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Molecularly defined and spatially resolved 
cell atlas of the whole mouse brain

Meng Zhang1,2,3,5, Xingjie Pan1,2,3,5, Won Jung1,2,3,5, Aaron R. Halpern1,2,3, Stephen W. Eichhorn1,2,3, 
Zhiyun Lei1,2,3, Limor Cohen1,2,3, Kimberly A. Smith4, Bosiljka Tasic4, Zizhen Yao4, 
Hongkui Zeng4 & Xiaowei Zhuang1,2,3 ✉

In mammalian brains, millions to billions of cells form complex interaction  
networks to enable a wide range of functions. The enormous diversity and intricate 
organization of cells have impeded our understanding of the molecular and  
cellular basis of brain function. Recent advances in spatially resolved single-cell 
transcriptomics have enabled systematic mapping of the spatial organization of 
molecularly defined cell types in complex tissues1–3, including several brain regions 
(for example, refs. 1–11). However, a comprehensive cell atlas of the whole brain is  
still missing. Here we imaged a panel of more than 1,100 genes in approximately  
10 million cells across the entire adult mouse brains using multiplexed error-robust 
fluorescence in situ hybridization12 and performed spatially resolved, single-cell 
expression profiling at the whole-transcriptome scale by integrating multiplexed 
error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. 
Using this approach, we generated a comprehensive cell atlas of more than 5,000 
transcriptionally distinct cell clusters, belonging to more than 300 major cell types,  
in the whole mouse brain with high molecular and spatial resolution. Registration  
of this atlas to the mouse brain common coordinate framework allowed systematic 
quantifications of the cell-type composition and organization in individual brain 
regions. We further identified spatial modules characterized by distinct cell-type 
compositions and spatial gradients featuring gradual changes of cells. Finally, this 
high-resolution spatial map of cells, each with a transcriptome-wide expression 
profile, allowed us to infer cell-type-specific interactions between hundreds of cell- 
type pairs and predict molecular (ligand–receptor) basis and functional implications 
of these cell–cell interactions. These results provide rich insights into the molecular 
and cellular architecture of the brain and a foundation for functional investigations of 
neural circuits and their dysfunction in health and disease.

Mammalian brain functions are orchestrated by coordinated actions 
and interactions of numerous different cell types. Single-cell RNA 
sequencing (scRNA-seq) provides a systematic approach to classify cell 
types through gene expression profiling of individual cells13. Single-cell 
epigenomic profiling further enables systematic characterizations 
of gene-regulatory signatures of different cell types14,15. Numerous 
molecularly distinct cell types have been identified in the brain using 
these methods. For example, several hundred transcriptionally dis-
tinct cell populations have been identified across the entire mouse 
brain through scRNA-seq of approximately 500,000–700,000 cells16,17. 
However, the limited sampling sizes in these studies have probably led 
to an underestimation of the cellular diversity of the brain. Moreover, 
understanding the molecular and cellular mechanisms underlying 
brain functions requires not only a comprehensive classification of 

cells and their molecular signatures, but also a detailed characteriza-
tion of the spatial organization and interactions of molecular defined 
cell types. For example, the layered organization of the cerebral cortex 
and the nucleus organization in the hypothalamus directly impact 
their functions. At a finer scale, spatial relationship between cells  is 
a major determinant of cell–cell interactions and communications 
through juxtacrine and paracrine signalling. While synaptic commu-
nications can occur between neurons whose cell bodies are far apart, 
interactions between neurons and non-neuronal cells, as well as inter-
actions among non-neuronal cells, often occur through direct soma 
contact or paracrine signalling and hence require spatial proximity 
between cells. In addition, interactions involving local interneurons 
also tend to occur between spatially proximal neurons. Therefore, a 
high-resolution, spatially resolved cell atlas of the whole brain would 
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provide an invaluable resource for understanding how the brain  
functions.

MERFISH imaging of the whole mouse brain
Recent advances in spatially resolved transcriptomics have enabled 
gene-expression profiling and cell-type identification while maintain-
ing the spatial information of cells in intact tissues1,2. Here we used mul-
tiplexed error-robust fluorescence in situ hybridization (MERFISH)12, 
a spatially resolved single-cell transcriptomics method, to generate a 
comprehensive, molecularly defined and spatially resolved cell atlas 
of the entire adult mouse brain. We selected a panel of more than 1,100 
genes (Supplementary Table 1) for MERFISH imaging. These genes were 
selected based on a whole-brain scRNA-seq dataset described in a com-
panion article in this BICCN package18. Analysis of the scRNA-seq data 
resulted in 5,322 cell clusters, which were grouped into 338 subclasses18, 
and our MERFISH gene panel was selected from marker genes differen-
tially expressed among these cell populations (Methods and Fig. 1a).

We imaged these genes in 245 total coronal and sagittal sections 
spanning whole hemispheres of four adult mouse brains, including 
serial coronal sections at 100-μm intervals (animal 1, female) or 200-μm 
intervals (animal 2, male), and serial sagittal sections at 200-μm inter-
vals (animals 3 and 4, male) (Methods; Fig. 1a). Individual RNA molecules 
were identified and assigned to cells segmented based on DAPI and 
total RNA signals, providing the expression profiles of individual cells  
(Methods). Our MERFISH data exhibited excellent reproducibility 
between replicate animals (Extended Data Fig. 1a). The mean copy 
number per cell for individual genes obtained from MERFISH correlated 
well with whole-brain bulk RNA-seq and scRNA-seq data (Extended 
Data Fig. 1b,c). In total, we imaged and segmented approximately 10 
million cells across the adult mouse brain, including all 11 major brain 
regions: olfactory areas, isocortex (CTX), hippocampal formation, 
cortical subplate, striatum, pallidum, thalamus, hypothalamus, mid-
brain, hindbrain and cerebellum. Among the approximately 10 million 
cells, 9.3 million passed the cell volume and doublets quality controls 
(Methods).

Cell classification and registration to the CCF
We integrated MERFISH data with scRNA-seq data using a canonical 
correlation analysis-based method19 and classified the MERFISH cells 
using k-nearest neighbour classification (Methods; Fig. 1a). These two 
datasets integrated well with each other (Fig. 1b, left, and Extended Data 
Fig. 1d), and the cell-type labels were transferred from the scRNA-seq 
cells to the MERFISH cells with high-confidence scores (Methods; 
Extended Data Fig. 1e). We set a threshold on the confidence scores 
for cell-type label transfer (0.8 for subclass label transfer and 0.5 for 
cluster label transfer; see Methods). Among the MERFISH cells, 83% 
and 74% passed the subclass and cluster confidence score thresholds, 
respectively, and were used for subsequent analysis. We further vali-
dated the robustness of label transfer by classifying MERFISH cells using 
an alternative method based on transcriptional similarity of MERFISH 
cells to the mean expression profiles of scRNA-seq clusters. Results 
from these two methods showed excellent agreement (Extended Data 
Fig. 1f). All 338 subclasses and more than 99% (5,275) of the 5,322 clusters 
identified by scRNA-seq were observed in the MERFISH data with the 
set label-transfer confidence score thresholds. Integration of MERFISH 
and scRNA-seq data also allowed us to impute the transcriptome-wide 
expression profile for the MERFISH cells (Methods), which showed 
excellent agreement with direct MERFISH measurements and the Allen 
Brain Atlas in situ hybridization data20 (Methods and Extended Data 
Fig. 2). To enable systematic quantifications of the cell-type compo-
sition and organization in different brain regions, we registered the 
cell atlas generated by MERFISH to the Allen Mouse Brain Common 
Coordinate Framework version 3 (CCFv3)21 using both the DAPI images 

and the cell-type-based landmarks (Methods, Fig. 1a and Extended 
Data Fig. 3). This CCF registration allowed us to place each individual 
MERFISH-imaged cell, with its cell-type-identity label, into the 3D CCF 
space (Fig. 1b (right), 1c, 1d and Extended Data Fig. 3b).

The spatial information measured by MERFISH was also used for the 
annotations of the cell types identified by scRNA-seq, as described in the 
companion paper18. In brief, except for some previously well-annotated 
cell types, each neuronal subclass name has three parts: the brain region 
where the subclass primarily resides, one or more marker genes, and the 
major neurotransmitter used. Non-neuronal cell subclasses were anno-
tated based on marker genes and named based on previous knowledge 
(microglia, astrocyte, among others) with spatial information being 
specified in some cases. The cell clusters were named by the subclass 
names followed by numerical indices in most cases.

Diversity and spatial organization of neurons
Registration of the MERFISH-derived cell atlas to the Allen CCF allowed 
us to quantify the composition of cell types in individual brain regions 
(Fig. 1d). Overall, the whole mouse brain consisted of 46% neurons and 
54% non-neuronal cells. This ratio varied substantially from region to 
region, with the hindbrain and cerebellum showing the lowest and 
highest neuronal-to-non-neuronal cell ratio, respectively (Fig. 2a).

Neurons exhibited an exceptionally high level of diversity, compris-
ing 315 subclasses and more than 5,000 clusters (see Supplementary 
Table 2 for the neuronal cell-type composition in the 11 major brain 
regions). Neuronal cell types also exhibited strong regional specificity 
with most neuronal subclasses being only enriched in one of the 11 major 
regions and some spanning multiple, usually physically connected, 
regions (Fig. 2b). Many of the subclass boundaries aligned well with 
the region boundaries in the CCF. For example, the intratelencephalic 
(IT) subclasses showed a clean separation at the boundaries between 
the isocortex and olfactory areas or hippocampal formation (Extended 
Data Fig. 4a). In the thalamus, AV Col27a1 Glut and AD SerpinB7 Glut 
perfectly fit in the anteroventral and anterodorsal nucleus, respec-
tively (Extended Data Fig. 4b). Some subclasses spanned multiple brain 
regions. For example, inhibitory neuronal subclasses marked by Lamp5, 
Sncg, Vip, Sst or Pvalb were distributed across the isocortex, hippocam-
pal formation, olfactory areas and cortical subplate (Extended Data 
Fig. 4c), consistent with previous findings22,23.

The 11 major regions contained different numbers of cell types 
(Supplementary Table 2). In particular, the hindbrain, midbrain and 
hypothalamus contained substantially greater number of neuronal 
cell types than the other brain regions (Fig. 2b). We further quantified 
the local complexity of neuronal cell-type composition, defined as 
the number of distinct neuronal subclasses present in the 50 nearest 
spatial neighbours of each cell. Of note, the local complexity was also 
substantially higher in the midbrain, hindbrain and hypothalamus 
(Extended Data Fig. 4d), indicating that these regions were not simply 
composed of more subregions with distinct cell compositions, but 
also complex local neighbourhood with higher cellular diversity. In 
addition, some other brain regions also contain small subregions with 
high local cell-type composition complexity (Extended Data Fig. 4d).

Spatially dependent neurotransmitter and 
neuropeptide usage of neurons
On the basis of the expression of neurotransmitter transporters 
and genes involved in neurotransmitter biosynthesis, we classified 
matured neurons into eight partially overlapping groups: glutamater-
gic (expressing Slc17a7, Slc17a6 and/or Slc17a8), GABAergic (expressing 
Slc32a1), serotonergic (expressing Slc6a4), dopaminergic (express-
ing Slc6a3), cholinergic (expressing Slc18a3), glycinergic (expressing 
Slc6a5), noradrenergic (expressing Slc6a2) and histaminergic (express-
ing Hdc) neurons.
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Fig. 1 | A molecularly defined and spatially resolved cell atlas of the whole 
mouse brain. a, Workflow to construct a whole mouse brain cell atlas. A panel 
of genes were chosen for MERFISH imaging based on the clustering results 
from scRNA-seq data. MERFISH images were decoded and segmented, and the 
resulting single-cell gene expression profiles were integrated with scRNA-seq 
data to classify MERFISH cells and impute transcriptome-wide expression 
profiles. Finally, MERFISH images were registered to the Allen CCFv3 (ref. 21).  
b, Uniform manifold approximation and projection (UMAP) of the integrated 
scRNA-seq and MERFISH data with cells coloured by experimental modalities 
(left) or by major brain regions in which the registered cells reside (right).  
The number of cells in the MERFISH or scRNA-seq dataset in each subclass was 
downsampled to the corresponding number in the other dataset for visualization 
purpose. The UMAP with all MERFISH and scRNA-seq cells displayed is shown in 
Extended Data Fig. 1d. CB, cerebellum; CTX, isocortex; CTXsp, cortical subplate; 
FT, fibre tract; HB, hindbrain; HPF, hippocampal formation; HY, hypothalamus; 

MB, midbrain; OLF, olfactory area; PAL, pallidum; STR, striatum; TH, thalamus; 
VS, ventricular system. c, UMAP of the integrated MERFISH and scRNA-seq data 
(left). Spatial maps of the cell types in example coronal and sagittal sections are 
also shown (right). Cells are coloured by their subclass identities. The black 
lines in the brain spatial maps here and in subsequent figures mark the major 
brain region boundaries defined in the CCF21. Scale bar, 1 mm. In this and 
subsequent figures, all cells are shown in the experimental coordinates and the 
boundaries of brain regions were transformed to the experimental coordinates 
based on our CCF registration results (Methods). d, Spatial maps of example 
coronal and sagittal sections in the 11 major brain regions as well as in fibre 
tracts and ventricular systems. Cells are coloured by their subclass identities  
as in c. The underlying contour lines marking brain region boundaries in a, c 
and d and the 3D brain contours in a and d were generated using coordinates 
from the Allen Mouse Brain CCFv3 (ref. 21).
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Among these groups, glutamatergic and GABAergic neurons 
accounted for approximately 63% and 36% of the total neuronal 
populations, respectively, whereas serotonergic, dopaminergic, 

cholinergic, glycinergic, noradrenergic and histaminergic neurons 
(often co-expressing glutamate or GABA transporters) accounted for 
only approximately 2% of the total neuronal population (Fig. 2c, left). 
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Fig. 2 | Cell-type compositions and spatial distributions of neurons.  
a, Fractions of neurons and non-neuronal cells in the 11 major brain regions.  
b, Heatmap showing the enrichment score of each neuronal subclass in the 11 
major brain regions. The enrichment score is defined as the fold change of the 
average cell density of a subclass within a brain region compared with the average 
density across the whole brain. c, Bar plots showing the fractions of neurons 
using different neurotransmitters across the whole brain (left two panels) and 
in individual brain regions (right two panels). Choli, cholinergic neuron; dopa, 
dopaminergic neuron; GABA, GABAergic neuron; glut, glutamatergic neuron; 
glycine, glycinergic neuron; hist, histaminergic neuron; nora, noradrenergic 
neuron; sero, serotonergic neuron. d, Spatial maps of the glutamatergic (left) 
and GABAergic (right) neuronal subclasses in example coronal and sagittal 
sections, with cells coloured by their subclass identities. e, Spatial maps of 
glutamatergic neurons expressing Slc17a7, Slc17a6, Slc17a7 + Slc17a6 and 

