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Satellite mapping reveals extensive industrial 
activity at sea

Fernando S. Paolo1,6 ✉, David Kroodsma1,6, Jennifer Raynor2, Tim Hochberg1, Pete Davis1, 
Jesse Cleary3, Luca Marsaglia1, Sara Orofino4, Christian Thomas5 & Patrick Halpin3

The world’s population increasingly relies on the ocean for food, energy production 
and global trade1–3, yet human activities at sea are not well quantified4,5. We combine 
satellite imagery, vessel GPS data and deep-learning models to map industrial vessel 
activities and offshore energy infrastructure across the world’s coastal waters from 
2017 to 2021. We find that 72–76% of the world’s industrial fishing vessels are not 
publicly tracked, with much of that fishing taking place around South Asia, Southeast 
Asia and Africa. We also find that 21–30% of transport and energy vessel activity is 
missing from public tracking systems. Globally, fishing decreased by 12 ± 1% at the 
onset of the COVID-19 pandemic in 2020 and had not recovered to pre-pandemic 
levels by 2021. By contrast, transport and energy vessel activities were relatively 
unaffected during the same period. Offshore wind is growing rapidly, with most  
wind turbines confined to small areas of the ocean but surpassing the number of oil 
structures in 2021. Our map of ocean industrialization reveals changes in some of  
the most extensive and economically important human activities at sea.

More than one billion people depend on the ocean for their primary 
source of food1–3, with 260 million employed by global marine fisher-
ies alone6. About 80% of all traded goods are shipped over the ocean7 
and nearly 30% of the world’s oil is produced in offshore fields and 
distributed worldwide8. In addition to these established uses of the 
ocean, increases in offshore renewable energy, aquaculture and mining 
are rapidly emerging. All of this industrial machinery powers a 1.5–2.5 
trillion dollar ‘blue economy’9,10 that is growing faster than the overall 
global economy10 but is also causing rapid environmental decline.  
A third of fish stocks are operated beyond biologically sustainable 
levels11 and an estimated 30–50% of critical marine habitats have been 
lost owing to human industrialization12–14.

A lack of global observational data limits understanding of where 
and how the blue economy is expanding and how it is affecting 
developing nations and coastal communities15–17. On land, maps 
exist for almost every road18, datasets are being developed for every 
human-made structure19 and extractive industries such as forestry 
and agriculture are mapped globally at sub-kilometre scale and 
updated monthly20,21. In the ocean, however, many seagoing vessels 
do not broadcast their location or are not detected by public moni-
toring systems22, and information on the development of offshore 
infrastructure and other industrial activities is often held private23. 
The result is that continuing human expansion into the ocean is poorly  
documented.

Current approaches for mapping human activity at sea have limita-
tions. Some vessel-tracking systems, such as the vessel monitoring 
system (VMS) used in fishing, are proprietary, which limit the ability 
to map and compare across regions5. For public mapping of ships, the 
focus has been on the automatic identification system (AIS)24, which 

broadcasts vessel coordinates to track vessel movements and sup-
port maritime safety; AIS data can also reveal vessel identities, owners 
and corporations, and fishing activities5,25,26. Not all vessels, however, 
are required to use AIS devices, as regulations vary by country, vessel 
size and activity22. Vessels engaged in illicit activities often turn off 
their AIS transponders or manipulate the locations they broadcast27–29.  
In recent years, for example, the largest cases of illegal fishing28 and 
forced labour30,31 were by fleets that mostly did not use AIS devices. 
Furthermore, large ‘blind spots’ along coastal waters emerge where 
satellite reception is poor22 and AIS data received by terrestrial recep-
tors can be restricted by national governments32. We refer to vessels 
that are not visible on publicly accessible AIS data as ‘not publicly 
tracked’. This concept is also sometimes referred to as ‘dark vessels’. 
Although the location of offshore fixed infrastructure should be more 
readily available than moving vessels, information on offshore develop-
ment is often restricted for commercial or bureaucratic reasons33, and 
large-scale assessments must aggregate several disparate data sources, 
which are often incomplete or outdated34. Vessel activity and ocean 
infrastructure are not captured well by existing methods, but satellite 
imagery and deep learning can improve the monitoring of human use of  
the ocean.

Here we present a detailed global map of major industrial activi-
ties at sea. To detect and characterize vessels and offshore infrastruc-
ture in coastal waters around the globe, we analysed 2 petabytes of 
satellite imagery spanning the years 2017–2021, with our analyses 
covering more than 15% of the ocean (Extended Data Fig. 1) in which 
more than 75% of industrial activity is concentrated (Methods). We 
designed and trained three deep convolutional neural networks to 
identify objects (>97% accuracy) and estimate their lengths (R2 score 
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of 0.84); to classify offshore infrastructure into oil, wind and other 
objects (>98% accuracy); and to classify vessels as fishing or non-fishing  
(>90% accuracy). Combined, we classified more than 67 million image 
tiles, including dual-polarization synthetic-aperture radar (SAR) 
imagery from Sentinel-1 (ref. 35) and optical (red, green, blue and 
near-infrared (NIR)) imagery from Sentinel-2 (ref. 36). The resolution 
of SAR allows us to capture most objects larger than 15 m (detection rate 
>70% for 25-m vessels and >90% for vessels 50 m and larger; Extended 
Data Fig. 2). We also analysed 53 billion vessel GPS positions from the 
AIS and matched them to the satellite detections to determine whether 
a detected vessel was publicly tracked.

Fishing and non-fishing vessels
During 2017–2021, on average, about 63,300 vessel occurrences were 
detected at any given moment, roughly half (42–49%) of which were 
fishing vessels (based on 23.1 million vessel detections; Fig. 1). Notably, 
about three-quarters (72–76%) of globally mapped industrial fishing did 
not appear in public monitoring systems, compared with one-quarter 
(21–30%) for other vessel activities.

Vessel activity was widespread but also highly concentrated. Divid-
ing our study area into 0.1° cells (about 11 km), we detected a vessel 
at least once in 84% of the cells covered by the satellites, yet half of all 
vessel activity was concentrated in less than 3% of the cells. Most vessel 
activity (86% of fishing and 75% of non-fishing) was focused in waters 
less than 200 m deep (Fig. 1), which constitute only 7% of the ocean. 
Activity is also unevenly distributed by continent, with approximately 
67% of all vessel activity in Asia, followed by 12% in Europe, 7% in North 
America, 7% in Africa, 4% in South America and 2% in Australia (Fig. 1).

Our satellite mapping revealed high densities of vessel activity in 
large areas of the ocean that previously showed little to no vessel activ-
ity by public tracking systems (Fig. 2). Indonesia, South Asia, Southeast 
Asia and the northern and western coasts of Africa (Fig. 2 and Extended 
Data Figs. 3 and 4) all show substantial amounts of activity not publicly 
tracked.

By mapping vessels that fail to broadcast their location, we show 
far more accurately the global distribution of industrial fishing. AIS 
data alone, for example, wrongly suggest that Europe and Asia have 
comparable fishing activity, with other continents having less than 
one-fifth as much activity (Extended Data Table 1). Our global map, 
however, reveals that Asia dominates industrial fishing, accounting 
for 70% of all fishing vessel detections (Extended Data Fig. 5); nearly 
30% of all mapped fishing vessels were concentrated in the exclusive 
economic zone (EEZ) of China alone. Similarly, AIS data suggest that 
European countries in the Mediterranean have more than ten times 
as many fishing hours in their EEZs as do African countries5, but our 
mapping shows that detections of fishing vessels are fairly balanced 
between the northern and southern parts of the Mediterranean Sea 
(Figs. 1 and 2).

