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Brain-wide correspondence of neuronal 
epigenomics and distant projections

      
Jingtian Zhou1,2,18, Zhuzhu Zhang1,3,18, May Wu1,4, Hanqing Liu1, Yan Pang5, Anna Bartlett1, 
Zihao Peng6,7, Wubin Ding1, Angeline Rivkin1, Will N. Lagos5, Elora Williams8, Cheng-Ta Lee9, 
Paula Assakura Miyazaki5, Andrew Aldridge1, Qiurui Zeng1,4, J. L. Angelo Salinda5, 
Naomi Claffey10, Michelle Liem10, Conor Fitzpatrick10, Lara Boggeman10, Zizhen Yao11, 
Kimberly A. Smith11, Bosiljka Tasic11, Jordan Altshul1, Mia A. Kenworthy1, Cynthia Valadon1, 
Joseph R. Nery1, Rosa G. Castanon1, Neelakshi S. Patne5, Minh Vu5, Mohammad Rashid5, 
Matthew Jacobs5, Tony Ito5, Julia Osteen12, Nora Emerson12, Jasper Lee12, Silvia Cho12, 
Jon Rink12, Hsiang-Hsuan Huang8, António Pinto-Duartec12, Bertha Dominguez9, 
Jared B. Smith8, Carolyn O’Connor10, Hongkui Zeng11, Shengbo Chen7,13, Kuo-Fen Lee9, 
Eran A. Mukamel14, Xin Jin15,16, M. Margarita Behrens12, Joseph R. Ecker1,17 ✉ & 
Edward M. Callaway4,5 ✉

Single-cell analyses parse the brain’s billions of neurons into thousands of ‘cell-type’ 
clusters residing in different brain structures1. Many cell types mediate their functions 
through targeted long-distance projections allowing interactions between specific 
cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to 
long-distance projections for 33,034 neurons dissected from 32 different regions 
projecting to 24 different targets (225 source-to-target combinations) across the 
whole mouse brain. We highlight uses of these data for interrogating principles 
relating projection types to transcriptomics and epigenomics, and for addressing 
hypotheses about cell types and connections related to genetics. We provide an 
overall synthesis with 926 statistical comparisons of discriminability of neurons 
projecting to each target for every source. We integrate this dataset into the larger 
BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link 
projection cell types to consensus clusters. Integration with spatial transcriptomics 
further assigns projection-enriched clusters to smaller source regions than the 
original dissections. We exemplify this by presenting in-depth analyses of projection 
neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to 
provide insights into properties of those cell types, including differentially expressed 
genes, their associated cis-regulatory elements and transcription-factor-binding 
motifs, and neurotransmitter use.

In any given brain, each neuron contributes uniquely to brain function. 
Nevertheless, neurons can be grouped into types on the basis of simi-
larities and differences across several dimensions, including epigenetic 
state, gene expression, anatomy and physiology. Single-cell genomic 
technologies have been particularly impactful for cell-type classification 
owing to their high throughput (millions of cells assayed) and dimen-
sionality (thousands of genes and even more genetic loci) leading to the 
identification of large numbers of transcriptomic and epigenomic clus-
ters corresponding to possible cell types across the entire mouse brain.

A prominent and distinguishing anatomical feature of many brain 
neuron types is their long-distance axonal projections. Long-distance 
projections can be directly related to single-neuron gene expression 
or epigenomes by use of powerful linking technologies, including Bar-
coded Anatomy Resolved by Sequencing (BARseq)3,4, retro-seq5,6 and 
epi-retro-seq2. Previous studies have used retro-seq and epi-retro-seq 
to link mouse neocortical2,5,6, hypothalamic7 and thalamic projection 
cell types8 to their genetic and epigenetic clusters, revealing complex 
but predictable relationships. For example, cortical neurons projecting 
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solely to intratelencephalic (IT) targets fall into different clusters com-
pared with those that project to extratelencephalic (ET) targets. By con-
trast, cortical layer 2/3 IT neuron types projecting to different cortical 
areas typically co-cluster despite having quantifiable and predictable 
genetic and epigenetic differences across the populations2,6. In the face 
of this complexity, it is unclear how single-cell genetic and epigenetic 
assays can be used to inform the structure and function of brain cell 
types and how neuronal structure can predict genetics and epigenetics. 
Further, it is unclear whether the principles learned from more limited 
previous studies can be extended to the entire brain, or whether there 
are different principles linking projection status to epigenetics for 
different brain areas.

To address these questions, we used epi-retro-seq to assay 33,034 
neurons from 225 source-to-target combinations across the entire 
mouse brain. This approach combines retrograde labelling with 
single-nucleus methylation sequencing (snmC-seq), which allows 
identification of potential gene regulatory elements and prediction of 
gene expression in the same neuron. Gene expression can be predicted 
because non-CG (CH; in which H represents A, T or C) methylation of 
gene bodies is inversely related to RNA expression9,10, and epigenetic 
elements regulating expression can be identified using methylation 
at CG (mCG) dinucleotides9. It is also expected that epi-retro-seq can 
provide unique insight into developmental mechanisms that shape 
connectivity because CH methylation accumulates during and peaks at 
the end of the developmental critical period, and mCG is reconfigured 
during synaptic development11.

Epi-retro-seq of 225 projections
To link single-neuron epigenomes to their projection targets and cell 
body locations, we used epi-retro-seq2. A retrogradely infecting AAV 
vector expressing Cre-recombinase (AAV-retro-Cre12) was injected into 
the brains of Cre-dependent, nuclear-GFP-expressing reporter mice 
(INTACT-Cre9) at a target region of interest (Fig. 1a). Four mice (two male 
and two female) were injected for each of twenty-four different target 
brain areas, including targets in the isocortex (CTX), hippocampal 
formation, olfactory areas, amygdala (AMY), cerebral nuclei (CNU), 
interbrain (IB), midbrain (MB), hindbrain (HB) and cerebellum (Fig. 1a,b 
and Supplementary Table 1). After 2 weeks, mice were killed and the 
brain was hand dissected into 32 possible source regions13 spanning 
the same major brain structures as the target injections (Fig. 1a,b and 
Extended Data Fig. 1). For any given mouse, dissected sources cor-
responding to locations with known projections to the target were 
selected for profiling. Nucleus preparations were made from dissected 
source tissue and subjected to fluorescence-activated nuclear sorting 
for GFP+NeuN+ retrogradely labelled neuronal nuclei that were then 
processed for snmC-seq14–16 (Fig. 1a and Methods).

After basic quality control, we recovered 48,032 single-cell methyl-
omes (Supplementary Table 2) that were mapped to an unbiased sample 
of snmC-seq data with 301,626 cells17 to carry out cell-type classifica-
tion, and for removal of potential doublets (Methods and Extended 
Data Fig. 2a–e). Each single neuron in the epi-retro-seq sample was 
assigned to 1 of the 2,304 level 4 clusters identified in our companion 
study17. We have previously described cortical neurons from the same 
eight cortical sources included here and projecting to four cortical and 
six subcortical targets (63 combinations)2. For cortical sources, we now 
incorporate data for an additional five cortical targets and two more 
subcortical targets, with quality control steps similar to those in our 
previous work to eliminate experiments with inadvertent spread of 
injected AAV-retro-Cre into source regions (Methods). In total, 33,034 
single-nucleus methylomes were analysed from 225 source-to-target 
combinations for which the projection target could be confidently 
assigned (Supplementary Table 3). These neurons were mapped to 
the unbiased snmC-seq dataset to visualize the epigenetic similarity of 
projection neurons across cell subclasses, sources and targets (Fig. 1c).

Data analysis approaches across the brain
Overarching questions that can be addressed by this large dataset 
include the distinguishability of neurons from a given source that pro-
ject to different targets, and whether neurons in different sources that 
project to the same target combinations are more or less distinguish-
able. To provide a resource that can be used to address the distinguish-
ability of neurons with different projection targets, we trained linear 
models to distinguish neurons projecting to pairs of different targets 
on the basis of DNA methylation, and quantify which projection types 
are more different than the others by computing the model perfor-
mance through area under the curve of the receiver operating charac-
teristic (AUROC) for each of the target pairs from every source region 
(926 pairwise comparisons in total; Fig. 1d, Methods, Extended Data 
Fig. 3 and Supplementary Table 4).

To facilitate further, comprehensive multimodal characterization of 
projection neuron types, we integrated the epi-retro-seq data with unbi-
ased samples of snmC-seq described above17, and single-cell RNA-seq 
(scRNA-seq) data for 2.6 million neurons from 87 micro-dissected brain 
regions18 (Fig. 1e, Methods and Extended Data Fig. 4). Alignment of 
epi-retro-seq data to these larger and carefully annotated datasets 
allows for the confident assignment of our cells to consensus clusters 
and enables the use of consistent nomenclature to describe the cor-
respondence between projection targets and cell types or clusters. 
We carried out co-clustering of the three datasets to identify the cell 
clusters enriched in each projection type (Fig. 1f, Methods and Extended 
Data Fig. 5). It should be noted that in addition to clusters that are identi-
fied as being enriched in projection neurons, there are also neurons in 
other clusters without statistically significant enrichment. The absence 
of statistically significant enrichment should not be interpreted as an 
absence of projections from neurons belonging to a particular cluster.

Although microdissections effectively separate fairly small struc-
tures, most dissected source regions contain still smaller known ana-
tomical regions, as typically illustrated in mouse brain atlases13. To 
potentially link projection-enriched clusters from particular sources 
to more precise anatomical loci, we carried out further integration 
with multiplexed error robust fluorescence in situ hybridization (MER-
FISH) data, allowing examination of the spatial locations of the cells 
belonging to particular clusters (Fig. 1g and Extended Data Fig. 6). Joint 
atlasing of single-neuron transcriptomes and epigenomes further 
allowed analyses of both the signature genes in projection-enriched 
clusters based on RNA expression, and methylation profiles to identify 
differentially methylated regions (DMRs) as putative cis-regulatory ele-
ments (CREs) and transcription factors (TFs) whose binding motifs are 
enriched in these DMRs (Fig. 1h). On the basis of the motif enrichment 
and the correlation between gene expression and DNA methylation, 
we constructed gene regulatory networks (GRNs) with TFs, DMRs and 
target genes as nodes (Fig. 1i). The GRNs allowed us to identify the most 
consistent changes across different data modalities, which pinpoint 
candidate regulators of projection-enriched clusters.

Extended Data Figs. 3–6 allow visualization of the integrative 
analysis approaches described above (for example, Fig. 1d–i) for all 
source-to-target combinations in our dataset. These integrative analy-
ses were facilitated by combining source regions from the whole-brain 
datasets into 12 larger ‘region groups’ that were common to all 3 data 
modalities, before integration (Extended Data Fig. 2f,g). The groups 
include CTX, retro hippocampal region (RHP), piriform area (PIR), 
hippocampal region (HIP), main olfactory bulb and anterior olfactory 
nucleus (MOB + AON), striatum (STR), pallidum (PAL), AMY, thalamus 
(TH), hypothalamus (HY), MB and HB.

Below, we focus on a subset of all possible analyses of this very large 
dataset to highlight the utility of the data and to provide examples of 
interest. To facilitate further analyses of the complete dataset, we have 
generated a data browser that incorporates functions to allow each of 
the types of analysis that we highlight below to be conducted for any 
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given source brain region and/or projection target that might be of 
particular interest (http://neomorph.salk.edu/epiretro).

ET- versus IT-projecting neurons
In CTX, the most explicit correspondence between projection types 
and molecular types is observed for neurons that project to ET targets 
versus IT targets (for a breakdown of ET and IT target regions sampled, 
see Fig. 1b). To investigate whether such distinctions are shared with 
neurons from other sources, we explored the genetic distinguishability 
of neurons projecting to ET versus IT targets across source brain areas. 

For the cortical source t-distributed stochastic neighbour embedding 
(t-SNE) plots, the ET-projecting neurons clearly separate into a distinct 
cluster (layer 5 ET) whereas the IT neurons are found distributed across 
the annotated IT clusters, as expected (Fig. 2a). ET and IT neurons are 
also well separated for the projection neurons in the entorhinal cortex 
(ENT; illustrated in the RHP plot) as well as TH (Fig. 2a), as expected 
from known projections of glutamatergic TH neurons to cortex versus 
GABAergic neurons to subcortical targets. ET versus IT neurons show 
varying levels of separation for the other sources. Generally, compari-
sons show some degree of separability for each of the source regions, 
but AUROC scores are higher for cortical sources than for subcortical 
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Fig. 1 | The epigenomic landscape of brain-wide projection neurons.  
a, Schematics of the epi-retro-seq workflow for retrogradely labelling and 
epigenetically profiling single projection neurons. The three-dimensional brain 
contours of the source regions (top right) were derived from the Allen Mouse 
Brain Reference Atlas (http://atlas.brain-map.org, © 2017 Allen Institute for 
Brain Science, version 3 (2020)). The diagrams of the brain slices (top left) and 
the images of the surgical set up, microscope and library preparation apparatus 
in the workflow were created with BioRender.com. b, A total of 225 source–target 
combinations profiled using epi-retro-seq (blue dots) from 32 different source 
regions (rows) projecting to 24 different targets (columns) across the whole 
mouse brain. The colour palettes of sources (left), targets (bottom) and region 
groups (top and right) are labeled on the side and used across the article. c, Joint 
two-dimensional t-SNE of epi-retro-seq (n = 35,938) and unbiased snmC-seq 
(n = 276,187) neurons. snmC-seq neurons are shown in grey and epi-retro-seq 
neurons are coloured by cell subclass (top), the source regions of neurons 
(middle) or their projection targets (bottom; n = 33,034, after removing the 
experiments with less confident target assignment). d, As an example, AUROC 
for pairwise comparisons of AMY neurons projecting to nine targets. Higher 
AUROC scores suggest greater distinguishability between the compared 
projections based on their gene-body mCH levels. e, Joint t-SNE of whole-mouse- 

brain neurons from epi-retro-seq (n = 35,743), unbiased snmC-seq (n = 266,740) 
and scRNA-seq (n = 2,434,472) coloured by cell subclass. f, As an illustration, the 
proportion (prop.) of neurons found in each AMY cell cluster (row) that projects 
to each target (column). Only clusters that were enriched for projection neurons 
are shown and values are z-score normalized across targets. g, A sagittal brain 
slice for MERFISH with all neurons coloured by their assigned subclasses. h, An 
illustration of joint analysis of single-cell transcriptomes and DNA methylomes 
that enables the characterization of gene expression patterns of DEGs between 
these projection-enriched clusters, as well as the mCG levels of DEG-associated 
putative CREs, as marked by DMRs. i, An illustration of GRN linking TFs, CRE and 
target genes. AI, agranular insular cortex; AUD, auditory cortex; AUDp, primary 
auditory cortex; CAa, anterior cornu ammonis; CAp, posterior cornu ammonis; 
CB, cerebellum; CBN, cerebellar nuclei; CGE, caudal ganglionic eminence; CT, 
corticothalamic; DGa, anterior dentate gyrus; DGp, posterior dentate gyrus; 
GC, granule cell; GP, globus pallidus; HPF, hippocampal formation; IC, inferior 
colliculus; IO, inferior olivary; LSX, lateral septal complex; MGE, medial 
ganglionic eminence; MSN, medium spiny neurons; NP, near projecting; OLF, 
olfactory areas; PAG, periaqueductal grey; PIRa, anterior piriform cortex; PIRp, 
posterior piriform cortex; THl, anterior lateral thalamus; THm, anterior medial 
thalamus; THp, posterior TH; VIS, visual cortex.
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courses (except TH and AON; Fig. 2b). These observations suggest that 
ET- versus IT-projecting neurons are not as genetically distinct for other 
source regions as they are for cortex and TH.