Slc17a8 (left), GABAergic neurons (middle) and neurons expressing various 
modulatory neurotransmitters (right). f, UMAP and spatial distribution of the 
immature neurons (IMNs) shown in the 3D CCF space, with cells coloured by 
subclass identities (left). UMAP and spatial distribution of the inhibitory IMNs 
shown in a sagittal section, with cells coloured by cluster identities (middle). 
Excitatory IMNs are shown in grey in the UMAP. UMAP and spatial distribution 
of the excitatory IMNs shown in a coronal section, with cells coloured by cluster 
identities (right). Inhibitory IMNs are shown in grey in the UMAP. Scale bars, 
1 mm (d–f). DG, dentate gyrus; MOB, main olfactory bulb; PIR, piriform area; 
SVZ, subventricular zone. The red boxes mark the two locations of the excitatory 
IMNs in DG and PIR, respectively. The underlying contour lines marking brain 
region boundaries in d–f and the 3D brain contours in f were generated using 
coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Both glutamatergic and GABAergic neurons were widely distributed 
across the whole brain and were classified into diverse cell types with dis-
tinct spatial distributions (Fig. 2d,e). The glutamatergic-to-GABAergic 
neuron ratio varied drastically across brain regions (Fig. 2c, middle). 
The hippocampal formation, isocortex and thalamus had the highest 
glutamatergic-to-GABAergic neuron ratios, whereas the striatum and 
pallidum had the lowest. Although the thalamus was mostly made of 
glutamatergic neurons, the reticular nucleus of the thalamus was exclu-
sively GABAergic (Extended Data Fig. 4e). In the midbrain and hind-
brain, glutamatergic and GABAergic neurons were widely distributed in 
a partially intermingled manner (Extended Data Fig. 4f). In the cerebel-
lum, glutamatergic and GABAergic neurons were separately enriched in 
the granular and molecular layers, respectively (Extended Data Fig. 4g). 
A small fraction of neurons (approximately 1%) co-expressed both 
glutamate and GABA neurotransmitter transporter genes (Slc17a6/7/8 
and Slc32a1, respectively) and these neurons were enriched in various 
non-telencephalic areas such as the globus pallidus internal segment, 
hypothalamic nuclei such as the anterior hypothalamic nucleus and 
supramammillary nucleus, and some subregions in the midbrain and 
hindbrain, as well as in the main olfactory bulb (Extended Data Fig. 4h), 
corroborating and expanding previous work4,24–27.

Among the glutamatergic neurons, Slc17a7 (also known as Vglut1), 
Slc17a6 (Vglut2) and Slc17a8 (Vglut3) were differentially distributed in 
different brain regions28 (Fig. 2e, left). Slc17a7 dominated in the olfac-
tory areas, isocortex, hippocampal formation, cortical subplate and 
cerebellar cortex, whereas Slc17a6 dominated in the hypothalamus, 
midbrain and hindbrain. In some regions, Slc17a7 and Slc17a6 were 
co-expressed in neurons, such as the retrosplenial areas, pontine grey, 
anterior olfactory nucleus and thalamus (Fig. 2e, left, and Extended 
Data Fig. 4i). The less used Slc17a6 was scattered across multiple 
regions, enriched in regions such as layer 5 of the isocortex and the 
bed nuclei of the stria terminalis, and was often co-expressed with 
Slc17a7 and/or Slc17a6 (Fig. 2e, left).

We also located the neurons that used other, modulatory neuro-
transmitters (Fig. 2c,e, right). Dopaminergic neurons were observed 
in the olfactory areas (located in the glomerular layer), hypothalamus 
(enriched in the arcuate hypothalamic nucleus) and midbrain (enriched 
in the ventral tegmental area and neighbouring areas)29 (Extended Data 
Fig. 4j). Serotonergic neurons were enriched in the raphe nuclei (dorsal 
nucleus raphe, nucleus raphe pontis and nucleus raphe magnus) in the 
midbrain and hindbrain30 (Extended Data Fig. 4k). Histaminergic neu-
rons were observed in the ventral tuberomammillary nucleus, tuberal 
nucleus and other neighbouring areas in the ventral hypothalamus31 
(Extended Data Fig. 4l). Glycinergic neurons were widely distributed 
across the hindbrain32 (Extended Data Fig. 4m). Noradrenergic neu-
rons were localized to the locus coeruleus and neighbouring areas 
in the hindbrain33 (Extended Data Fig. 4n). Cholinergic neurons were 
widely distributed in the striatum, ventral pallidum and multiple small 
subregions such as the medial habenula in the thalamus, the arcuate 
hypothalamic nucleus in the hypothalamus, the parabigeminal nucleus 
in the midbrain and the dorsal motor nucleus of the vagus nerve in the 
hindbrain34 (Extended Data Fig. 4o).

These modulatory transmitter transporter genes were often 
co-expressed with glutamate or GABA transporters in individual 
neurons. For example, dopaminergic neurons in the olfactory areas 
co-expressed Slc32a1, and co-expression with Slc32a1 or Slc17a6 were 
both observed in the midbrain and hypothalamus. Cholinergic neurons 
in the striatum and pallidum co-expressed Slc32a1 and those in the 
hindbrain also co-expressed Slc17a6. Glycinergic neurons and hista-
minergic neurons co-expressed Slc32a1.

Our MERFISH data also showed spatially heterogeneous distributions 
of many neuropeptide genes (Extended Data Fig. 5). To name just a 
few examples: Adcyap1 and Gal were enriched in multiple nuclei in the 
hypothalamus; Penk was widely expressed in the striatum, midbrain 
and cerebellum, and particularly enriched in the striatum; and Tac2 was 

enriched in the bed nuclei of the stria terminalis and multiple nuclei in 
the hypothalamus, striatum and thalamus.

We also observed two subclasses of immature neurons (IMNs): one 
inhibitory and one excitatory (Fig. 2f, left). The inhibitory IMNs, com-
posed of 30 clusters, were distributed along the subventricular zone 
(SVZ), extending to the olfactory bulb through the anterior commissure 
(Fig. 2f, middle, and Extended Data Fig. 4p), consistent with previous 
findings of adult neurogenesis in the SVZ and migration of the neu-
roblast to the olfactory bulb along the rostral migratory stream35–37. 
The excitatory IMNs, composed of seven clusters, were found in two 
distinct locations: cluster 516 was primarily located in the piriform 
area of the olfactory areas, whereas the other clusters were distrib-
uted along the dentate gyrus in the hippocampal formation (Fig. 2f, 
right), consistent with previous findings of adult neurogenesis in the 
hippocampal formation38,39.

Diversity and spatial organization of non-neuronal 
cells
The non-neuronal cells comprised 23 subclasses and 117 clusters 
(Fig. 3a and Supplementary Table 2). We quantified the non-neuronal 
cell-type composition and enrichment in the 11 major brain regions, 
as well as in fibre tracts and ventricular systems where non-neuronal 
cells dominate (Fig. 3b,c and Supplementary Table 2). Across the whole 
brain, non-neuronal cells were composed of 30% of oligodendrocytes, 
6% of oligodendrocyte progenitor cells (OPCs), 28% of vascular cells 
(endothelial cells, pericytes, vascular leptomeningeal cells (VLMCs), 
smooth muscle cells (SMCs) and arachnoid barrier cells), 23% of astro-
cytes, 8% of immune cells (microglia, border-associated macrophages 
(BAMs), lymphoid cells, dendritic cells and monocytes) and 5% other 
cell types (olfactory ensheathing cells, Bergmann cells, ependymal 
cells, choroid plexus cells, tanycytes and hypendymal cells) (Fig. 3b).

Of note, some non-neuronal cell types also exhibited strong regional 
specificity, especially for astrocytes and cells in the ventricular systems 
(Fig. 3c). We observed a high diversity of astrocytes, including 36 cell 
clusters. Among these, the two biggest clusters, Astro 5225 and Astro 
5214, accounted for 48% and 33% of the total astrocyte population, 
respectively. Astro 5225 was exclusively located in the telencephalon 
and Astro 5214 in non-telencephalic regions (Fig. 3d), consistent with 
previous observation16. In addition, Astro 5215 and 5216 were located in 
the thalamus and hindbrain, respectively; Astro 5231–5236 were located 
in the olfactory bulb; Astro 5207 was located in the cerebellum; Astro 
5222 was located in the dentate gyrus; Astro 5208 was enriched in the 
medulla close to the pia surface; and Astro 5228, 5229 and 5230 were 
located along the SVZ, extending to the olfactory bulb, and were colo-
calized extensively with the inhibitory immature neurons (Fig. 3d). The 
locations of Astro 5228–5230 were consistent with previous observa-
tions that the migratory steam of neuroblasts generated in the SVZ 
are ensheathed by cells of astrocytic nature35–37,40. Although not all 
enumerated here, essentially every Astro cluster showed unique spatial 
distributions (Fig. 3d). The Astro-like Bergmann cells were located in 
the cerebellum (Fig. 3d).

Oligodendrocytes were enriched in the fibre tracts and were highly 
abundant throughout the brain stem, whereas OPCs were evenly dis-
tributed across the whole brain (Fig. 3e). At the cluster level, some oli-
godendrocytes and OPCs also showed regional specificity. For example, 
Oligo 5277 was enriched in the cortex, whereas Oligo 5286 was enriched 
in the hindbrain (Fig. 3e).

We also observed region-specific distribution of the cells related 
to the ventricular systems. In the third ventricle, tanycytes resided 
in the ventral region, whereas ependymal cells occupied the dorsal 
region (Fig. 3f), consistent with previous work41,42. Hypendymal cells 
were located in the subcommissural organ at the dorsal third ventri-
cle (Fig. 3f). The primary residents inside the ventricles were choroid 
plexus cells and VLMCs (Fig. 3f). Most VLMC clusters were restricted to 
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Fig. 3 | Cell-type compositions and spatial distributions of non-neuronal 
cells. a, UMAP of non-neuronal cells coloured by subclass identities as shown in 
the legend. ABC, arachnoid barrier cell; astro, astrocyte; CHOR, choroid plexus 
epithelial cell; DC, dendritic cell; endo, endothelial cell; hypen, hypendymal 
cell; mono, monocytes; NT, non-telencephalic; OEC, olfactory ensheathing cell; 
OGC, oligodendrocyte; peri, pericytes; TE, telencephalic. Astro-OLF, Astro-TE, 
Astro-NT and Astro-CB are the subclasses of astrocytes located in the olfactory 
areas, telencephalic regions, non-telencephalic regions and cerebellum, 
respectively. b, Bar plots showing the fractions of major non-neuronal cell types 
in the whole brain (top). Fractions of different vascular cell types, immune cell 
types and non-neuronal cell types in the ‘other’ category with cell subclasses 
coloured as shown in the legend. c, Heatmap showing the enrichment scores  
of all non-neuronal subclasses in 11 major brain regions, as well as in fibre tracts 
and ventricular systems. The enrichment score is defined as in Fig. 2b. d, Spatial 
distributions of the 31 astrocyte clusters, which contained more than 50 cells 

(out of the 36 astrocyte clusters in total) and Bergmann cells, shown in a sagittal 
section (top left) and in the 3D CCF space (other panels), with cells coloured by 
cluster identities and cluster numerical indices. AQ, cerebral aqueduct; EPI, 
epithalamus; LSX, lateral septal complex; MY, medulla; V4, fourth ventricle.  
e, Spatial distributions of the OGCs and OPCs shown in a sagittal section with 
cells coloured by subclass identities (top). Two clusters are shown in the 3D CCF 
space (bottom). f, Spatial maps of three ependymal and eight tanycyte clusters 
in the third ventricle (V3) in seven coronal sections, 100 μm apart from each 
other along the rostral–caudal direction (left). Spatial maps of CHORs, 
ependymal cells, hypendymal cells and VLMCs in the third ventricle and lateral 
ventricle (VL) (right). Scale bars, 1 mm (d,e) and 0.5 mm (f). CC, corpus callosum; 
SCO, subcommissural organ. The underlying contour lines marking brain 
region boundaries in d–f and the 3D brain contours in d and e were generated 
using coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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pia, except for two distinct types: VLMC 5301 was enriched in the grey 
matter, and VLMC 5302 was located in the choroid plexus in the lateral 
and fourth ventricles (Fig. 3f and Extended Data Fig. 6a). ABCs resided 
in the subarachnoid space (Extended Data Fig. 6b). Other vascular cells 
(endothelial cells, pericytes and SMCs), which outline blood vessels, 
were broadly distributed (Extended Data Fig. 6c). Likewise, immune 
cells were also scattered across the brain (Extended Data Fig. 6d). As 
expected, olfactory ensheathing cells were located at the periphery 
of the olfactory bulb (Extended Data Fig. 6e).

