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Observation of interband Berry phase in 
laser-driven crystals

Ayelet J. Uzan-Narovlansky1,2,10 ✉, Lior Faeyrman1,10, Graham G. Brown3, Sergei Shames1, 
Vladimir Narovlansky4, Jiewen Xiao5, Talya Arusi-Parpar1, Omer Kneller1, Barry D. Bruner1, 
Olga Smirnova3,6, Rui E. F. Silva7, Binghai Yan5, Álvaro Jiménez-Galán3,7, Misha Ivanov3,8,9 & 
Nirit Dudovich1 ✉

Ever since its discovery1, the notion of the Berry phase has permeated all branches of 
physics and plays an important part in a variety of quantum phenomena2. However,  
so far all its realizations have been based on a continuous evolution of the quantum 
state, following a cyclic path. Here we introduce and demonstrate a conceptually  
new manifestation of the Berry phase in light-driven crystals, in which the electronic 
wavefunction accumulates a geometric phase during a discrete evolution between 
different bands, while preserving the coherence of the process. We experimentally 
reveal this phase by using a strong laser field to engineer an internal interferometer, 
induced during less than one cycle of the driving field, which maps the phase onto the 
emission of higher-order harmonics. Our work provides an opportunity for the study 
of geometric phases, leading to a variety of observations in light-driven topological 
phenomena and attosecond solid-state physics.

Whenever a quantum system undergoes a cyclic evolution governed 
by a change of parameters, it acquires a phase factor, known as the 
geometric phase. The most common formulations of the geometric 
phase are the Aharonov–Bohm phase3 and the Berry phase1. Over the 
past several decades, the geometric phase has been generalized and 
became notable in several applications—from condensed matter phys-
ics4,5, fluid mechanics6 and optics7,8 to particle physics and gravity9.

In condensed matter physics, the geometric phase manifests in the 
electronic Bloch states, leading to various observations such as the 
quantum Hall effect, electric polarization, orbital magnetism and 
exchange statistics4. In these systems, applying an electric field drives 
the electronic wavefunction in the crystal momentum space, leading 
to the accumulation of the Berry phase because of the parameter space 
topology, and it is known as Zak’s phase when integrated over the entire 
Brillouin zone10. The local properties of this quantum evolution are 
captured by the Berry curvature, representing the local rotation of 
the wavepacket as it evolves within the Brillouin zone. The original 
description of Berry’s phase1 required two fundamental conditions. 
First, the phase should be accumulated as a quantum state evolves 
in a parameter space adiabatically. Second, the parameter should be 
modified continuously. A generalization of the Berry phase11,12 removed 
the adiabaticity requirement. However, the smooth modification of 
the wavefunction in a continuous parameter space, which underlies 
the basic mathematical formulations of the Berry phase, forms the 
main part of its various realizations13.

Here we introduce and experimentally verify a formulation of the 
geometric phase, which includes both continuous and discrete modi-
fications of the wavefunction. This phase, referred to as the interband 

Berry phase, is pertinent to all light-driven quantum systems undergo-
ing both adiabatic evolution and light-induced jumps in the Hilbert 
space. Experimentally, we focus on the light-driven condensed matter 
systems. Driven by a low-frequency external field, the electronic wave-
function undergoes non-adiabatic interband transitions followed by 
intraband propagation and, finally, an additional non-adiabatic transi-
tion by photo-recombination. These dynamics form a closed loop in 
the energy–momentum space (Fig. 1a). Although the evolution of the 
wavefunction in each band is continuous, the light-induced transitions 
between the bands represent a discrete evolution. The geometric phase 
accumulated along this closed path is gauge invariant14 measurable 
and plays an important part in the response of a quantum system to 
an intense light field (see a detailed discussion in the Supplementary 
Information).