Our mapping can also reveal potential hotspots of illegal fishing 
activity. Previous work showed substantial illicit activity in the eastern 
waters of North Korea28, but our global mapping shows that most of the 
undisclosed fishing actually occurred in the western part of the Korean 
Peninsula (Fig. 2). In fact, this location showed the highest density of 
fishing vessels in the world from 2017 to 2019, with about 40 vessels per 
1,000 km2. This previously unmapped activity peaked each year in May, 
during China’s moratorium on fishing in their own waters (Extended 
Data Fig. 6), and activity abruptly fell by 85% during the COVID-19 pan-
demic when North Korea shut its borders. Numerous fishing vessels 
not publicly tracked were also detected inside many marine protected 
areas (MPAs). For example, two of the most iconic, biologically impor-
tant and well-monitored MPAs in the world—the Galápagos Marine 
Reserve and the Great Barrier Reef Marine Park—showed, on average, 
more than 5 and 20 of these vessels per week, respectively (Extended  
Data Fig. 7).

The spatial resolution of our data, which is substantially higher than 
the most widely used global fishing products37,38, also reveals detailed 
fishing strategies at the regional scale (Fig. 2 and Extended Data Fig. 3). 
The area between Tunisia and Sicily, for example, shows a mix of both 
publicly and not publicly tracked fishing vessels aggregating along 
ocean banks and the edges of seabed canyons, a signature characteristic 
of bottom trawling39. Similarly, off the coast of Bangladesh, in which 
almost no vessels are publicly tracked and no public maps of fishing 
exist, fishing vessels follow bathymetric contours and submarine can-
yons that radiate from the Ganges Delta.

Unlike fishing, most non-fishing vessels (largely transport and 
energy-related) broadcast their locations, with just about one- 
quarter missing from public monitoring systems. Asia had the larg-
est concentration (65% of all detections) of transport and energy 
vessels, including most of the non-broadcasting ones (Fig. 1)—most 
of these vessels, however, were operating in areas with poor satel-
lite AIS reception, so it is possible that many vessels broadcast their 
positions but were not trackable with global AIS tracking services. 
All other continents seemed to have relatively minor tracking dis-
crepancies across transport and energy vessels, with less than 20% 
of these vessels not publicly trackable.

Our mapping also tracks changes in vessel activity over time 
(Fig. 3). Similar to a previous AIS-based analysis5, our data show 
yearly cycles of fishing activity, with cycles inside China driven by 
the Chinese New Year and their voluntary fishing moratorium, and 
in the rest of the world by the New Year and associated holidays. 
But, owing to SAR-based detection, we can provide a more accurate 
assessment of trends, which reveals a global decrease in fishing 
activity of 12 ± 1%, coinciding with the pandemic. By stark contrast, 
transport and energy remained stable or even slightly increased 
over 2017–2021. Moreover, the impact of COVID-19 on fishing activ-
ity was much greater outside China (compared with 2018 and 2019), 
and transport and energy grew more in China than it did in the rest of  
the world.

Fixed infrastructure
The number of offshore structures worldwide was around 28,000 by 
the end of 2021 (Fig. 4). Wind turbines and oil structures in notable 
wind-producing or oil-producing areas (Methods) constituted 48% and 
38% of all ocean infrastructure, respectively; the remaining 14% was 
divided across wind turbines and oil structures outside major devel-
opment areas, as well as piers, bridges, power lines, aquaculture and 
other human-made structures.

Most oil infrastructure is distributed among 13 major oil-producing 
areas (Fig. 4a). Excluding Lake Maracaibo in Venezuela, which is a 
lagoon, our mapping shows that the largest concentration of offshore 
oil infrastructure in the world is in the Gulf of Mexico. At the end of 2021, 
about a quarter of the global offshore oil infrastructure is accounted 
for by the USA (>2,200 oil structures), followed by Saudi Arabia (>770) 
and Indonesia (>670).

Offshore wind development has been mostly confined to north-
ern Europe (52%) and China (45%) (Fig. 4a and Extended Data Fig. 8); 
however, there has been a shift in offshore energy development. The 
number of offshore oil structures has increased by about 16% over the 
past half a decade (Fig. 4c), with a decrease in the USA of several hun-
dred structures offset by increases elsewhere (Extended Data Fig. 9). 
By contrast, the number of wind turbines in the ocean has more than 
doubled since 2017, probably surpassing the number of oil structures 
by the end of 2020 (Fig. 4c). China leads the development of offshore 
wind, with a staggering 900% increase in turbines from 2017 to 2021 
(averaging around 950 wind turbines per year), well ahead of projec-
tions by the International Energy Agency40. The UK and Germany lead 
offshore wind development in Europe, increasing by 49% and 28%, 
respectively, since 2017.
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Fig. 1 | About 75% of global industrial fishing and 25% of other vessel activity 
is not publicly tracked. a,b, Per square kilometre, the average number of 
industrial fishing vessels (a) and shipping, tanker, passenger and support 
vessels (b), from 5 years of satellite SAR imagery. The colour represents the 
percentage of detected vessels that were matched (blue, publicly tracked)  
and unmatched (red, not publicly tracked) to known vessel positions from AIS 

broadcast. c, For each continent, the total number of detected vessels and the 
respective fraction of publicly and not publicly tracked. The outline around the 
continents (light grey) shows the area of the ocean with available SAR imagery 
(see Extended Data Fig. 1 for the spatial distribution of images). ‘N. America’ 
includes Central American countries. Classification of detected objects was 
performed with deep learning.
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Fig. 2 | High-resolution mapping reveals detailed patterns of fishing 
activity not publicly tracked. Satellite SAR detections of individual vessels 
during 2017–2021, matched (blue) and unmatched (red) to known vessel 
positions from AIS broadcast, are classified as fishing or non-fishing vessels 
with a deep-learning model. Most fishing vessels, usually smaller than 50 m in 
length, concentrate close to shore and follow bathymetric features, such as  
the continental shelf break and seabed canyons, or regulatory and political 
boundaries. Extensive areas of previously unmapped fishing activity are 

revealed along Northern Africa and South and Southeast Asia. The absolute 
number of detections in each location depends on the local vessel density and 
the number of satellite image acquisitions, which varies by region. Depicted 
numbers may represent a slightly larger area than is shown. This figure shows 
the level of spatial detail that is possible with our mapping approach. Extended 
Data Figures 3 and 4 show further examples of high-resolution fishing and 
non-fishing patterns publicly and not publicly tracked.
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Interactions between vessels and fixed infrastructure
A key question for the future is how vessel traffic may be affected by 
changes in oil and wind infrastructure development. Trawlers, which 
fish by hauling nets along the seafloor or through the water column and 
are the most common fishing gear globally, avoid fishing within 1 km 
of oil structures, most probably to avoid net entanglement (Extended 
Data Fig. 10a). Other types of fishing, which are at a lower risk of entan-
glement, are attracted to these structures, probably because they can 
cause fish to aggregate41. Although wind turbines may also aggregate 
fish, they are less likely to affect industrial fishing in the same way 
because they are, at present, highly concentrated and, on average, 
far from shore, where there is less fishing activity (Extended Data 

Fig. 10b). Also, oil-related vessel traffic has a much wider footprint 
than wind-related traffic, accounting for five times as much activity 
globally in 2021 (Fig. 4b and Extended Data Fig. 4).