Molecularly defined brain regions (spatial modules)
The comprehensive spatial distributions of the transcriptionally dis-
tinct cell populations allowed us to construct a map of molecularly 
defined brain regions. To this end, we defined for each cell a local 
cell-type composition vector and clustered the cells using these vec-
tors (Methods), resulting in ‘spatial modules’ that contained cells with 
similar neighbourhood cell-type compositions. We identified 16 level 
1 spatial modules and 130 level 2 spatial modules (Fig. 4a, Extended 
Data Fig. 7 and Supplementary Table 3).

Level 1 spatial modules segmented the brain into areas that largely 
coincided with the major brain regions defined in the CCF (Fig. 4b). 
One notable discrepancy was the boundary between the midbrain and 
the hindbrain (Fig. 4c). This discrepancy originated from the gradual 
changes of cell-type compositions from the midbrain to the hindbrain, 

making an unambiguous determination of the midbrain–hindbrain 
boundary challenging. At level 2, many spatial modules were consist-
ent with the subregions defined in the CCF, but we observed more 
discrepancies (Fig. 4d) due to multiple possible reasons. On the one 
hand, our spatial module delineation was based on cell types defined 
by transcriptome-wide expression profiles of individual cells and hence 
have a higher molecule resolution than the information used in brain 
region delineation in the CCF. For example, our analysis segmented 
the caudoputamen into a lateral and medial spatial module, whereas 
such division is not shown in the CCF (Fig. 4d). In fact, a spatial gradient 
represents a more precise description of the molecular profile of this 
region, as described in the next section. On the other hand, we also 
noticed that some subregion boundaries defined by connectional or 
functional information in the CCF were missing in the transcription-
ally defined spatial modules. For example, the isocortex is divided 
into multiple subregions in the CCF, whereas such boundaries were 
largely missing in the spatial module analyses except for the boundary 
between the primary motor cortex and the primary somatosensory 
cortex in layer 4 (Fig. 4d).

Spatial gradients of molecularly defined cell types
Although clustering algorithms group cells into discrete spatial mod-
ules or cell types, the gene expression profiles of cells may exhibit a 
gradual or continuous change in some cases. Indeed, the coexistence 
of discrete and continuous cell-type heterogeneity has been previously 
observed in multiple brain regions8,43–47, with some continuous cellular 
heterogeneity forming a gradient along a spatial direction8,45–47.

We thus examined all cell subclasses to identify the spatial gradients 
of cells, in which the gene expression of cells changed gradually in 
space. To this end, we quantified the discreteness of clusters within 
each subclass and observed that most of the subclasses contained 
continuously connected cell clusters (Methods and Extended Data 
Fig. 8a). We further identified the cell subclasses that exhibited a 
prominent spatial axis along which the gene expression profiles of 
cells changed gradually, representing a spatial gradient, using the 
pseudotime8,48 or the first principal component (PC1) to quantify 
gene expression changes. Moreover, to capture the gradients that 
spanned multiple subclasses, we assessed whether the gradients 
identified within subclasses extended into transcriptionally similar  
subclasses.

We identified many spatial gradients in different brain regions. For 
example, IT neurons formed a continuous gradient across the whole iso-
cortex, where the gene expression changed gradually along the cortical 
depth direction but with a more discernible separation for the layer 2/3 
IT neurons (Fig. 5a), consistent with our previous results for the primary 
motor cortex8. In the striatum, D1 and D2 medium spiny neurons both 
formed a spatial gradient along the dorsolateral–ventromedial axis 
(Fig. 5b,c), consistent with previous observations45. In the lateral septal 
complex, several GABAergic subclasses formed a gradient along the 
dorsoventral axis (Fig. 5d). Spatial gradients were also observed in the 
CA1, CA3 and dente gyrus regions of the hippocampus (Extended Data 
Fig. 8b–d) and in the inferior colliculus of the midbrain (Extended Data 
Fig. 8e). We also observed spatial gradients among some non-neuronal 
cells. For example, tanycytes formed a continuous gradient along the 
dorsoventral axis of the third ventricle (Fig. 5e). Overall, spatial gradi-
ents of cells were widespread in many brain regions.

We also noticed a large-scale spatial gradient spanning the hypothala-
mus, midbrain and hindbrain regions. Here we visualized the gradient 
in the gene expression uniform manifold approximation and projec-
tion (UMAP), where each neuron was coloured by its spatial coordinates 
(Fig. 5f). An overall rostral–caudal gradient of gene expression change 
from the hypothalamus to the midbrain and then the hindbrain, as well 
as a dorsal–ventral gradient from the midbrain to the hypothalamus 
and hindbrain, were observed in the UMAP.
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lines marking brain region boundaries in b–d were generated using coordinates 
from the Allen Mouse Brain CCFv3 (ref. 21).
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Cell-type-specific cell–cell interactions and 
communications
The high-resolution spatial atlas of molecularly defined cell types 
further allowed us to infer cell-type-specific cell–cell interactions or 
communications arising from soma contact, paracrine signalling or 
other short-range interactions. Here we considered cell types at the 
subclass level and inferred cell-type-specific cell–cell interactions 
in individual brain regions by querying whether the soma contact 
or proximity frequency observed between a given cell-type pair was 
higher than random chance, supplemented with expression variation 
analysis of ligand–receptor pairs (Methods and Fig. 6a). We deter-
mined the random chance (null distribution of probability) by per-
forming local spatial-coordinate randomizations to disrupt the spatial 
relationship between neighbouring cells while preserving the local 
density of each cell type and hence brain structures11. We identified 
several hundred pairs of cell subclasses showing statistically signifi-
cant interactions by our criteria (Fig. 6b,c, Extended Data Fig. 9 and 
Supplementary Table 4). Most of our predicted interacting cell-type 
pairs contained multiple ligand–receptor pairs that showed significant 
upregulation in expression in the proximal cell pairs compared with 
non-proximal cell pairs within the same cell-type pair (Supplementary 
Table 5), providing insights into the molecular basis of these cell–cell  
interactions.

Our predicted cell–cell interactions included interactions among 
non-neuronal cells, between non-neuronal cells and neurons, and 
among neurons. Below, we describe examples in each of these three 
categories. As examples in the first category, we observed interactions 
between vascular cells and immune cells. Both endothelial cells and 
pericytes showed significant interactions with BAMs, macrophages 
in the brain (Fig. 6d,e). In both cases, ligand–receptor pairs from the 
laminin signalling pathway showed significant upregulation in the 
proximal cell pairs compared with non-proximal cell pairs (Fig. 6d,e). 
Laminins at the endothelial basement membrane can promote mono-
cyte differentiation to macrophages49. Thus, these cell–cell interactions 
might have a role in regulating the pool of macrophages in the brain. We 
also observed significant interactions between microglia and these two 
vascular cell types (Fig. 6f). Compared with endothelial cells, pericytes 
exhibited a higher probability to interact with microglia, whereas an 
opposite trend was observed for their interactions with BAMs (Fig. 6g).

We also observed significant interactions between neurons and 
non-neuronal cells. For example, astrocytes and inhibitory IMNs 
showed significant interactions in the olfactory bulb (Extended Data 
Fig. 10a). Neuroblasts migrating from the SVZ to the olfactory bulb 
interact with cells of astrocytic nature along the rostral migratory 
stream35–37,40. Whether our observed IMN–astrocyte interactions in the 
olfactory bulb is related to the interactions between neuroblasts and 
astrocytes in the rostral migratory stream remains an open question.  
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Fig. 5 | Spatial gradients of molecularly defined cell types. a, Spatial 
gradient of IT neurons in the isocortex. From left to right: spatial map of IT 
neurons coloured by subclass identities in a sagittal section; spatial maps of IT 
neurons coloured by pseudotime in the same sagittal section and an additional 
coronal section; and a correlation plot of pseudotime versus cortical depth for 
individual IT neurons, coloured by pseudotime values. The Pearson correlation 
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neuron interactions. c, Cell–cell interactions in two brain regions. Each line 
corresponds to an interacting cell-type pair, with the colour indicating fold 
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10 ligand–receptor pathways upregulated in proximal cell pairs as compared  
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pathway are upregulated, the plotted fold-change value represents that of the 
pair with the highest upregulation fold change. Expression distributions of  
the indicated gene in endothelial cells proximal (red) or non-proximal (grey)  
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median. e, Same as d, but for interactions between pericytes and BAMs.  
f, Interactions between endothelial cells and microglia (left) and between 
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endothelial–microglia and pericyte–microglia interactions (left), and 
comparison between endothelial–BAM and pericyte–BAM interactions (right).
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We also observed significant interactions between astrocytes and 
excitatory IMNs in the hippocampal formation (Extended Data Fig. 10b). 
Many additional astrocyte–neuron interactions were observed 
across various brain regions (Fig. 6c and Extended Data Fig. 9). Many  
astrocyte–neuron interactions may also be missed in our analysis 
because astrocytes often interact with neurons through their pro-
cesses instead of cell bodies.

Although not designed to capture long-range synaptic communi-
cations between neurons, our analyses also predicted interactions 
between some neuronal subclasses, for example, between Pvalb 
chandelier GABA neurons and CA3 glutamatergic neurons in the hip-
pocampal formation (Extended Data Fig. 10c) and between IPN Otp 
Crisp1 GABA neurons and DTN–LDT–IPN Otp Pax3 GABA neurons in the 
midbrain (Extended Data Fig. 10d). The proximal pairs of chandelier 
neurons and CA3 glutamatergic neurons showed pronounced upregu-
lation of ligand–receptor pairs in the WNT pathways (Extended Data 
Fig. 10c). WNT signalling is known to be important for hippocampal 
functions50, as well as dysfunction in neurological disorders, such as 
spatial memory impairment and anxiety-like behaviour51. Chandelier 
neurons and CA3 glutamatergic neurons have also been implicated in 
these neurological disorders52,53. Whether our observed interactions 
between chandelier and CA3 glutamatergic neurons are involved in 
these disorders awaits future investigations.

Given the importance of WNT signalling in brain development, 
function and diseases, we performed a systematic quantification of 
various WNT ligands in cell–cell interactions in different brain regions. 
Interacting non-neuronal cells primarily showed upregulation of a 
subset of WNT ligands, Wnt4, Wnt5a, Wnt5b, Wnt6 and Wnt9a, across 
nearly all brain regions (Extended Data Fig. 10e, top). Conversely, the 
usage of WNT signalling in neuron–neuron and neuron–non-neuronal 
cell communications showed high regional specificity, as well as WNT 
ligand specificity (Extended Data Fig. 10e, middle and bottom). Overall, 
among the ligand–receptor pairs that we observed to be upregulated 
in interacting cells in the brain, WNT, laminin, collagen, semaphor-
ing and BMP-related pathways were among the most broadly used 
(Extended Data Fig. 10f).

In addition to ligands and receptors, we also identified other genes 
that were upregulated in the predicted interacting cell pairs (Sup-
plementary Table 6), which suggest potential functional roles of 
these cell–cell interactions. We illustrate this with examples in the 
non-neuronal–non-neuronal, neuronal–non-neuronal and neuronal–
neuronal interaction categories. For example, some cytokines were 
upregulated in vascular cells proximal to BAMs (for example, Cytl1 in 
endothelial cells and Ccl19 in pericytes) (Fig. 6d,e). These cytokines 
have been shown to be chemoattractants for macrophages54,55. Our 
observations suggest the possibility that vascular cells in the brain 
may use these cytokines to recruit macrophages. As another example 
in the first category, genes involved in elastic fibre assembly, including 
Eln, Fbln2 and Fbln5, were significantly upregulated in endothelial cells 
proximal to SMCs (Extended Data Fig. 10g), consistent with previous 
findings that endothelial cells make elastic fibres that inhibit the growth 
of SMCs56. We further observed that Pi16 was significantly upregulated 
in endothelial cells proximal to SMCs (Extended Data Fig. 10g). Pi16 can 
inhibit the growth of cardiomyocytes57. We thus hypothesize that Pi16 
expressed by endothelial cells may be a growth inhibitor of SMCs in the 
brain. As an example in the second category — interactions between 
neurons and non-neuronal cells — we observed that Sfrp1, a WNT signal-
ling modulator, was upregulated in astrocytes proximal to inhibitory 
IMNs in the olfactory bulb (Extended Data Fig. 10a). Sfrp1 expressed 
in OPCs can inhibit the proliferation of neural stem cells58. Our results 
suggest the possibility that astrocytes may use Sfrp1 to modulate WNT 
signalling and regulate adult neurogenesis. Finally, as an example in 
the neuronal–neuronal interaction category, we observed that the 
glutamate receptor GRIN2A was upregulated in parvalbumin-positive 
chandelier neurons proximal to CA3 glutamatergic neurons (Extended 

Data Fig. 10c), suggesting the possibility that communications between 
these neurons may affect the synaptic properties of chandelier neurons.

Discussion
In this work, we generated a comprehensive atlas of molecularly defined 
cell types across the whole mouse brain with high molecular and spa-
tial resolution. By imaging approximately 10 million cells with MER-
FISH and integrating the MERFISH data with a whole-brain scRNA-seq 
dataset, we determined the spatial organization of more than 5,000 
transcriptionally distinct cell clusters, which were grouped into 338 cell 
subclasses, and imputed a transcriptome-wide expression profile for 
each imaged cell. We further registered this atlas to the Allen Mouse 
Brain CCF, providing a reference cell atlas that can be broadly used by 
the scientific community. This CCF registration allowed us to determine 
the composition, spatial organization and potential interactions of 
transcriptionally distinct cell types in each individual brain region.

