Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

15NH3 in the atmosphere of a cool brown dwarf

Subjects

Abstract

Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5,6,7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MIRI/MRS spectrum and exemplary best-fit model (here, pRT-free) of the Y dwarf WISE J1828.
Fig. 2: Comparison of the 14N/15N ratio in the solar neighbourhood.
Fig. 3: Different phases of star and planetary formation.

Similar content being viewed by others

Data availability

The JWST MIRI data presented in this paper are part of the JWST MIRI GTO programme (programme identifier (PID) 1189; PI T. Roellig). The JWST data will be publicly available in the Barbara A. Mikulski Archive for Space Telescopes (MAST; https://archive.stsci.edu/) after 28 July 2023 and can be found either using the programme identifier or using the https://doi.org/10.17909/as3s-x893. The HST WFC3 spectrum is available from https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/920/20#/article.

Code availability

The code used in this publication to extract, reduce and analyse the data is as follows: the data-reduction pipeline of JWST can be found at https://jwst-pipeline.readthedocs.io/en/latest/; the atmospheric model codes used to fit the data can be found at https://www.exoclouds.com/ for the ARCiS code19 and at https://petitradtrans.readthedocs.io/en/latest/ for the petitRADTRANS code18. The simplified planet-formation model4 used to study 14N/15N as a function of accreted ice mass can be found at https://gitlab.com/mauricemolli/formation-inversion. The detailed setups of the open-source tools for the analyses presented here are described in the Methods section of this paper and can be made available to interested parties on request.

References

  1. Burrows, A. et al. A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491, 856–875 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Faherty, J. K. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 531–542 (Springer, 2018).

  3. Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014).

    Article  ADS  Google Scholar 

  4. Mollière, P. et al. Interpreting the atmospheric composition of exoplanets: sensitivity to planet formation assumptions. Astrophys. J. 934, 74 (2022).

    Article  ADS  Google Scholar 

  5. Feuchtgruber, H. et al. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, A126 (2013).

    Article  Google Scholar 

  6. Alibert, Y. et al. The formation of Jupiter by hybrid pebble–planetesimal accretion. Nat. Astron. 2, 873–877 (2018).

    Article  ADS  Google Scholar 

  7. Nomura, H. et al. The isotopic links from planet forming regions to the solar system. In Protostars and Planets VII, ASP Conference Series (eds Inutsuka, S.-i. et al.) Vol. 534 (Astronomical Society of the Pacific, 2023).

  8. Zhang, Y. et al. The 13CO-rich atmosphere of a young accreting super-Jupiter. Nature 595, 370–372 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Line, M. R. et al. A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature 598, 580–584 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Adande, G. R. & Ziurys, L. M. Millimeter-wave observations of CN and HNC and their 15N isotopologues: a new evaluation of the 14N/15N ratio across the galaxy. Astrophys. J. 744, 194 (2012).

    Article  ADS  Google Scholar 

  11. Cushing, M. C. et al. The discovery of Y dwarfs using data from the Wide-field Infrared Survey Explorer (WISE). Astrophys. J. 743, 50 (2011).

    Article  ADS  Google Scholar 

  12. Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J. 858, 97 (2018).

    Article  ADS  Google Scholar 

  13. Skemer, A. J. et al. The first spectrum of the coldest brown dwarf. Astrophys. J. Lett. 826, L17 (2016).

    Article  ADS  Google Scholar 

  14. Cushing, M. C. et al. An improved near-infrared spectrum of the archetype Y dwarf WISEP J182831.08+265037.8. Astrophys. J. 920, 20 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Beiler, S. A. et al. The first JWST spectral energy distribution of a Y dwarf. Astrophys. J. Lett. 951, L48 (2023).

    Article  ADS  Google Scholar 

  16. Argyriou, I. et al. JWST MIRI flight performance: the Medium-Resolution Spectrometer. Astron. Astrophys. 675, A111 (2023).

  17. Burningham, B. et al. Retrieval of atmospheric properties of cloudy L dwarfs. Mon. Not. R. Astron. Soc. 470, 1177–1197 (2017).

    Article  ADS  CAS  Google Scholar 

  18. Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).

