 0 to 
astate initially prepared as |1⟩; that is, p = P(1∣0) and q = P(0∣1). We can 
also construct noisy POVMs for measurements in the Pauli-X or Pauli-Y 
eigenbases by rotating the noisy POVMs shown in equation (12) by an 
appropriate angle assuming ideal unitaries, because the measure-
ment error is typically several orders of magnitude greater than the 
one-qubit gate error.
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By interleaving small batches of experimental data collection with 

readout calibration experiments, one can construct noisy POVMs for 
each data qubit applicable to a small duration of data collection to be 
used in fitting procedures discussed above. In Extended Data Fig. 9a, 
state infidelities from fitting with noisy POVMs can be compared with 
fitting with ideal projectors (p, q ≡ 0), in which the latter is reported in 
the main text. Using readout mitigation, the fault-tolerant tomography 
routines far outperform both unencoded tomography and the physical 
tomography of the encoded state. As the terminating measurements in 
logical tomography are very similar to those in physical tomography, we 
would expect both of these experiments to demonstrate similar infideli-
ties. Resolving this discrepancy remains an open research question.

Furthermore, it is unclear if our assumed construction of noisy 
POVMs, or the measured readout error calibrations, collectively reflect 
the true measurement errors experienced by data qubits. We, there-
fore, test the sensitivity of the outcomes of state tomography to the 
choice of measurement compensation in Extended Data Fig. 9b–d. 
State infidelity is calculated by fitting experimental tomography data 
to POVMs parameterized by p and q. To simplify, these readout error 
probabilities are set to be constant for all qubits and time. Dark-blue 
regions of low infidelity (with the minima marked with a red star) do 
not coincide with the state infidelity calculated using the global aver-
age of experimentally measured readout calibrations (marked by a 
black dot). This disparity suggests that either the target experiments 
experienced initialization or measurement errors at a higher rate than 
measured by simpler calibrations and/or fitting with potentially incor-
rect A-matrices yields a highly non-positive state that is mapped to a 
high-fidelity physical state under constrained optimization.

Combining readout mitigation with tomography thus remains an 
open question for further work, and the results of the main text are 
limited by unaddressed readout error on terminal measurements. We 
expect that state tomography experiments in Extended Data Fig. 9b–e 
at p = q = 0 provide a reasonable upper bound on the error of the under-
lying magic state.

Data availability
The datasets generated and analysed during this study are available at 
https://doi.org/10.6084/m9.figshare.23535237.

Code availability
The codebase used for data analysis and figure generation is available 
at https://doi.org/10.6084/m9.figshare.23535237; other supporting 
codes are available upon reasonable request.
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Extended Data Fig. 1 | A generic magic-state distillation protocol. Encoded 
input magic states are combined such that higher fidelity magic states are 
produced with some probability. For a single use of a magic-state distillation 
protocol, the error of an input magic state ϵ is suppressed like ϵ → ϵd where d  
is a constant determined by the magic-state distillation protocol. Applying 

distillation recursively allows us to produce magic states with an arbitrarily 
high fidelity. By initializing error-suppressed magic states in the first step, 
where the error is suppressed as ϵ2 we obtain a quadratic improvement in the 
fidelity of the output magic state.
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Extended Data Fig. 2 | Small codes. We describe how to encode these codes 
into higher distance codes. (left) The error-detecting code prepared in the 
main text. We refer to this code as the [[4, 2, 2]] code to distinguish it from the 
[[4, 1, 2]] code shown to the right of the figure. The [[4, 2, 2]] code has stabilizer 
generators SX = X1 X2X3X4 and SZ = Z1Z2Z3Z4 and logical operators X X X=A 1 2, 
Z Z Z=A 1 3, X X X=B 1 3 and Z Z Z=B 1 2 for logical operators indexed A and B. (right).  
The [[4, 1, 2]] code is an error detecting code that encodes a single logical qubit. 
It is closely related to the error detecting code shown (left). It has stabilizer 
generators SX = X1 X2X3X4, S Z Z= 1 2

Z
T  and S Z Z= 3 4

Z
B , and logical operators X X X= 1 2, 

Z Z Z= 1 3.