Our results highlight an extraordinary molecular diversity and spatial 
heterogeneity of neurons. We observed more than 5,000 transcription-
ally distinct neuronal cell clusters belonging to 315 subclasses. At the 
subclass level, individual cell types exhibited strong enrichment, if not 
located exclusively, within one of the 11 major brain regions. At a finer 
scale, most transcriptionally distinct neuronal clusters within individual 
subclasses also adopted different spatial distributions from each other. 
Telencephalic regions (the olfactory areas, isocortex, hippocampal 
formation, cortical subplate, striatum and pallidum) showed lower 
cellular diversity than that observed in the hypothalamus, midbrain 
and hindbrain, which contained a substantially larger number of tran-
scriptionally distinct cell populations in each region. Moreover, cells 
in these latter regions exhibited complex spatial organization with 
transcriptionally distinct cell types often assuming irregularly shaped, 
partially overlapping spatial distributions, whereas spatial organiza-
tion of cells showed a higher level of regularity in the telencephalic 
regions, such as the layer-specific distribution of cortical neurons. The 
comprehensive mapping of spatial distributions of the transcription-
ally distinct neuronal cell types allowed us to partition the brain into 
molecularly defined brain regions, which we termed spatial modules. 
We also observed many spatial gradients in the brain where the cell-type 
composition and molecular profiles of cells change gradually in space.

Our data also provide a systematic molecular and spatial charac-
terization of the non-neuronal cells. Non-neuronal cells accounted 
for about half of the cells in the adult mouse brain, and this fraction 
varied substantially from region to region. We observed a high diver-
sity of non-neuronal cells, comprising 117 transcriptionally distinct 
clusters belonging to 23 subclasses. Of note, many non-neuronal cell 
types also exhibited a highly level of regional specificity. This spatial 
heterogeneity was particularly pronounced for astrocytes, with each 
astrocyte cluster adopting a unique spatial distribution. Although 
such regional-specific molecular profiles of astrocytes likely have a 
developmental origin, it is possible that the interactions of astrocytes 
with distinct types of neurons in different brain regions also contribute 
to the molecular diversity of astrocytes. An interesting question arises 
as to whether the different molecular properties of astrocytic subtypes 
have an important role in their function to support and modulate the 
activity of diverse neuronal cell types.

Our high-resolution cell atlas further enabled a brain-wide investiga-
tion of cell-type-specific cell–cell interactions or communications. We 
predicted interactions or communications between several hundred 
pairs of cell types at the subclass level. Our analysis of ligand–recep-
tor pairs, as well as other genes, upregulated in proximal cell pairs 
within each of these cell-type pairs further suggest potential molecular 
basis and functional roles of these cell–cell interactions. Although 
the combination of spatial and molecular information in MERFISH 
data offers unique advantages in predicting cell–cell interactions or 
communications, a few factors could still cause false positives and 
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negatives in our analyses. On the false-positive side, although we used 
local spatial randomizations of cells to generate null distributions to 
reduce the confounding effect of colocalization of cell types in a brain 
structure without interactions, and we further imposed the require-
ment of ligand–receptor upregulation in proximal cell pairs in cell–
cell interaction calling, it is impossible to completely eliminate such 
a confounding effect, especially when colocalization occurs within a 
small brain structure. In addition, our requirement of ligand–receptor 
upregulation in a proximal cell pair, as compared with non-proximal 
cell pairs, for cell–cell interaction calling could also cause false nega-
tives, because ligand–receptor pairs mediating interactions between 
two cell types may be expressed at a constant level regardless of cell–
cell proximity. One could adjust the parameters and requirements 
in our analysis to generate a more stringent or a more inclusive list 
of cell–cell interaction hypotheses. Regardless of the parameter 
choice, additional experiments are needed to validate these cell–cell  
interaction hypotheses.

Overall, our data provide a molecularly defined and spatially resolved 
cell atlas of the entire adult mouse brain, featuring complex organiza-
tions of thousands of distinct cell populations. This reference cell atlas 
provides a foundation for future functional studies of these distinct cell 
populations. Both the molecular signatures and the spatial information 
in the atlas provide handles for functional interrogation of specific 
neuronal cell types through transgenic targeting tools and optoge-
netic manipulations. In addition, the predicted interactions between 
non-neuronal cells and neuronal cells and among non-neuronal cells, 
as well as the associated upregulation of ligand–receptor pairs and 
other genes, provide hypotheses and entry points for testing the func-
tional roles of the diverse non-neuronal cell types. Furthermore, the 
combination of transcriptomic imaging with neuronal activity imaging 
under various behaviour paradigms4,5,59,60 can reveal the functional 
roles of neurons. We envision that future studies combining spatially 
resolved transcriptomic analysis with measurements of various other 
properties, such as epigenomic profiles, morphology, connectivity and 
function of cells, as well as with systematic gene perturbation methods, 
will help to connect our understanding of the molecular and cellular 
architecture of the brain with its function and dysfunction in health  
and diseases.
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Methods

Animals
Adult C57BL/6NCrl (strain code: 027, Charles River Laboratories) male 
and female mice 56–62 days of age were used in this study. Animals 
were purchased at an age that was 1 week younger (49–55 days) than 
the target age for euthanasia and were housed at Harvard University 
Animal Facility for 1 week to acclimate before being killed. Mice were 
maintained on a 12 h–12 h light–dark cycle (14:00 to 2:00 dark period) 
with at a temperature of 22 ± 1 °C, a humidity of 30–70%, with ad libitum 
access to food and water. All animals used in this study were killed 
between 14:00 and 18:00 of the day. Animal care and experiments 
were carried out in accordance with US National Institutes of Health 
guidelines and were approved by the Harvard University Institutional 
Animal Care and Use Committee.

Bulk RNA-seq of the whole mouse brain
Estimates of the average RNA expression levels of individual genes in 
the mouse brain were derived from the bulk RNA-seq data of the whole 
mouse brain. RNA was extracted and isolated using the RNAqueous 
Micro total RNA isolation kit (AM1931, Thermo Fisher) following the 
manufacturer’s instructions from three different whole mouse brains 
56–62 days of age. RNA quality was assessed using Agilent TapeStation 
and samples with an RNA integrity score of more than 8 were kept for 
sequencing. RNA-seq libraries were constructed using the Kapa mRNA 
HyperPrep kits and were sequenced using the Illumina NextSeq500 
platform performed by the Bauer Center Sequencing Core at Harvard 
University.

Single-cell RNA-seq data of the whole mouse brain
Single-cell RNA-seq data were generated by the Allen Institute (see 
companion manuscript by Yao et al.18 in this BICCN package). These data 
are available at the Neuroscience Multi-omics Archive under identifier: 
https://assets.nemoarchive.org/dat-qg7n1b0.

Gene selection for MERFISH
To discriminate transcriptionally distinct cell populations with MER-
FISH, we designed the gene panels based on differentially expressed 
gene analysis using the scRNA-seq data. Genes differentially expressed 
between pairs of transcriptionally distinct cell clusters from the 
scRNA-seq data were selected based on the following criteria: the genes 
had twofold change or more in expression between the two clusters 
with P < 0.01; they were expressed in at least 50% cells in the foreground 
cluster, with more than 3.3-fold enrichment, in terms of the fraction 
of cells expressing the gene, relative to the background cluster. The 
top 50 genes that satisfied the criteria and ranked by P values in each 
direction for every cell cluster pair were pooled together as the dif-
ferentially expressed gene candidates for the final marker gene set. 
We then trimmed this differentially expressed gene pool to remove 
the genes that were too abundant or too short and thus were poten-
tially challenging for MERFISH imaging experiments. Specifically, we 
excluded the genes that can accommodate fewer than 40 hybridization 
probes (MERFISH-encoding probes) and thus were approximately less 
than 500 nt in length (neighbouring target regions for encoding-probe 
binding are allowed to overlap, as described below), or were expressed 
at an average of 3,000 counts in its highest expressing cell cluster as 
determined by the scRNA-seq data.

We further trimmed down the list of differentially expressed genes 
determined above based on the significance of these genes in neu-
roscience studies and their effectiveness in distinguishing different 
cell clusters. This selection process began with 123 subclass markers 
defined based on scRNA-seq clustering results. We then continued to 
add differentially expressed genes that fell into the categories of tran-
scription factors, neuropeptides, G protein-coupled receptors, inter-
leukins and secreted proteins, including 229 genes in total. Following 

this, we used a greedy search algorithm to iteratively add genes that 
had the most potent discriminative power in distinguishing pairs of 
cell clusters that were not adequately separated by the already chosen 
genes. This greedy search was concluded once there were at least three 
differentially expressed genes included for each pair of clusters in 
each direction, which in total added up to approximately 1,100 genes. 
Finally, we added some manually picked genes of interest, such as a few 
circadian clock genes, previously known non-neuronal cell-type marker 
genes, neurotransmitter-related genes and neuropeptide genes, among 
others, to form the final gene panels.

Two gene panels were used in the MERFISH experiments. The first 
panel contained 1,124 genes and was used for imaging most of the slices 
in animal 2, which was the animal that we imaged first. The second gene 
panel contained 1,147 genes and was used for imaging the remainder of 
slices of animal 2 and for imaging all other animals (animals 1, 3 and 4). 
These two gene panels are very similar to each other. Compared with 
the first gene panel, we added 25 manually picked genes in the second 
panel, including additional cell-type markers for non-neuronal cells, 
additional neurotransmitter-related genes and neuropeptide genes, 
and we also removed two genes (Nrgn and Mag) from the first gene 
panel. The two gene panels have 98% of the genes (1,122 genes) in com-
mon, and only the 1,122 common genes from both panels were used to 
integrate the MERFISH data with scRNA-seq data for cell-type classifica-
tion. Historically, animal 2 was imaged first, and we made the changes 
in the gene panel after imaging the majority of tissue slices from this 
animal. As the 1,122 common genes were sufficient for cell-type clas-
sification (it allowed us to integrate MERFISH and scRNA-seq data and 
transfer cell-type labels of all 338 subclasses and approximately 99% of 
the 5,322 cell clusters from the scRNA-seq data to MERFISH data with 
high confidence), we decided to keep all data from the first imaged 
animal and used the 1,122 common genes that were present in the data 
from all animals for the cell-type classification purpose. The 25 genes 
that we have added to the second gene panel were mostly good marker 
genes for specific cell types and have been previously studied. There-
fore, although not being used for cell-type classification, these 25 genes 
can provide useful information for people interested in these genes or 
the specific cell types that these genes mark.

In addition to the MERFISH gene panel, we also imaged four other 
genes (Sst, Vip, Avp and Pmch) that can accommodate fewer than 40 
hybridization probes or were expressed at an average of more than 
3,000 counts in its highest expressing cell cluster. These genes were 
imaged in two sequential rounds of two-colour FISH imaging, following 
the MERFISH run that imaged the 1,124-gene or 1,147-gene panel. These 
genes were included because they were classified as subclass markers 
based on the scRNA-seq data. These sequential genes were also not 
used in the integration of the MERFISH data and the scRNA-seq data for 
cell-type classification. In the experiments with the 1,124-gene panel, 
we further included Fos in one extra sequential FISH imaging round, 
whereas Fos was included in the 1,147-gene panel.

Design and construction of MERFISH-encoding probes
Encoding probes for the MERFISH gene panels were designed as 
previously described4. We first assigned to each of the 1,124 genes 
in the first gene panel a unique binary barcode drawn from a 32-bit, 
Hamming-Distance-4, Hamming-Weight-4 codebook. This codebook 
also included 116 extra barcodes as ‘blank’ barcodes, which were not 
assigned to any genes, to provide a measure of the false-positive rate 
in MERFISH measurement. For the second 1,147-gene panel, the addi-
tional 25 genes were each randomly assigned a barcode from the 116 
blank barcodes.

Each MERFISH-encoding probe contained one 30-nt target sequence 
that could specifically bind to a target gene and two 20-nt readout 
sequences. We designed a total of 32 readout sequences, each cor-
responding to 1 bit of the 32-bit MERFISH code. The collection of 
encoding probes designed to bind to each gene contained the four 
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readout sequences corresponding to the 4 bits that read ‘1’ in the 
barcode of that gene. Each encoding probe contained two of the four 
20-nt readout sequences that encode the specific barcode assigned 
to the gene. To design the target sequences in the encoding probes, 
we identified all possible 30-nt targeting regions within each target 
gene as previously described61. In brief, for each gene, we selected 
30-nt target regions that had a GC fraction between 40% and 60%, 
a melting temperature within the range of 66–76 °C, and no homol-
ogy longer than 15 nt to rRNAs or tRNAs. From the set of all possible 
30-nt target regions for each gene, we selected 64 target regions 
randomly to construct encoding probes. For the transcripts that 
were not long enough to accommodate 64 non-overlapping target 
regions, we allowed these 30-nt targeting regions to overlap by as 
much as 20 nucleotides to increase the number of probes. We also 
allowed the minimum number of probes to be included to reduce to 
40, the target regions to have a GC fraction between 30% and 70%, and 
a melting temperature within the range of 61–81 °C. Among the 1,147 
genes, 7 genes had between 40 and 64 probes and the remaining genes  
had 64 probes.

In addition, we concatenated two PCR primers to each encoding 
probe sequence, the first comprising the T7 promoter, and the second 
being a random 20-mer designed to have no region of homology greater 
than 15 nt with any of the encoding probe sequences designed above, 
as previously described61.

With the template encoding probe sequences designed above,  
we constructed the MERFISH probe set as previously described4. The 
template molecules were synthesized as a complex oligo pool (Twist 
Biosciences) and amplified as previously described61.

Encoding probes for the four genes imaged using two rounds of 
sequential two-colour FISH were produced in the same manner, except 
that 48 targeting sequences were selected for each gene if possible, and 
one single unique readout sequence was concatenated with targeting 
sequences for each gene. The four readout sequences used here, one 
for each gene, were different from the 32 readout sequences used for 
the genes imaged in the MERFISH run. These probes were purchased 
from Integrated DNA Technologies (IDT).

The amplified encoding probes for the MERFISH run and encod-
ing probes for the sequential two-colour FISH rounds were mixed for  
tissue staining.