We resolve the interband Berry phase15 by introducing attosecond 
interferometry, using a polarization-controlled laser field to drive 
the evolution of the quantum wavefunction. Our scheme induces an 
internal interferometer in the k-space by shaping the electronic tra-
jectories on a subcycle time scale, providing access to the interband 
Berry phase. By manipulating the instantaneous polarization of the 
laser field, we induce and control two different electron–hole paths, 
evolving during the positive and negative subcycles of the laser field. 
Their phase difference, recorded in a broken-inversion-symmetry 
crystal as a function of laser field polarization, is resolved using 
high-harmonic generation (HHG) spectroscopy16,17 (Fig. 1b). Driven 
by the strong laser field18, the electron tunnels across the energy gap 
between the valence and the conduction bands, initiating an electron–
hole wavepacket19. This excitation is followed by the propagation of 
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the electron–hole wavepacket, dictated by the temporal shape of the 
laser field, and electron–hole recombination, projecting the k-space 
trajectories onto the emission of higher-order harmonics (known as 
interband HHG)20,21. The Berry phase accumulated by the electron–hole 
wavepacket is thus mapped onto the optical phase and amplitude of the 
emitted harmonics. As various k-space trajectories are projected onto 
different harmonics22,23, this scheme can resolve the evolution of the 
Berry phase over the entire Brillouin zone. Finally, we obtain a direct 
insight into the local manifestation of the geometrical properties of 
the wavefunction, the Berry curvature24–27, resolving its impact on the  
electron currents.

The primary advantage of HHG spectroscopy lies in its time scale—the 
entire interaction evolves during less than one optical cycle, avoiding 
scattering or dephasing events and preserving the coherence of the 
wavepacket22,28. A previous study25 showed the Berry curvature of topo-
logical insulators using HHG driven by THz field29, having a fundamental 
period of 40 fs. In their study, topology helps to overcome dephasing 
and scattering mechanisms, showing the geometrical properties of the 
system. Our measurement, performed on an attosecond time scale, 
enables the probing of the Berry phase in trivial insulators.

Formally, the gauge-invariant geometric phase accumulated during 
a cyclic evolution of the wavefunction in the energy–momentum space 
can be evaluated as follows:

∣ ∣ ⋯ ∣ ⋯ ∣

∫

∫

u u u u u u u u

γ τ τ ϕ τ τ

lim⟨ ⟩⟨ ⟩ ⟨ ⟩ ⟨ ⟩

∝ e

≡ ( ) ⋅ ( ( ( )) + ∇ ( ( )))d

(1)

′

N
u

ε τ τ γ

t

t

→∞
v, c, c, c, c, v, v, v,

i ( ( ))d +i

B,int g d

N N1 2 2 3 −1 2 1

g B,intt

t

′

F k k

k k k k k k k

k

k

Here ∣u ⟩n,k  is the periodic part of the Bloch function (n = v, c for  
valance and conduction bands), εg = εc − εv is band gap energy and 

= −g c v    is electron–hole relative Berry connection ( ) =n k
( u x u xi⟨ ( ) ∇ ( )⟩n n, ,k k k∣ ∣ ). The discrete evolution between the bands  
is described by the phase of the interband dipole coupling, 
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k − A(t) + A(τ) is controlled by the laser field, where F(t) and A(t) are 
the laser electric field and the vector potential, respectively. The 
instants t′ and t define the transition times between the bands  
(the ionization and recombination times). The interband Berry phase, 
γB,int, contains the evolution inside each band, described by the con-
ventional integral over the Berry connection, together with the phase 
contributions associated with the jumps between the bands, which 
are represented by the phases of the coupling dipoles. This Berry 
phase represents a closed trajectory in energy–momentum space and 
can be expressed as k k k k k
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bination maps each closed trajectory into the emission of optical 
radiation, at a frequency of εg(k(t)), projecting the Berry phase, γB,int, 
onto the optical phase of the emitted harmonics.