Conclusion
Overall, our study reveals the extent of major industrial activities at 
sea, with fishing being by far the ocean industry with the most activ-
ity that is not public. With our freely available dataset and technol-
ogy, hotspots of potentially illegal activity can now be shown28 and 
industrial fishing vessels can be identified that are encroaching on 
artisanal fishing grounds17 or other countries’ EEZs27, but at a global 
scale and accessible to any nation. Maps of global fishing effort can 
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Fig. 3 | Fishing activity was highly affected by COVID-19, whereas transport 
and energy continued to grow. Time series of the average number of vessels 
over the area covered by SAR from Sentinel-1 (constructed from the average 
number of detections per satellite overpass at any given location; Methods) 
showing that COVID-19 greatly affected fishing activity, whereas transport and 
energy continued to grow. China alone holds nearly 30% of the global fishing 
fleet and about 21% of transport and energy vessels. a, Industrial fishing vessels 
greater than 15–20 m in length over all EEZs outside China and inside China EEZ. 
b, The same as a but for transport-related and energy-related vessels, mostly 

shipping, tankers, passenger and support. The shaded grey areas indicate the 
2-year mean ± 1 s.d., highlighting the effect of the 2020 global pandemic.  
The numbers show the per cent change with their respective standard error. 
The combined change (outside + inside) is −12 ± 1% (industrial fishing) and 
0 ± 1% (transport and energy); Methods. The coloured boxes highlight the 
annual cycles in activity related to national holidays and fishing moratoria.  
The y axis shows the maximum, mean and minimum values of detected vessels 
during 2017–2021.
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the fixed infrastructure. a, Global map of offshore development, showing  
oil infrastructure in major oil-producing areas, wind farms and other human- 
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end of 2021. b, One year of vessel traffic associated with offshore infrastructure 
in the North Sea. These vessels were all broadcasting and interacted with a 
detected oil or wind structure at some point during 2021 (the vessels were within 
200 m of an offshore structure for at least 2 h at a speed of 0 knots). Globally,  

in 2021, nearly 4,140,000 h of vessel activity were associated with oil platforms 
and around 792,500 h with wind turbines. GER, Germany; DK, Denmark;  
NL, The Netherlands; NO, Norway; SE, Sweden. c, Evolution of the number of 
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Methods).
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now include all vessels, not just those based on AIS tracking (which 
misses about three-quarters of large vessels), and with much higher 
resolution than just EEZs or statistical reporting areas37,38,42. Our data 
can also help to quantify the scale of greenhouse gas emissions from 
vessel traffic and offshore development, which may help to inform 
policies on reducing greenhouse gas emissions.

This picture of human activity also presents a snapshot of how indus-
trial use of the ocean is changing. Although COVID-19 may have had a 
dominant role in depressing fishing activity, fishing still decreased 
far more than other ocean industries. This slowdown is in line with a 
long-term decline in the relative importance of fishing in the ocean43. 
Since the 1980s, global marine fish catch has been relatively unchanged 
as most fisheries are already fished to capacity11. As a result, global 
fishing effort, which has increased several fold since 1950, increased 
only slightly in recent years42. Many countries that have reformed their  
fisheries show an actual decline in their fishing effort44. The decrease 
highlighted in this study may reflect this longer trend and we may 
already have seen the peak of fishing activity in the past decade. By 
contrast, transport and energy vessel traffic may continue to expand, 
following trends in global trade and the rapid development of renew-
able energy infrastructure. In this scenario, changes to marine ecosys-
tems brought by infrastructure and vessel traffic may rival fishing in 
impact43, and an accurate mapping of these activities is fundamental 
to understanding and managing future human activities in the ocean.
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Methods

SAR imagery
SAR imaging systems have proved to be the most consistent option 
for detecting vessels at sea45,46. SAR is unaffected by light levels and 
most weather conditions, including daylight or darkness, clouds 
or rain. By contrast, some other satellite sensors, such as electro- 
optical imagery, rely on sunlight and/or the infrared radiation emit-
ted by objects on the ground and can therefore be confounded by 
cloud cover, haze, weather events and seasonal darkness at high  
latitudes.

We used SAR imagery from the Copernicus Sentinel-1 mission of the 
European Space Agency (ESA) (https://sentinel.esa.int/web/sentinel/
user-guides/sentinel-1-sar). The images are sourced from two satellites 
(S1A and, formerly, S1B, which stopped operating in December 2021) 
that orbit 180° out of phase with each other in a polar, sun-synchronous 
orbit. Each satellite has a repeat cycle of 12 days, so that—together—they 
provide a global mapping of coastal waters around the world approxi-
mately every 6 days. The number of images per location, however, 
varies greatly depending on mission priorities, latitude and degree 
of overlap between adjacent satellite passes (https://sentinels.coper-
nicus.eu/web/sentinel/missions/sentinel-1/observation-scenario). 
Spatial coverage also varies over time and is improved with the addi-
tion of S1B in 2016 and the acquisition of more images in later years 
(Extended Data Fig. 1). Our data consist of dual-polarization images 
(VH and VV) from the Interferometric Wide (IW) swath mode, with a 
resolution of about 20 m. We used the Ground Range Detected (GRD) 
Level-1 product provided by Google Earth Engine (https://developers.
google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD), 
processed for thermal noise removal, radiometric calibration and  
terrain correction (https://developers.google.com/earth-engine/
guides/sentinel1). To eliminate potential noise artefacts33 that would 
introduce false detections, we further processed each image by clip-
ping a 500-m buffer off the borders. We selected all SAR scenes over 
the ocean from October 2016 to February 2022, comprising 753,030 
images of 29,400 × 24,400 pixels each on average.

Visible and NIR imagery
For optical imagery, we used the Copernicus Sentinel-2 (S2) mission 
of the ESA (https://sentinels.copernicus.eu/web/sentinel/user-guides/
sentinel-2-msi). These twin satellites (S2A and S2B) also orbit 180° out 
of phase and carry a wide-swath, high-resolution, multispectral imag-
ing system, with a combined global 5-day revisit frequency. Thirteen 
spectral bands are sampled by the S2 Multispectral Instrument (MSI): 
visible (RGB) and NIR at 10 m, red edge and SWIR at 20 m, and other 
atmospheric bands at 60-m spatial resolution. We used the RGB and 
NIR bands from the Level-1C product provided by Google Earth Engine 
(https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2) and we excluded images with more than 20% cloud 
coverage using the QA60 bitmask band with cloud mask information. 
We analysed all scenes that contained a detected offshore infrastruc-
ture during our observation period, comprising 2,494,370 images 
of 10,980 × 10,980 pixels each on average (see the ‘Infrastructure  
classification’ section).

AIS data
AIS data were obtained from satellite providers ORBCOMM and Spire. 
In total, using Global Fishing Watch’s data pipeline5, we processed  
53 billion AIS messages. From those data, we extracted the locations, 
lengths and identities of all AIS devices that operated near the SAR 
scenes around the time the images were taken; we did so by inter-
polating between AIS positions to identify where vessels probably 
were at the moment of the image, as described in ref. 47. Identities 
of vessels in the AIS were based on methods in ref. 5 and revised  
in ref. 26.