We next asked whether the epigenetic differences between ET- and  
IT-projecting neurons are shared across sources or alternatively 
whether different sources might have distinct molecular signatures 
that distinguish ET from IT neurons. We trained logistic regression 
models to distinguish ET- versus IT-projecting neurons in each 1 of the 
22 sources, and tested whether each model could accurately separate 
ET and IT neurons from each of the other sources (Fig. 2c). We observed 
that the knowledge learned by the models could largely be transferred 
between isocortical sources and between isocortical and archicortical 
(ENT and PIR) areas, but not beyond the cortical regions. Other source 

groups sharing similar ET versus IT differences include MOB and AON, 
as well as AMY, TH and midbrain reticular nucleus (MRN). To further 
evaluate these relationships, we identified the differentially methylated 
genes (DMGs) between ET and IT-projecting cells in each source, which 
merge into a combined set of 2,919 genes. Consistent with the AUROC 
results, the mCH levels of these DMGs show similar fold changes across 
isocortical and archicortical areas, MOB and AON, as well as differ-
ent parts of TH and MB (Fig. 2d). These observations suggest that the 
mechanisms that give rise to relationships between projection targets 
and epigenetics are relatively conserved across cortical areas, across 
MOB and AON, and across AMY, TH and MRN, but differ between these 
sets of areas. We further assessed whether neurons projecting to more 
finely separated groups of targets might be more or less separable. We 
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Fig. 2 | Distinguishability of neurons projecting to different targets across 
the entire brain. a, Joint t-SNEs of epi-retro-seq, unbiased snmC-seq and 
scRNA-seq data from ten region groups containing both IT- and ET-projecting 
neurons from the same source. Only the epi-retro-seq neurons projecting from 
the same source to ET (blue) and IT (orange) targets are coloured and the other 
cells are in grey. b, AUROC scores for comparisons between IT versus (vs) ET 
neurons from each of the 22 source regions. c, AUROC for IT versus ET neurons 
when the model was trained in one source region (row) and tested on another 
source region (column). A high AUROC indicates that the epigenetic differences 
between IT and ET neurons were similar between the training and testing 
sources. The values on the diagonal of c are the same as the values in b. d, The 
log2 fold changes of mCH levels in each source at the IT versus ET DMGs. A total 

of 2,919 DMGs are shown that were identified in at least one of the 22 source 
regions. The row and column colours represent the region groups in b–d.  
e, AUROC for comparisons of neurons projecting to each pair of target groups. 
Each dot represents a comparison in one source region (colour palette as in b). 
f, AUROC for the comparison of all target pairs from every source region 
(n = 926) with models using different sets of genes as features. Subsets or all of 
the 9,906 genes with high coverage in single cells were used. The larger gene 
sets were downsampled to the same number of genes as the smaller sets for 
comparison. All comparisons between gene sets are significant (false discovery 
rates (FDRs) in Supplementary Table 6; two-sided Wilcoxon signed-rank test, 
Benjamini–Hochberg procedure) except the ones between “neuron projection 
development” and “neurotransmitter receptor” with 19 genes.
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separated the ET and IT targets into three finer groups (IT: CTX, MOB 
and CNU; ET: IB, MB and HB) and asked which pairs of target groups are 
less separable between ET and IT. Most of the target group pairs have 
better prediction results than ET versus IT, except that the CNU versus 
IB projecting cells are less distinguishable compared to ET versus IT on 
the basis of DNA methylomes with linear models (Fig. 2e).

To better understand what types of gene are contributing to the 
predictions of projection targets, we used genes in the following five 
categories as features to compute AUROC scores: neurotransmitter 
receptors; neuropeptides and receptors; ion channels; TFs; and neu-
ron projection development (Methods and Supplementary Table 5). 
As different categories have different numbers of genes, and use of 
more genes increases prediction performance, we downsampled the 
larger gene categories into samples including the same numbers of 
genes as the smaller categories to facilitate comparisons in 5 different 
groups using from 19 to 666 genes and compared the AUROC scores. 
We observed that the neuron projection development genes have the 
strongest target prediction power, followed by neurotransmitter recep-
tors, ion channels, neuropeptides and receptors, TFs, and randomly 
selected genes (Fig. 2f and Supplementary Table 6). Using all 628 genes 
in the neuron projection development category achieved an average 
AUROC of 0.88, which is slightly lower than that using all of the 9,906 
genes as features (AUROC 0.91; Fig. 2f), suggesting that additional genes 
from other Gene Ontology (GO) categories also contribute to the target 
predictability. The greater predictive power of genes involved in neuron 
projection development aligns with the idea that similarities and dif-
ferences between ET- and IT-projecting neurons (from various sources) 
are tied to developmental mechanisms specifying projection targets.

Hypothalamic projection neurons
Analyses of gene expression and DNA methylation patterns have 
revealed the existence of numerous cell clusters within the HY, indi-
cating a high level of cell-type diversity18,19. Additionally, the HY is 
composed of many distinct subregions and nuclei, each with unique 
functions and contributions to innate behaviours such as aggression, 
mating and feeding20. The HY therefore serves as an excellent use case 
for our dataset to further examine the relationships between neuronal 
cell types as defined by their transcriptional and epigenomic signatures, 
their projection patterns and their spatial organization.

We profiled hypothalamic neurons that project to ten distinct targets 
throughout the brain, including prefrontal cortex (PFC), MOB, STR, 
PAL, AMY, TH, superior colliculus (SC), ventral tegmental area (VTA) 
and substantia nigra (referred to later as VTA), pons (P) and medulla 
(MY). By integrating epi-retro-seq data with unbiased snmC-seq and 
scRNA-seq hypothalamic data, we identified a total of 94 neuronal 
cell clusters, of which 17 were enriched for the profiled HY projections 
(Fig. 3a,b). We annotated each co-cluster on the basis of the 302 neu-
ronal cell subclasses identified in scRNA-seq across the whole brain18. 
Note that this annotation does not give a unique name to each of the 
finest cluster divisions. Therefore, clusters noted by different identify-
ing cluster numbers (for example, 0 to 94) may share the same cluster 
name (for example, clusters 0 and 76 were both annotated as STN-PSTN 
Pitx2 Glut). Each of the projections to the ten targets was enriched in a 
unique subset of cell clusters (Fig. 3b–d and Supplementary Table 7). 
For example, HY-to-STR neurons were predominantly enriched in clus-
ter 76, whereas HY-to-AMY neurons were uniquely enriched in cluster 
64 (Fig. 3b), indicating distinct cell-type specificity of different HY 
projection neurons. HY-to-P and HY-to-MY show similar enrichment 
patterns across clusters, but only HY-to-P neurons were enriched in 
cluster 76 (Fig. 3b). Similarly, HY-to-PFC and HY-to-MOB neurons 
were both enriched in cluster 50 and 29, but HY-to-MOB neurons were 
uniquely enriched in cluster 17 (Fig. 3b). These results indicate that 
HY neurons projecting to structurally related targets may share some 
common molecular cell types but also exhibit some level of diversity. 

These findings underscore the cell-type specificity and diversity of 
hypothalamic neurons projecting to different targets, shedding light 
on the potential functional roles of these cell clusters in various physi-
ological and behavioural processes.

Next we examined the spatial distributions of projection-enriched HY 
neuron clusters. We carried out MERFISH on both sagittal and coronal 
brain slices to visualize the spatial location of neurons. By using the 
gene expression signatures of the projection-enriched clusters, we 
mapped them to MERFISH cells (Fig. 3e,f and Methods). Notably, most 
of the 17 projection-enriched clusters were located in different HY 
subregions, and the spatial distributions of cells from many clusters 
were distinguished by well-defined boundaries. For instance, clus-
ters 0, 3 and 76 were located in separate ‘stripes’ in the dorsolateral 
HY, in regions corresponding to zona incerta or subthalamic nucleus 
(Fig. 3e). With respect to projection targets, some clusters that were 
enriched for particular projections were relatively confined to specific 
regions within the HY, whereas other projection-enriched clusters 
were distributed topographically across the HY. For example, HY-to-TH 
neurons were enriched in clusters 12, 32 and 3, all of which were located 
in well-delineated subregions of dorsal HY (Fig. 3b,f). By contrast, the 
clusters enriched for HB projection neurons were distributed along 
the anterior to posterior axis of the HY and also occupied locations 
across the dorsoventral and mediolateral axes (Fig. 3b,f). Overall, 
our findings underscore the fine-scale spatial organizations of these 
projection-enriched cell clusters within the HY and the varying degrees 
of topographical heterogeneity of the locations of projection-defined 
HY neuronal populations. These observations also highlight the utility 
of MERFISH data for linking projection cell types to locations that are 
much smaller than the regions that were dissected.

To gain insight into the molecular characteristics and gene regulation 
of the projection-enriched clusters, we further used the integrative 
analysis of epi-retro-seq, snmC-seq and scRNA-seq. We identified 1,163 
differentially expressed genes (DEGs) across the 17 clusters in all pair-
wise comparisons (Fig. 3g). Each cluster has a different set of DEGs, even 
when there are several clusters enriched for projections to a particular 
target (note that this contrasts with results for TH below). Notably, 
many of the DEGs were found to be involved in neuronal function and 
connectivity, as exemplified by a few highlighted genes (Fig. 3g). mCH 
levels plotted with an inverted colour map are strikingly similar to the 
expression levels for the same genes indicating the anticorrelation 
between methylation and expression of these genes across clusters 
(Fig. 3h). To investigate the regulation of these DEGs, we identified 
148,897 DMRs associated with the DEGs (Methods). The mCG levels of 
the DEG-associated DMRs exhibited differential methylation patterns 
consistent with the gene expression and gene-body mCH levels (Fig. 3i). 
To uncover the regulatory network of these DEGs, we further identified 
TFs whose binding motifs were enriched in CREs (Fig. 3j), and built a 
GRN of HY clusters connecting 389 TFs, 46,075 DMRs and 8,184 target 
genes (Methods). The network captures concordant variation of dif-
ferent data modalities across clusters. For example, Zic1, whose motif 
is enriched in hypo-CG-methylated DMRs (hypo-DMRs) of clusters 17 
and 39, is also expressed at high levels in these clusters. These clusters 
are located at the anterior ventral part of the HY, and are enriched for 
neurons projecting to MOB. Another TF-encoding gene expressed 
at high levels in these clusters, Zic4, was predicted to be a potential 
target of ZIC1, with 15 DMRs at the flanking region (transcription start 
site ± 1 megabase) that have ZIC1-binding motifs, and the mCG levels 
are correlated with the expression of Zic1 and Zic4 (Fig. 3k). The analysis 
showed some shared sets of TFs between clusters enriched for some 
projections, such as HY-to-TH. By contrast, more varied sets of TFs were 
identified between clusters enriched for some other projections, such 
as HY-to-P or HY-to-MY (Fig. 3j). Additionally, distinct sets of TFs were 
observed between clusters that were enriched for different projections. 
Collectively, these findings underscore the existence of diverse GRNs 
that use distinct TFs and DMRs for different hypothalamic projections. 
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Furthermore, they offer valuable insights into the molecular mecha-
nisms that govern the regulation of projection-enriched cell clusters 
and their associated genes in the HY.

In summary, our integrative analysis has revealed the relationships 
between hypothalamic neurons projecting to ten different targets 
and their methylation profiles, enrichment in molecular clusters and 
spatial locations of neurons belonging to those clusters. A previous 
study linked transcriptomic clusters and their spatial locations within 
the medial pre-optic area of the HY to specific behaviours21, suggest-
ing that those clusters might mediate their differential contributions 
to behaviour through differences in their projections. Another study 
directly linked transcriptomic clusters of neurons and their locations 
within the ventromedial HY to their projections to the medial pre-optic 
area or periaqueductal grey by combining retrograde labelling with 
scRNA-seq and sequential fluorescence in situ hybridization (seqFISH)7. 
Those experiments revealed projection-enriched clusters, as we have 
found for a different set of hypothalamic projection targets, but they 
did not observe clear relationships between transcriptomic clusters, 
behaviour-specific activation and projections to the periaqueductal 
grey or medial pre-optic area. We mapped the neurons from ref. 7 to our 
HY clusters and found that none of the behaviour-enriched clusters 
or projection-enriched clusters from ref. 7 correspond to any of our 
projection-enriched clusters in the entire HY (Methods and Extended 
Data Fig. 7). Our observations across the full spatial extent of HY and a 
large number of projection targets reveal strong correlations between 
clusters and projection targets, suggesting that cell types defined by 
their projections and genetics or epigenetics are also likely to make dis-
tinct contributions to hypothalamic function and related behaviours.