Interband Berry-phase interferometry
We extract the Berry phase using the sub-laser-cycle interferometric 
measurement. The two arms of the interferometer are the two elec-
tron trajectories, which are inverted with respect to each other and 
evolve during the positive and negative half cycles of the laser field 
(Fig. 1b). By controlling the instantaneous laser-field polarization, we 
control these trajectories in the k-space and manipulate their interfer-
ence. The control is achieved using elliptically polarized light, which 
induces the two-dimensional (2D) motion in the k-space. When the 
two trajectories evolve in the vicinity of positive and negative Berry 
curvatures, the accumulated phases along the two arms will have 
opposite signs (Fig. 2a). Increasing the ellipticity, ϵ, enables us to con-
tinuously tune the 2D k-space paths, and therefore the accumulated 
Berry phase. Finally, the two emission bursts, associated with the 
radiative recombination of the two trajectories, interfere in the HHG 
spectrum, encoding their relative phase in the spectral shape of the  
harmonics.

We experimentally demonstrate the Berry-phase interferometry 
by producing HHG from an α-quartz z-cut crystal24,30,31, using a 1.2-μm 
laser field with an intensity of order of 1013 W cm−2. The harmonics 
spectrum spans up to 30 eV, enabling us to probe the internal dynam-
ics over a large energy range (Fig. 1b). By performing detailed theo-
retical and experimental studies (Supplementary Information), we 
conclude that under our experimental conditions, the interband 
mechanism dominates the harmonics emission. We note that this 
observation is in contrast to the previous observation of HHG in 
quartz30, performed with shorter wavelength and laser pulses of few  
cycles.

Figure 2b,c presents the HHG signal as a function of the driving field 
ellipticity (ϵ) along the Γ−K and Γ−M axes. Along the Γ−K axis, the har-
monic signal decreases as the ellipticity is increased (Fig. 2b). Owing 
to the rotation symmetry (C2) of the crystal along this axis, an electron 
trajectory, modified by the ellipticity of the field, does not accumulate 
an additional Berry phase (Supplementary Information). In this case, as 
we increase the ellipticity, the transverse momentum increases, lead-
ing to the suppression of the electron–hole recombination. Rotating 
the crystal to the Γ−M axis leads to a different response. Along this 
axis, increasing the ellipticity decreases the odd harmonics signal and 
increases the even harmonics signal (Fig. 2c). For high ellipticity values, 
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Fig. 1 | Interband Berry phase resolved using HHG spectroscopy.  
a, The Berry phase in condensed matter systems. Left, intraband Berry phase, 
accumulated as the wavepacket, continuously evolves in the k-space within  
the band. When the trajectory forms a closed loop through the entire Brillouin 
zone, a gauge-invariant phase is accumulated (known as the Zak phase). Right, 
interband Berry phase, the wavepacket evolution includes discrete transitions 
between the two bands, closing a loop in the energy–momentum space. b, HHG 
Berry-phase interferometry. An interferometric measurement is performed by 
manipulating the instantaneous polarization of the laser field, generating two 
different wavepackets, evolving along the positive and the negative half cycles. 
The interference pattern is resolved in the HHG spectrum, encoding the 
relative accumulated Berry phase.
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both the odd and even harmonics show fringe-like patterns oscillating 
out of phase with each other (Fig. 2d).

The oscillations of the HHG signal reveal the interferometric nature 
of the measurement. Both the odd and even harmonics result from the 
interference of the signals generated during two consecutive laser half 
cycles32,33. This interference encodes the relative phase accumulated 
between the two closed quantum paths that the system takes during 
successive half cycles. To retrieve the phase, we perturb the interfero-
metric measurement by making the driving field weakly elliptic. We 
can then expand the geometric phase equation (1) to the first order 
in the ellipticity of the field, ϵ (Supplementary Information), leading 
to the accumulation of symmetric Δεg(ϵ) and anti-symmetric ΔγB(ϵ) 
components. In the presence of C2 symmetry, as is the case for the Γ−K 
direction (or for any inversion-symmetric system), the perturbation 
is dominated by Δεg, which is symmetric along the two interferometer 
arms. Rotating the crystal off this axis gives rise to the anti-symmetric 
contribution, ΔγB(ϵ), which has an opposite sign along the two sub-
cycles. Note that the light-driven geometric phase also includes an 

imaginary part, which captures the quantum nature of the interac-
tion and is associated with the contribution of the electron tunnelling 
across the band gap.