Environmental and physical data
To classify vessels detected with SAR as fishing and non-fishing, we 
constructed a series of global environmental fields that were used 
as features in our model. Each of these rasters represents an envi-
ronmental variable over the ocean at 1-km resolution. Data were 
obtained from the following sources: chlorophyll data from the NASA  
Ocean Biology Processing Group (https://oceancolor.gsfc.nasa.gov/
data/10.5067/ORBVIEW-2/SEAWIFS/L2/IOP/2018), sea-surface tem-
perature and currents from the Copernicus Global Ocean Analysis 
and Forecast System (https://doi.org/10.48670/moi-00016), distance 
to shore from NASA OBPG/PacIOOS (http://www.pacioos.hawaii.edu/ 
metadata/dist2coast_1deg_ocean.html), distance to port from Global 
Fishing Watch (https://globalfishingwatch.org/data-download/ 
datasets/public-distance-from-port-v1) and bathymetry from GEBCO 
(https://www.gebco.net/). EEZ boundaries used in our analysis and 
maps are from Marine Regions48.

Vessel detection by SAR
Detecting vessels with SAR is based on the widely used constant false 
alarm rate (CFAR) algorithm46,49,50, a standard adaptive threshold 
algorithm used for anomaly detection in radar imagery. This algo-
rithm is designed to search for pixel values that are unusually bright  
(the targets) compared with those in the surrounding area (the sea 
clutter). This method sets a threshold that depends on the statistics 
of the local background, sampled with a set of sliding windows. Pixel 
values above the threshold constitute an anomaly and are probably 
samples from a target. Our modified two-parameter CFAR algorithm 
evaluates the mean and standard deviation of backscatter values, delim-
ited by a ‘ring’ composed of an inner window of 200 × 200 pixels and 
an outer window of 600 × 600 pixels. The best separation between the 
ocean and the targets is accomplished by the vertical–horizontal (VH) 
polarization band, which shows relatively low polarized returns over 
flat areas (ocean surface) compared with volumetric objects (vessels 
and infrastructure)45:

x µ σ n> + anomalypx b b t ⇔

in which xpx is the backscatter value of the centre pixel, μb and σb are the 
mean and standard deviation of the background, respectively, and nt 
is a time-dependent threshold.

To maximize detection performance, we determined the sizes of 
the windows empirically, based on the fraction of detected vessels 
(broadcasting AIS) with length between 15 m and 20 m. A key feature 
of our two-parameter CFAR algorithm is the ability to specify different 
thresholds for different times. This adjustment is needed because the 
statistical properties of the SAR images provided by Sentinel-1 vary 
with time as well as by satellite (S1A and S1B). We thus found that the 
ocean pixels for both the mean and the standard deviation of the scenes 
changed, requiring different calibrations of the CFAR parameters for 
five different time intervals during which the statistics of the images 
remained relatively constant: January 2016 to October 2016 (nS1A = 14, 
nS1B = none); September 2016 to January 2017 (14, 18); January 2017 to 
March 2018 (14, 17); March 2018 to January 2020 (16, 19); and January 
2020 to December 2021 (22, 24). The five detection thresholds were 
calibrated to obtain a consistent detection rate for the smaller vessels 
across the entire Sentinel-1 archive (60% detection of vessels 15–20 m 
in length). The relative simplicity of our approach allowed us to repro-
cess the full archive of Sentinel-1 imagery several times to empirically 
determine the optimal parameters for detection.

To implement our SAR detection algorithm, we used the Python API 
of Google Earth Engine (https://developers.google.com/earth-engine/
tutorials/community/intro-to-python-api), a planetary-scale platform 
for analysing petabytes of satellite imagery and geospatial datasets. For 
processing, analysing and distributing our data products, our detection 
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workflow uses Google’s cloud infrastructure for big data, including 
Earth Engine, Compute Engine, Cloud Storage and BigQuery.

Vessel presence and length estimation
To estimate the length of every detected object and also to identify 
when our CFAR algorithm made false detections, we designed a deep 
convolutional neural network (ConvNet) based on the modern ResNet 
(Residual Networks) architecture51. This single-input/multi-output 
ConvNet takes dual-band SAR image tiles of 80 × 80 pixels as input and 
outputs the probability of object presence (a binary classification task) 
and the estimated length of the object (a regression task).

To analyse every detection, we extracted a small tile from the original 
SAR image that contained the detected object at the centre and that 
preserved both polarization bands (VH and VV). Our inference data 
therefore consisted of more than 62 million dual-band image tiles to 
classify. To construct our training and evaluation datasets, we used SAR 
detections that matched to AIS data with high confidence (see the ‘SAR 
and AIS integration’ section), including a variety of challenging scenar-
ios such as icy locations, rocky locations, low-density and high-density 
vessel areas, offshore infrastructure areas, poor-quality scenes, scenes 
with edge artefacts and so on (Extended Data Fig. 11). To inspect and 
annotate these samples, we developed a labelling tool and used domain 
experts, cross-checking annotations from three independent labellers 
on the same samples and retaining the high-confidence annotations. 
Overall, our labelled data contained about 12,000 high-quality sam-
ples that we partitioned into the training (80%, for model learning and 
selection) and test (20%, for model evaluation) sets.

For model learning and selection, we followed a training–validation  
scheme that uses fivefold cross-validation (https://scikit-learn.org/ 
stable/modules/cross_validation.html), in which, for each fold (a training 
cycle), 80% of the data is reserved for model learning and 20% for model 
validation, with the validation subset non-overlapping across folds. 
Performance metrics are then averaged across folds for model assess-
ment and selection, and the final model evaluation is performed on the 
holdout test set. Our best model achieved on the test set an F1 score of 
0.97 (accuracy = 97.5%) for the classification task and a R2 score of 0.84 
(RMSE = 21.9 m, or about 1 image pixel) for the length-estimation task.

Infrastructure detection
To detect offshore infrastructure, we used the same two-parameter 
CFAR algorithm developed for vessel detection, with two fundamental 
modifications. First, to remove non-stationary objects, that is, most 
vessels, we constructed median composites from SAR images within a 
6-month time window. Because stationary objects are repeated across 
most images, they are retained with the median operation, whereas 
non-stationary objects are excluded. We repeated this procedure for 
each month, generating a monthly time series of composite images. 
The temporal aggregation of images also reduces the background noise 
(the sea clutter) while enhancing the coherent signals from stationary 
objects33. Second, we empirically adjusted the sizes of the detection 
window. As some offshore infrastructure is usually arranged in dense 
clusters, such as wind farms following a grid-like pattern, we reduced 
the spatial windows to avoid ‘contamination’ from neighbouring struc-
tures. It is also common to find smaller structures such as weather masts 
placed between some of the wind turbines. We found that an inner 
window of 140 × 140 pixels and outer window of 200 × 200 pixels was 
optimal for detecting every object in all wind farms and oil fields that 
we tested, including Lake Maracaibo, the North Sea and Southeast Asia, 
areas known for their high density of structures (Extended Data Fig. 7).

Infrastructure classification
To classify every detected offshore structure, we used deep learning. 
We designed a ConvNet based on the ConvNeXt architecture52. A key 
difference from the ‘vessel presence and length estimation’ model, 
besides using a different architecture, is that this model is a multi-input/

single-output ConvNet that takes two different multiband image tiles 
of 100 × 100 pixels as input, passes them through independent con-
volutional layers (two branches), concatenates the resulting feature 
maps and, with a single classification head, outputs the probabilities 
for the specified classes: wind infrastructure, oil infrastructure, other 
infrastructure and noise.