Thalamic projection neurons
The TH is a primary hub in sensory and cortical information processing 
and also projects to subcortical structures. Like HY, TH consists of a 
large number of nuclei that are organized into many functional groups 
that are smaller than our dissected regions. The main, central regions of 
the TH are composed of exclusively excitatory regions (except for a few 
local GABAergic interneurons in the dorsal lateral geniculate nucleus 
(LGd)) that are reciprocally connected with cortical areas22. Other 
more ventral and lateral regions of the TH (such as the ventral lateral 
geniculate nucleus and reticular thalamic nucleus) contain GABAergic 
inhibitory neurons that are either reciprocally connected with thalamic 
excitatory neurons or project to subcortical structures such as the 
basal ganglia and brainstem22. In contrast to the HY, the TH had a lower 
degree of cell-type complexity as shown by the smaller number of cell 
clusters identified through gene expression analysis18. Despite both the 
TH and HY showing a high level of heterogeneity in their anatomical 
nuclei and projections, the differences in their cell-type complexity 
prompted us to investigate whether the relationships between cell 
types, their projections and their spatial locations in the TH differ from 
those observed in the HY, as discussed above.

We analysed thalamic neurons that project to 12 different targets, 
including 9 cortical areas (PFC, primary motor cortex (MOp), primary 
somatosensory cortex (SSp), anterior cingulate cortex (ACA), agranular 
insular cortex, primary auditory cortex, retrosplenial cortex (RSP), 
posterior parietal cortex (PTLp) and primary visual cortex (VISp)), SC, 
VTA and P. To gain a comprehensive understanding of these neurons, we 
combined epi-retro-seq data with unbiased snmC-seq and scRNA-seq 
data from the TH. Through this integration, we identified a total of 
58 thalamic neuronal cell clusters (Fig. 4a), of which 33 clusters were 
enriched for epi-retro-seq neurons (Fig. 4b and Supplementary Table 7). 
It is worth noting that neurons dissected from different anatomical 
regions within the TH were located in distinct sets of clusters19 (Fig. 4c), 
as expected from previous descriptions based on analysis of scRNA-seq 
data8, suggesting that these molecularly defined cell clusters also have 
a spatial organization.

As observed in the HY, each population of thalamic projection neu-
rons exhibited enrichment in distinct subsets of cell clusters, with each 
cluster showing enrichment for a specific set of projections, some-
times only one (Fig. 4b). Notably, the clusters enriched for TH-to-SC, 
TH-to-VTA, TH-to-P and TH-to-cortex were mostly mutually exclusive. 
Regarding cortical projections, TH-to-PTLp and TH-to-VISp neurons 
exhibited enrichment in a largely overlapping set of clusters, but with 
varying degrees of enrichment. TH-to-MOp and TH-to-SSp neurons 
also shared most of their enriched clusters, which differed from those 
enriched for TH-to-PTLp and TH-to-VISp (Fig. 4b). These results sup-
port the notion of a separation of thalamic cell types between the visual 
and motor pathways in the TH and highlight the heterogeneity of cell 
types within each pathway. Notably, TH-to-RSP neurons showed no 
overlap in enriched clusters with any other cortical projections, and 
were uniquely enriched in clusters 13, 26 and 47 (Fig. 4b). These clus-
ters were annotated by their gene expression patterns as belonging to 
the anteroventral (AV) nucleus (clusters 13 and 26) and anterodorsal 
nucleus (cluster 47), which is consistent with TH-to-RSP projections 
originating from anterior thalamic nuclei23. In summary, TH neurons 
projecting to cortex versus subcortical targets were enriched in dis-
tinct sets of clusters. The enriched cell clusters for cortical projections 
were further segregated by different thalamic pathways, with several 
enriched cell clusters observed for each pathway or projection. These 
findings highlight the cell-type specificity as well as heterogeneity at 
the level of TH projections.

Such cell-type specificity and heterogeneity of TH projection neurons 
were also reported in transcriptomic analysis of single TH projection 
neurons (retro-seq)8. Retro-seq neurons of each projection were more 
similar to epi-retro-seq neurons for the corresponding projections 
than for any other projections (Extended Data Fig. 8). Small differences 
between the populations of retrogradely labelled TH neurons in the two 
datasets are probably due to the use of different injection coordinates 
for each cortical target (Supplementary Table 8).

As in our approach for the HY, we used the MERFISH data to map the 
spatial locations of the 33 TH projection-enriched clusters (Fig. 4d,e). 
Notably, almost all of these clusters exhibited a unique spatial pattern, 
many of them with distinct boundaries in the distributions of their 
cells (Fig. 4d,e). These boundaries often corresponded to specific tha-
lamic nuclei, exemplified by clusters 25 and 45 that were enriched for 
P-projecting neurons and annotated as medial habenula cell types on 
the basis of their molecular signatures. When mapped to the MERFISH 
data, cells in these clusters demonstrated a clearly defined spatial loca-
tion that corresponded to medial habenula (Fig. 4d). This illustrates the 
high resolution of our data and analysis, enabling the identification of 
specific medial habenula-to-P projection neurons among all thalamic 
neurons. Similarly, we were able to accurately map the molecularly 
annotated anterodorsal cluster 47 and anteroventral cluster 26 that 
were enriched for the TH-to-RSP projection to their corresponding 
locations in the dorsal and ventral anterior TH (Fig. 4e). This high reso-
lution of our data also allowed us to investigate the molecular and spa-
tial cellular heterogeneity within a projection. For instance, the visual 
input from the retina reaches VISp through LGd in TH. When mapped 
to MERFISH, clusters 34, 5, 4, 1 and 6 that were enriched for TH-to-VISp 
neurons collectively occupied the location that corresponds to LGd, 
with each cluster having a unique distribution within LGd (Fig. 4d). 
These findings underscore the heterogeneity of LGd-to-VISp neurons 
and provide valuable insights for future in-depth analysis of different 
types of LGd-to-VISp neurons.

Next, we investigated the gene regulation of thalamic neurons in 
these projection-enriched clusters (Fig. 4f). Joint analysis of scRNA-seq 
and scmC-seq data for TH identified a total of 2,348 DEGs (Fig. 4g,h) and 
1,566,402 associated DMRs (Fig. 4i) across the 33 clusters. As expected, 
the expression levels of the DEGs (Fig. 4g) were anticorrelated with their 
mCH levels (Fig. 4h), and their associated DMRs also showed strong 
correspondence in terms of mCG levels (Fig. 4i). In contrast to HY, TH 
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Fig. 4 | The diversity of cell type, spatial location and gene regulation of 
thalamic projection neurons. a, Joint t-SNE of epi-retro-seq (n = 2,606), 
unbiased snmC-seq (n = 16,943) and scRNA-seq (n = 162,795) data for thalamic 
neurons coloured by cell cluster. b, The proportion of each of the 12 assayed TH 
projections in each of the 33 projection-enriched clusters, z-score normalized 
across targets. The same set of colours is used for labelling clusters in both 
cluster group 1 (14 clusters) and cluster group 2 (19 clusters). The asterisk 
denotes enrichment with FDR < 0.01 (one-sided Fisher exact test, Benjamini–
Hochberg procedure; Methods). c, TH neurons dissected from two anterior 
lateral regions (THl-1 and THl-2), two anterior medial regions (THm-1 and THm-2) 
and three posterior regions (THp-1, THp-2 and THp-3) coloured respectively in 
the t-SNE. See slices 7–10 in Extended Data Fig. 1 for details. d,e, Projection- 
enriched TH clusters mapped to MERFISH data for six coronal slices (d; two 
biological replicates (R1 and R2) of slices from anterior to posterior (C8, C10 
and C12)) and two sagittal slices (e; S1 and S2 from lateral to medial). The colours 
of the clusters in the left (right) column of the insets are the same as for cluster 
group 1 (2) in b. Examples of clusters with specific spatial locations are labelled 
in the enlarged insets of each slice. C12R1 and C12R2 are not shown for cluster 
group 2. Scale bars, 15 mm. f, t-SNE of projection-enriched clusters coloured by 
co-cluster. The colour palette for clusters in f and the top left of k,l is the same 
as in b. g–i, Normalized gene expression (norm expr, g) and gene-body mCH (h) 

levels of DEGs (n = 2,348) between the 33 projection-enriched clusters, and mCG 
levels of DEG-associated DMRs (i; n = 1,566,402), in each cluster. The values are 
z-score normalized across clusters. The DEGs and cell clusters are arranged in 
the same orders in g–i. Only the DMRs with the highest anticorrelation with 
each DEG are shown in i to make the column orders consistent for g–i. Examples 
of DEGs with GO annotations related to neuronal function and connectivity are 
labelled on the x axis. j, Examples of TFs whose binding motifs were enriched in 
hypo-CG-methylated DMRs of each cluster are shown in the bubble plot. The 
size of each dot represents the enrichment level (AUC). The colour of the dot 
indicates the expression level of the TF. The clusters are arranged in the same 
order as in b,g–i. k,l, Example triplet combinations of TF–CRE–target gene in 
GRN of TH. PCCs are shown on edges. The coordinates of the t-SNE plots are the 
same as in f. Top left, cells projecting to SSp (k) or P (l) are highlighted, coloured 
by co-clusters. In other plots, single cells are greyed and shown as background. 
Large dots represent clusters, plotted at the mean coordinates of the cells in 
the cluster. The size of each dot is proportional to the number of cells in the 
cluster. The dots are coloured by Rora (k) or Pou4f1 (l) expression (top right), 
mCG level of an example DMR (bottom left) and Sema7a (k) or Irx2 (l) expression 
(bottom right). The colour scales for gene expression are the same as in g, and 
the colour scale for mCG is the same as in i.



Nature | Vol 624 | 14 December 2023 | 363

clusters enriched for the same projections exhibited similar expression 
patterns of DEGs and methylation patterns of the associated DMRs. 
Additionally, clusters enriched for the same projection had similar sets 
of TFs, whereas those enriched for different projections had more dis-
tinct sets of TFs (Fig. 4j), implying the existence of projection-specific 
GRNs. These relationships are in contrast to those observed in HY, where 
the organization of TF motifs is not closely related to projection targets.

We then constructed a GRN in TH, which consists of 10.9 million  
TF–DMR–target triplet combinations, involving 469 TFs, 375,279 DMRs 
and 13,283 target genes. These networks captured regulatory relation-
ships reported in previous studies. For example, RORA has been identi-
fied as an essential factor for thalamocortical axon branching24, and 
transcriptome analysis suggested that Sema7a, another essential regula-
tor of thalamic cortical circuit maturation25, could be a potential target 
of RORA. In our data, RORA motifs are enriched in many clusters that are 
enriched for neurons projecting to cortical targets. Similar expression 
patterns were observed for Rora and Sema7a, as both of these genes are 
also expressed at high levels in the cortical-projection-enriched clusters. 
A total of 43 DMRs that potentially mediate this regulation were identi-
fied at the flanking region of Sema7a (Fig. 4k and Methods). Our study 
also suggests new regulatory relationships in TH. POU4F1 has its binding 
motif enriched in DMRs hypo-methylated in clusters 25 and 45 that make 
projections to P. The network suggests that genes encoding prepattern  
TFs IRX1 and IRX2 (ref. 26) are candidate downstream targets of POU4F1, 
which is also specifically expressed in the same two clusters (Fig. 4l).

Neurotransmitters in projection neurons
Recent brain-wide single-cell and spatial transcriptomic analyses 
have revealed remarkable heterogeneity and spatial specificity in 
neurotransmitter usage among different cell types across the mouse 
brain18,19. As described above and exemplified in TH and HY, our integra-
tive analysis revealed high levels of cell-type and spatial specificity in 
neurons with different projections. These findings sparked a further 
investigation into the neurotransmitter usage of these distinct pro-
jection neurons that were in different brain regions and had different 
cell-type compositions. Insights into the neurotransmitter usage of 
different projection neurons may shed light on their functional proper-
ties and their potential role in behaviour, with broader implications for 
understanding neural circuits and the mechanisms underlying various 
brain functions and disorders.

To systematically examine the use of neurotransmitters by different 
projections, we quantified the levels of expression of nine canonical neu-
rotransmitter transporter genes in each of the projection-enriched clus-
ters within the 12 grouped brain regions described previously (Extended 
Data Fig. 5). These transporter genes included Slc17a7 (Vglut1), Slc17a6 
(Vglut2) and Slc17a8 (Vglut3) for glutamatergic neurons, Slc32a1 (Vgat) 
for GABAergic neurons, Slc6a2 (Net) for noradrenergic neurons, Slc6a3 
(Dat) for dopaminergic neurons, Slc6a4 (Sert) for serotonergic neurons, 
Slc6a5 (Glyt2) for glycinergic neurons, and Slc18a3 (Vacht) for cholin-
ergic neurons. In addition, we used histidine decarboxylase (Hdc) for 
histaminergic neurons. Our analysis revealed a diverse range of neuro-
transmitter usage across the projection-enriched clusters, particularly 
those in the MB and HB regions. Furthermore, a large proportion of the 
projection-enriched clusters expressed more than one neurotransmit-
ter transporter gene. These findings indicate that there is a wide vari-
ation in neurotransmitter usage across different neural pathways and 
highlight the heterogeneity within some of these pathways. Below, we 
discuss a few notable cases in more detail, including projections from 
the HB regions of P and MY, AMY, and the MB region of VTA.

Neurotransmitters in HB neurons
We analysed 11 HB projections, which included projections from P or 
MY to five different targets—TH, HY, SC, cerebellar nuclei and cerebellar 

cortex (CBX)—as well as the projection from P to MY. These projec-
tions were enriched in 20 cell clusters out of a total of 128 HB clusters. 
Notably, in both P and MY, neurons projecting to the CBX were the most 
distinct from other projection neurons (Fig. 5a).