    Article  Google Scholar 

  19. Min, M., Ormel, C. W., Chubb, K., Helling, C. & Kawashima, Y. The ARCiS framework for exoplanet atmospheres. Modelling philosophy and retrieval. Astron. Astrophys. 642, A28 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Tremblin, P. et al. Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. Lett. 804, L17 (2015).

    Article  ADS  Google Scholar 

  21. Chubb, K. L. & Min, M. Exoplanet atmosphere retrievals in 3D using phase curve data with ARCiS: application to WASP-43b. Astron. Astrophys. 665, A2 (2022).

    Article  ADS  CAS  Google Scholar 

  22. De Furio, M. et al. JWST observations of the enigmatic Y-dwarf WISE 1828+2650. I. Limits to a binary companion. Astrophys. J. 948, 92 (2023).

    Article  ADS  Google Scholar 

  23. Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).

    Article  CAS  Google Scholar 

  24. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  CAS  Google Scholar 

  25. Zahnle, K. J. & Marley, M. S. Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets. Astrophys. J. 797, 41 (2014).

    Article  ADS  CAS  Google Scholar 

  26. Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs. Astron. J. 160, 63 (2020).

    Article  ADS  CAS  Google Scholar 

  27. Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 619–642 (Univ. Arizona Press, 2014).

  28. Fletcher, L. N. et al. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus 238, 170–190 (2014).

    Article  ADS  CAS  Google Scholar 

  29. Öberg, K. I. & Wordsworth, R. Jupiter’s composition suggests its core assembled exterior to the N2 snowline. Astron. J. 158, 194 (2019).

    Article  ADS  Google Scholar 

  30. Furuya, K. & Aikawa, Y. Depletion of heavy nitrogen in the cold gas of star-forming regions. Astrophys. J. 857, 105 (2018).

    Article  ADS  Google Scholar 

  31. Bergner, J. B., Öberg, K. I. & Bergin, E. A. et al. An evolutionary study of volatile chemistry in protoplanetary disks. Astrophys. J. 898, 97 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Visser, R. et al. Nitrogen isotope fractionation in protoplanetary disks. Astron. Astrophys. 615, A75 (2018).

    Article  Google Scholar 

  33. Bosman, A. D., Cridland, A. J. & Miguel, Y. Jupiter formed as a pebble pile around the N2 ice line. Astron. Astrophys. Lett. 632, L11 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Guillot, T. & Gautier, D. in Treatise on Geophysics (ed. Schubert, G.) 529–557 (Elsevier, 2015).

  35. Suarez, G. & Metchev, S. Ultracool dwarfs observed with the Spitzer infrared spectrograph – II. Emergence and sedimentation of silicate clouds in L dwarfs, and analysis of the full M5–T9 field dwarf spectroscopic sample. Mon. Not. R. Astron. Soc. 513, 5701–5726 (2022).

    Article  ADS  CAS  Google Scholar 

  36. Öberg, K. I. & Bergin, E. A. Astrochemistry and compositions of planetary systems. Phys. Rep. 893, 1–48 (2021).

    Article  ADS  Google Scholar 

  37. Turrini, D. et al. Tracing the formation history of giant planets in protoplanetary disks with carbon, oxygen, nitrogen, and sulfur. Astrophys. J. 909, 40 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Adams, F. C., Meyer, M. R. & Adams, A. D. A theoretical framework for the mass distribution of gas giant planets forming through the core accretion paradigm. Astrophys. J. 909, 1 (2021).

    Article  ADS  Google Scholar 

  39. Marleau, G.-D., Coleman, G. A. L., Leleu, A. & Mordasini, C. Exploring the formation by core accretion and the luminosity evolution of directly imaged planets. The case of HIP 65426 b. Astron. Astrophys. 624, A20 (2019).

    Article  Google Scholar 

  40. Law, D. R. et al. A 3D drizzle algorithm for JWST and practical application to the MIRI Medium Resolution Spectrometer. Astron. J. 166, 45 (2023).

  41. Zalesky, J. A., Line, M. R., Schneider, A. C. & Patience, J. A uniform retrieval analysis of ultra-cool dwarfs. III. Properties of Y dwarfs. Astrophys. J. 877, 24 (2019).