Extended Data Fig. 3 | Injecting an encoded magic state into the surface 
code. The magic state is initially encoded on a [[4, 1, 2]] code. (left) The 
standard surface code with physical qubits on the vertices of a square lattice 
and standard Pauli-X and Pauli-Z type stabilizers marked by lattice faces. 
Supports for the logical Pauli-X and Pauli-Z operators are shown in green and 
blue, respectively. (right) We show the initial state that is injected into the 
surface code. The [[4, 1, 2]] code is shown in red in the bottom-left corner. The 
remaining qubits of the surface code lattice are prepared in a product state, 
where blue (green) qubits are prepared in the ∣0� v ( + � v∣ ) state. We show the 
code deformation stabilizers, i.e. ∩=def. init. fin.S S S , shaded on the right lattice.
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Extended Data Fig. 4 | Injecting an encoded state into the heavy-hex code. 
The injected state is initially encoded on the [[4, 1, 2]] code. (left) A lattice with 
qubits on the vertices. We show the support of a single Pauli-Z gauge check and 
a Pauli-X stabilizer operator. The support of the Pauli-Z gauge check is shown  
in dark gray. The Pauli-X stabilizer operator is shaded grey towards the top of  
the lattice. We also show the support of a Pauli-X- and Pauli-Z-type stabilizer in 
green and blue, respectively. (right) The stabilizer group for init.S . The [[4, 1, 2]] 
code is outlined in red in the bottom-left corner of the lattice. The other qubits 
are initialized in a product state with blue (green) qubits initialized in the ∣0�  
( ∣ + �) state. Stabilizer operators ∩=def. init. fin.S S S  are shaded in the figure.



Extended Data Fig. 5 | Injecting an encoded two-qubit state into the color 
code. The state is initially encoded with the [[4, 2, 2]] code. A qubit is supported 
on each of the vertices of the lattice. We initialize the system S init. such that the 
[[4, 2, 2]] code, shaded in red, is supported on a weight-four face in the bottom 
left corner of the lattice. The other qubits are prepared in Bell pairs on the 
highlighted blue and green edge terms. As such, we shade the faces of Sdef. 
where both a Pauli-X and Pauli-Z stabilizer is supported. The support of the 
logical operators on the left and bottom boundaries are highlighted in blue and 
green, respectively.
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Extended Data Fig. 6 | Preparing a CZ state over two [[4, 1, 2]]-codes.  
At step 1 the codes are prepared. The [[4, 2, 2]] code that encodes the two-qubit 
CZ-state is represented by the red square where its four qubits lie at the vertices 
of the square. This preparation is described in the main text. The code is prepared  
adjacent to a [[4, 1, 2]]-code that is initialized in an eigenstate of the + �∣  state. 
The qubits in the figure are indexed according to the qubit-map shown in 
Extended Data Fig. 7. At step 2 the qubits are transported in order to perform  
a logical parity measurement in step 3 using the heavy-hex lattice geometry. 
Note that the qubit indices have changed. This step can be performed with 

swaps, for instance, as shown in Extended Data Fig. 7(top). At step 3 a logical 
parity measurement is made. It can be performed in a fault-tolerant manner 
using qubits 5, 10, and 16, as shown in the green box in Extended Data Fig. 7 
(bottom). We complete the operation by measuring the logical operator Z2 in 
step 4. This weight-two measurement can be repeated in two locations on the 
[[4, 2, 2]] code such that a single measurement error can be detected. This final 
measurement projects the [[4, 2, 2]] code onto the [[4, 1, 2]]-code by reassigning  
the ZB logical operators as stabilizers of the system.



Extended Data Fig. 7 | Mapping the encoding onto the heavy-hexagonal 
lattice geometry. We encode the CZ-state onto two copies of the [[4, 1, 2]]- 
code. (top) We prepare the encoded CZ-state as defined in the main text using 
the qubits outlined in the purple box. We additionally prepare a [[4, 1, 2]]-code 
in the logical ∣ + �  state using the qubits outlined in the orange box. To perform 
step 3, as shown in Extended Data Fig. 6, we first move the codes, as in step 2. 
This can be performed using swap gates between adjacent qubits. Swap gates 
are performed, first, between pairs of qubits marked by a blue arrow, and then 
between pairs of qubits marked with green arrows. Each set of swap gates, the 
blue set and the green set, can be performed in parallel. Completing the swap 
operations moves the codes over the qubit map. We show the locations of the 
codes after the swap operations by outlining their supporting qubits with a 
purple and orange box, respectively, in the bottom figure. In their new locations,  
the logical parity measurement of step 3 can be performed using ancillary 
qubits 5,10 and 16, outlined in the green box in the bottom figure. At the final 
step we facilitate the measurement of Z4Z6 and Z15Z17 using ancillary qubits 5 and 
16, respectively.
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Extended Data Fig. 8 | Magic-state preparation without error suppression. 
We can encode a physical CZ state using the circuit outlined in (a), where the 
preparation step, Prep., is shown in (b). The magic state is then encoded using 
stabilizer measurements SX and SZ. The preparation circuit, (b), first prepares  
a CZ state on two physical qubits before preparing the state to encode it in  
the four-qubit code by stabilizer measurements. The circuit makes use of 
V iθY= exp( ) a Pauli-Y rotation with θtan = 2 , a controlled-Hadamard gate and a 
bitflip. We find that we can simplify the circuit once the CZ state is prepared by 
making use of the stabilizer operators of the CZ state. As discussed in the main 