The 20 projection-enriched clusters showed expression of six neu-
rotransmitter transporter genes (Fig. 5b). Most of these clusters, such 
as the MY-to-CBX-enriched cluster 76, contain glutamatergic neurons 
expressing Slc17a6. Notably, Slc17a7 (encoding VGLUT1) and Slc17a6 
(encoding VGLUT2) were co-expressed in cluster 0 neurons that were 
enriched for the P-to-CBX projection. These observations are consist-
ent with those of previous studies that demonstrated the presence of 
VGLUT1 or VGLUT2 in climbing fibre (MY-to-CBX) terminals and both 
VGLUT1 and VGLUT2 in cerebellar mossy fibre (P-to-CBX) terminals 
using synaptic vesicle immunoisolation27. Moreover, different neuro-
transmitters were used in clusters enriched for the same projections. 
For instance, clusters 10, 11 and 27 were enriched for P-to-HY projec-
tions. Among them, cluster 10 is GABAergic, cluster 11 is glutamater-
gic, and cluster 27 is serotonergic, showing co-expression of Slc6a4 
(encoding SERT) and Slc17a8 (encoding VGLUT3). Furthermore, several 
of these clusters also exhibited distinctive spatial distributions when 
mapped to the MERFISH data, such as clusters 0, 76, 10 and 27 (Fig. 5c). 
Together, these results underscore the extent of molecular, cellular and 
spatial specificity and diversity within HB projections.

We observed that neurons projecting to CBX from P or MY were dis-
tinct from other projections originating from the same regions. To 
investigate this further, we examined the molecular signatures that 
could differentiate CBX-projecting neurons from other projection 
neurons in P or MY. Analysis of gene-body DNA methylation identi-
fied genes that could distinguish the P-to-CBX cluster (0) from other 
projection-associated P clusters, or differentiate the MY-to-CBX cluster 
(76) from other projection-associated MY clusters (Fig. 5d). Notably, 
only 5 genes were common between the top 100 genes in the two sets, 
namely Slit3, Phactr3, Pcbp3, Atp10a and Cdk14 (highlighted in Fig. 5d). 
Slit3 encodes a repulsive axon guidance molecule28,29, and Phactr3 has 
been shown to be involved in regulating axonal morphology30,31. The 
five common genes might mediate functions that are shared between 
mossy fibres and climbing fibres that are both directed to CBX, whereas 
the larger numbers of genes that are not shared might be related to 
distinct functions of MY versus P and/or projections to cerebellar 
Purkinje cells versus granule cells, respectively. To understand how the 
DEGs in CBX-projecting neurons are regulated, we identified 223,839 
hypo-DMRs in the HB that were associated with CBX-projecting neu-
rons (Fig. 5e). These DMRs were further divided into subsets that were 
hypo-methylated in either P-to-CBX or MY-to-CBX, and only a limited 
number were hypo-methylated in both. Collectively, these findings 
suggest that the molecular mechanisms underlying CBX versus other 
projections in P and MY are largely distinct, but with some shared fea-
tures at both the transcriptomic and epigenomic levels.

AMY and MB neurotransmitters
We examined projections from the AMY to nine different targets, includ-
ing the PFC, ENT, HIP, MOB, STR, TH, VTA, P and MY. These projections 
were enriched in 16 AMY clusters, with distinct sets of clusters enriched 
for neurons projecting to IT targets versus ET targets (Fig. 5f). The 
clusters enriched for IT projections were primarily glutamatergic and 
expressed Slc17a7 and/or Slc17a6 (Fig. 5g). By contrast, the clusters 
enriched for ET projections were divided between glutamatergic clus-
ters that expressed Slc17a6 and GABAergic clusters (Fig. 5g). Notably, 
the AMY-to-ENT projection was particularly distinct compared to 
other IT projections, exhibiting varied usage of vesicular glutamate 
transporters. Within the clusters enriched for AMY-to-ENT, Slc17a7 was 
predominantly expressed in cluster 12, Slc17a6 was the predominant 
transporter in clusters 24, 7 and 1, and clusters 31 and 64 expressed both 
Slc17a7 and Slc17a6, suggesting a potential diversity in the physiology 
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and function of AMY neurons projecting to the ENT. In summary, our 
results underscore the heterogeneity in neurotransmitters and their 
transporter utilization among AMY projection neurons.

The MB regions containing the VTA and substantia nigra (which 
we collectively refer to as VTA) exhibit some of the most notable and 
complex patterns of heterogeneous neurotransmitter usage between 
different projections. Our study analysed VTA neurons projecting to 
16 different targets, including 6 cortical targets (PFC, MOp, SSp, ACA, 
RSP and PTLp), 6 other IT targets (MOB, ENT, PIR, AMY, STR and PAL) 
and 4 ET targets (TH, HY, SC and P). By integrating epi-retro-seq and 
unbiased snmC-seq data, as well as scRNA sequencing of VTA, we can 
distinguish between cell clusters with various combinations of the 
expected glutamate, GABA and dopamine transporters known to be 
expressed by VTA neurons32–35 (Extended Data Fig. 9a,b).

To better examine the relationships between VTA neurons projecting 
to different targets and their use of neurotransmitters, we analysed the 
levels of mCH at specific marker genes, including tyrosine hydroxylase 
(Th) for dopaminergic neurons, Gad2 for GABAergic neurons, and 
Slc17a6 for glutamatergic neurons because previous studies showed 
that rodent VTA glutamatergic neurons mainly express Slc17a6 but not 
Slc17a7 or Slc17a8 (Fig. 5h,i and Extended Data Fig. 9c,d; refs. 36,37). In 
general, VTA neurons that project to the cortex had lower levels of mCH 
at Th compared to subcortical projections (except for VTA-to-STR), sug-
gesting a higher expression level of Th (Fig. 5h top; P values = 2.8 × 10−7 
(CTX versus MOB), 3.0 × 10−5 (CTX versus PAL), 6.2 × 10−15 (CTX versus 
ET), two-sided Wilcoxon rank-sum tests). The CTX-projecting neu-
rons also exhibited lower mCH levels at Slc17a6, indicating Slc17a6 

expression (Fig. 5h middle). Therefore, these CTX-projecting VTA 
neurons are probably Th+ and Slc17a6+ and use both dopamine and 
glutamate (Fig. 5i and Extended Data Fig. 9c). In contrast to VTA-to-CTX 
neurons, the most prominent populations of VTA-to-STR neurons com-
prie two groups, Th+Slc17a6− and Th−Slc17a6+, and there is a smaller pro-
portion of neurons that are both Th+ and Slc17a6+ (Fig. 5i and Extended 
Data Fig. 9). (Note that the use of the “−” designation here indicates a 
relatively low expression level rather than a complete absence.) On the 
basis of their mCH levels, the ET-projecting neurons were generally 
divided into two subgroups: Gad2+ and Slc17a6+ (Fig. 5i). Among the 
ET-projecting VTA neurons, those projecting to TH and HY were more 
similar to each other than to those projecting to SC and P (Extended 
Data Fig. 9b). Notably, some of the SC- and P-projecting neurons were 
uniquely present in a VTA Gad2+ cluster that were absent in other pro-
jections (Extended Data Fig. 9b). Overall, our findings corroborate 
previous reports of diverse populations of VTA neurons that use single 
or combined neurotransmitters and highlight intricate patterns of 
distinct neurotransmitter usage among various projections.

Summary
We have uploaded and made available data that inform potential users 
about the relationships between axonal projection status and DNA 
methylation at single-cell resolution for tens of thousands of neurons 
corresponding to hundreds of source-to-target combinations. We have 
provided quantitative measures of the discriminability of source neu-
rons projecting to different targets for nearly 1,000 target-to-target 
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Fig. 5 | Neurotransmitter usage in HB, AMY and VTA projection neurons. 
a,b, The proportion of each of the 11 assayed HB projections (a, z-score 
normalized across targets; the asterisk denotes enrichment with FDR < 0.01 
(one-sided Fisher exact test, Benjamini–Hochberg procedure; Methods)) and 
the expression levels of six neurotransmitter transporter genes, encoding 
respectively VGLUT1, VGLUT2, VGLUT3, VGAT, SERT and GLYT2 (b), in each of 
the 20 HB projection-enriched clusters. c, Projection-enriched HB clusters 
mapped to the MERFISH slice S1. The colour palette for clusters is the same as  
in a. d, AUC of precision–recall (AUPR) of genes to distinguish the P-to-CBX 
cluster (0) and P-to-ET clusters (10, 11, 27, 30, 35, 44, 57, 62 and 80) versus the 
MY-to-CBX cluster (76) and MY-to-ET clusters (5, 7, 10, 11, 17, 57, 66 and 114) with 
gene-body mCH level in epi-retro-seq data. The genes with AUPR > 0.872 in P 
and AUPR > 0.647 in MY (>99th quantile) are coloured in red. Five genes selected 
in both P and MY are labelled. e, mCG levels of hypo-mCG DMRs (n = 22,3839) in 

P and MY between the P-to-CBX clusters and P-to-ET clusters. f,g, The proportion 
of each of the 9 assayed AMY projections (f, z-score normalized across targets; 
the asterisk denotes enrichment with FDR < 0.01 (Fisher exact test, Benjamini–
Hochberg procedure; Methods)) and the expression levels of neurotransmitter 
transporters Slc17a7, Slc17a6 and Slc32a1, encoding respectively VGLUT1, 
VGLUT2 and VGAT (g), in each of the 16 projection-enriched clusters. h,i, The 
gene-body mCH levels of tyrosine hydroxylase (Th), Gad2 and Slc17a6 in VTA 
projection neurons, shown in density plots (h) or scatter plots (i). Colours 
represent VTA neurons projecting to different targets and the same palette is 
used in h,i. Note that the x axis in h and both axes in i are plotted as reciprocal 
mCH values (1/gene-body mCH), so low mCH is plotted to the right and top, 
indicating higher gene expression. ACA was not included in CTX (see Extended 
Data Fig. 9).
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comparisons. We have further demonstrated how these data can be 
integrated with other single-cell data modalities, including scRNA-seq 
and MERFISH, to link the spatially resolved cell-type clusters to neural 
circuits. It is important to note that our experiments were designed to 
assess the methylation status of neurons projecting to relatively large 
targets that could be reliably injected and assessed for accuracy during 
dissections of fresh tissue, and from a large number of source regions 
that could be readily and reliably dissected. Integration with MERFISH 
data allowed for more precise anatomical localization of enriched clus-
ters from these sources, but more focused studies using smaller retro-
grade tracer injections linked to smaller injection locations would be 
needed to identify possible differences between projection neurons at a 
finer resolution. More extensive details about the use of these data, their 
potential limitations and the analytic approaches we have taken can 
also be found in the Methods. The in-depth analyses provided here for 
both brain-wide comparisons of ET- versus IT-projecting neurons, and 
for the full sets of targets assayed for six of the assayed source regions 
(HY, TH, P, MY, AMY and VTA), exemplify the utility of the much larger 
dataset for further brain-wide and source- or target-focused analyses.

The observations and analysis presented here, both across the 
whole brain and for selected regions, provide new knowledge about 
the relationships between projection cell types and their epigenetics 
and gene expression. Overall, our data and analyses suggest that, as a 
general rule, the targets of projection neurons in any part of the brain 
can be predicted at levels above chance on the basis of knowledge of 
DNA methylation (for example, Extended Data Fig. 3). However, there 
is considerable diversity in the level of correlation between projection 
targets and methylation status. This diversity arises from differences in 
both source regions and targets. For example, cortical neurons project-
ing to ET versus IT targets can be readily identified for neurons from 
nearly any cortical area, and knowledge about correlations observed 
in one cortical area can be used to make predictions for another corti-
cal area. Thalamic neurons projecting to ET versus IT targets can also 
be readily predicted, but knowledge from differential methylation of 
cortical neurons cannot be used to accurately predict the projection 
status of thalamic neurons. In contrast to cortical and thalamic sources, 
projections to ET versus IT targets cannot be predicted as reliably for 
neurons in some other sources such as PAL (Fig. 2b). It is also clear from 
our in-depth analyses of subsets of these data, including neurons in the 
HY and TH, that relationships between source locations, projection 
targets and methylation status of single neurons are complex. Although 
there are better than chance correlations between gene methylation 
and projection targets for neurons in all of the sources that we sam-
pled, it is likely that the degree of correlation is shaped by a range of 
developmental events that affect both gene methylation and projection 
status through mechanisms that can work both independently and in 
concert. Future studies will be needed to better understand such devel-
opmental mechanisms in the context of the whole brain and to study 
which mechanisms are at work for each brain area and projection target.
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Methods

Experimental animals
As described previously2, all experimental procedures using live 
animals were approved by the Salk Institute Animal Care and Use 
Committee. The knock-in mouse line, R26R-CAG-loxp-stop-loxp-Su
n1-sfGFP-Myc (INTACT) used in epi-retro-seq2 was maintained on a 
C57BL/6J background. Adult male and female INTACT mice were used 
for the retrograde labelling experiments. Animals were housed in an 
Association for Assessment and Accreditation of Laboratory Animal 
Care-accredited facility at the Salk Institute. Lighting was controlled on 
a 12 h light/12 h dark cycle. Temperature was monitored and adjusted 
in accordance with Guide for the Care and Use of Laboratory Animals. 
Humidity was not controlled but monitored. As all air coming in is 
100% fresh air (not recirculated), humidity in the animal facilities is 
approximately the same as the outside ambient air. San Diego averages 
40–60% humidity year-round. Animals were 35–54 days old at the time 
of surgery for viral vector injections, were killed 13–17 days later, and 
were 50–70 days old on the day of dissection. C57BL/6J ‘wild-type’ mice 
aged 56–63 days were used for MERFISH experiments.