Finally, the complex perturbation is mapped onto the odd and even 
harmonics according to (Supplementary Information):
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where E N0,
±  are the unperturbed prefactors, containing the dipole cou-

plings, corresponding to the interaction induced along positive and 
negative half cycles. As the measurement resolves the harmonic inten-
sity, only the imaginary component of the symmetric part of the per-
turbation Δεg(ϵ) contributes, representing the suppression of the 
recombination probability with ellipticity. By contrast, the anti- 
symmetric phase ΔγB(ϵ) can be directly observed, inducing clear oscil-
lations between the neighbouring odd and even harmonics. Along the 
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Fig. 2 | Berry-phase interferometry. a, Schematic of the electron trajectories 
driven by an elliptical field: (1) manipulating the laser ellipticity, ϵ, induces a 
transversal evolution of the electron–hole wavepacket, controlling the closed 
loop in energy–momentum space. εv and εc correspond to the valance and 
conduction bands, respectively, coloured according to the Berry curvature 
(red representing positive values and blue representing negative values). Black 
arrows correspond to the trajectory induced by the linear driving field and 
purple arrows to the elliptical driving field; (2) a top projection of the energy–
momentum space, εc − εv, illustrates the intraband wavepacket evolution along 
the Γ−M (30° crystal orientation) and Γ−K (0° crystal orientation). The light-blue 

arrows represent the Berry connection increasing along the transverse 
evolution, leading to the accumulation of the Berry phase. b,c, HHG spectrum 
(log scale) as a function of the driving field ellipticity, resolved along the Γ−K (b) 
and Γ−M (c) axes. d, Odd (blue, left axis) and even (red, right axis) harmonic 
intensities as a function of the ellipticity of the driving field, for harmonics  
(left to right): H14–H15, H18–H19 and H21–H22. e, The reconstructed complex 
Berry phase, ΔγB, as a function of the ellipticity of the driving field for each pair 
of neighbouring harmonics (that are presented above, in d). We resolve both 
the real (green, left axis) and imaginary (cyan, right axis) components of the 
Berry phase.
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Γ−K axis, in which the interaction is dictated by the C2 symmetry, 
ΔγB(ϵ) = 0, and the interference is dominated by only Δεg (Supplemen-
tary Information). We find that along this axis the even and odd har-
monics show a similar response, decaying with the increasing 
ellipticity. Resolving the interference along the Γ−M axis gives access 
to ΔγB(ϵ). As shown in equation (2), in this case we find the opposite 
response of the odd and even harmonics with ϵ. This response serves 
as a sensitive probe of this phase, enabling its reconstruction.

Figure 2e presents the retrieved Berry phase as a function of the 
ellipticity of the driving field for harmonics H14–H15, H18–H19 and 
H21–H22. The reconstructed Berry phase increases with ϵ, following the 
larger asymmetry induced by the elliptically polarized field (see Sup-
plementary Information for a detailed description). Our reconstruction 
procedure is most accurate at lower ellipticity values. Moreover, for 
higher harmonics, the reconstructed Berry phase is larger, reflecting 

longer trajectories associated with these harmonics. The increase of 
the imaginary Berry phase captures the quantum nature of the interac-
tion, originating from both the tunnelling mechanism and the reduced 
electron–hole overlap with increasing ellipticity. To the best of our 
knowledge, this is the first experimental observation and reconstruc-
tion of the interband Berry phase in crystals, resolved by strong-field 
light-matter interactions.