A new aspect of our deep-learning classification approach is the 
combination of SAR imagery from Sentinel-1 with optical imagery from 
Sentinel-2. From 6-month composites of dual-band SAR (VH and VV) 
and four-band optical (RGB and NIR) images, we extracted small tiles 
for every detected fixed structure, with the respective objects at the 
centre of the tile. Although both the SAR and optical tiles consist of 
100 pixels, they come from imagery with different resolutions: the 
dual-band SAR tile has a spatial resolution of 20 m per pixel and the 
four-band optical tile is 10 m per pixel. This variable resolution not 
only provides information with different levels of granularity but also 
yields different fields of view.

From our inference data for infrastructure classification, which 
consisted of nearly six million multiband images, we constructed the 
labelled data by integrating several sources of ground truth for ‘oil and 
gas’ and ‘offshore wind’: from the Bureau of Ocean Energy Manage-
ment (https://www.data.boem.gov/Main/HtmlPage.aspx?page=pla
tformStructures), the UK Hydrographic Office (https://www.admi-
ralty.co.uk/access-data/marine-data), the California Department of 
Fish and Wildlife (https://data-cdfw.opendata.arcgis.com/datasets/
CDFW::oil-platforms-ospr-ds357/about) and Geoscience Australia 
(https://services.ga.gov.au/gis/rest/services/Oil_Gas_Infrastructure/
MapServer). Using a labelling approach similar to that of the vessel 
samples, we also inspected a large number of detections to identify 
samples for ‘other structures’ and ‘noise’ (rocks, small islands, sea ice, 
radar ambiguities and image artefacts). From all areas known to have 
some offshore infrastructure (Extended Data Fig. 11), our labelled data 
contained more than 47,000 samples (45% oil, 41% wind, 10% noise and 
4% other) that we partitioned into the training (80%) and test (20%) 
sets, using the same fivefold cross-validation strategy as for vessels.

Because the same fixed objects appear in several images over time, 
we grouped the candidate structures for the labelled data into 0.1° 
spatial bins and sampled from different bins for each data partition, 
so that the subsets for model learning, selection and evaluation did 
not contain the same (or even nearby) structures at any point. We also 
note that, in the few cases in which optical tiles were unavailable, for 
example, because of seasonal darkness close to the poles, the classifica-
tion was performed with SAR tiles only (optical tiles were blank). Our 
best model achieved on the test set a class-weighted average F1 score 
of 0.99 (accuracy = 98.9%) for the multiclass problem.

Fishing and non-fishing classification
To identify whether a detected vessel was a fishing or non-fishing boat, 
we also used deep learning. For this classification task, we used the 
same underlying ConvNeXt architecture as for infrastructure, modi-
fied to process the following two inputs: the estimated length of the 
vessel from SAR (a scalar quantity) and a stack of environmental ras-
ters centred at the location of the vessel (a multiband image). This 
multi-input-mixed-data/single-output model passes the raster stack 
(11 bands) through a series of convolutional layers and combines the 
resulting feature maps with the vessel-length value to perform a binary 
classification: fishing or non-fishing.

Two key aspects of our neural-net classification approach differ 
greatly from conventional image-classification tasks.

First, we are classifying the environmental context in which the vessel 
in question operates. To do so, we constructed 11 gridded fields (rasters) 
with a resolution of 0.01° (approximately 1 km per pixel at the equator) 
and with global coverage. At every pixel, each raster contains contex-
tual information on the following variables: (1) vessel density (based 
on SAR); (2) average vessel length (based on SAR); (3) bathymetry;  
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(4) distance from port, (5) and (6) hours of non-fishing-vessel presence 
(from the AIS) for vessels less than 50 m and more than 50 m, respec-
tively; (7) average surface temperature; (8) average current speed;  
(9) standard deviation of daily temperature; (10) standard deviation of 
daily current speed; and (11) average chlorophyll. For every detected 
vessel, we sampled 100 × 100-pixel tiles from these rasters, producing 
an 11-band image that we then classified with the ConvNet. Each detec-
tion is thus provided with context in an area just over 100 × 100 km. We 
obtained the fishing and non-fishing labels from AIS vessel identities26.

Second, our predictions are produced with an ensemble of two 
models with no overlap in spatial coverage. To avoid leakage of spa-
tial information between the training sets of the two models, and also 
to maximize spatial coverage, we divided the centre of the tiles into 
a 1° longitude and latitude grid. We then generated two independ-
ent labelled datasets, one containing the tiles from the ‘even’ and the 
other from the ‘odd’ latitude and longitude grid cells. This alternating 
1° (the size of the tile) strategy ensures no spatial overlap between 
tiles across the two sets. We trained two independent models, one for 
‘even’ tiles and another for ‘odd’ tiles, with each model ‘seeing’ a frac-
tion of the ocean that the other model does not ‘see’. The test set that 
we used to evaluate both models contains tiles from both ‘even’ and 
‘odd’ grid cells, with a 0.5° buffer around all the test grid cells removed 
from all the neighbouring cells (used for training) to ensure spatial 
independence across all data partitions (no leakage). By averaging 
the predictions from these two models, we covered the full spatial 
extent of our detections with independent and complementary spatial  
information.

Our original test set contained 47% fishing and 53% non-fishing sam-
ples. We calibrated the model output scores by adjusting the ratio of 
fishing to non-fishing vessels in the test set to 1:1 (https://scikit-learn.
org/stable/modules/calibration.html). We performed a sensitivity 
analysis to see how our results changed with different proportions of 
fishing and non-fishing vessels, 2:1 and 1:2. On average, about 30,000 
vessels not publicly tracked were detected at any given time. The cali-
brated scores with two-thirds fishing vessels predicted that 77% of these 
vessels were fishing, whereas the calibration with only one-third fishing 
vessels predicted that 63% of them were fishing vessels. Thus, the total 
percentage (considering all detections) of fishing and non-fishing 
vessels not publicly tracked amounts to 72–76% and 21–30%, respec-
tively. Analysts at Global Fishing Watch then reviewed these outputs in  
different regions of the world to verify its accuracy.

Our training data contained about 120,000 tiles (divided into ‘odd’ 
and ‘even’) that we split into 80% for model learning and 20% for 
model selection. Our test set for model evaluation contained 14,100 
tiles from both ‘odd’ and ‘even’ grid cells (Extended Data Fig. 11). The 
inference data contained more than 52 million tiles (11-band images) 
with respective vessel lengths that we classified with the two models. 
Our best model ensemble achieved on the test set a F1 score of 0.91 
(accuracy = 90.5%) for the classification task.

False positives and recall
Because there is no ground-truth data on where vessels are not present, 
estimating the rate of false positives at the global scale of our vessel 
detection algorithm is challenging. Although some studies report 
the total number of false positives, we believe that a more meaning-
ful metric is the ‘false positive density’ (number of false positives per 
unit area), which takes into account the actual scale of the study. We 
estimated this metric by analysing 150 million km2 of imagery across 
all five years in regions with very low density of AIS-equipped vessels 
(less than 10 total hours in 2018 in a grid cell of 0.1°), in regions far 
from shore (>20 km) and in the waters of countries that have relatively 
good AIS use and reception. The number of non-broadcasting vessel 
detections in these regions serves as the upper limit on the density of 
false positives, which we estimated as 5.4 detections per 10,000 km2. 
If all of these were false positives, it would suggest a false-positive 

rate of about 2% in our data. Because many of these are probably real 
detections, however, the actual false-positive rate is probably lower. 
Compared with other sources of uncertainties, such as the resolution 
limitation of the SAR imagery and missing some areas of the ocean 
(see below), false positives introduce a relatively minor error to our  
estimations.