Surgical procedures for viral vector injections
As described previously2, to label neurons projecting to regions of 
interest, injections of rAAV-retro-Cre (produced by Salk Vector Core 
or Vigene, 2 × 1012 to 1 × 1013 viral genomes per millilitre, produced with 
capsid from Addgene plasmid No. 81070 packaging pAAV-EF1a-Cre 
from Addgene plasmid No. 55636) were made into both hemispheres of 
the INTACT mice. In summary, animals were anaesthetized with either 
ketamine–xylazine or isoflurane and placed in a stereotaxic frame. 
Pressure injections of 0.05 to 0.4 μl of AAV per injection site were made 
using glass micropipettes (tip diameters about 10–30 μm) targeted 
to stereotaxic coordinates corresponding to MOp, SSp, ACA, AUDp, 
RSP, PTLp, VISp, HPF, MOB, STR, PAL, TH, SC, VTA + substantia nigra, 
P, MY and CBX. To precisely target PFC, agranular insular cortex, ENT, 
PIR, AMY, HY and CBN, AAV was injected using iontophoresis to ensure 
confined viral infection. Iontophoretic injections (+5 μA, 7 s on/7 s off 
cycles for 5–10 min) were made with glass pipettes with a tip diameter 
of about 10 μm. For most of the desired target areas, injections were 
made at different depths, and/or at different anterior–posterior or 
medial–lateral coordinates to label neurons throughout the target 
area. More detailed injection coordinates and conditions are listed in 
Supplementary Table 1. At least two male and two female mice were 
injected for each desired target. No sample size calculation was car-
ried out. We empirically determined to use two mice of the same sex 
for each injection to achieve minimum reproducibility. Animals used 
for injections into each brain area were selected at random.

Brain dissection
Brain dissections were carried out as described previously2. In summary, 
approximately 2 weeks after the AAV-retro-Cre injection, brains were 
extracted from the 50- to 70-day-old INTACT mice, immediately sub-
merged in ice-cold slicing buffer (2.5 mM KCl, 0.5 mM CaCl2, 7 mM MgCl2, 
1.25 mM NaH2PO4, 110 mM sucrose, 10 mM glucose and 25 mM NaHCO3) 
that was bubbled with carbogen, and sliced into 0.6-mm coronal sec-
tions starting from the frontal pole. From each AAV-retro-Cre-injected 
brain, the slices were kept in the ice-cold dissection buffer from which 
selected brain regions (Fig. 1b) were manually dissected under a fluo-
rescence dissecting microscope (Olympus SZX16), following the Allen 
Mouse Common Coordinate Framework, Reference Atlas, Version 3 
(2015; Extended Data Fig. 1). The dissected brain tissues were transferred 
to prelabelled microcentrifuge tubes, immediately frozen in dry ice, and 
subsequently stored at −80° C. During the dissection, the injection site 
was visually inspected to verify the accuracy of the injection. Only brains 
with accurate injections were dissected for further analysis. Olympus 
cellSens dimension 1.8 was used for image acquisition.

Nucleus preparation and single-nucleus isolation
Nucleus preparation and isolation were carried out as described pre-
viously2. In summary, for each dissected brain region, samples from 
two male and two female mice were pooled separately as biological 
replicates for nucleus preparation. Nuclei were prepared using a 
modified protocol as reported38 and described2 previously. Nucleus 
suspensions were then incubated with GFP antibody, Alexa Fluor 488 
(Invitrogen, A-21311, 1:500 dilution) and anti-NeuN antibody (EMD Mil-
lipore MAB377) conjugated with Alexa Fluor 647 (Invitrogen A20173; 
1:300 dilution). GFP+NeuN+ single nuclei were isolated using FANS on 
a BD Influx sorter or a BD Aria Fusion cell sorter with a 100-μm nozzle, 
and sorted into 384-well plates with digestion buffer for snmC-seq. 
BD Influx Software v1.2.0.142 was used to select cell populations. The 
collected plates were incubated at 50° C for 20 min and then stored 
at −20° C. FACS parameters were adjusted for each experiment on the 
basis of the density of labelled neurons such that a higher proportion 
of all labelled neurons would be recovered from regions with sparser 
labelling.

snmC-seq library preparation
The bisulfite conversion and library preparation were carried out fol-
lowing the detailed snmC-seq protocol as previously described15. In 
brief, DNA samples from single nuclei were barcoded with random 
primers after the bisulfite conversion, pooled through two rounds of 
cleaning up with SPRI beads, and then added with adapters and PCR 
amplified to generate the libraries. Libraries were then pooled, cleaned 
up with SPRI beads, normalized and sequenced on Illumina Novaseq 
6000 using the S4 flow cell 2 × 150 base-pair mode. Freedom EVOware 
v2.7 was used for library preparation, and Illumina MiSeq control soft-
ware v3.1.0.13 and NovaSeq 6000 control software v.1.6.0 and Real-Time 
Analysis v3.4.4 were used for sequencing. Technicians doing nucleus 
preparations and snmC-seq analyses were blind to the injection sites 
used for each sample.

Mapping and preprocessing
Epi-retro-seq data were mapped to the mm10 genome as described 
in our previous study39. The whole genome was parsed into 100 kb 
non-overlapping genomic bins (Chr. 1:0–100,000; Chr. 1: 100,000–
200,000; and so on) using bedtools make-window, and for each single 
cell, we counted the methylated and total basecalls for all 100-kb bins 
using ALLCools generate-dataset. We also carried out the same count-
ing on all gene bodies expanded 2 kb in both directions. The data are 
saved in Zarr format to allow chunk loading and on-disk computing40. 
To avoid the methylation differences being driven by the active and 
inactive X chromosomes, we used only the autosomal bins and genes 
in our analyses. The cell-by-bin and cell-by-gene posterior methylation 
levels were computed as previously described39, which is the input for 
all downstream analyses.

Quality control
In quality control (QC) step 1, the cells included in the analysis are 
required to have a median mCCC level of the experiment < 0.025; 
500,000 < nonclonal reads < 10,000,000; and mCCC level < 0.05. In 
total, 56,843 cells from 703 experiments satisfied these requirements 
(Extended Data Fig. 2a,b).

In QC step 2, the potential doublets were removed as described in 
the next section, and 48,032 cells remained in the dataset (Extended 
Data Fig. 2c,d). The cell-type information and dissection information 
for these cells were used in our analysis, but further filters were applied 
to exclude non-neuronal cells as well as neurons whose projection 
targets are not confidently assigned.

In QC step 3, the experiments with fewer than 20 neurons were 
excluded to ensure the statistical power of projection analysis, resulting 
in 39,461 cells from 519 experiments left. The non-neuronal cells were 



also removed from the dataset, after which 34,643 neurons remained. 
The cell-type classification method is described in the next section.

In QC step 4, the cortical cells from 286 experiments were further 
filtered to exclude the experiments with a high proportion of neurons 
of the cell types known not to project to the intended injection site 
(off-target clusters), using the same method as in our previous study2. 
Specifically, for each FANS run, we counted the number of neurons 
that were observed in known on-target cell types (Oon) and off-target 
cell types (Ooff). Assuming that the proportions of contaminated cells 
in each subclass would be similar to those of a sample without projec-
tion-type enrichment, we compared the observed counts to the counts 
from unbiased snmC-seq data (Eon and Eoff) collected from the corre-
sponding dissections in Extended Data Fig. 1. The fold enrichment was 
computed as O E

O E
on off

off on
. A one-sided exact binomial test of goodness-of-fit 

was used to determine whether the enrichment of on-target cells was 
significant. The P value was computed as X O ;n pPr( ≥ , )on , in which 
X n p~ binomial( , ), where ~ represents distributed as,  n O O= +on off and 
p =

E
E E+

on

on off
. For each ET target, we considered ET as on-target subclasses 

and IT+inhibitory neurons as off-target. The thresholds for fold enrich-
ment and FDR (Benjamini–Hochberg procedure) were 8 and 0.001. 
For IT targets, we considered IT as on-target subclasses and layer 6 
corticothalamic+inhibitory neurons as off-target. The thresholds for 
fold enrichment and FDR (Benjamini–Hochberg procedure) were 3 
and 0.001. This eliminated 32 out of 286 sorting cases (Extended Data 
Fig. 2e).

The rationale of QC step 4 is to remove potential contamination in the 
dataset that might have resulted from inaccurate gating of GFP+NeuN+ 
cells and AAV-retro-Cre injection pipettes that passed through overly-
ing source brain regions and directly labelled neurons at those sources 
rather than being taken up retrogradely from the intended target. 
Inaccurate gating of GFP+NeuN+ cells could be more common in the 
experiments of some weak projections, in which very few neurons were 
retrogradely labelled, resulting in small proportions of cells passing 
FANS gating criteria and subsequent inclusion of high proportions 
of cells accepted from the edges of FANS gates. Inaccurate labelling 
could be more common when targeting a deep structure in the brain  
(for example, TH or HY) and collecting cells from the superficial struc-
tures directly above the target (for example, cortex). Note that QC step 
4 was carried out only for experiments on isocortical neurons, given 
that the on-target and off-target clusters were relatively clear in these 
areas. For subcortical projections, comprehensive prior knowledge 
of molecular cell types associated with projection is usually lacking, 
which makes the estimation of contamination using this method more 
challenging. The projections profiled in the subcortical structures are 
usually strong and do not involve overlaying of sources and targets,  
which would potentially lead to a lower noise level in those data.  
Nevertheless, it is worth noting that even after these QC steps, there are 
still expected to be some contaminated cells remaining in the dataset.

After all of the QC steps, 33,304 neurons from 487 experiments were 
used for analyses related to projection targets.

Transfer of cell labels from one dataset to another with weighted 
k-nearest neighbours
This method is similar to the label transfer method in Seurat v3 (ref. 41), 
and implemented in our ALLCools python package. This is used in many 
analyses throughout the manuscript, including epi-retro-seq cell clas-
sification and doublet removal, and mapping of MERFISH cells and 
retro-seq cells into major dissection regions or RNA and mC co-clusters. 
The original Seurat method identified anchors between two datasets, 
and used the 100 nearest anchors for each cell in the unlabelled data-
set to average the information from the labelled dataset. As the 100 
anchors usually include cells from other clusters, especially for a cell 
in an underrepresented cluster, this method makes the label transfer 
of small clusters quite noisy. Instead of using the anchors between 
datasets to transfer the labels, we used the anchors only to integrate 

the datasets together, and directly find the neighbouring cells of the 
unlabelled dataset in the labelled dataset on the integrated space. As 
the larger dataset usually has more cells than the number of anchors, 
this method reduced the noise in the small clusters.

Assume we have two datasets in a co-embedding space, A with labels 
and B without labels. For each cell in B as a query cell, we first find its 
k-nearest neighbours in A with Euclidean distance, and denote its dis-
tances to the neighbours as a k-dimensional vector d. d is then trans-
formed to w as the weights for averaging the information from the 
neighbours through the following steps that are the same as in Seurat: 

′ = 1 − max( )d d
d

; ″ = 1 − e−
′

2d
d

; = ″
Σ ″w d

d . After the transformation, the closer 
neighbours have higher weights, and the weights of all neighbours sum 
up to 1. To transfer a categorical label from A to B, we used one-hot 
encoding to represent the label and the label vectors corresponding 
to the k neighbours in A of the query cell (k-by-#categories, denoted 
as Lref ) were averaged with the weights w. The resulting vector 

L=qry refL w  represents the probability of the query cell belonging to 
each category. The category with the maximum probability is used as 
the final assignment.

Cell classification and doublet removal
As described in our companion manuscript, the cell clustering of the 
unbiased dataset was carried out iteratively at four levels (L1–L4), which 
assigned the cells into 61 (L1), 411 (L2), 1,346 (L3) and 2,573 (L4) clusters, 
respectively. At each level, the highly variable 100-kb bins were selected, 
and principal component analysis (PCA) was used for dimension reduc-
tion. The significant principal components (PCs) from mCH and mCG 
were combined to carry out consensus clustering.

We first carried out doublet removal with the help of unbiased data. 
The 56,843 cells after QC step 2 are mapped to the 310,605 unbiased 
snmC-seq cells (including predicted doublet cells). We used the highly 
variable features selected in the unbiased data and the PCA model 
fit with the unbiased data to transform the epi-retro-seq to the same 
dimension reduction space as the unbiased data. Then we classified 
the epi-retro-seq cells into either 1 of the 61 L1 clusters or the predicted 
doublet clusters defined in the unbiased data. The classification was 
carried out with the k-nearest neighbour approach described above on 
the PCs combining mCH and mCG. The epi-retro-seq cells assigned to 
each non-doublet L1 cluster were analysed in the next iteration, using 
the highly variable features selected in the unbiased data for the cluster 
and the PCA model fit with the unbiased data for the cluster. All of the 
predicted doublet cells in the unbiased data were added in each L1 clus-
ter in the L2 clustering to further exclude the potential doublets. After 
these two iterations, the cells predicted to be doublets were removed, 
with 48,032 epi-retro-seq cells remaining. These cells were mapped 
to the 301,626 unbiased snmC-seq cells (without predicted doublets) 
with the same feature selection and PCA methods through the four 
levels, so each epi-retro-seq cell is assigned to 1 cluster at each level. 
The 61 L1 clusters were annotated on the basis of their dissection source 
and marker genes. The cell clusters representing non-neuronal cells 
were removed from further analyses. The cells corresponding to the 
IT, ET, corticothalamic and cortical inhibitory clusters in the L1 cluster  
annotation were used for QC step 4 as described above.

Quantification of projection neuron difference with AUROC
To test the similarity of two groups of cells based on DNA methylation, 
we trained logistic regression models to predict the group label of each 
cell. We compared the results using four different types of feature to 
predict the projection target of neurons from the same source. These 
include the posterior mCH level of 100-kb-bin and gene-body, and the 
dimension reduction results of the two matrices. A total of 50 PCs were 
used as dimension reduction, with unbiased snmC-seq to fit the PCA 
models and transform the epi-retro-seq data. We also used two meth-
ods to split the cells into training and testing sets. One used a random 
selection of half of the cells projecting to each target for training and the 
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other half for testing (computational replicates); the other was based 
on the sex of the mice from which the cells were collected (biological 
replicates). After the QC steps, we have 168 source–target combina-
tions with data from both sexes and the other 57 with cells from only 
one sex. Therefore, all of the comparisons of 926 target pairs could 
be quantified with the computational replicates, but only 516 of them 
could be quantified with biological replicates. We noticed significant 
congruence of model performance between the different features and 
different train/test splits (Extended Data Fig. 3a–c). The performance 
when using 100-kb bins was very similar to that when using gene bod-
ies (Extended Data Fig. 3a). The performance when using raw features 
was slightly better than that when using PCs (Extended Data Fig. 3b). 
The performance when using computational replicates was signifi-
cantly better than that when using biological replicates (Extended Data 
Fig. 3c), which was expected given that the computational replicates 
dismissed the heterogeneity between biological replicates and made 
the predictions easier. Nevertheless, the computational replicates still 
provided strongly correlated results to biological replicates (Extended 
Data Fig. 3c), which allowed the comparison between different target 
pairs to evaluate their epigenomic differences.