Design and construction of MERFISH readout probes
We used two readout probe schemes for the 32-bit MERFISH imaging 
plus the two sequential rounds of FISH imaging:
(1) Direct readout strategy with dye-conjugated readout probes com-

plementary to the readout sequences, as described previously8: 
36 readout probes were designed, each complementary to one of 
the 36 readout sequences. Each readout probes were conjugated 
to one of the two dye molecules (Alexa750 or Cy5) via a disulfide 
linkage. These readout probes were synthesized and purified by 
Bio-synthesis, stored in Tris-EDTA buffer, pH 8 (Thermo Fisher) at 
a concentration of 1 μM at −20 °C.

(2) Two-step readout strategy with oligonucleotide adaptors, as  
described previously62: first, 36 adaptor probes were designed, 
each consisting of a sequence complementary to one of the 36 read-
out sequences, concatenated by two additional common readout 
sequences, each for one colour channel. These adaptor probes 
were purchased from IDT, resuspended in Tris-EDTA buffer, pH 8 
(Thermo Fisher) to a concentration of 1 mM and stored at −20 °C. 
Second, two dye-conjugated readout probes were designed, each 
complementary to one common readout sequence for a colour 
channel, and each were conjugated to one of the two dye mol-
ecules (Alexa750, Cy5 or Alexa647) via a disulfide linkage. These 
readout probes were synthesized and purified by IDT, stored in 
Tris-EDTA buffer, pH 8 (Thermo Fisher) at a concentration of 100 μM  
at −20 °C.

Tissue preparation for MERFISH
Mice 56–62 days of age were euthanized with CO2, and their brains 
were quickly harvested and frozen immediately in optimal cutting 
temperature compound (Tissue-Tek O.C.T.; 25608-930, VWR), and 
stored at −80 °C until sectioning. Frozen brains were sectioned at −18 °C 
on a cryostat (Leica CM3050S). A continuous set of 10-μm-thick slices 
were collected for imaging. For animal 1, 10-μm-thick serial coronal 
sections were collected from the anterior edge to the posterior edge 
of the brain and every tenth section was kept; for animal 2, the brains 
were sectioned similarly as for animal 1, but every twentieth coronal 
section was kept; for animal 3, 10-μm-thick serial sagittal sections were 
collected from the midline to the lateral edge of the brain and every 
twentieth section was kept; and for animal 4, the brains were sectioned 
similarly as for animal 3, but only the sections corresponding to the 
approximately same medial–lateral positions as the ones that showed 
broken regions for animal 3 were imaged. Each coverslip contained 2–4 
coronal slices or 1–2 sagittal slices. In total, 150 slices were successfully 
imaged for animal 1, 67 slices were successfully imaged for animal 2, 25 
slices were successfully imaged for animal 3, and 3 slices were imaged 
for animal 4. The coverslips were prepared as previously described4.

Tissue slices were fixed by treating with 4% paraformaldehyde in 1× 
PBS for 15 min and were washed three times with 1× PBS and stored in 
70% ethanol at 4 °C for at least 18 h to permeabilize cell membranes. 
The tissue slices from the same animal were sectioned at the same time 
and were stored in 70% ethanol at 4 °C for no longer than 2 months until 
all the tissue sections from the same animal were imaged.

The tissue slices were then stained with the MERFISH-encoding 
probes. In brief, the samples were removed from the 70% ethanol and 
washed with 2× saline sodium citrate (2× SSC) for three times. Then, 
we equilibrated the samples with encoding-probe wash buffer (30% 
formamide in 2× SSC) for 5 min at room temperature. The wash buffer 
was then aspirated from the coverslip, and the coverslip was inverted 
onto a 50-μl droplet of probe mixture on a parafilm-coated petri dish. 
The probe mixture comprised approximately 0.5 nM of each encoding 
probe for the MERFISH imaging, approximately 5 nM of each encoding 
probe for the two sequential rounds of two-colour FISH imaging, and 
1 μM of a polyA-anchor probe (IDT) in 2× SSC with 30% v/v formamide, 
0.1% wt/v yeast tRNA (approximately, Life Technologies) and 10% v/v 
dextran sulfate (D8906, Sigma). We then incubated the sample at 37 °C 
for 36–48 h. The polyA-anchor probe (/5Acryd/ TTGAGTGGATGGAGT 
GTAATT + TT + TT + TT + TT + TT + TT + TT + TT + TT + T, where T+ 
is locked nucleic acid, and /5Acryd/ is 5′ acrydite modification) was 
hybridized to the polyA sequence on the polyadenylated mRNAs and 
allowed these RNAs to be anchored to a polyacrylamide gel as described 
below. After hybridization, the samples were washed in encoding-probe 
wash buffer for 30 min at 47 °C for a total of two times to remove excess 
encoding probes and polyA-anchor probes. All tissue samples were 
cleared to remove fluorescence background as previously described4,63. 
In brief, the samples were embedded in a thin polyacrylamide gel and 
were then treated with a digestion buffer of 2% v/v sodium dodecyl 
sulfate (SDS; AM9823, Thermo Fisher), 0.5% v/v Triton X-100 (X100, 
Sigma) and 1% v/v proteinase K (P8107S, New England Biolabs) in  
2× SSC for 36–48 h at 37 °C. After digestion, the coverslips were washed 
in 2× SSC for 30 min for a total of four washes and then stored at 4 °C in 
2× SSC supplemented with 1:100 Murine RNase inhibitor (M0314S, New 
England Biolabs) for no longer than 2 weeks before imaging.

MERFISH imaging
We used home-built imaging platforms for MERFISH imaging in 
this study, as previously described64. A commercial flow chamber 
(FCS2, Bioptechs) with a 0.75-mm-thick flow gasket (DIE F18524; 
1907-100, Bioptechs) was used, and imaging buffer comprising 5 mM 
3,4-dihydroxybenzoic acid (P5630, Sigma), 50 μM trolox quinone, 1:500 
recombinant protocatechuate 3,4-dioxygenase (rPCO; OYC Americas), 



1:500 Murine RNase inhibitor and 5 mM NaOH (to adjust pH to 8.0) in 
2× SSC was used for all experiments. For sagittal slices, whole-tissue 
slices were imaged; for coronal slices, we imaged one hemisphere plus 
a narrow region near the midline in the other hemisphere. Two imaging 
schemes were used for the two different readout strategies:
(1) For the direct readout strategy, we first stained the sample with 

a readout hybridization mixture containing the readout probes  
associated with the first round of imaging, as well as a probe comple-
mentary to the polyA-anchor probe and conjugated via a disulfide 
bond to the dye Alexa488 at a concentration of 3 nM for imaging 
total polyadenylated mRNA. The readout hybridization mixture 
was composed of the readout-probe wash buffer containing 2× SSC, 
10% v/v ethylene carbonate (E26258, Sigma) and 0.1 % v/v Triton 
X-100, supplemented with 3 nM each of the appropriate readout 
probes. The sample was incubated in this mixture for 15 min at room 
temperature and then washed in the readout-probe wash buffer 
supplemented with 1 μg ml−1 DAPI for 10 min to stain nuclei within 
the sample. The sample was then washed briefly in 2× SSC and was 
ready for imaging. After the first round of imaging, the dyes were 
removed by flowing 2.5 ml of cleavage buffer comprising 2× SSC 
and 50 mM of Tris (2-carboxyethyl) phosphine (646547, Sigma) with 
15 min incubation in the flow chamber to cleave the dyes linked to 
the readout probes through disulfide bond. The sample was then 
washed by flowing 1.5 ml 2× SSC. To perform the second round of 
imaging, we flowed 3.5 ml of the readout-probe mixture containing 
the appropriate readout probes across the chamber and incubated 
the sample in this mixture for 15 min. Then, the sample was washed 
by 1.5 ml of readout-probe wash buffer and 1.5 ml of imaging buffer 
was introduced into the chamber.

(2) For the two-step adaptor readout strategy, we first stained the 
sample with an adaptor probe hybridization mixture containing 
the adaptor probes associated with the first round of imaging. The 
readout hybridization mixture was composed of the readout-probe 
wash buffer containing 2× SSC and 30% v/v formamide (AM9342, 
Ambion), supplemented with 100 nM each of the appropriate adap-
tor probes. The sample was incubated in this mixture for 15 min at 
room temperature, washed in the readout-probe wash buffer and 
stained with a readout hybridization mixture containing 10 nM 
each of the two readout probes, as well as the polyA-anchor probe 
(Alexa488) at a concentration of 3 nM in the readout-probe wash 
buffer (2× SSC and 30% v/v formamide). The sample was incubated 
in this mixture for 15 min at room temperature, washed again and 
then washed in 2× SSC supplemented with 1 μg ml−1 DAPI for 10 min 
to stain nuclei. Last, the sample was washed briefly in 2× SSC and 
was ready for imaging. After the first round of imaging, the dyes 
were removed by flowing 2.5 ml of cleavage buffer comprising  
2× SSC, 30% formamide and 50 mM Tris (2-carboxyethyl) phosphine, 
supplemented with unlabelled common readout probes at 100 nM 
each to block unoccupied readout sequences on the adaptor probes 
to prevent crosstalk between rounds of hybridizations. The sample 
was incubated in this cleavage buffer for 15 min in the flow chamber, 
then washed by flowing 1.5 ml of readout-probe wash buffer. To per-
form the second round of imaging, we flowed 3.5 ml of the adaptor 
probe mixture containing the appropriate adaptor probes across 
the chamber and incubated the sample in this mixture for 15 min, 
washed by 1.5 ml of readout-probe wash buffer, and flowed 3.5 ml of 
the readout-probe mixture containing the common readout probes 
across the chamber and incubated the sample in this mixture for 
another 15 min. Then, the sample was washed again by 1.5 ml of 
readout-probe wash buffer and then 1.5 ml of imaging buffer was 
introduced into the chamber.

In the first round of imaging, we collected images in the 750-nm, 
650-nm, 560-nm, 488-nm and 405-nm channels to image the first 
two readout probes (conjugated to Alexa750 and Cy5/Alexa647, 

respectively), the orange fiducial beads, the total polyA-mRNA  
signal by the polyA-anchor readout probe (Alexa488) and the nucleus 
signal by DAPI (405-nm channel). The latter two channels were used 
for cell segmentation as described below. For the second and all fol-
lowing imaging rounds, we collected images in the 750-nm, 650-nm 
and 560-nm channels for the two readout probes and fiducial beads. 
During each imaging round, for the fiducial beads, we took a single 
image at one z position for each field of view (FOV) on the surface of 
the coverslip using the 560-nm illumination channel as a spatial refer-
ence to correct for slight drift of the stage position over the course of 
imaging rounds. For imaging readout probes in the MERFISH rounds, 
we imaged multiple z positions in each FOV: for animal 2, we collected 
three or six 1.5-μm-thick z stacks; for all other animals, we collected five 
1.5-μm-thick z stacks. We repeated the hybridization, wash, imaging and 
cleavage for all rounds to complete the 16 rounds of imaging for 32-bit 
MERFISH experiments. We then performed two additional rounds of 
two-colour FISH imaging to image the four additional genes, and these 
images were only acquired from one z plane per FOV. All buffers and 
readout probe mixtures were loaded with a home-built, automated 
fluidics system composed of three, 12-port valves (EZ1213-820-4, IDEX) 
and a peristaltic pump (MP3, Gilson).

MERFISH image analysis and cell segmentation
All MERFISH image analysis was performed using MERlin (available at 
https://github.com/ZhuangLab/MERlin)65, as previously described64. 
First, we identified the locations of the fiducial beads in each FOV in 
each round of imaging and used these locations to determine the 
x–y drift in the stage position relative to the first round of imaging 
and to align images for each FOV across all imaging rounds. We then 
high-pass filtered the MERFISH image stacks for each FOV to remove 
background, deconvolved them using ten rounds of Lucy–Richardson 
deconvolution to tighten RNA spots, and low-pass filtered them to 
account for small movements in the centroid of RNAs between imag-
ing rounds. Individual RNA molecules imaged by MERFISH were iden-
tified by our previously published pixel-based decoding algorithm 
using MERlin. After assigning barcodes to each pixel independently, 
we aggregated adjacent pixels that were assigned with the same bar-
codes into putative RNA molecules, and then filtered the list of puta-
tive RNA molecules to enrich for correctly identified transcripts as 
previously described for a gross barcode misidentification rate at 5%  
using MERlin.

We performed cell segmentation using the DAPI and total 
polyA-mRNA signals and a deep learning-based cell segmentation algo-
rithm (Cellpose 2.0)66,67. We selected approximately 100 FOVs from the 
whole MERFISH dataset as the training images. To ensure the training 
set included images with different cellular densities and cytoarchi-
tectural features, we included images from all different major brain 
regions for the training set generation. To train the human-in-the-loop 
Cellpose model, we used the DAPI and polyA images of these FOVs and 
first applied the ‘cyto2’ model in Cellpose with a diameter parameter 
of 100 pixels to segment the cells, followed by manually correcting 
cells that were mis-segmented and adding the cells that were missed 
by the automated cyto2 method. These human-curated images of 
approximately 100 FOVs were saved to form the training set and used 
to train the Cellpose model, and the trained model was used in the 
cell segmentation of all MERFISH data. Cells were segmented for each 
individual z plane, the centroid positions of the cells were determined 
in each z plane, and the centroids within distance of 2 μm in the xy 
direction across different z planes were considered to be the same cell 
and were connected.

We assigned unique IDs for each segmented cell and assigned indi-
vidual RNAs to segmentation boundaries of the cells based on whether 
they fell within those boundaries to obtain the cell × gene matrix, that is, 
the copy number of RNAs for each gene in each cell. The total number 
of segmented cells was about 10 million.

https://github.com/ZhuangLab/MERlin
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For the two sequential rounds of two-colour FISH imaging, we quanti-

fied the signal from these images by summing the fluorescence intensity 
of all pixels that fell within the segmentation boundaries of the cells 
associated with the imaged z plane and normalized the signal by the 
areas of the cells in the z plane.