Resolving the Berry curvature
Next, we extend our interferometry scheme to probe the well-known 
local geometrical property, the intraband Berry curvature (Ω k= ∇ ×). 
Although the Berry phase and the Berry curvature are strongly related, 
their physical properties are inherently distinct, leading to different 
observations (Supplementary Information). The intraband Berry  
curvature gives rise to a large variety of phenomena, such as Hall 
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Fig. 3 | Resolving the Berry curvature. a, Intraband wavepacket evolution, in 
momentum (left) and real (right) space, induced by a linearly polarized field 
(dark green to light green, representing the evolution in time from the 
tunnelling time to the recombination time). The trajectory in the top and 
bottom planes corresponds to the positive and negative half cycles of the 
driving field, respectively. b, Time evolution of the two-colour orthogonally 
polarized field. The fundamental field is polarized along the y-direction and its 
second harmonic field along the x-direction, for a case of zero subcycle delay 
(φ = 0) between the two fields. c, The harmonics signal as a function of the 

two-colour delay (φ), resolved for different crystal orientations (left to right: 
−5°, 0°, 5° and 30°). Each row in the 2D plot is normalized by its maximal value. 
d,e, Schematic of real-space wavepacket evolution, during the fundamental 
first subcycle, for different time delays between the two fields. The lateral 
displacement of the electron–hole wavepacket at the recombination time (Δx) 
is induced by the two-colour field, in which the maximal and minimal harmonic 
signals are achieved at the minimum and maximum displacement, respectively 
(yellow marker). The lateral shift induced by the anomalous velocity is 
represented by xan.
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conductivity and orbital magnetism4. In particular, the application of 
an electric field induces a transverse current, normal to the Berry 
curvature direction, associated with the anomalous velocity 
( = − ×e

ħanv F Ω, where F is the electric field). The anomalous velocity 
induces a drift of an electron trajectory in the lateral direction in the 
coordinate space (Fig. 3a), whereas its k-space trajectory remains 
unchanged. The HHG mechanism serves as an extremely accurate 
probe of the Berry curvature because of the lateral drift it induces14. 
This drift suppresses the spatial overlap between the electron and the 
hole, suppressing the recombination probability and therefore the 
HHG signal (Supplementary Information). Previous studies resolved 
the Berry curvature using HHG polarimetry, dictated by all compo-
nents of the interaction—the intraband evolution as well as the dipole 
couplings24–26. By contrast, our measurement scheme provides a direct 
local probe of the anomalous velocity, isolating its impact on the 
light-driven trajectories.

In a broken-inversion-symmetry crystal, the Berry curvature inverts 
its sign between k and −k. Therefore, when the interaction is driven by a 
single-colour field, an identical lateral drift is induced between the two 
consecutive half cycles, generating two mirror-imaged real-space paths 
(Fig. 3a). We show the role of the Berry curvature by driving the interac-
tion with a laser field that holds the same mirror-symmetry property. 
This symmetry is achieved by combining the fundamental field with its 
orthogonally polarized second harmonic34. The total vector potential 
rotates in a 2D plane (Fig. 3b), inducing two mirror-imaged trajecto-
ries. This manipulation modifies the evolution of the wavefunction in 
a controllable manner—enhancing or compensating the anomalous 
velocity and the associated drift. Controlling the delay between the two 
fields, φ, shapes the instantaneous 2D laser field, driving the electron 
along or against the anomalous velocity direction. This manipulation 
suppresses or enhances the recombination probability and is directly 
mapped onto the HHG signal. Importantly, owing to symmetry, the 
k-space interferometer is balanced, in which the relative interband 
Berry phase cancels out. This scheme enables us to isolate the role of 
the Berry curvature and capture its direct influence on the electron 
trajectories.