text we observe that the circuit element in the box with a dotted outline acts 
trivially on the CZ-state. The inclusion of this stabilizer operator allows us to 
remove all of the Pauli-X and controlled-not operations shown in the circuit, as 
the circuit elements in the box negate their adjacent self-inverse gates. Indeed, 
the circuit elements that lie in between the vertical dashed lines act like the 
identity operator. (c) The CZ state is prepared on two physical qubits, where the 
circuit elements are defined above. We perform state tomography on this state 
by making different choices of single-qubit Pauli measurements, P and Q, on 
the output of this circuit.



Extended Data Fig. 9 | Combining readout-error mitigation with state 
tomography methods. (a) State infidelity for the standard (orange) vs. 
error-suppressed (blue) schemes using different tomographic methods; 
error-bars represent 1σ std. dev. from bootstrapping. On the x-axis, a state is 
reconstructed with either logical tomography (Logical) or physical tomography  
after logical projection (Physical); tomography assumes either ideal projectors,  
as in the main text, or noisy POVMs representing uncorrelated, local readout 
errors (RO) on terminal data qubit measurements. Raw physical tomography 
(Raw Phys.) refers to the state on four physical qubits prior to logical projection.  
Red dotted (green dot-dashed) lines show lowest (average) state infidelities of 
the two-qubit unencoded magic state prepared with RO mitigation. With RO 

mitigation, logical tomography outperforms the min. unencoded state 
supporting conclusions in the main text. (b)-(e) Heatmap of state infidelity vs. 
avg. measurement error, p ≡ P(1∣0), q ≡ P(0∣1). Experimental tomography data  
is fit to noisy POVMs using a parameterized A-matrix, A ≔ [[1 − p, q], [p, 1 − q]], 
where p, q are constant for all qubits and time. Experimental readout calibrations  
data are averaged over time and qubits, and correspond to a single state 
infidelity in (b)-(e) (black dots). These state infidelities (black dots) do not 
coincide with local minima (red stars) or even high-fidelity regions. (f)-(g) 
Readout calibration measurements of p, q vs. time for all four data qubits over 
several days; average rates (black solid) are used in (b)-(e) for state fidelities 
marked by black dots.
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Extended Data Table 1 | Average single-qubit benchmarks

Data shown is for qubits of ibm_peekskill used in this work.



Extended Data Table 2 | Average two-qubit gate benchmarks

Data shown are for the qubits of ibm_peekskill used in this work. CX gates, constructed from 
echoed cross-resonance pulse sequences, are specified in one direction, with the reverse 
directions accessed by the addition of single-qubit gates. Error per gate (EPG) is extracted 
from isolated two-qubit randomized benchmarking (spectator qubits idling). The notation * 
denotes error rates for the best performing physical qubit pair on ibm_peekskill during  
unencoded magic state preparation experiments defining the minimum (red line) in Fig. 3.
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Extended Data Table 3 | Estimated magic-state yield 
compared with experiment

We compare our analytical model, Eqn. (10), and numerics to the experimental data. We 
calculate the yield for the error-suppressed preparation experiment using feedforward (FF) 
and the error-suppressed preparation experiment using (PS). We also estimate acceptance 
rates for the standard experiment. The depth of the circuits D vary depending on the different 
tomography experiment we run, so we treat them separately. We append 2(b) and 2(c) to 
the different experiments depending on the tomography circuit we used, in reference to the 
circuits shown in Fig. 2(b) and (c) in the main text.
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