All of the other results in the figures were computed using the com-
putational replicates with gene-body mCH as features. The features 
were filtered on the basis of average read coverage across cells before 
the model training. We removed the 100-kb bins and genes with <500 
average CH basecalls, resulting in 23,730 bins or 9,906 genes in the 
model. Sci-kit learn was used for model implementation. The area under 
the receiver operating characteristic (AUROC) from cross-validation 
was used to measure the performance of the model. The higher AUROC 
represented the better ability of the model to present the group label, 
which indicated that the two groups had larger mCH differences and 
were more distinguishable. For computational replicates, we carried 
out random sampling 50 times with different seeds, and used the aver-
age AUROC as the final result.

To test the predictability of projection targets with genes from differ-
ent categories, we collected the genes from the following resources—
neuropeptides and receptors: Table 1 in ref. 42 and Supplementary 
Fig. 16 in ref. 43; neurotransmitter receptors: Supplementary Fig. 15 
in ref. 43; ion channels: Supplementary Fig. 14 in ref. 43 and the Guide 
to PHARMACOLOGY database (https://www.guidetopharmacology.
org/DATA/targets_and_families.csv); neural projection development: 
Gene Ontology terms GO0031175 Neuron Projection Development and 
GO0050808 Synapse Organization; TFs: annotation from SCENIC+ 
(ref. 44). Only genes included in 9,906 genes with high CH coverage 
were analysed, and adding more lower-coverage genes to increase the 
size of gene sets did not improve the prediction performance.

Several reasons could contribute to a low prediction performance. 
Biological reasons would include the following. First, some neurons 
make projections to several targets simultaneously. These could result 
in the neurons being captured by several retrograde labelling experi-
ments of different targets. It would be impossible to predict a single 
label with our pairwise models for this type of neuron. Second, some 
neurons project to different target regions but have tiny epigenetic 
differences. To systematically distinguish the first and second reasons, 
other anatomic and genetic validations are still needed.

Technical reasons would include the following. First, the contamina-
tion levels of some experiments might be relatively high, which make 
larger noise and hinder the models from capturing real projection dif-
ferences. Second, the epigenetic differences between neurons project-
ing to different targets vary across replicates. Third, the sample sizes of 
some projections are small, which makes learning more challenging. 
Fourth, the models are not powerful enough to capture the complex 
differences between projections.

Elimination of contaminated FANS runs in QC step 4 decreased the 
potential influence by the first technical reason for cortical neurons 
as discussed in the “Quality control” section, although there are still 

contaminated cells included in the dataset. The improvement in label-
ling efficiency and specificity would help to better solve the molecular 
differences between projection types. In this study, male and female 
mice were treated as biological replicates after removing sex chro-
mosomes. Although methylation patterns of autosomes are similar, 
differences between sexes or animals might still exist. The small dif-
ferences in performance between data splitting methods (based on 
computation or biological replicates) might suggest a less notable 
effect contributed by the second technical reason in those samples. 
To evaluate the potential limitation of the fourth technical reason, 
more carefully curated models, and accordingly, more samples, would 
be required. Thus, given all of these factors, we are generally more 
confident in the distinguishable target pairs when training and test-
ing sets were split on the basis of both computational and biological 
replicates. The interpretation of comparisons without biological rep-
licates and the indistinguishable pairs would need to be more careful 
and are not involved in the major conclusions in this manuscript. Our 
study aims to provide a general view across many sources and targets. 
A more detailed understanding of specific projections would require 
larger-scale profiles on those specific projection types.

Integration between snmC-seq, epi-retro-seq and scRNA-seq
snmC-seq and scRNA-seq data used in this study are comprehensive 
atlases of the whole mouse brain, so most of the cell types are expected 
to be present in both datasets. Therefore, the two datasets were inte-
grated on the basis of a canonical correlation analysis (CCA) frame-
work, which captures the shared variation between the two datasets41. 
Epi-retro-seq is a projection-enriched dataset that contains a subset 
of the cell types in the atlas, but the shared methylation modality 
with snmC-seq allowed it to be integrated with the comprehensive 
atlas with a reciprocal PCA framework. Both the epi-retro-seq and the 
scRNA-seq datasets were mapped to the dimension reduction space 
of the snmC-seq data to create a multi-modality atlas of each brain 
region group.

For each region group, we selected cells from the three datasets 
belonging to the dissection regions. The methylation cells in the L1 
clusters corresponding to cerebellar neurons were excluded from 
the analysis of cerebral and brainstem regions. The RNA cells from the 
major classes of non-neuronal cells and immature neurons, and the 
subclasses of cerebellar neurons, were excluded from the analyses. 
The RNA cells from subclasses of medial mammillary nucleus (MM) 
and dorsal cochlear nucleus (DCO) were also excluded owing to the 
dissection differences between the two studies.

The gene expression levels of scRNA-seq cells were normalized by 
dividing the total unique molecular identifier (UMI) count of the cell 
and multiplying the average total UMI count of all cells, and then log 
transformed. The posterior gene-body mCH levels of snmC-seq and 
epi-retro-seq cells were used. The cluster-enriched genes (CEGs) were 
identified in each L4 cluster. We checked the variance of the mCH CEGs 
among the snmC-seq cells and scRNA-seq cells and used only the CEGs 
with mCH variance greater than 0.05 and expression variation greater 
than 0.005 for the analyses. The opposite of mCH levels was used for 
snmC-seq and epi-retro-seq data owing to the negative correlation 
between gene-body DNA methylation and gene expression. We fitted a 
PCA model with the snmC-seq cells and transformed the epi-retro-seq 
cells and scRNA-seq cells with the model. The PCs were normalized by 
the singular value of each dimension to avoid the embedding being 
driven by the first few PCs.

We adopted a similar framework to that of Seurat v3 (ref. 41) for 
data integration by first identifying the mutual nearest neighbours 
as anchors between datasets, and then aligning the datasets through 
the anchors.

To find anchors between snmC-seq and scRNA-seq, we first z-score 
scaled the mCH matrix and expression matrix of CEGs across cells, and 
the resulting matrices are represented as X (mC cell-by-CEG) and Y 
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(RNA cell-by-CEG), respectively. CCA was used to find the shared 
low-dimensional embedding of the two datasets, solved by singular 
value decomposition of their dot product USV XY=T T. U and V were 
normalized by dividing the L2 norm of each row, and were used to find 
five mutual nearest neighbours as anchors and score anchors using 
the same method as Seurat v3.

The original CCA framework of Seurat (v3) is difficult to scale up to 
millions of cells owing to the memory bottleneck, since the mC cell-by- 
RNA matrix was used as the input to CCA. To handle this limitation, we 
randomly selected 50,000 cells from each dataset (Xref  and Yref) as a 
reference to fit the CCA and transformed the other cells (Xqry and Yqry) 
onto the same canonical correlation space. Specifically, the canonical 
correlation vectors (CCVs) of Xref and Yref (denoted as Uref and Vref) were 
computed by U SV X Y=T T

ref ref ref ref , for which U U I=T
ref ref  and V V I=T

ref ref . 
Then the CCV of Xqry and Yqry (denoted as Uqry and Vqry) were computed 
by U X Y V S= ( )/T

qry qry ref ref  and V Y X U S= ( )/T
qry qry ref ref . The embeddings  

from the reference and query cells were concatenated for anchor  
identification.

To find anchors between snmC-seq and epi-retro-seq, we used the 
snmC-seq data to fit a PCA model and use the model to transform 
epi-retro-seq cells to the same space and find the five nearest snmC-seq 
cells for each epi-retro-seq cell. Reciprocally, we fit another PCA model 
with the epi-retro-seq cells and transform the snmC-seq cells and find 
five nearest epi-retro-seq cells for each snmC-seq cell. The mutual 
nearest neighbours between the two datasets were used as anchors 
and scored using the same method as Seurat v3.

The PCs derived from the previous step were then integrated together 
using the same method as Seurat v3 through these anchors. This inte-
gration step projects the PCs of epi-retro-seq and scRNA-seq (query) 
to the PCs of the snmC-seq (reference) while keeping the PCs of the 
reference dataset unchanged. The resulting PCs from the three datasets 
were used for t-SNE visualization and k-nearest neighbour (k = 25) graph 
construction with Euclidean distance. The joint clustering was carried 
out with the Leiden algorithm on the graph using a resolution of 1.0.

The quality of the integration analysis was evaluated from 
two aspects. First, we visualized the different modalities in the 
co-embedding space (Extended Data Fig. 4 left). The local neighbour-
hoods of the co-embedding usually contain cells from all modalities, 
suggesting a good mixture between the three datasets after integra-
tion. Second, we computed the proportion of cells in each mC cluster 
(Extended Data Fig. 4 middle) or RNA cluster (Extended Data Fig. 4 
right) assigned to each cluster defined on the co-embedding space 
(co-cluster). As we used the highest granularity of clustering from indi-
vidual modalities (original cluster), the co-clusters were usually larger 
than the original clusters. We therefore used the proportion of original 
clusters rather than the proportion of co-clusters, to demonstrate 
that almost all original clusters are included in one co-cluster with low 
ambiguity. The strongest signals align on the diagonals suggesting that 
the co-embedding preserved the cluster structures that were originally 
present within each modality. Further evidence of integration quality 
was suggested by the downstream analyses, for which highly consistent 
cell-type specificity of marker-gene expression and gene-body mCH 
were observed (Figs. 3f,g and 4e,f and Extended Data Fig. 9a).

Cluster associated with projection
For neurons projecting to each target within one source, we com-
puted the proportion of these neurons in each joint Leiden cluster. 
The clusters with >5% of the cells were considered as associated with 
the projection. The clusters associated with at least one projection are 
shown in the heatmaps of Figs. 3–5 and Extended Data Fig. 5. The values 
in the heatmaps represent the proportion of projection neurons in 
each cluster, z-scored within each cluster across the projection targets. 
We used the Fisher exact test to quantify whether one projection has 
a similar proportion of cells in each cluster compared with all other 
projections. One-sided tests were used to select odds ratios greater 

than 1 (projection cells enriched in one cluster compared with other 
projections). FDR values < 0.01 are labelled in the heatmaps in Figs. 3–5 
and Extended Data Fig. 5. We also used the Fisher exact test to quantify 
whether the male and female samples have a similar proportion of 
cells in each cluster, when the samples of both sexes passed the QC 
described above. Two-sided tests were carried out and FDR values < 0.01 
are labelled in the heatmaps in Extended Data Fig. 5.

In general, there are two intuitive ways to quantify the enrichment 
of projection neurons in a cluster. One is to directly find the clusters 
with a high absolute proportion of epi-retro-seq neurons projecting to 
a target. The other is to find clusters captured at a significantly higher 
frequency in the projection-enriched data relative to the unbiased data. 
The two methods each have their advantages and shortcomings. For 
example, the contaminated cells from inaccurate labelling or gating are 
likely to have a similar distribution across clusters to unbiased profiling. 
So a comparison using unbiased data as a control might help exclude 
the contaminated clusters better. However, if most of the neurons from 
a projection type are in the clusters that are originally abundant cell 
types in the source, by comparing with unbiased data, we would miss 
the predominant clusters making the projection.

In this manuscript, we used the absolute proportions but not the 
relative ones to the unbiased data owing to the different profiling strate-
gies between the two datasets. Although the epi-retro-seq samples and 
unbiased snmC-seq samples were dissected in the same way, we pooled 
the different dissections into the 32 different sources to carry out FANS 
and sequencing for epi-retro-seq, so that the proportion of cells from 
different dissection regions of the same source is likely to follow their 
proportions in the mouse brain. However, the unbiased snmC-seq 
profiled all of the dissection regions separately and sequenced the 
same number of cells in each dissection, which manually amplified 
the proportion of cells from the smaller or sparser dissection regions 
relative to the larger or denser ones, and limited the power to estimate 
the real proportion of neurons in each cluster from the sources.

As we pooled the two mice of the same sex before sequencing, we do 
not have biological replicates to study the different distribution across 
clusters of projection neurons from different sexes. For the identifica-
tion of projection-enriched clusters and their differences between 
sexes, we used Fisher exact tests to find the proportion difference that 
treats each single cell as an independent sample but does not consider 
the consistency between biological replicates. This could lead to false 
discovery, so we consider the projection-enriched clusters with no 
significant sexual proportion differences as more confident ones. We 
also tested general linear models with binomial dependent variables 
and use biological replicates as a random effect. However, probably 
owing to the number of replicates being too small (1 or 2), the limited 
power for accessing random effects resulted in low detection power and 
the test was highly biased to identifying small clusters. Therefore, our 
dataset provides a general resource across the whole brain suggesting 
projection-associated cell types, and more biological replicates are 
needed to validate the patterns and investigate the sexual differences.

It is also worth noting that our integration and clustering strategies 
did not consider the projection target labels of neurons. Therefore, the 
granularity and boundary of unbiased clusters could be different from 
the actual projection-associated cell types. For example, some clusters 
may have only a small fraction enriched for certain projection neurons, 
whereas some clusters may have very similar projection enrichment 
patterns but still split into several in our analyses. Improved methods for 
clustering including the information of both molecular feature embed-
ding and projection labels could further expand our understanding of 
the association between molecular cell types and neural projections.