    Article  ADS  CAS  Google Scholar 

  42. Mang, J. et al. Microphysics of water clouds in the atmospheres of Y dwarfs and temperate giant planets. Astrophys. J. 927, 184 (2022).

    Article  ADS  Google Scholar 

  43. Line, M. R., Teske, J., Burningham, B., Fortney, J. J. & Marley, M. S. Uniform atmospheric retrieval analysis of ultracool dwarfs. I. Characterizing benchmarks, Gl 570D and HD 3651B. Astrophys. J. 807, 183 (2015).

    Article  ADS  Google Scholar 

  44. Tremblin, P. et al. Thermo-compositional diabatic convection in the atmospheres of brown dwarfs and in Earth’s atmosphere and oceans. Astrophys. J. 876, 144 (2019).

    Article  ADS  CAS  Google Scholar 

  45. Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017).

    Article  ADS  Google Scholar 

  46. Feroz, F. & Feroz, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008).

    Article  ADS  Google Scholar 

  47. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  48. Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    Article  ADS  CAS  Google Scholar 

  49. Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).

    Article  ADS  CAS  Google Scholar 

  50. Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).

    Article  ADS  CAS  Google Scholar 

  51. Yurchenko, S. N., Mellor, T. M., Freedman, R. S. & Tennyson, J. ExoMol line lists – XXXIX. Ro-vibrational molecular line list for CO2. Mon. Not. R. Astron. Soc. 496, 5282–5291 (2020).

    Article  ADS  CAS  Google Scholar 

  52. Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  CAS  Google Scholar 

  53. Azzam, A. A. A., Tennyson, J., Yurchenko, S. N. & Naumenko, O. V. ExoMol molecular line lists – XVI. The rotation–vibration spectrum of hot H2S. Mon. Not. R. Astron. Soc. 460, 4063–4074 (2016).

    Article  ADS  CAS  Google Scholar 

  54. Coles, P. A., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – XXXV. A rotation–vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).

    Article  ADS  CAS  Google Scholar 

  55. Sousa-Silva, C., Al-Refaie, A. F., Tennyson, J. & Yurchenko, S. N. ExoMol line lists – VII. The rotation–vibration spectrum of phosphine up to 1500 K. Mon. Not. R. Astron. Soc. 446, 2337–2347 (2014).

    Article  ADS  Google Scholar 

  56. Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article  ADS  Google Scholar 

  57. Ormel, C. W. & Min, M. ARCiS framework for exoplanet atmospheres. The cloud transport model. Astron. Astrophys. 622, A121 (2019).

    Article  ADS  CAS  Google Scholar 

  58. Kawashima, Y. & Min, M. Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra. Indication of disequilibrium chemistry for HD 209458b and WASP-39b. Astron. Astrophys. 656, A90 (2021).

    Article  ADS  CAS  Google Scholar 

  59. Greenberg, D., Nonnenmacher, M. & Macke, J. in Proc. 36th International Conference on Machine Learning Vol. 97 (eds Chaudhuri, K. & Salakhutdinov, R.) 2404–2414 (PMLR, 2019).

  60. Burningham, B. et al. Cloud busting: enstatite and quartz clouds in the atmosphere of 2M2224-0158. Mon. Not. R. Astron. Soc. 506, 1944–1961 (2021).

    Article  ADS  CAS  Google Scholar 

  61. Toon, O. B., McKay, C. P., Ackerman, T. P. & Santhanam, K. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. Atmos. 94, 16287–16301 (1989).

    Article  ADS  Google Scholar 

  62. Madhusudhan, N. & Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009).

    Article  ADS  CAS  Google Scholar 

  63. Freedman, R. S., Marley, M. S. & Lodders, K. Line and mean opacities for ultracool dwarfs and extrasolar planets. Astrophys. J. Suppl. Ser. 174, 504–513 (2008).

    Article  ADS  CAS  Google Scholar 

  64. Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014).