Figure 3 experimentally resolves the role of the intraband Berry cur-
vature on laser-driven electron trajectories. Figure 3c presents the 
harmonic signal as a function of the two-colour delay, φ, measured 
at different crystal orientations24. First, we focus on the Γ−K direction 
(0°), having a C2 symmetry, in which the Berry curvature is zero. When 
the interaction is driven by a single-colour field, the electron–hole  
follows a one-dimensional trajectory. The addition of a weak second 
harmonic field induces 2D mirror-symmetric trajectories having a 
lateral shift (Fig. 3d, red line, Δx), in which the interaction cannot dis-
tinguish between the left- or right-lateral displacement. This case is 
equivalent to an inversion-symmetric crystal, in which zero lateral 
shift is obtained twice within one period of the second harmonic field. 
Figure 3c shows this periodicity, identifying the fundamental symmetry 
of the interaction and the absence of the Berry curvature. A subtle rota-
tion of the crystal, by just 5°, dramatically changes this observation, 
reducing the periodicity of oscillations to be a full cycle of the second 
harmonic field. Once the Berry curvature becomes non-zero, a small 
displacement is induced due to the anomalous velocity (Fig. 3e, xan), 
driving the electrons along 2D mirror-symmetric paths. Here the addi-
tion of the second harmonic field identifies the role of the anomalous 
velocity, compensating or increasing the induced lateral drift. In this 
case, the total drift along the right or left direction becomes distinguish-
able. We maximize the symmetry breaking by rotating the crystal along 
the Γ−M axis (30°), maximizing the Berry curvature itself. In this case, 
there is only one delay in which both contributions—the anomalous 
velocity and the second harmonic field—compensate each other, reduc-
ing the periodicity of the measurement to be one second harmonic 
period. These results identify unequivocally the dominant role of the 
Berry curvature in the evolution of strong-field-driven electrons.

The two-colour HHG scheme forms a unique configuration, enabling 
the detection of the Berry curvature in a time-reversal symmetric  
system. The high sensitivity is provided by the highly nonlinear nature 
of the interaction; the response during the first half cycle is localized 
around Γ−M (positive Berry curvature) and during the second half cycle 
around Γ−M′ (negative Berry curvature). Importantly, although the 
overall laser field is not chiral, the instantaneous chirality of the field 
changes its direction between two consecutive half cycles35 (Fig. 4a). 
As we shift the two-colour delay by T/2 (T is the second harmonic 
period), we reverse the instantaneous chirality. Therefore, the signal 
difference between these two delays reflects a circular dichroism (CD) 
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. In Fig. 4b, we plot the circular 

dichroism signal, resolved for different harmonic numbers, as a func-
tion of the orientation of the crystal. As can be observed, along Γ−K 
(0°) the circular dichroism signal vanishes, having its largest values 
around the maximal Berry curvature (Γ−M, 30°). Moreover, in contrast 
to the well-known linear optical schemes, the circular dichroism signal 
measured by this scheme is extremely high, approaching 70%. The high 
sensitivity is provided by the strong-field nature of the interaction, 
reflecting its exponential dependence on the Berry curvature (Supple-
mentary Information).

In summary, our study presents a previously unknown formalism of 
the Berry phase, accumulated in both discrete and continuous space. 
HHG spectroscopy enables us to realize Berry-phase interferometry 
and probe the coherent properties of electron–hole wavefunction on 
a subcycle time scale. We experimentally demonstrate this scheme 
and resolve the generalized Berry phase across a large energy range.  
Extension of the approach to a two-colour field enables sensitive prob-
ing of the Berry curvature. The ability to resolve angstrom-scale dis-
placement of the electron enhances the sensitivity of the measurement 
by orders of magnitude, enabling us to probe extremely low values 
of the curvature. We believe that the fundamental properties of our 
measurement will position HHG spectroscopy as a unique experimental 
scheme to identify Berry curvature and topological phases at higher 
conduction bands36. Importantly, this scheme provides opportunities 
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for Berry curvature measurements in insulators, probing a large range 
of condensed matter systems that cannot be resolved using transport 
measurements4 or other techniques. Finally, our scheme opens new 
paths in probing light-driven band structure, in which the fundamen-
tal properties of the solid change during less than one optical cycle37, 
exhibiting attosecond-scale topological phenomena25,38.
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