Classification of MERFISH cells into major brain regions and cell 
clusters
The MERFISH experiments were conducted as described in ref. 17, 
including the gene panel design, tissue preparation, imaging, data 
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processing and annotation. The dataset includes two sagittal slices  
(S1 and S2, with S1 being more lateral and S2 being more medial) and  
14 coronal slices (C2, C4, C6, C8, C10, C12 and C14, roughly correspond-
ing to slices 2, 4, 6, 8, 10, 12 and 14 in Extended Data Fig. 1, with two 
replicates for each slice, represented as R1 and R2). The same naming 
of slices was used throughout this manuscript (Figs. 3e, 4d and 5c and 
Extended Data Fig. 6).

The MERFISH cells were classified into subclasses and brain region 
groups by integration with scRNA-seq data. The 489 autosomal genes 
that overlapped between scRNA-seq and MERFISH datasets were used. 
We fitted a PCA model with the scRNA-seq cells and transformed the 
MERFISH cells with the model. The PCs were normalized by the singu-
lar value of each dimension. The cell-by-gene matrices were z-score 
normalized across cells within each dataset, and CCA was used to find 
anchors between the two datasets. We used 50,000 cells to fit the CCA 
and transformed the other cells as described above. The transformed 
PCs of MERFISH cells were then aligned to the PCs of scRNA-seq cells to 
derive a co-embedding between the two datasets. This co-embedding 
was used for label transfer of cell subclasses from scRNA-seq data to 
MERFISH data, considering 25 neighbouring scRNA-seq cells for each 
MERFISH cell.

The cells classified as non-neuronal and immature neuronal sub-
classes were excluded owing to lack of regional specificity, and the rest 
of cells from the two datasets were integrated again with the procedures 
described above to transfer the label of 14 brain region groups from 
the scRNA-seq neurons to the MERFISH neurons. The initial label assign-
ment is noisy. Therefore, a smoothing step was carried out to refine 
the region group assignment. Specifically, for each MERFISH cell i, we 
found its 25 neighbours on the same slice (denoted as Nsi) based on 
the spatial coordinates, and used Dsi to represent the corresponding 
distances between i and its jth neighbour Nsi j, . Similarly, we found the 
25 scRNA-seq neighbours for each MERFISH cell i based on the integra-
tion, and used Dri  to represent the distances. The distance matrices 
were transformed as described in the label transfer section, and the 
final spatial labels were transferred from the 25 RNA neighbours of 
each of the 25 spatial neighbours (625 scRNA-seq cells in total) to 1 
MERFISH cell. The weight between the MERFISH cell i and the kth 
scRNA-seq neighbour of its jth spatial neighbour was computed as 
D Ds Dr″ = ″ ″i j k i j Ns k,25 + , ,i j,

. D″ is row normalized and used as weights for label 
transfer as described in previous sections.

We note that this could also be achieved through registration of 
MERFISH DAPI images to the common coordinate framework. However, 
our companion works demonstrated that the procedure is relatively 
challenging and it is important to use cell types with known locations 
as landmarks to refine the registration.

Finally, the neurons from each region group were selected and inte-
grated with the scRNA-seq cells from the same region group, using the 
same procedure as described above. The mC–RNA co-cluster labels 
were transferred from the scRNA-seq cell to the MERFISH cells. The 
MERFISH cells assigned to the MM and DCO subclasses in the last step 
were also excluded as those clusters were not included in the co-cluster 
analysis as described in the previous section.

Comparison with Act-seq
The 10x scRNA-seq data in ref. 7 were downloaded from Mendeley Data 
(https://data.mendeley.com/datasets/ypx3sw2f7c/3), and are referred 
to as Act-seq in this section and Extended Data Fig. 7. The dataset con-
tains 168,877 cells in total, among which 78,476 were labelled as neu-
rons and were used to integrate to the unbiased scRNA-seq data for 
hypothalamic neurons, using the 5,314 CEGs of 1,891 L3 scRNA-seq 
clusters. PCA was fitted with scRNA-seq data and the Act-seq data were 
transformed. The CCA framework was used to find anchors between 
the two datasets, and the transformed PCs of Act-seq were aligned to 
the scRNA-seq PCs. We used the label transfer method described in 
the previous section to transfer the mC–RNA co-cluster labels from 

scRNA-seq cells to the Act-seq cells, considering five neighbouring 
scRNA-seq cells for each Act-seq cell. The Act-seq cells with Fos expres-
sion level > 0 were considered to be Fos+ cells, and the proportions of 
Fos+ cells were compared between control and each behaviour using 
one-sided Fisher exact tests. The Fos expression levels were compared 
with one-sided Wilcoxon rank-sum tests.

Only the 23,345 Act-seq cells from 16 ventromedial HY (VMH) neu-
ron clusters were considered as ventrolateral VMH cells (VMHvl) and 
were used for the behaviour-association studies in ref. 7. However, 
almost none of them correspond to projection-associated clusters 
in our data (Extended Data Fig. 7a–c). We further compared our 
projection-associated clusters with all of the neuron clusters profiled 
in ref. 7 and note that five clusters have corresponding clusters in the 
Act-seq data (Extended Data Fig. 7d, in red). Among them, clusters 4 
and 64 showed weak but significant increases in proportions of Fos+ 
cells labelled during certain behaviours (Extended Data Fig. 7f).

The generally weak associations between projection-associated and 
behaviour-associated clusters are probably due to the small overlap 
between the brain regions profiled in the two datasets, particularly the 
under representation of VMHvl neurons in epi-retro-seq data. Addition-
ally, because there were far fewer cells profiled in epi-retro-seq versus 
Act-seq, the granularity of clusters used for projection association 
and behaviour association is different; this difference is particularly 
pronounced in VMHvl for which >10 times more cells were used for 
the behaviour-association study (Extended Data Fig. 7c–e). Therefore, 
further increasing the size of datasets to achieve higher granularity 
of cell typing in specific regions of interest could facilitate further 
association between molecular types with projections and behaviours. 
Our study aimed at a comprehensive view of a large number of projec-
tions across the whole brain and focused on targets that do not seem 
to receive strong input from VMH. This apparently limited the data 
overlap between these and limited the ability to make direct compari-
sons between studies.

Comparison with retro-seq
The scRNA-seq data in ref. 8 were downloaded from the Gene Expres-
sion Omnibus with the identifier GSE133912. The retro-seq data were 
integrated to the unbiased scRNA-seq data for thalamic neurons, 
using the 5,404 CEGs of 1,128 L3 scRNA-seq clusters. PCA was fitted 
with scRNA-seq data and retro-seq data were transformed. The CCA 
framework was used to find anchors between the two datasets, and the 
transformed PCs of retro-seq were aligned to the scRNA-seq PCs. To 
compare the distribution of retro-seq cells and epi-retro-seq cells across 
thalamic cell clusters, we used the label transfer method described in 
the previous section to transfer the mC–RNA co-cluster label and the 
joint t-SNE coordinates from scRNA-seq cells to the retro-seq cells, 
considering five neighbouring scRNA-seq cells for each retro-seq cell.

DEGs
The gene expression level of each single cell was normalized by the 
total UMI count of the cell and log transformed. We carried out pairwise 
comparisons between clusters associated with projection neurons. 
For each cluster pair, the P values were derived with two-sided Wil-
coxon rank-sum tests, and the fold change is computed as the ratio 
between the average expression level across cells in the two clusters. 
The genes with absolute value of log2 fold change greater than 1 and 
FDR (Benjamini–Hochberg procedure) values smaller than 0.01 were 
considered as differentially expressed. The DEGs from all cluster pairs 
were merged to generate the heatmaps in Figs. 3 and 4. Only the top 
100 DEGs ranked by FDRs were used if there were more than 100 DEGs 
identified between a pair of clusters.

DMRs and association with genes
The unbiased snmC-seq cells from each mC–RNA co-cluster were 
merged to generate pseudobulk methylation profiles. The epi-retro-seq 
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cells were not used owing to the different genome backgrounds of the 
mice to avoid confounding results. DMRs were identified within each 
region group between clusters using ALLCools. We then calculated the 
PCC between DMR mCG and gene mCH fraction. We shuffled the DMRs 
and genes within each sample to calculate the null PCC and estimate 
FDR. We filtered DMR–target edges with FDR < 0.01.

TF motif enrichment
We used an ensemble motif database from SCENIC+ (ref. 44), which con-
tained 49,504 motif position weight matrices (PWMs) collected from 
29 sources. Redundant motifs (highly similar PWMs) were combined 
into 8,045 motif clusters through clustering based on PWM distances 
calculated by TOMTOM45 by the SCENIC+ authors. Each motif cluster 
was annotated with one or more mouse TF genes. To calculate motif 
occurrence on DMRs, we used the Cluster-Buster46 implementation 
in SCENIC+, which scanned motifs in the same cluster together with 
hidden Markov models.

Within each region group, we assign hypo-DMRs to each cluster if 
the mCG level of a DMR in the cluster is below the 10th quantile of all 
DMRs from the region group and below the 10th quantile of the mCG 
level of this DMR in all clusters from the region group. To carry out 
motif enrichment analysis, we used the recovery-curve-based cisTarget 
algorithm44. In brief, the cisTarget algorithm performed motif enrich-
ment on the hypo-DMRs of each cluster by calculating the area under 
the recovery curve (AUC) for each motif, which is further normalized 
on the basis of all other motifs in the collection to calculate a normal-
ized enrichment score. We used the cutoff AUC > 0.01 and normalized 
enrichment score > 3 to select enriched motifs. The TF-encoding genes 
shown in Figs. 3i and 4i were additionally required to have expression 
level > 0 and normalized mCH level < 1 in at least one cluster that its 
motif enriched in, to select the TFs that are likely to be expressed among 
a family of TFs showing the same motif enrichment scores.

GRN analysis
GRNs were constructed in each major brain region, with genes (TF and 
non-TF) and DMRs as nodes and three types of edge. The GRNs were 
summarized into many triplet combinations, each of which contains 
a TF, a DMR, a target gene (including TFs) and edges between each  
other. In this analysis, we include only the TFs whose motif is sig-
nificantly enriched in hypo-DMRs of any cluster in the brain region  
(as described in the “TF motif enrichment” section). We use only a union 
set of genes with absolute log2 fold change > 1 and FDR < 0.01 (described 
in the section “DEGs”) in any pairwise comparisons between clusters. 
The weights of edges were computed on the basis of the PCC between 
nodes across clusters, and only the edges showing significant correla-
tion in the shuffle tests (described in the “DMRs and association with 
genes” section) were kept. Before computation of the PCC, all data were 
quantile normalized within each cluster (across features). The edges 
include the following three categories: TF–DMR edges, connected 
if the PCC between TF expression and mCG level of DMRs is signifi-
cant (FDR < 0.01) and the TF has a binding site in the DMR predicted 
by Cluster-Buster; TF–gene edges, connected if the PCC between TF 
expression and target gene expression is significant (FDR < 0.01); and 
DMR–gene edges, connected if the PCC between mCG level of DMRs 
and target gene expression is significant and the distance between gene 
transcription start site and the DMR is within 1 megabase.

Note that because the GRNs were constructed based only on correla-
tions between data modalities and the binding motifs, they inevitably 
capture indirect and false-positive relationships. Perturbation experi-
ments would be necessary to validate the connections between cis or 
trans regulators and target genes.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed data are available at the Gene Expression Omnibus 
under accession code GSE230782. Processed data can be explored on 
our web portal: http://neomorph.salk.edu/epiretro. Other datasets 
used in this study include scRNA-seq (https://portal.brain-map.org/
atlases-and-data/bkp/abc-atlas), snmC-seq and MERFISH (https://
mousebrain.salk.edu/download), Act-seq (https://doi.org/10.17632/
ypx3sw2f7c.3) and retro-seq (GSE133912). The mm10 genome was 
downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/
mm10/bigZips/.

Code availability
The code for all of the analyses can be found at https://github.com/
zhoujt1994/EpiRetroSeq2023.git.
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Extended Data Fig. 1 | The dissection map of source regions across the 
mouse brain. The posterior views of dissected slices are shown. The slices 
correspond to Allen Mouse Common Coordinate Framework (CCF), Reference 
Atlas, Version 3 (2020)13, level 21 ~ 27 (slice 1), 27 ~ 33 (slice 2), 33 ~ 39 (slice 3), 
39 ~ 45 (slice 4), 45 ~ 51 (slice 5), 51 ~ 57 (slice 6), 57 ~ 63 (slice 7), 63 ~ 69 (slice 8), 

69 ~ 75 (slice 9), 75 ~ 81 (slice 10), 81 ~ 87 (slice 11), 87 ~ 93 (slice 12), 93 ~ 99 (slice 13), 
99 ~ 105 (slice 14), 105 ~ 111 (slice 15), 111 ~ 117 (slice 16), 117 ~ 123 (slice 17), and 
123 ~ 129 (slice 18), respectively. Regions dissected from each slice are indicated 
by dotted lines and are annotated. Allen Brain Reference Atlas, http://www.atlas.
brain-map.org, © 2017 Allen Institute for Brain Science.

http://www.atlas.brain-map.org
http://www.atlas.brain-map.org


Extended Data Fig. 2 | Quality control workflow and region group 
assignment. a, b, Joint t-SNE of Epi-Retro-Seq cells (n = 56,843) and unbiased 
snmC-seq cells (n = 310,605) after basic QC (Methods, QC Step 1) colored by the 
predicted outliers (a) or the total number of reads normalized per sequencing 
plate (b). c, d, Joint t-SNE of Epi-Retro-Seq cells (n = 48,032) and unbiased 
snmC-seq cells (n = 301,626) after removing outlier clusters (Methods, QC Step 2) 
colored by neuronal vs. non-neuronal cells (c) or their assigned L1 type (d).  
e, the on-target vs. off-target fold enrichment (x-axis) and -log10 FDR (y-axis) of 

IT (n = 186, top) or ET (n = 100, bottom) FANS experiments. The size of the circle 
is proportional to the number of neurons captured in the experiment. f, The 
overlap scores between 115 snmC-seq dissections and 87 scRNA-seq dissections. 
Each region group is colored differently on the x and y axes and squared in the 
heatmap. g, Joint t-SNE of Epi-Retro-Seq (n = 35,743), snmC-seq (n = 266,740), 
and scRNA-seq (n = 2,434,472) neurons colored by region groups. (f) and (g) 
share the same color palette.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Quantification of target discriminability for all  
926 target pairs from all source regions. a, Comparisons of AUROCs from 
models trained with gene features (x-axis) or 100 kb bin features (y-axis) using 
posterior mCH level (top) or mCH principal components (bottom) when 
splitting the training and testing data according to biological replicates (left) 
or computational replicates (right). b, Comparisons of AUROCs from models 
trained with mCH principal components (x-axis) or posterior mCH level (y-axis) 
using gene (top) or 100 kb bin (bottom) features when split the training and 
testing data according to biological replicates (left) or computational replicates 
(right). c, Comparisons of AUROCs from models when splitting the training  
and testing data according to biological replicates (x-axis) or computational 

replicates (y-axis) using gene (top) or 100 kb bin (bottom) features and 
posterior mCH level (left) or mCH principal components (right). For a-c, each 
dot represents a pairwise comparison between the neurons projecting from 
the same source to two different targets. The plots involving biological 
replicates have 516 data points each while the others have 926 data points each. 
Pearson Correlation Coefficient (PCC, r) and P value (permutation test) are 
labeled in each panel. d, The AUROC between neurons projecting from each of 
the 30 sources to all possible pairs of targets that have been profiled for the 
source. STR and CBX are not included since we only profiled one target for 
these sources.
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Extended Data Fig. 4 | Co-clustering of Epi-Retro-Seq, unbiased snmC-seq 
and scRNA-seq data for 12 brain regions. For each brain region group, the 
joint t-SNE colored by data modality (left) and the proportion of cells from each 
snmC-seq L4 cluster (middle, column) or scRNA-seq L3 cluster (right, column) 

within each co-cluster (middle and right, row). Numbers of co-clusters in the 
rows are sometimes different for middle and right columns because only the 
co-clusters (rows) with more than one value > 10% across the columns are 
shown. See Methods for further details.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Projection-enriched cell clusters and their 
neurotransmitter usage for all brain regions. Joint clustering analysis of  
Epi-Retro-Seq, unbiased snmC-seq and scRNA-seq was performed on each of 
the major brain region groups, including CTX, RHP, PIR, HB, MOB + AON, AMY, 
TH, HIP, MB, HY, and PAL (STR not included because there is only one target),  
to characterize neuronal cell clusters that were enriched for Epi-Retro-Seq 
projections. The normalized proportion of each projection in each cluster  
was visualized in the heatmaps (left) for each of the brain region groups.  
“*” denotes FDR < 0.01 for testing if the proportion of cells in a cluster among 
those projecting to a target is greater than the proportion of cells in this cluster 
among those projecting to all other targets (one-sided Fisher exact test; 

Benjamini-Hochberg procedure). “X” denotes FDR < 0.01 for testing if the 
proportion of cells in a cluster among those projecting to a target is different 
between male and female samples (two-sided Fisher exact test; Benjamini-
Hochberg procedure). In addition, the expression levels of 10 marker genes for 
neurotransmitter usage in each cluster are visualized in the heatmap (right) for 
each brain region group. These genes included Slc17a7 (Vglut1), Slc17a6 (Vglut2), 
and Slc17a8 (Vglut3) for glutamatergic neurons, Slc32a1 (Vgat) for GABAergic 
neurons, Slc6a2 (Net) for noradrenergic neurons, Slc6a3 (Dat) for dopaminergic 
neurons, Slc6a4 (Sert) for serotonergic neurons, Slc6a5 (Glyt2) for glycinergic 
neurons, Slc18a3 (Vacht) for cholinergic neurons, and histidine decarboxylase 
(Hdc) for histaminergic neurons.



Extended Data Fig. 6 | Joint clustering and annotation of MERFISH and 
scRNA-seq data. a, b, Joint t-SNE of scRNA-seq neurons (n = 2,619,158, left) and 
MERFISH neurons (n = 329,282, right) colored by cell subclass (a) or region 

group (b). The labels for scRNA-seq cells are based on Yao et al.18 and the labels 
for MERFISH cells are predicted through integration. c, d, The MERFISH slices 
colored by cell subclass (c) or region group (d). Scale bars represent 15 mm.
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Extended Data Fig. 7 | Integration and comparisons of hypothalamic 
Epi-Retro-Seq, Act-seq, and scRNAseq data. a, b, Joint t-SNE of Act-Seq 
neurons7 (n = 78,476, a) and scRNA-seq neurons (n = 148,840, b). In (a), all 
Act-Seq neurons (left) or only VMHvl neurons (right) are colored by Act-Seq 
neuron cluster (left) or VMH cluster (right). In (b), all scRNA-seq neurons (left) 
or only neurons in projection associated clusters (right) are colored by the 
co-cluster label. c, d, The proportion of neurons from each of the Act-Seq VMHvl 

clusters (c) or all neuron clusters (d) classified as neurons of each co-cluster. 
Only the co-clusters with value > 0.1 in at least one Act-Seq cluster are shown. 
The projection-associated co-clusters are labeled in red. e, f, Proportion of Fos+ 
“behavior activated” cells (left) or average Fos expression (right) of each VMHvl 
cluster (e) or each co-cluster (f) in control and different behavior experiments. 
Only the co-clusters labeled red in d are shown in (f). *, **, and *** represent 
FDR < 0.1, 0.01, and 0.001, respectively.



Extended Data Fig. 8 | Comparison of thalamic Retro-Seq and Epi-Retro-Seq 
data. a, t-SNEs for visualization of the Retro-Seq data from thalamic neurons 
projecting to prefrontal, motor, somatosensory, auditory, and visual cortices8 
that were mapped onto the joint-clustering analysis of Epi-Retro-Seq, unbiased 
snmC-seq and scRNA-seq in TH. b, The t-SNEs for visualization of the Epi-Retro- 

Seq data for thalamic neurons projecting to 12 different targets that were 
mapped onto the same t-SNE space. c, The overlap score and cosine distance 
were calculated for each pairwise comparison of Retro-Seq and Epi-Retro-Seq 
projections and were visualized in the heatmaps, respectively.
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Extended Data Fig. 9 | The neurotransmitter usage of VTA projection 
neurons. a, Joint t-SNE of Epi-Retro-Seq, unbiased snmC-seq and scRNA-seq of 
VTA neurons colored by the gene expression levels (red) and gene-body mCH 
levels (purple) for Vglut2 (left), Gad2 (middle), and Th (right), marker genes for 
glutamatergic, GABAergic, and dopaminergic neurons, respectively. b, The 
distribution of VTA neurons projecting to each of the 16 targets on the same 

t-SNE. c-e, The gene-body mCH levels of Th versus Vglut2 (c), Gad2 versus Vglut2 
(d), and Gad2 versus Th (e) for VTA neurons projecting to each of the 16 targets, 
are visualized in scatter plots. Note that, because low mCH levels indicate high 
gene expression, the axes in c-e are plotted as the reciprocal mCH values (1/gene 
body mCH), so low mCH is plotted to the right/up and high to the left/down.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection BD Influx Sortware v1.2.0.142 (flow cytometry), Freedom EVOware v2.7 (library preparation), Illumina MiSeq control software v3.1.0.13 and 
NovaSeq 6000 control software v1.6.0/RTA v3.4.4 (sequencing), Olympus cellSens Dimension 1.8 (image acquisition)

Data analysis System: python=3.7.12, skypilot==1.0.0.dev0;  
Mapping: yap=1.5.11, cutadapt=2.10, bismark=0.20.0, bowtie2=2.3.5, picard=2.18, samtools=1.9;  
Analysis: allcools=1.0.17, anndata=0.8.0, scanpy=1.9.1, zarr=2.12.0, bedtools=2.30.0, scikit-learn=1.0.2, h5py=3.7.0, hdf5=1.12.2, htslib=1.16, 
matplotlib-base=3.5.2, harmonypy=0.0.9, qnorm=0.8.1, wmb=0.1.36;  
Other code are available on https://github.com/zhoujt1994/EpiRetroSeq2023.git

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw and processed data are also available at GEO under accession code GSE230782. Processed data can be explored on our web portal: http://neomorph.salk.edu/
epiretro. Other datasets used in this study include scRNA-seq (https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas), snmC-seq and MERFISH (https://
mousebrain.salk.edu/download), Act-Seq (DOI 10.17632/ypx3sw2f7c.3), and Retro-Seq (GSE133912). The mm10 genome was downloaded from https://
hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Number of cells from each experiment after QC were reported in Supplementary Table 3. The 
sample size allowed us to obtain high coverage methylomes for each projection, and confidently identify projection neuron enriched clusters.

Data exclusions We imaged the live tissue and closely inspected every injection site to ensure that the injection location was as intended and off-target 
injections were eliminated. 
Poor quality nuclei were excluded from downstream analyses through four steps of quality controls (QCs) described in Methods.

Replication At least 2 male and 2 female mice were injected with AAV-retro-Cre for each projection target. Male and female samples were pooled 
separately for nuclei preparation. Nuclei collected from the male and female pool were used as biological replicates in the downstream 
analyses. The consistency of projection enriched clusters between biological replicates are reported in Extended Data Fig. 5. The comparison 
of results from biological replicates and computational replicates are shown in Extended Data Fig. 3 and discussed in "Quantification of 
projection neuron difference with AUROC" in Methods.

Randomization Animals used for injections into each brain area were selected at random. FACS sorted cells selected for sequencing were randomized during 
the sorting process.

Blinding Technicians doing nuclei preps and snmC-seq analyses were blind to the injection sites used for each sample.

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-GFP antibody, dilution: 1:500, Alexa Fluor 488 (Invitrogen, A-21311) 

anti-NeuN antibody, clone A60, dilution: 1:300,  EMD Millipore MAB377 conjugated with Alexa Fluor 647 (Invitrogen A20173)

Validation Anti-NeuN antibodies have been previously published for use in immunohistochemistry  and  flow cytometry experiments (PMID: 
23828890, 26087164). Anti-GFP antibody has been validated in Kim et al. Neuron 2020 (PMID: 32396852).

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals The knock-in mouse line, R26R-CAG-loxp-stop-loxp-Sun1-sfGFP-Myc (INTACT) used in Epi-Retro-Seq was maintained on a C57BL/6J 
background. Adult male and female INTACT mice were used for the retrograde labeling experiments. Animals were housed in an 
AAALAC accredited facility at the Salk Institute. Lighting was controlled on a 12 hour light/12 hour dark cycle. Temperature was 
monitored and adjusted in accordance with Guide for the Care and Use of Laboratory Animals. Humidity was not controlled but 
monitored. Because all air coming in is 100% fresh air (not re-circulated), humidity in the animal facilities is approximately the same 
as the outside ambient air. San Diego averages 40-60% humidity year-round. Animals were 35-54 days old at the time of surgery for 
viral vector injections, were sacrificed 13-17 days later, and were 50-70 days old on the day of dissection.  
56-63 day old, C57BL/6J “wild-type” mice were used for MERFISH experiments.

Wild animals N/A

Reporting on sex The sample sizes for different sexes are reported in Supplementary Table 3. The consistency of projection enriched clusters between 
sexes are reported in Extended Data Fig. 5. Different sexes are used to split training and testing sets and the performances were 
compared with random split in Extended Data Fig. 3.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All experimental procedures using live animals were approved by the Salk Institute Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Manually dissected mouse brain samples were snap-frozen on dry ice and stored at -80 °C.  Prior to nuclei preparation, for 
each projection, samples from 2 males and 2 females were pooled separately as biological replicates. The frozen brain tissues 
were transferred to a pre-chiled 2-mL dounce homogenizer with 1 mL ice-cold NIM buffer (0.25M sucrose, 25mM KCl, 5mM 
MgCl2, 10mM Tris-HCl (pH7.4), 1mM DTT (Sigma 646563), 10μl of protease inhibitor (Sigma P8340)), with 0.1% Triton X-100 
and 5μM Hoechst 33342 (Invitrogen H3570), and gently homogenized on ice with the pre-chilled pestle 10-15 times. The 
homogenate was transferred to pre-chilled microcentrifuge tubes and centrifuged at 1000 rcf for 8 min at 4 °C to pellet the 
nuclei. The pellet was resuspended in 1 mL ice-cold NIM buffer, and again centrifuged at 1000 rcf for 8 min at 4 °C. The pellet 
was then resuspended in 450 μL of ice-cold NSB buffer (0.25M sucrose, 5mM MgCl2, 10mM Tris-HCl (pH7.4), 1mM DTT, 9ul 
of Protease inhibitor), and filtered through 40μM cell strainer. The filtered nuclei suspension was incubated on ice for at least 
30 minutes with 50μl of nuclease-free BSA for at least 10 minutes, then incubated with GFP antibody, Alexa Fluor 488 
(Invitrogen, A-21311) and anti-NeuN antibody (EMD Millipore MAB377) conjugated with Alexa Fluor 647 (Invitrogen A20173). 
GFP+/NeuN+ single nuclei were isolated using fluorescence-activated nuclei sorting (FANS) on a BD Influx sorter with 100μm 
nozzle, and sorted into 384-well plates preloaded with 2μl of digestion buffer for snmC-seq215 (20 mL digestion buffer 
consists of 10 mL M-digestion buffer (2×, Zymo D5021-9), 1 ml Proteinase K (20 mg, Zymo D3001-2-20), 9 mL water, and 10 μL 
unmethylated lambda DNA (100 pg/μL, Promega, D1521)). The collected plates were incubated at 50 °C for 20 minutes then 
stored at -20 °C.

Instrument BD Influx

Software BD Influx Sortware v1.2.0.142

Cell population abundance We sorted NeuN-positive and GFP-positive nuclei. 

Gating strategy Intact nuclei were first discriminated from debris by virtue of their bright DNA labeling (Hoechst Height signal) followed by 
light scattering profiles (Forward Scatter (FSC) Height vs Side Scatter (SSC) Height). Events with high Pulse Width 
measurements for FSC and SSC were then excluded as aggregates. Next, NeuN-AlexaFluor 647 labelled neuronal nuclei were 
selected ("*670/30 640" Height) from which GFP positive nuclei were sorted ("*530/40 488" Height).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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