    Article  ADS  Google Scholar 

  65. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  66. Schneider, A. D. & Bitsch, B. How drifting and evaporating pebbles shape giant planets. II. Volatiles and refractories in atmospheres. Astron. Astrophys. 654, A72 (2021).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based (in part) on observations made with the NASA/ESA/CSA James Webb Space Telescope (JWST). The data were obtained from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for the JWST. These observations are associated with programme 1189. The Mid-Infrared Instrument (MIRI) draws on the scientific and technical expertise of the following organizations: Ames Research Center, USA; Airbus Defence and Space, UK; CEA/IRFU, Saclay, France; Centre Spatial de Liège, Belgium; Consejo Superior de Investigaciones Científicas, Spain; Carl Zeiss Optronics, Germany; Chalmers University of Technology, Sweden; Danish Space Research Institute, Denmark; Dublin Institute for Advanced Studies, Ireland; European Space Agency, the Netherlands; ETCA, Belgium; ETH Zurich, Switzerland; Goddard Space Flight Center, USA; Institut d’Astrophysique Spatiale, France; Instituto Nacional de Técnica Aeroespacial, Spain; Institute for Astronomy, Edinburgh, UK; Jet Propulsion Laboratory, USA; Laboratoire d’Astrophysique de Marseille (LAM), France; Leiden University, the Netherlands; Lockheed Advanced Technology Center, USA; NOVA Opt-IR Group at Dwingeloo, the Netherlands; Northrop Grumman, USA; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany; Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), France; Paul Scherrer Institut, Switzerland; Raytheon Vision Systems, USA; RUAG Aerospace, Switzerland; Rutherford Appleton Laboratory (RAL Space), UK; Space Telescope Science Institute, USA; Toegepast Natuurwetenschappelijk Onderzoek (TNO-TPD), the Netherlands; UK Astronomy Technology Centre, UK; University College London, UK; University of Amsterdam, the Netherlands; University of Arizona, USA; University of Bern, Switzerland; University of Cardiff, UK; University of Cologne, Germany; University of Ghent, Belgium; University of Groningen, the Netherlands; University of Leicester, UK; KU Leuven, Belgium; University of Stockholm, Sweden; and Utah State University, USA. The following national and international funding agencies funded and supported the MIRI development: NASA; ESA; Belgian Science Policy Office (BELSPO); Centre Nationale d’Etudes Spatiales (CNES); Danish National Space Center; Deutsches Zentrum fur Luft und Raumfahrt (DLR); Enterprise Ireland; Ministerio de Economía y Competitividad; Netherlands Research School for Astronomy (NOVA); Netherlands Organisation for Scientific Research (NWO); Science and Technology Facilities Council; Swiss Space Office; Swedish National Space Agency; and UK Space Agency. D.B. and M.M.-C. are supported by Spanish MCIN/AEI/10.13039/501100011033 grant nos. PID2019-107061GB-C61 and MDM-2017-0737. C.C., A.B., P.-O.L., R.G. and A.C. acknowledge funding support from CNES. P.P. thanks the Swiss National Science Foundation (SNSF) for financial support under grant number 200020_200399. N.W. acknowledges funding from NSF award 1909776 and NASA XRP award 80NSSC22K0142. O.A., I.A., B.V. and P.R. thank the European Space Agency (ESA) and the Belgian Science Policy Office (BELSPO) for their support in the framework of the PRODEX Programme. L.D. acknowledges funding from the KU Leuven Interdisciplinary Grant (IDN/19/028), the European Union H2020-MSCA-ITN-2019 under grant no. 860470 (CHAMELEON) and the FWO research grant G086217N. I.K. acknowledges support from grant TOP-1 614.001.751 from the Dutch Research Council (NWO). O.K. acknowledges support from the Federal Ministry of Economy and Energy (BMWi) through the German Space Agency (DLR). J.P. acknowledges financial support from the UK Science and Technology Facilities Council and the UK Space Agency. G.O. acknowledges support from the Swedish National Space Board and the Knut and Alice Wallenberg Foundation. P.T. acknowledges support by the European Research Council (ERC) under grant agreement ATMO 757858. F.A.M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 860470. L.C. acknowledges support by grant PIB2021-127718NB-100 from the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. E.F.v.D. acknowledges support from A-ERC grant 101019751 MOLDISK. T.R. acknowledges support from the ERC 743029 EASY. G.Ö. acknowledges support from SNSA. T.H. acknowledges support from the ERC under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 832428-Origins. We thank the MIRI instrument team and the many others who contributed to the success of the JWST.