To estimate recall (proportion of actual positives correctly identi-
fied), we used a method similar to that used in ref. 47. We identified all 
vessels that had an AIS position very close in time to the image acqui-
sition (<2 min) and should therefore have appeared in the SAR scene; 
if they were detected in the SAR image, we could match them to the 
respective AIS-equipped vessels and then identify the AIS-equipped 
vessels not detected. The recall curve suggests that we are able to detect 
more than 95% of all vessels greater than 50 m in length and around 80% 
of all vessels between 25 m and 50 m in length, with the detection rate 
decaying steeply for vessels smaller than 25 m (Extended Data Fig. 2). 
However, because our vessel detection relies on a CFAR algorithm with 
a 600-m-wide window, when vessels are close to one another (<1 km), 
the detection rate is lower. See the ‘Limitations of our study’ section 
for factors influencing detectability.

SAR and AIS integration
Matching SAR detections to the GPS coordinates of vessels (from AIS 
records) is challenging because the timestamp of the SAR images and 
AIS records do not coincide, and a single AIS message can potentially 
match to several vessels appearing in the image, and vice versa. To deter-
mine the likelihood that a vessel broadcasting AIS signals corresponded 
to a specific SAR detection, we followed the matching approach out-
lined in ref. 47, with a few improvements. This method draws on prob-
ability rasters of where a vessel probably is minutes before and after 
an AIS position was recorded. These rasters were developed from one 
year of global AIS data, including roughly 10 billion vessel positions, 
and computed for six different vessel classes, considering six different 
speeds and 36 time intervals, leading to 1,296 rasters. This probability 
raster approach could be seen as a utilization distribution53—for each 
vessel class, speed and time interval—in which the space is relative to 
the position of the individual.

As described in ref. 47, we combined the before and after probability 
rasters to obtain the probability distribution of the probable location of 
each vessel. We then calculated the value of this probability distribution 
at each SAR detection that a given vessel could match to. This value was 
then adjusted to account for: (1) the likelihood a vessel was detected 
and (2) a factor to account for whether the length of the vessel (from 
Global Fishing Watch’s AIS database) is in agreement with the length 
estimated from the SAR image. The resulting value provides a score 
for each potential AIS to SAR match, calculated as

pL Lscore = detect match

in which p is the value of the probability distribution at the location 
of the detection (following ref. 47), Lmatch is a factor that adjusts this 
score based on length and Ldetect is the likelihood of detecting the  
vessel, defined as

L R L= (length, spacing)detect inside

in which R is the recall as a function of vessel size and distance to the 
nearest vessel with an AIS device (Extended Data Fig. 2) and Linside is 
the probability that the vessel was in the scene at the moment of the 
image, obtained by calculating the fraction of a vessel’s probability 
distribution that is within the given SAR scene47. Drawing on 2.8 million 
detections of high-confidence matches (AIS to SAR matches that were 
unlikely to match to other detections and for which the AIS-equipped 
vessel had a position within 2 min of the image), we developed a lookup 
table with the fractional difference between AIS known length and SAR 

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html


estimated length, discretized in 0.1 difference intervals. Multiplying 
by this value (Lmatch) makes it very unlikely for a small vessel to match 
to a large detection, or vice versa.

A matrix of scores of potential matches between SAR and AIS is then 
computed and matches are assigned (by selecting the best option avail-
able at the moment) and removed in an iterative procedure, with our 
method performing substantially better than conventional approaches, 
such as interpolation based on speed and course47. A key challenge 
for us is deciding on the best score threshold to accept or reject a 
match, because a threshold that is too low or too high would increase 
or decrease the likelihood that a given SAR detection is a vessel not 
publicly tracked. To determine the optimal score, we estimated the 
total number of vessels with AIS devices that should have appeared in 
the scenes globally by summing R(length, spacing)Linside for all scenes. 
This value suggests that, globally, 17 million vessels with AIS devices 
should have been detected in the SAR images. As such, we selected the 
threshold that provided 17 million matches from the actual detections, 
that is, 7.4 ×10−6.

We refer to ref. 47 for the full description of the raster-based matching 
algorithm, and the matching code can be found at https://github.com/
GlobalFishingWatch/paper-longline-ais-sar-matching.

Data filtering
Delineating shorelines is difficult because current global datasets do 
not capture the complexities of all shorelines around the world54,55. 
Furthermore, the shoreline is a dynamic feature that constantly changes 
with time. To avoid false detections introduced by inaccurately defined 
shorelines, we filtered out a 1-km buffer from a global shoreline that 
we compiled using several sources (https://www.ngdc.noaa.gov/
mgg/shorelines, https://www.naturalearthdata.com/downloads/
10m-physical-vectors/10m-minor-islands, https://data.unep-wcmc.
org/datasets/1, https://doi.org/10.1080/1755876X.2018.1529714, 
https://osmdata.openstreetmap.de/data/land-polygons.html, https://
www.arcgis.com/home/item.html?id=ac80670eb213440ea5899bb
f92a04998). We used this synthetic shoreline to determine the valid 
area for detection within each SAR image.

We filtered out areas with a notable concentration of sea ice, which 
could introduce false detections because ice is a strong radar reflec-
tor, often showing up in SAR images with a similar signature to that 
of vessels and infrastructure. We used a time-variable sea-ice-extent 
mask from the Multisensor Analyzed Sea Ice Extent – Northern 
Hemisphere (MASIE-NH), Version 1 (https://nsidc.org/data/g02186/
versions/1#qt-data_set_tabs), supplemented with predefined bound-
ing boxes over lower-latitude areas known to have substantial seasonal 
sea ice, such as the Hudson Bay in Canada, the Sea of Okhotsk north of 
Japan, the Arctic Ocean, the Bering Sea, selected areas near Greenland, 
the northern Baltic Sea and South Georgia Islands. No imagery in the 
mode we processed was available for Antarctic waters.

We also removed repeated objects across several images (that is, fixed 
structures) from the vessel-detection dataset so as to exclude them 
from all calculations about vessel activity. This process also removed 
vessels anchored for a long period of time, so our dataset is more  
representative of moving vessels than stationary ones.

Another potential source of noise is reflections from moving vehicles 
on bridges or roads close to shore. Although bridges can be removed 
from the data through fixed infrastructure analysis, a vehicle moving 
perpendicular to the satellite path will appear offset. Vehicles visible in 
SAR can appear more than a kilometre away from the road when moving 
faster than 100 km per hour on a highway, sometimes appearing in the 
water. For matching AIS to SAR, we account for this movement in the 
matching code47. Drawing on the global gROADSv1 dataset of roads, 
we identified every highway and primary road within 3 km of the ocean 
(including bridges) and then calculated for each image where vehicles 
would appear if they were travelling 135 km per hour on a highway or 
100 km per hour on a primary road. These offsetting positions were 

turned into polygons that excluded detections within this distance, 
which eliminated about 1% of detections globally.

A minor source of false positives is ‘radar ambiguities’ or ‘ghosts’, 
which are an aliasing effect caused by the periodic sampling (radar 
echoes) of the target to form an image. For Sentinel-1, these ghosts 
are most commonly caused by bright objects and appear offset a few 
kilometres in the azimuth direction (parallel to the satellite ground 
track) from the source object. These ambiguities appear separated 
from their source by an azimuth angle56 ψ = λ/(2V)PRF, in which λ is 
the SAR wavelength, V is the satellite velocity and PRF is the SAR pulse 
repetition frequency, which—in the case of Sentinel-1—ranges from 1 
to 3 kHz and is constant across each sub-swath of the image35. Thus, we 
expect the offsets to also be constant across each sub-swath.

To locate potential ambiguities, we calculated the off-nadir angle35 θi 
for every detection i and then identified all detections j within 200 m of 
the azimuth line through each detection as candidate ambiguities. We 
then calculated the difference in azimuth angles ψij for these candidates. 
To find which of these detentions were potential ambiguities, we binned 
the calculated off-nadir angles (θi) in intervals of 0.1° (approximately 
200 m) and built a histogram for each interval by counting the num-
ber of detections at different azimuthal offset angles ψ, binning ψ at 
0.001°. For each interval θi, we identified the angle ψ for which there 
was the maximum number of detections, limiting ourselves to cases 
in which the number of detections was at least two standard devia-
tions above the background level. As expected, ambiguities appeared 
at a consistent ψ within each of the three sub-swaths of the IW mode 
images. For θ < 32.41°, ambiguities occurred at ψ = 0.363° ± 0.004°. For 
32.41° < θ < 36.87°, ambiguities occurred at ψ = 0.308° ± 0.004°. And 
for θ > 36.85°, ambiguities occurred at ψ = 0.359° ± 0.004°.

We then flagged all pairs of detections that lay along a line parallel 
to the satellite ground track and had an angle ψ within the expected 
values for their respective sub-swath. The smaller (dimmer) object 
in the pair was then selected as a potential ambiguity. We identified 
about 120,000 outliers out of 23.1 million detections (0.5%), which we 
excluded from our analysis.

Ambiguities can also arise from objects on shore. Because, generally, 
only objects larger than 100 m produce ambiguities in our data, and few 
objects larger than 100 m on shore regularly move, these ambiguities 
probably show up in the same location in images at different times. 
All stationary objects were removed from our analysis of vessels. The 
analysis of infrastructure also removed these false detections because, 
in addition to SAR, it draws on Sentinel-2 optical imagery, which is free 
from these ambiguities.

We defined spatial polygons for the major offshore oil-producing 
areas and wind-farm regions (Fig. 4a) and we prescribed a higher con-
fidence to the classification of oil and wind infrastructure falling inside 
these areas and a lower confidence elsewhere. Overall, we identified 14 
oil polygons (Alaska, California, Gulf of Mexico, South America, West 
Africa, Mediterranean Sea, Persian Gulf, Europe, Russia, India, South-
east Asia, East Asia, Australia, Lake Maracaibo) and two wind polygons 
(Northern Europe, South and East China seas). We defined these poly-
gons through a combination of: (1) global oil regions datasets (https://
doi.org/10.18141/1502839, https://www.prio.org/publications/3685); 
(2) AIS-equipped vessel activity around infrastructure; and (3) visual 
inspection of satellite imagery. We then used a DBSCAN57 clustering 
approach to identify detections over time (within a 50-m radius) that 
were probably the same structure but their coordinates differed slightly 
and assigned them the most common predicted label of the cluster. 
We also filled in gaps for fixed structures that were missing in one time 
step but detected in the previous and following time steps and dropped 
detections appearing in a single time step.

Vessel activity estimation
To convert individual detections of vessel instances to average vessel 
activity, we first calculated the total number of detections per pixel on 
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a spatial grid of 1/200° resolution (about 550 m) and then normalized 
each pixel by the number of satellite overpasses (number of SAR acquisi-
tions per location). To construct a daily time series of average activity, 
we performed this procedure with a rolling window of 24 days (two 
times the repeat cycle of Sentinel-1), aggregating the detections over 
the window and assigning the value to the centre date. We restricted 
the temporal analysis to only those pixels that had at least 70 of the 
24-day periods (out of 77 possible), which included 95% of the total 
vessel activity in our study area. For individual pixels with no overpass 
for 24 days, we linearly interpolated the respective time series at the 
pixel location. Overall, only 0.7% of the activity in our time series is from 
interpolated values. This approach provides the average number of 
vessels present in each location at any given time regardless of spatial 
differences in frequency and number of SAR acquisitions.

Temporal change estimation
We computed the global and EEZ mean time series of daily average 
number of vessels and monthly median number of infrastructure. We 
aggregated the gridded and normalized data over the area sampled by 
Sentinel-1 during 2017–2021, when the spatial coverage of Sentinel-1 
was fairly consistent (Extended Data Fig. 1). From these times series, 
we then computed yearly means with respective standard deviations. 
Although absolute values may be sensitive to the spatial coverage, such 
as buffering out 1 km from shore, the trends and relative changes are 
robust as (a) they are calculated over a fixed area over the observation 
period and (b) this area contains well over three-quarters of all industrial 
activity at sea (corroborated by AIS). We estimated the per cent change 
in vessel activity owing to the pandemic (difference between means; 
Fig. 3) and respective standard error by bootstrapping58 the residuals 
with respect to the average seasonal cycle, obtaining for industrial fish-
ing: −14 ± 2% (outside China), −8 ± 3% (inside China), −12 ± 1% (globally); 
and for transport and energy: −1 ± 1% (outside China), +4 ± 1% (inside 
China), 0 ± 1% (globally). We note that, for visualization purposes, we 
smoothed the time series of vessels and offshore infrastructure with 
a rolling median.

Limitations of our study
Sentinel-1 does not sample most of the open ocean. As our study shows, 
however, most of the industrial activity is close to shore. Also, farther 
from shore, more fishing vessels use AIS (60–90%)59, far more than 
the average for all fishing vessels (about 25%). Thus, for most of the 
world, our analysis complemented with AIS data will capture most of 
the human activity in the global ocean.

We do not classify objects within 1 km of shore, because of ambiguous 
coastlines and rocks. Nor do we classify objects in much of the Arctic 
and Antarctic, in which sea ice can create too many false positives; in 
both regions, however, vessel traffic is either very low (Antarctic) or in 
countries that have a high adoption of the AIS (northern European or 
northern North American countries). The bulk of industrial activities 
occurs several kilometres from shore, such as fishing along the conti-
nental shelf break, ocean transport over shipping lanes and offshore 
development in medium-to-large oil rigs and wind farms. Also, much 
of the vessel activity within 1 km of shore is by smaller boats, such as 
pleasure crafts.

Vessel detection by SAR imagery is limited primarily by the resolution 
of the images (about 20 m in the case of the Sentinel-1 IW GRD product). 
As a result, we miss most vessels less than 15 m in length, although an 
object smaller than a pixel can still be seen if it is a strong reflector, such 
as a vessel made of metal rather than wood or fibreglass. Especially for 
smaller vessels (<25 m), detection also depends on wind speed and 
the state of the ocean60, as a rougher sea surface will produce higher 
backscatter, making it difficult to separate a small target from the sea 
clutter. Conversely, the higher the radar incidence angle, the higher 
the probability of detection60, as less backscatter from the background 
will be received by the antenna. The vessel orientation relative to the 

satellite antenna also matters, as a vessel perpendicular to the radar 
line of sight will have a larger backscatter cross-section, increasing the 
probability of being detected.

Our estimates of vessel length are limited by the quality of the 
ground-truth data. Although we selected only high-confidence AIS 
to SAR matches to construct our training data, we found that some 
AIS records contained an incorrectly reported length. These errors, 
however, resulted in only a small fraction of imprecise training labels, 
and deep-learning models can accommodate some noise in the train-
ing data61.

Our fishing classification may be less accurate in certain regions. In 
areas of high traffic from pleasure crafts and other service boats, such as 
near cities in wealthy countries and in the fjords of Norway and Iceland, 
some of these smaller craft might be misclassified as fishing vessels. 
Conversely, some misclassification of fishing vessels as non-fishing 
vessels is expected in areas in which all activity is not publicly tracked, 
such as Southeast Asia. More importantly, however, is that many indus-
trial fishing vessels are between 10 and 20 m in length, and the recall 
of our model falls off quickly within these lengths. As a result, the total 
number of industrial fishing vessels is probably substantially higher 
than what we detect. Because our model uses vessel length from SAR, 
it may be possible to use methods similar to those in ref. 47 to estimate 
the number of missing vessels. Future work can address this challenge.

Overall, our study probably underestimates the concentration of 
fishing in Asian waters and Chinese fisheries, in which we see areas of 
vessel activity being ‘cut off’ by the edge of the Sentinel-1 footprint. 
And because we miss very small vessels (for example, most artisanal 
fishing) that are less likely to carry AIS devices, the global estimate of 
activity not publicly tracked presented here is probably higher. Algo-
rithmic improvements can capture the first kilometre from shore and 
the inclusion of more SAR satellites in the coming years (two more ESA 
Sentinel-1 satellites and NASA’s NISAR mission) will allow us to apply this 
method more broadly to build on this map and capture all activity at sea.

Data availability
All vessel and infrastructure data are freely available through the 
Global Fishing Watch data portal at https://globalfishingwatch.org/
datasets-and-code. All data to reproduce this study can be downloaded 
from https://doi.org/10.6084/m9.figshare.24309475 (statistical analy-
sis and figures) and https://doi.org/10.6084/m9.figshare.24309469 
(model training and evaluation).

Code availability
All code developed in this study for SAR detection, deep-learning  
models and analysis is open source and freely available at https:// 
github.com/GlobalFishingWatch/paper-industrial-activity.
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Extended Data Fig. 1 | The Sentinel-1 SAR imagery (IW GRD product) covers 
most coastal waters but does not sample most of the open ocean. a, The 
extent and frequency of SAR acquisitions is determined by the mission priorities. 
b, The area of the ocean imaged every day by the Sentinel-1 GRD product (using a 

12-day rolling average) depended on whether one satellite was imaging the 
ocean (S1A, October 2014 to present) or two (S1A and S1B, September 2016 to 
December 2017). S1B stopped operating on 23 December 2021.



Extended Data Fig. 2 | The Sentinel-1 detection model is able to detect most 
industrial vessels. The recall curve (fraction of actual positives correctly 
detected) for our Sentinel-1 detection model as a function of vessel length 

shows that vessels spaced far apart (>1 km distance, constituting 79% of all 
vessel detections) have higher recall than all vessels combined. For vessels 
smaller than 25 m, detection performance decays steeply with vessel size.
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Extended Data Fig. 3 | Fishing vessel activity at sea is shown with an 
unprecedented level of detail by satellite mapping and deep learning. 
Fishing vessels tend to aggregate along bathymetric features. Each dot 
represents a detected vessel during 2017–2021. The colours represent 

detections matched (blue, publicly tracked) and unmatched (red, not publicly 
tracked) to known vessel positions from the AIS. The number of detections in 
each location depends on the local density of vessels, as well as the number of 
SAR acquisitions.



Extended Data Fig. 4 | Transport and energy vessel activity at sea is shown 
with an unprecedented level of detail by satellite mapping and deep 
learning. Transport and energy vessels usually follow major routes (for example, 
shipping lanes). Each dot represents a detected vessel during 2017–2021. The 

colours represent detections matched (blue, publicly tracked) and unmatched 
(red, not publicly tracked) to known vessel positions from the AIS. The number 
of detections in each location depends on the local density of vessels, as well as 
the number of SAR acquisitions.
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Extended Data Fig. 5 | Leading nations with most fishing and non-fishing 
vessel activity. The bars represent the average number of detections per 
satellite overpass at any location in the EEZ during 2017–2021. Percentages are 

the fraction of detections unmatched to known vessel locations from the AIS 
(activity missing from public monitoring systems).



Extended Data Fig. 6 | In the western North Korean EEZ, peaks of fishing 
vessel activity coincide with Chinese moratoria on industrial fishing. 
Fishing activity in western North Korea waters increases coinciding with the 

Chinese fishing moratoria (vertical stripes). There is a substantial decrease in 
overall vessel activity during the COVID-19 pandemic (2020–2021), when North 
Korea shut its borders.
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Extended Data Fig. 7 | Satellite imagery-based detection allows monitoring 
at local scale. a,b, From 2017 to 2021, there were substantial numbers of 
vessels not publicly tracked (red) within the boundaries of two of the most 
iconic, biologically important and well-monitored MPAs in the world: the 

Galápagos Marine Reserve and south of the Great Barrier Reef Marine Park.  
c,d, Two areas of intense marine infrastructure development are the oil 
infrastructure in Lake Maracaibo in Venezuela and offshore wind farms north  
of Shanghai, China.



Extended Data Fig. 8 | Leading countries with most offshore oil and wind infrastructure. Bars represent the median value of monthly counts of offshore 
structures for each EEZ in 2021. ‘Probable’ refers to detected infrastructure with lower confidence but still within the EEZ of the respective country.
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Extended Data Fig. 9 | Offshore oil development during 2017–2021 in the top 20 oil nations. Time series represent the median monthly counts of detected oil 
structures inside each country’s EEZ annually. Note the different ranges in the y axes.
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Extended Data Fig. 10 | Number of vessels and structures as a function of 
distance from shore and from infrastructure. a, Trawler vessel activity is 
relatively low close to oil infrastructure, but other types of fishing show increased 

activity there. b, The number of vessels and oil platforms decrease rapidly far 
from shore, but the number of wind structures stays relatively constant within 
tens of kilometres from the coast.
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Extended Data Fig. 11 | The labelled data used for training the deep- 
learning models sample all regions of the ocean. Spatial distribution of the 
training and holdout data used to train and evaluate the ‘vessel presence and 
length estimation’ model, ‘fishing and non-fishing classification’ model and 
‘offshore infrastructure classification’ model. The holdout data are random 

subsamples with the same spatial distribution as the training data without any 
overlap in time or space (no data leakage between training and test sets). See 
respective classification sections for a description of the sampling strategies 
and characteristics of each dataset.



Extended Data Table 1 | Asia and Europe (wrongly) show comparable fishing hours if estimated from the AIS

Total hours of fishing activity during 2017–2021 calculated from Global Fishing Watch’s AIS database, containing 52 billion vessel broadcast messages acquired from global providers ORB-
COMM and Spire, compared with the fraction of total fishing vessels detected by SAR, which includes vessels not detected by AIS monitoring.
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