Preprocessing of MERFISH data
With the cell × gene matrix obtained as described above, we preproc-
essed the matrix by several steps: (1) the segmentation approach that 
we used generated a small fraction of putative cells with very small total 
volumes due to spurious segmentation artefacts, as well as some cells 
that overlapped in the z dimension and were not properly separated. 
Thus, we removed the cells that had a volume of less than 50 μm3 or 
more than 1,500 μm3 for the 3-z plane measurements, the cells that 
had a volume of less than 80 μm3 or more than 2,500 μm3 for the 5-z 
plane measurements, and cells that had a volume of less than 100 μm3 
or more than 3,000 μm3 for the 6-z plane measurements. (2) To remove 
the differences in RNA counts due to different soma volumes captured 
in the images, we normalized the RNA counts per cell by the imaged 
volume of each cell. (3) We normalized the mean total RNA counts 
per cell to a same mean value (250 in this case) for each experiment.  
(4) We removed the cells that had total RNA counts in the top and  
bottom 1% quantile. (5) We removed potential doublets using Scrublet68 
as previously described. The cells with a doublet score higher than 0.25 
were removed as doublets, which accounted for approximately 4% of 
the total cell number. After these preprocessing steps, approximately 
9.3 million cells were kept for subsequent analysis.

Integration of MERFISH data with scRNA-seq data
We grouped MERFISH data from all four animals for integration with 
scRNA-seq data. Hence, only the overlapping 1,122 genes between the 
two MERFISH gene panels used for all four animals were included in 
the cell × gene matrix for integration of MERFISH and scRNA-seq data 
and subsequent analyses.

We used the SeuratIntegration class from the ALLCools Python pack-
age19,69 to integrate the MERFISH dataset and the scRNA-seq dataset. 
The integration works by co-embedding the two datasets in a common 
space and finding pairs of cells from the two datasets that are close 
to each other in the co-embedded space. The identified close pairs 
are termed anchors, which were used for transferring cell-type labels 
and imputing gene expressions from the scRNA-seq dataset to the 
MERFISH dataset. We performed co-embedding of the two datasets by 
a canonical correlation analysis (CCA)-based integration algorithm19,69. 
To integrate more than 10 million cells from the two datasets while 
achieving a fine resolution for more than 5,000 transcriptionally dis-
tinct cell clusters identified in the scRNA-seq data, we performed two 
rounds of integration.

First, we divided the cells from both datasets into 50 integration 
partitions. We used the scRNA-seq dataset to define the partitions. 
Each integration partition was a group of subclasses that were close 
in the transcription space. We subset the genes in the scRNA-seq 
dataset to the genes measured by MERFISH. Then, we preprocessed 
the dataset using the Scanpy pipeline70: normalized the total count 
of each cell to 1,000, log1p transformed the counts and scaled the 
transformed counts to Z scores. We reduced the dimensionality to 
100 principal component analysis (PCA) dimensions and calculated 
the 15 nearest neighbours of each cell in the PCA space. From the near-
est neighbour graph, we calculated a connectivity graph of subclasses 
where each node was a subclass and the weight of each edge was the 
number of edges in the nearest neighbour graph that connected cells 
from the two subclasses. Then, we used the direct k-way cuts method 
from the METIS graph partitioning library71 to divide the 338 sub-
classes into 50 integration partitions. This method aimed to evenly 
distribute cells into partitions while minimizing the sum weight of  
cut edges.

In the first round of integration, we transferred the integration- 
partition labels from the cells in the scRNA-seq dataset to the cells in 
the MERFISH dataset. We subset the genes in the scRNA-seq dataset 
to the genes measured by MERFISH. Then, we independently preproc-
essed the scRNA-seq and MERFISH datasets by the Scanpy pipeline70: 
normalized the total count of each cell to 1,000, log1p transformed the 
counts and scaled the transformed counts to Z scores. We combined 
the two datasets and performed PCA to reduce the dimensionality to 
100. We ran CCA to co-embed the scRNA-seq cells and MERFISH cells 
into a 100-dimensional space. To co-embed the large number of cells 
from the two datasets, the CCA was first performed on randomly down-
sampled scRNA-seq and MERFISH datasets, each containing 100,000 
cells. Then, the CCA coordinates of the full datasets were calculated 
by a linear transformation from the gene expression space to the CCA 
space. We found the five nearest neighbours across the two datasets in 
the CCA space. We defined all pairs of cells from the two datasets that 
were mutual nearest neighbours as integration anchors. Then, we used 
the label_transfer function from the SeuratIntegration class to transfer 
the integration-partition labels from the scRNA-seq dataset to the 
MERFISH dataset. For each MERFISH cell, the label_transfer function 
calculated the probability of assigning the MERFISH cell to every inte-
gration partition based on the 100 nearest-neighbour anchor cells from 
the scRNA-seq dataset in the PCA space. We set the integration-partition 
label of a MERFISH cell to be the one with the highest probability (that 
is, the integration partition that had the highest fraction of cells in  
the 100 nearest-neighbour anchor cells) and defined this probability 
as the confidence score of the transferred partition label.

In the second round of integration, we transferred subclass and 
cluster labels from the scRNA-seq dataset to the MERFISH dataset. 
We performed this round of integration for each integration partition 
separately. We subset the genes in the scRNA-seq dataset to the genes 
measured by MERFISH, normalized the total count of each cell to 1,000 
and log1p transformed the counts. We used the genes that were highly 
variable in each integration partition. To this end, we calculated the 
dispersions of all the selected genes using the highly_variable_genes 
function from the Scanpy package70. Only genes with log dispersions 
greater than zero were kept for integration. Using the same method for 
the first round of integration, we transferred the subclass and cluster 
labels from the scRNA-seq dataset to the MERFISH dataset and calcu-
lated the confidence scores for label transfer. Because a cell-type label is 
transferred correctly to a cell only when both the integration-partition 
label and the cell-type label within the integration partition were trans-
ferred correctly, we adjusted the confidence scores of the subclass and 
cluster label transfer by multiplying them with the integration-partition 
label-transfer confidence scores.  Among the 9.3 million cells that were 
integrated with the scRNA-seq data, we further removed the cells that 
substantially passed the midline in the coronal slices and those that 
passed the posterior edge of the CCF in the sagittal slices, as well as 
six fractured tissue slices (see ‘MERFISH image registration to the CCF’ 
for details on CCF registration); 8.4 millions cells remained after this 
filtering step. The cell-by-gene matrices of the remaining 8.4 millions 
cells can be downloaded from both the Allen Brain Cell Atlas and the 
CELLXGENE database, and are displayed on the CELLXGENE database 
(see ‘Data availability’ section). In addition, we further filtered the 
cells by the label transfer confidence scores, and the 5.8 million cells 
that passed the thresholds for the subclass and cluster label trans-
fer confidence scores are included in the cell metadata file that can 
be downloaded from and are displayed on the Allen Brain Cell Atlas  
(see ‘Data availability’ section).

Imputation of transcriptome-wide gene expressions of individual 
cells in MERFISH images
On the basis of the integration of MERFISH and scRNA-seq data, we also 
imputed the transcriptome-wide gene expression for each cell in the 
MERFISH images using the method previously described69. In short, 



the imputed expression profile of a MERFISH cell was calculated as the 
weighted average of the expression profiles of its 30 nearest-neighbour 
anchor cells in the scRNA-seq dataset in the co-embeded PCA space. 
The weights were based on the distance between the scRNA-seq cells 
to the MERFISH cell and were calculated by the find_nearest_anchor 
function from the SeuratIntegration class using default parameters.

We evaluated the validity of the imputation results by comparing 
them with the gene expression measured by MERFISH and with the 
previously measured spatial expression patterns in Allen Brain Atlas 
in situ hybridization data20 for the genes included in the MERFISH 
gene panel, and with the Allen Brain Atlas in situ hybridization data 
only for the genes not included in the MERFISH gene panel. We per-
formed two correlation analysis for comparing imputation results 
with the MERFISH measurement results. First, we calculated the mean 
expression level in every cluster from the imputation results and the 
MERFISH measurement results for each gene. We then quantified the 
Pearson correlation coefficient between the imputed cluster means 
and MERFISH-measured cluster means across all clusters for each gene. 
Second, we calculated the mean expression levels of every imaged FOVs 
from the imputation results and the MERFISH-measurement results 
for each gene, and then quantified the Pearson correlation coefficient 
between the imputed FOV means and MERFISH-measured FOV means 
across all imaged FOVs for each gene. The first comparison evaluated 
how well the relative expression levels of genes in different clusters were 
recapitulated by the imputation and the second comparison evaluated 
how well the spatial variation in gene expression was recapitulated by 
the imputation.

For the genes not included in the MERFISH, we visually compared 
the spatial patterns of gene expression determined by imputation 
with those determined in Allen Brain Atlas in situ hybridization data.

MERFISH image registration to the CCF
Registration of MERFISH data to the Allen Mouse Brain CCFv3 was 
performed in a two-step process involving the reconstruction of 2D 
MERFISH tissue slices to a 3D volumetric image through alignment of 
DAPI signals in the MERFISH images to the Nissl template images in the 
Allen Reference Atlas, followed by a 3D refinement using landmarks 
based on cell types with known localizations in the CCF. For the initial 
reconstruction, we used the DAPI channel in the MERFISH images of 
individual brain slices and the Nissl template images in the Allen Refer-
ence Atlas, which is aligned to the Allen CCF. For each MERFISH sample 
from the same animal, brain slices were ordered and rotated to match 
coronal or sagittal orientation of the CCF. Coronal slices were cropped 
approximately 200 μm past the midline, whereas sagittal slices were 
cropped at the posterior end of the cerebellum. In each animal, key 
slices containing recognizable landmarks were used to identify cor-
responding CCF planes, and all remaining CCF planes were determined 
by linear interpolation. To aid the registration process, features in the 
DAPI image were enhanced by highlighting pixels containing cell types 
that localized to known brain regions (for example, VLMCs at the brain 
surface, ependymal cells in the ventricles, granular cells in the dentate 
gyrus, among others). The corresponding features in the Nissl image 
were also highlighted using the CCF annotations and/or morphological 
operations. Finally, each DAPI–Nissl image pair was registered with an 
affine and then B-spline transformation using the program Elastix72. 
Each transformation was then applied to the cell positions to find their 
initial position in the CCF space.

In the second alignment step to refine the CCF registration, an addi-
tional 3D–3D registration was performed using additional selected 
cell types from the MERFISH data that are known to be localized to 
certain brain regions in the CCF. In total, 36 suitable cell types were 
identified along with their corresponding brain region annotations 
in the CCF, as well as two level 1 space modules (SM_CTX and SM_RSP) 
that delineated the cells in the isocortex. These selected cell types  
(or spatial modules) were each randomly assigned an intensity label, 

and a 3D volumetric image was generated using their initial positions 
in the CCF space from the first reconstruction step. A second target 
3D image was generated but using only the CCF annotations; for each 
selected cell type, the corresponding brain region annotations in 
the CCF were assigned the intensity label for that cell type or spatial 
module, and all other annotated regions were removed. As before, for  
certain cell types, morphological operations on certain annotations 
were used to denote the midline, tissue surface or hollow ventricles. 
Finally, these two 3D images were registered using a B-spline transfor-
mation and the cell positions were refined.

After the MERFISH data were registered to the CCF, each MERFISH cell 
was assigned a 3D coordinate (ccfx, ccfy and ccfz), indicating its spatial 
location in the CCF space, where ccfx indicates the coordinate value along 
the rostral–caudal direction, ccfy indicates the coordinate value along  
the dorsal–ventral direction and ccfz indicates the coordinate value 
along the lateral–medial direction. Each MERFISH cell was also assigned 
a brain region annotation ID as defined in the CCF, indicating its brain 
region identity.

For visualization in individual figures, we presented the MERFISH- 
imaged cells in the experimental coordinates, but reverse transformed 
the brain region boundaries defined in the CCF into the experimental 
coordinates by reversing the above-described MERFISH image-to-CCF 
transformation.

As a cautionary note, although our CCF registration of the MERFISH- 
derived cell atlas allows characterization of cell-type composition and 
organization in different brain regions, alignment errors could exist 
in CCF registration due to the differences between individual mouse 
brains and the average template represented by the Allen CCFv3, as 
well as the deformation of tissue sections that were not completely cor-
rected for during image alignment. Improvement in CCF-registration 
accuracy is an active research topic and the CCF reference itself is also 
actively evolving. Thus, our current CCF registration provides a starting 
point, and future method development in this area will help improve 
the accuracy of CCF registration.

Neurotransmitter identities of the neurons
We assigned neurotransmitter identity to the neurons based on 
their expression of canonical neurotransmitter transporter genes.  
Specifically, Slc17a7, Slc17a6 and Slc17a8 were used for identifying 
glutamatergic neurons, Slc32a1 for GABAergic neurons, Slc6a4 for 
serotonergic neurons, Slc6a3 for dopaminergic neurons, Slc18a3 
for cholinergic neurons, Slc6a5 for glycinergic neurons and Slc6a2  
for noradrenergic neurons. In addition, Hdc, which is involved in his-
tamine synthesis, was used to mark the histaminergic neurons. For all 
of these genes, we used an expression threshold of RNA counts per cell 
n ≥ 2, determined by MERFISH, to assign neurotransmitter identity to 
individual neurons.

Spatial module analysis
We did two rounds of spatial module analysis to delineate molecularly 
defined brain regions based on local cell-type composition.

For the first round of spatial module analysis, we defined a local 
cell-type-composition vector for each cell to characterize its neighbour-
hood composition of cell types at the subclass level. We began by find-
ing the 50 spatially nearest neighbours for each cell using scikit-learn73. 
Because vascular and immune cells are usually randomly distributed 
across most brain regions, we excluded them from the spatial module 
analysis. Then, we assigned a weight to each neighbour cell j of a cell i as:

D DWeight = exp(− ( / ) )i j i j i, ,
(0) 2

Where Di,j is the spatial distance between cell i and cell j, and Di
(0) is the 

distance scaling factor. Because different brain regions have different 
cell densities, we let Di

(0) be adjustable based on the local cell density 
and defined Di

(0) as two times the distance between cell i and its fifth 
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nearest spatial neighbour. Then, we defined the local cell-type- 
composition vector of a cell from its neighbour cell types and weights. 
Each element of a local cell-type-composition vector corresponds to 
a cell type, and the value is the sum of the weights of the spatial neigh-
bours that belong to this cell type.

We generated the first level of spatial modules by clustering cells 
based on their local cell-type-composition vectors at the subclass level. 
We normalized the local cell-type-composition vectors by their L2 
norms and ran the Leiden clustering method to cluster the cells. We 
manually curated the clusters by merging the clusters that did not 
form clear spatial boundaries and annotated the clusters based on the 
major brain regions that they corresponded to. This round of analysis 
gave level 1 spatial modules.

We then generated the level 2 spatial modules for each level 1 spatial 
module separately. Because the spatial heterogeneity of cell types 
within individual major brain regions are mainly due to neurons, we only 
considered neurons for the second round of spatial module analysis. 
We calculated the local cell-type-composition vectors using the same 
method described for the first round of spatial module analysis with two 
modifications. The first modification was that we considered both sub-
classes and clusters to define the local cell-type-composition vectors 
— the subclass-based vector was concatenated with the cluster-based 
vector to form the overall vector. The second modification was that 
we used a shorter distance scaling factor D(0)

i for the higher spatial 
resolution in this round. We defined D(0)

i as the distance between cell i 
and its fifth nearest spatial neighbour. Then, we used the same method 
described for the first round of spatial module analysis to cluster cells 
based on their local cell-type-composition vectors to generate level 2 
spatial modules.

Spatial gradient analysis
All cells with subclass label-transfer confidence scores greater than 
0.8 were used in the spatial gradient analysis. To define the degree 
of how discrete or how well separated individual clusters were within 
each subclass, for each cell, we calculated its ‘neighbourhood purity’ 
defined by the fraction of cells that had the same cell-cluster label as 
the centre cell among its 50 nearest neighbours in the gene expression 
space. The discreteness of a cell cluster was defined by the mean value 
of the neighbourhood purities of all cells within the cluster. We then 
determined the median cluster discreteness of a subclass as a measure 
of how discrete individual clusters were within the subclass.

To visualize the spatial gradient of the subclasses or groups of tran-
scriptionally similar subclasses, PCA was used to reduce dimensionality 
of the normalized expression data and to calculate a ‘pseudotime’ value 
for each cell as previously described8. Next, spatial gradients were 
visualized by representing gene expression profiles of the cells using 
either PC1 or the pseudotime value of individual cells on the spatial 
maps. In addition, correlation of the PC1 or pseudotime values and 
the spatial coordinate of the cells were plotted. For the IT neurons in 
the isocortex, cortical depth was used as the spatial coordinate and 
was calculated for individual neurons as previously described8 for 
coronal slices in the region between Bregma approximately −0.8 and 
approximately +1.7 where the layer 6b CTX cells formed a clear thin 
layer at the bottom border of the isocortex. For the D1 and D2 medium 
spiny neurons, locations along the dorsolateral–ventromedial axis 
were used as spatial coordinate values and were calculated using the 
ccfy (dorsal–ventral) and ccfz (medial–lateral) locations of individual 
cells. For lateral septal complex neurons and tanycytes, locations along 
the dorsal–lateral axis (ccfy) were used as spatial coordinate values.

Cell–cell interaction analysis
We performed cell–cell interaction analysis at the subclass level. All cells 
with a subclass label-transfer confidence score greater than 0.8 were 
used in this analysis. We divided cells into major brain regions based 
on their CCF coordinates. Owing to the high complexity of cell-type 

compositions of the hypothalamus, midbrain and hindbrain, we further 
divided these regions each into two regions: the hypothalamus was 
divided into the anterior and posterior hypothalamus; the midbrain 
was divided into the anterior and posterior midbrain; and the hindbrain 
was divided into the pons and the medulla. For the hypothalamus and 
midbrain, the region was divided based on the cell locations along the 
rostral–caudal axis (ccfx), specifically, the mean value of the minimum 
and maximum ccfx value for all the cells within the region was used to 
divide the region into the anterior and posterior parts. We only con-
sidered the subclasses that were either enriched or had a sufficient 
abundance in each brain region for the cell–cell interaction analysis. 
For neuronal subclasses, we used the enrichment score as described in 
the caption for Fig. 2b. For the anterior hypothalamus, posterior hypo-
thalamus, anterior midbrain, posterior midbrain, pons and medulla, 
we used an enrichment score threshold of 6 to stringently select cells in 
these regions. For the other brain regions, we set the enrichment score 
threshold to 2. For astrocytes, we used an enrichment score threshold 
of 1 for all brain regions. For the remaining subclasses of non-neuronal 
cells, we considered them in a brain region if the total cell number of 
that subclass was greater than 50 in this region.

For each subclass pair within each region, we determined the number 
of cell pairs (one from each subclass) that were in contact or proxim-
ity and compared the number of contact or proximal cell pairs with a 
null distribution generated by randomly shifting spatial positions of 
the cells locally11. Two cells were considered in contact or proximity  
if the distance between the cell centroid positions was within a distance 
threshold (Rproximal). We first defined Rproximal to be 15 μm, which is com-
parable to the soma size of the cells in the mouse brain. To generate 
the null distribution by randomly shifting spatial positions of the cells 
locally, for each round of randomization, we shifted the spatial loca-
tion of each cell to a random position within 100 μm from its original 
location. We performed 1,000 rounds of randomization. After each 
round, we calculated the number of cell pairs that were in contact or in 
proximity between every pair of subclasses. For each pair of subclasses, 
we fitted the distribution of the number of contact/proximal cell pairs 
generated by 1,000 randomizations to a normal distribution to gen-
erate the null distribution. We then compared the observed contact/
proximal cell pair number with the null distribution to determine the 
enrichment fold change and the P value of the enrichment. Then, we 
used the Benjamini–Hochberg multiple-hypothesis testing correction 
method to adjust the P values. We used the adjusted P value threshold 
of 0.05 and the number of observed proximal pair threshold of 50 to 
select the pair of subclasses that showed significant probability to be 
in contact or in proximity and called these subclass pairs as interact-
ing cell-type pairs.

As the stringent distance threshold, Rproximal = 15 μm, may eliminate 
some cell-type pairs that communicate through paracrine signalling, we 
also relaxed this distance threshold to a greater value (Rproximal = 30 μm), 
but for cell-type pairs identified with this relaxed distance threshold, we 
further required that at least one ligand–receptor pair was upregulated 
in the proximal cell pairs compared with non-proximal cell pairs (see 
below) to call these cell types as interacting cell-type pairs.

Ligand–receptor analysis and analysis of other genes 
upregulating in interacting cell pairs
We performed the ligand–receptor analysis at the subclass level. All 
cells with a subclass label-transfer confidence score greater than 0.8 
were used in this analysis. We used the CellChat database74 to define 
the ligand–receptor pairs. For a ligand–receptor pair k, we defined the 
ligand–receptor expression score for a pair of cells i and j as:

ΠS L R= log(1 + )k i j p q k i p k j q, , , , , , ,∗

Where Lk,i,p is the expression level of the p-th component of the ligand 
of the ligand–receptor pair k in the cell i; Rk,j,q is the expression level of 



the q-th component of the receptor of the ligand–receptor pair k in the 
cell j. The expression levels used here were the imputed gene expression 
results as described in the section ‘Imputation of transcriptome-wide 
gene expressions of individual cells in MERFISH images’.

We performed ligand–receptor pair analysis for the cell-type pairs 
that showed statistically significant proximity compared with the null 
distribution as described in the previous section ‘Cell–cell interaction 
analysis’, using Rproximal = 30 μm. For a pair of cell types and a ligand–
receptor pair, we calculated the distributions of ligand–receptor 
expression scores for all proximal cell pairs, that is, cell pairs with a soma 
centroid distance smaller than Rproximal, from this cell-type pair (one 
cell from each cell type). Then, we randomly selected the same num-
ber of cell pairs from this cell-type pair with a soma centroid distance 
greater than Rproximal. We calculated the distributions of ligand–receptor 
expression scores for the non-proximal cell pairs. We used one-sided 
Welch’s t-test to test whether the mean ligand–receptor expression 
scores were significantly higher in proximal cell pairs than the scores 
in the non-proximal cell pairs. Then, we used the Benjamini–Hochberg 
multiple-hypothesis testing correction method to adjust the P values. 
We selected significant ligand–receptor pairs that satisfied the fol-
lowing three criteria: the mean of ligand–receptor expression score 
was at least twofold higher in the proximal cell pairs than those in the 
non-proximal cell pairs; the adjusted P value was less than 0.01; and  
the ligand–receptor expression scores were greater than zero in at least 
40% of the proximal cell pairs. Using this approach, we determined the 
ligand–receptor pairs that were statistically significantly upregulated 
in the proximal cell pairs compared with the non-proximal cell pairs 
in each cell-type pair that showed statistically significant proximity 
using Rproximal = 30 μm.

We then used a similar approach to determine other genes that were 
upregulated in the proximal cell pairs compared with non-proximal 
cell pairs in each cell-type pair. We first determined the highly variable 
genes for each cell type. Only highly variable genes were considered 
for this gene upregulation analysis. For each cell type A that showed 
significant proximity with another cell type B as compared with the 
null distribution, we divided the type A cells into two groups based on 
whether they were within Rproximal of any type B cells. For each gene, we 
calculated the expression distributions in the two groups respectively 
and used one-sided Welch’s t-test to test whether the mean expression 
was significantly higher in the first group than that in the second group. 
We used the Benjamini–Hochberg multiple-hypothesis testing correc-
tion method to adjust the P values. We selected significantly upregu-
lated genes using the following criteria: the mean expression level 
was at least twofold higher in the proximal cell pairs than those in the 
non-proximal cell pairs, and the adjusted P values were less than 0.01.

Statistics and reproducibility
Four replicate mice, one female and three males, were imaged under 
each condition. From the four replicate mice imaged for the identifi-
cation and spatial mapping of cell types, a total of approximately 10 
million cells were imaged and segmented, which generated a sufficient 
number of single-cell profiles and gave sufficient statistics for the effect 
sizes of interest. No statistical methods were used to predetermine 
sample size. The mice were randomly chosen. For each mouse, the 
imaging experiments were definitive, and no randomization was neces-
sary for this study, hence the experiments were not randomized. The 
investigators were not blinded during experiments and outcome assess-
ment because all images were taken under the same condition, and the 
results were quantitative, which did not require subjective judgement.

The sample sizes for the violin plots in Fig. 6g (from left to right) are 
14, 13, 14 and 9 brain regions. The P values in Fig. 6c, Extended Data 
Fig. 9 and Supplementary Table 4 were calculated by a one-sided 
permutation-based test described in the cell–cell interaction analysis 
section of the Methods. The displayed P values were adjusted by the 
Benjamini–Hochberg multiple-hypothesis testing correction.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed MERFISH data, as well as the MERFISH codebook and 
probes used in this work, can be accessed via the Brain Image Library75. 
Processed MERFISH data are also accessible and explorable in an inter-
active manner through two platforms: (1) the Allen Brain Cell Atlas 
(https://knowledge.brain-map.org/data/5C0201JSVE04WY6DMVC/
explore; https://alleninstitute.github.io/abc_atlas_access/descriptions/
Zhuang-ABCA-1.html; https://alleninstitute.github.io/abc_atlas_access/
descriptions/Zhuang-ABCA-2.html; https://alleninstitute.github.io/
abc_atlas_access/descriptions/Zhuang-ABCA-3.html; https://allenin-
stitute.github.io/abc_atlas_access/descriptions/Zhuang-ABCA-4.html) 
and (2) the CELLxGENE database (https://cellxgene.cziscience.com/
collections/0cca8620-8dee-45d0-aef5-23f032a5cf09). The scRNA-seq 
datasets (FASTQ files) obtained by the Allen Institute are available at 
NeMO (https://assets.nemoarchive.org/dat-qg7n1b0). The processed 
scRNA-seq data along with the transcriptomic cell-type taxonomy were 
visualized at the Allen Brain Cell Atlas (mouse whole-brain cell-type 
atlas, https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas). 
Instruction for access of the processed scRNA-seq data is available 
at https://github.com/AllenInstitute/abc_atlas_access/blob/main/
descriptions/WMB-10X.md. The CellChat database74 is available at 
http://www.cellchat.org/. Source data are provided with this paper. 
Bulk RNA-seq data of the whole mouse brain are available at NCBI GEO 
data repository (GSE246919).

Code availability
Code for the MERFISH image analysis is available at https://github.com/
ZhuangLab/MERlin and on Zenodo65. Additional code for data analysis 
is available at https://github.com/ZhuangLab/whole_mouse_brain_
MERFISH_atlas_scripts_2023 and on Zenodo76. Code for the MERFISH 
image acquisition is available at https://github.com/ZhuangLab and 
on Zenodo77.
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Extended Data Fig. 1 | Correlation and integration of MERFISH data and 
RNA-seq data. a, Correlation plot of the average copy number per cell of 
individual genes measured by MERFISH from two replicate animals. The black 
solid line indicates equality. The Pearson correlation coefficient is r = 0.990.  
b, Correlation plot of the average copy number per cell of individual genes 
determined by MERFISH versus the expression levels determined by bulk 
RNA-seq of whole mouse brain. The Pearson correlation coefficient is r = 0.822. 
c, Correlation plot of the average copy number per cell of individual genes 
determined by MERFISH versus those determined by scRNA-seq of whole 
mouse brain. The Pearson correlation coefficient is r = 0.752. d, UMAP of the 
integrated MERFISH and scRNA-seq data with all MERFISH and scRNA-seq cells 
displayed. Cells are coloured by experimental modalities. e, Distributions of 
confidence scores of subclass label transfer (top) and cluster label transfer 

(bottom) for individual MERFISH cells. f, Left: Correspondence between the 
subclass classification of MERFISH cells determined by integration of MERFISH 
and scRNA-seq data (Integration method) and by identifying the scRNA-seq 
cluster with most similar transcriptional profile to the MERFISH cells (Mapping 
method). Confusion matrix shows the fraction of cells from any given subclass 
determined by the Integration method that was assigned to individual 
subclasses determined by the mapping method. Insets: Correspondence plots 
between the cluster classification of MERFISH cells determined by the two 
methods for an example subclass: MV-SPIV Zic4 Neurod2 Glut. Right: Fraction 
of cells showing classification agreement between the two methods as a 
function of the confidence score threshold at subclass level (top) and cluster 
level (bottom) used in the Integration method. Red dashed lines indicate the 
confidence score threshold used in this work.
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Extended Data Fig. 2 | Comparison of gene-expression results imputed 
from MERFISH and scRNA-seq data integration with the MERFISH 
measurement results and Allen in situ hybridization data. a, Examples  
of spatial gene-expression patterns from MERFISH measurement (top row), 
imputation results (middle row), and in situ hybridization data from the  
Allen brain atlas (bottom row). b,c, The distributions of Pearson correlation 
coefficients between MERFISH measurement results and imputation results. 
b, For each gene, a correlation coefficient was calculated for mean expression 
levels in individual cell clusters between MERFISH measurement results and 

imputation results. c, For each gene, a correlation coefficient was calculated 
for mean expression levels of individual imaging fields of view (200 μm × 200 μm) 
between MERFISH measurement results and imputation results. Correlation- 
coefficient distributions across all genes in the MERFISH panel are shown.  
d, Examples of spatial gene expression patterns from imputation results (top 
row) and in situ hybridization data from the Allen brain atlas (bottom row).  
The genes shown in (d) were not measured by MERFISH. Scale bars in a,d: 1 mm. 
The Allen Brain Atlas in situ hybridization data in panels a and d  are taken from 
https://mouse.brain-map.org/20.

https://mouse.brain-map.org/


Extended Data Fig. 3 | CCF registration of MERFISH images. a, Workflow of 
CCF registration of the MERFISH images. MERFISH images were registered to 
the Allen Mouse Brain CCFv321 using a two-step procedure. First, DAPI images 
taken during MERFISH imaging were aligned to the Nissl template images in  
the Allen Reference Atlas (ARA, adapted from https://mouse.brain-map.org/
static/atlas), which allowed an initial, coarse alignment of the MERFISH images 
to the Allen CCF. Second, cell-type with known locations in the CCF were 

selected as landmarks (e.g., layer-specific cortical neurons, neurons in the 
dente gyrus, etc.) and used to refine the CCF alignment (see Methods for 
details). The 3D brain images were generated using Brainrender78. b, Spatial 
maps of cells in the same coronal and sagittal sections as shown in Fig. 1c, but 
with cells coloured by their cluster identities. The underlying contour lines 
marking the brain region boundaries were generated using coordinates from 
the Allen Mouse Brain CCFv3 (ref. 21). Scale bar: 1 mm.

https://mouse.brain-map.org/static/atlas
https://mouse.brain-map.org/static/atlas
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Spatial distributions of different neuronal cell types 
and neurotransmitter usage. a, Spatial distributions of different IT subclasses 
showing the separation between IT neurons in the isocortex (CTX) and those  
in the olfactory areas (OLF, left) and in the hippocampal formation (HPF, right). 
Red arrows mark the boundaries between CTX and OLF and between CTX and 
HPF defined in the CCF. Cells are coloured by subclass identities. b, Spatial 
distributions of the two subclasses, AD Serpinb7 Glut and AV Col27a1 Glut, in the 
anterodorsal (AD) and anteroventral (AV) nucleus of the thalamus, respectively. 
c, Spatial distributions of five inhibitory neuronal subclasses, marked by Lamp5, 
Pvalb, Sst, Vip, and Sncg, across CTX, HPF, OLF and cortical subplate (CTXsp).  
d, Spatial heatmap of local neuronal-composition complexity. The local 
neuronal-composition complexity of any given cell is defined as the number  
of different neuronal cell types (at the subclass level) present in the 50 nearest-
neighbour neurons surrounding that cell. PAL, Pallidum; PALv, Pallidum, ventral 
region; sAMY, Striatum-like amygdalar nuclei; SC, Superior colliculus. e, Spatial 
distributions of glutamatergic and GABAergic neurons in the thalamus, showing 
GABAergic neurons in the reticular nucleus (RT) and glutamatergic neurons in 
the rest of the thalamus. f, Spatial distributions of glutamatergic and GABAergic 
neurons, including the glycinergic neurons, in the midbrain and hindbrain.  
g, Spatial distributions of glutamatergic and GABAergic neurons, including the 
glycinergic neurons, in the cerebellum. h, Spatial distributions of neurons  
co-expressing Vglut (Slc17a6, Slc17a7 or Slc17a8) and Vgat (Slc31a1). AHN, 
Anterior hypothalamic nucleus; GPi, Globus pallidus, internal segment; SUM, 

Supramammillary nucleus. i, Spatial distributions of neurons expressing  
Vglut1 (Slc17a7, green) and Vglut2 (Slc17a6, orange). Neurons that co-express  
Vglut1 and Vglut2 are shown in yellow. AOB, Accessory olfactory bulb; AON, 
Anterior olfactory nucleus; MH, Medial habenula; LD, Lateral dorsal nucleus 
of thalamus; VPM, Ventral posteromedial nucleus of the thalamus; PG: 
Pontine gray. j–o, Spatial distributions of dopaminergic ( j), serotonergic (k), 
histaminergic (l), glycinergic (m), noradrenergic (n) and cholinergic (o) 
neurons. PVi, Periventricular hypothalamic nucleus, intermediate part; ARH, 
Arcuate hypothalamic nucleus; VTA, Ventral tegmental area; SNr, Substantia 
nigra, reticular part; SNc, Substantia nigra, compact part; LDT, Laterodorsal 
tegmental nucleus; DMH, Dorsomedial nucleus of the hypothalamus; VMH, 
Ventromedial hypothalamic nucleus; TU, Tuberomammillary nucleus; PMv, 
Ventral premammillary nucleus; TMv, Tuberomammillary nucleus, ventral 
part; MV, Medial vestibular nucleus; GRN, Gigantocellular reticular nucleus; 
RPA, Nucleus raphe pallidus; DCO, Dorsal cochlear nucleus; NTS, Nucleus of  
the solitary tract; SPVI, Spinal nucleus of the trigeminal, interpolar part; PCG, 
Pontine central gray; LC, Locus ceruleus; MS, Medial septal nucleus; NDB, 
Diagonal band nucleus; PBG, Parabigeminal nucleus; PPN, Pedunculopontine 
nucleus; DMX, Dorsal motor nucleus of the vagus nerve; XII, Hypoglossal nucleu. 
p, Spatial distribution of the inhibitory immature neurons (IMNs) coloured by 
cluster identities as in Fig. 2f middle panel. Scale bars in a–p: 1 mm. The underlying 
contour lines marking brain region boundaries in a–p were generated using 
coordinates from the Allen Mouse Brain CCFv3 (ref. 21).



Article

Extended Data Fig. 5 | Spatial distributions of neuropeptide usage. Spatial 
distributions of neurons expressing various neuropeptide genes shown in 
multiple example coronal slices. Scale bar: 1 mm. The underlying contour lines 

marking brain region boundaries in the images were generated using coordinates 
from the Allen Mouse Brain CCFv3 (ref. 21).



Extended Data Fig. 6 | Spatial distributions of additional non-neuronal  
cell types. a, Left: Spatial distributions of VLMCs shown in an example coronal 
section. Right: Spatial distributions shown in the 3D CCF space for VLMC cluster 
5301 (top), which is enriched in the grey matter, and cluster 5302 (bottom), 
which is located in the choroid plexus in the lateral and fourth ventricles.  
b, Spatial distributions of arachnoid barrier cells (ABCs) shown in an example 
coronal section. c, Spatial distributions of endothelial cells (left), pericytes 
(middle) and smooth muscle cells (SMCs, right), each shown in an example 

coronal section. d, Spatial distributions of immune cells shown in an example 
coronal section including microglia (left) and in the same section but without 
showing microglia (right). e, Spatial distributions of olfactory ensheathing 
cells (OEC) shown in an example coronal section. Cells are coloured by cluster 
identities in all panels. Scale bars in a–e: 1 mm. The underlying contour lines 
marking brain region boundaries in a–e and the 3D brain contours in a were 
generated using coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Extended Data Fig. 7 | Spatial-module delineation. a, UMAP of cells in the 
other level-1 spatial module, as in Fig. 4a bottom, with cells coloured by their 
level-2 spatial module identity. b,c, Heatmaps showing the enrichment scores 
of all neuronal subclasses in the 16 level-1 spatial modules (b) and in the 130 
level-2 spatial modules (c). The enrichment score is defined as the fold change 

of the fraction of cells belong to a subclass in each individual spatial module 
compared to the same fraction across all spatial modules. The coloured bars at 
the top and on the left indicate the neuronal subclasses and spatial modules, 
respectively.



Extended Data Fig. 8 | Quantification of cluster discreteness of cell 
subclasses and additional examples of spatial gradients of molecularly 
defined cell types. a, Left: To quantify the cluster discreteness in a subclass,  
a neighbourhood purity quantity for each cell in a cluster is determined as the 
fraction of the cells in its neighbourhood (in the gene-expression space) that 
belong to this cluster. The mean neighbourhood purity quantity across all cells 
in a cluster is defined as the discreteness of the cluster, which gives a measure 
of how well separated this cluster is from the other clusters in the gene- 
expression space. The median discreteness of clusters is then determined for 
each subclass. Right: Distribution of the median cluster discreteness of 
individual subclasses across all subclasses. The UMAPs of an example subclass 
with high cluster discreteness (OB Eomes Ms4a15 Glut) and an example subclass 

with low cluster discreteness (AHN Onecut3 Gaba) are shown. b–d, Spatial 
gradients of CA1-Pros Glut neurons (b), CA3 Glut neurons (c) and DG Glut 
neurons (d) in the hippocampal formation. From left to right: Spatial map of 
cells coloured by cluster identities in a coronal section; Spatial map of cells 
coloured by the first principal component (PC1) in the same section; Spatial 
distribution of cells colored by PC1 shown in the 3D CCF space. e, Spatial 
gradient of the Tfap2d Maf Glut neurons in the inferior colliculus (IC) of the 
midbrain. Cells are shown in one coronal section and are coloured by cluster 
identities (left) and PC1 (right). Scale bars in b–e: 1 mm. The underlying contour 
lines marking brain region boundaries in b–e and the 3D brain contours in b–d 
were generated using coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Extended Data Fig. 9 | Predicted cell-cell interactions or communications 
in individual brain regions. Same as in Fig. 6c, but for the hippocampal 
formation, cortical subplate, striatum, pallidum, thalamus, hypothalamus 

(anterior and posterior parts), midbrain (anterior and posterior parts), hindbrain 
(pons and medulla sub-regions), and cerebellum.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Additional examples and characterizations of 
predicted cell-cell interactions or communications. a, Interactions between 
olfactory astrocytes (Astro-OLF) and inhibitory immature neurons (MOB-STR-
CTX inh IMN). Left: Example image of cells in a small area, with cells belonging 
to the indicated cell types shown in red and blue and all other cells shown in grey, 
as described in Fig. 6d. Middle: Top 10 upregulated ligand-receptor pathways, 
as described in Fig. 6d. Right: Expression distributions of the indicated gene in 
Astro-OLF proximal (red) or non-proximal (grey) to MOB-STR-CTX inh IMN, as 
described in Fig. 6d. b–d, Same as a, but for interactions between astrocytes 
(Astro-TE) and excitatory immature neurons (DG-PIR Ex IMN) (b), between 
Pvalb chandelier Gaba neurons and CA3 Glut neurons (c), and between IPN Otp 
Crisp1 Gaba neurons and DTN-LDT-IPN Otp Pax3 Gaba neurons (d). In (b) and 
(d), violin plots of example genes upregulated in proximal cell pairs as compared 
to non-proximal cell pairs are not shown. e, Total numbers of unique cell  
types (subclasses) observed in the interacting cell-type pairs that showed 

upregulation of the ligand-receptor pairs involving the indicated Wnt ligands 
in each of the major brain regions. Top: For interactions among non-neuronal 
cells; Middle: For interactions between neurons and non-neuronal cells; 
Bottom: For interactions among neurons. f, The total number of unique cell-
types (subclasses) involved in the predicted interacting cell-type pairs that 
showed upregulation of ligand-receptor pairs in the indicated pathway across 
the whole brain. For each category of cell-cell interactions (interactions among 
non-neuronal cells (top), interactions between neurons and non-neuronal  
cells (middle), and interactions among neurons (Bottom)), the top 30 ligand-
receptor pathways with the highest number of cell types involved are shown. 
g, Interactions between endothelial cells and SMC cells. Top: Example image of 
cells in a small area, as described in Fig. 6d. Bottom: Expression distributions of 
the indicated genes in endothelial cells when they are proximal or non-proximal 
to SMC. Scale bars in a,b,e: 30 μm.
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