Author information

Authors and Affiliations

Authors

Contributions

All authors played a substantial role in one or more of the following: designing and building the MIRI, development of the original proposal, management of the project, definition of the target list and observation plan, analysis of the data, theoretical modelling and preparation of this paper. Some specific contributions are listed as follows. P.-O.L. is PI of the JWST MIRI GTO European consortium programme dedicated to JWST observations of exoplanet atmospheres. D.B., P.M. and P.P. provided overall programme leadership and management of the WISE J1828 working group. P.-O.L., T.H., R.W., (co-lead of the JWST MIRI GTO European consortium), D.B. and M.Mu. made notable contributions to the design of the observational programme and contributed to the setting of the observing parameters. P.P., I.A. and M.S. reduced the data. P.T. generated theoretical model grids for comparison with the data. P.M., M.Mi. and N.W. fitted the generated spectrum with retrieval models and M.V. also contributed. F.A.M. applied the radiative-convective equilibrium retrieval to the spectrum. D.B., P.M. and P.P. led the writing of the manuscript. P.-O.L. and L.D. made notable contributions to the writing of this paper. Further contributions were provided by M.M.-C. and L.D. P.B., A.B., J.B., C.C., A.C., N.C., R.G., A.G., A.M.G., S.K., F.L., D.R., P.R., S.S. and I.W. contributed to instrument construction, the programme design and/or the data analysis. P.M., P.P. and D.B. generated the figures for this paper. G.W. is PI of the JWST MIRI instrument, P.-O.L., T.H., M.G., B.V., L.C., E.F.v.D., T.R. and G.Ö. are co-PIs and L.D., R.W., O.A., I.K., O.K., J.P., G.O. and D.B. are co-investigators of the JWST MIRI instrument.

Corresponding author

Correspondence to David Barrado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The spectrum of WISE J1828 and the best-fit model.

We show the MIRI/MRS spectrum of WISE J1828 (black solid lines) and the best-fit model of the regularized PT retrieval of petitRADTRANS (red line). Residuals (models − observed spectrum) are shown in the bottom panel. pRT-reg and ARCiS-reg stand for the regularized PT retrieval of petitRADTRANS and ARCiS, respectively.

Extended Data Fig. 2 Model inferences on the various PT profiles derived for WISE J1828.

The individual panels always highlight the constraint from one given model, whereas the results of the other models are shown in the background. pRT-reg and ARCiS-reg stand for the regularized PT retrievals, whereas pRT-free and ARCiS-free stand for the unregularized PT retrievals of petitRADTRANS and ARCiS, respectively. The contribution functions of the HST and MIRI observations, constrained from the best-fit pRT-reg model, are shown as dotted and dashed lines, respectively. The condensation curve for water (at solar metallicity) is shown as a blue dash-dotted curve, indicating that, although neglected in our models, water clouds could affect the spectrum in a modest away.

Extended Data Fig. 3 One-dimensional projection of the posterior distributions of the WISE J1828 retrievals.

Values correspond to key atmospheric quantities shown in Extended Data Table 1. pRT-reg and ARCiS-reg stand for the regularized PT retrievals, whereas pRT-free and ARCiS-free stand for the unregularized PT retrievals of petitRADTRANS and ARCiS, respectively.

Extended Data Fig. 4 Evolution of the planetary 14N/15N as a function of the mass accreted in solids (rock and ice).

This computation assumes a planet that forms outside the NH3 iceline but inside the N2 iceline. The dotted black line denotes the value expected for pure NH3 ice.

Extended Data Table 1 Physical constraints on WISE J1828
Extended Data Table 2 Physical constraints on WISE J1828, combining different codes

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrado, D., Mollière, P., Patapis, P. et al. 15NH3 in the atmosphere of a cool brown dwarf. Nature 624, 263–266 (2023). https://doi.org/10.1038/s41586-023-06813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06813-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing