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Evidence of human inf luence on Northern 
Hemisphere snow loss

Alexander R. Gottlieb1,2 ✉ & Justin S. Mankin2,3,4

Documenting the rate, magnitude and causes of snow loss is essential to benchmark 
the pace of climate change and to manage the differential water security risks of 
snowpack declines1–4. So far, however, observational uncertainties in snow mass5,6 
have made the detection and attribution of human-forced snow losses elusive, 
undermining societal preparedness. Here we show that human-caused warming has 
caused declines in Northern Hemisphere-scale March snowpack over the 1981–2020 
period. Using an ensemble of snowpack reconstructions, we identify robust snow 
trends in 82 out of 169 major Northern Hemisphere river basins, 31 of which we can 
confidently attribute to human influence. Most crucially, we show a generalizable and 
highly nonlinear temperature sensitivity of snowpack, in which snow becomes 
marginally more sensitive to one degree Celsius of warming as climatological winter 
temperatures exceed minus eight degrees Celsius. Such nonlinearity explains the lack 
of widespread snow loss so far and augurs much sharper declines and water security 
risks in the most populous basins. Together, our results emphasize that human-forced 
snow losses and their water consequences are attributable—even absent their clear 
detection in individual snow products—and will accelerate and homogenize with 
near-term warming, posing risks to water resources in the absence of substantial 
climate mitigation.

Seasonal snow is regarded as a sentinel system for climate change. 
Warm winter temperatures can favour rain over snow and enhance 
snowmelt, reducing snow water storage and posing hydrologic risks 
to people and ecosystems1–4. Yet, puzzlingly, snow is not behaving as a 
sentinel (Fig. 1): although observations show consistent warming trends 
at the hemispheric, continental and river-basin scales (Fig. 1), there is no 
consistent pattern of snowpack loss across observational data products 
(Fig. 1b–e). As such, although the latest Intergovernmental Panel on  
Climate Change (IPCC) assessment concluded with high confidence 
that Northern Hemisphere springtime snow water equivalent (SWE; 
a typical measure of snow mass) has “generally declined” since 19817, 
it remains unclear where, when and by how much anthropogenic 
climate change has actually altered snowpack so far, especially at 
decision-relevant scales. Absent a robust attribution of human-forced 
snowpack changes, it is difficult to identify the regions most vulnerable 
to snow loss and, by extension, to develop appropriate strategies to 
manage present and future water security risks from snow changes.

At least three factors account for the inconsistent response of snow-
packs to observed warming. Chief among them are the aforementioned 
observational uncertainties in estimates of SWE5,6. For example, in 
only one-third of the Northern Hemisphere’s major river basins—and 
fewer than half of the dozen most populated—is there agreement across 
products on the direction of long-term snow change (Fig. 1c). Second, 
snowpack is highly variable across a range of timescales, reflecting 
low-frequency modes of climate variability, such as the Pacific Decadal 

Oscillation8–10 or Atlantic Multidecadal Variability11. Disentangling the 
snowpack response to forcing thus also requires a robust estimate 
of regional snow responses to internal variability, such as those that 
come from initial condition large ensembles of climate simulations12. 
Attribution studies that rely on a small number of climate models and/or 
few model realizations (for example, refs. 13–16) may conflate internal 
variability and model structural uncertainties17–19, the latter of which 
are quite large for snowpack20–22, making attribution difficult. Lastly, 
the relationship between forcing and snowpack is not unidirectional: 
warming, for example, can enhance cold-season precipitation23 and 
snowfall extremes24, potentially offsetting warming-driven losses, 
particularly in cold, high-latitude or high-elevation regions17,25. Regional 
attribution studies (for example, refs. 13,14) have normalized SWE by 
cumulative cold-season precipitation in a rightful effort to reduce 
noise from precipitation variability and allow for a clearer identifica-
tion of a temperature signal, but this strategy fails to capture the full 
effect of climate change on snow. Any attribution of human-caused 
snowpack declines must address these complications to be trustworthy 
and informative.

We address these uncertainties by combining an observations-based 
ensemble of snowpack, temperature, precipitation and runoff data 
products with empirical and climate models to attribute snowpack 
changes to anthropogenic warming at the hemispheric and river-basin 
scales. We use these insights to assess how changes to temperature and 
precipitation have affected snow water storage and to generalize how 
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snowpack and the runoff it generates will respond to additional warm-
ing. Together, our results provide a thorough documentation of the 
historical and future effects of climate change on snow water storage.

A forced signal in snowpack observations
Despite the substantial uncertainty in spatially distributed estimates 
of snowpack (Fig. 1 and Extended Data Fig. 1), gridded snow products 
nevertheless share a distinct spatial pattern of historical trends that 
agrees well with in situ observations (Fig. 2a,b). Over the past 40 years, 
March SWE has sharply declined in the southwestern USA and much of 
western, central and northern Europe by 10% to 20% per decade. Strong 
snow decreases extend eastwards across the Eurasian continent into 
parts of central Asia, per the gridded products (Fig. 2b and Extended 
Data Fig. 1), although a lack of in situ reference points there makes it dif-
ficult to validate these trends. In contrast, the cold continental interiors 
of central North America and northern Eurasia have seen increasing 

spring snowpacks, with in situ observations indicating a deepening of 
over 20% per decade in the Northern Great Plains and parts of Siberia, 
whereas gridded products indicate more modest increases of 5% to 10% 
per decade. Snow-dominated regions that lack in situ observations, 
such High Mountain Asia and the Tibetan Plateau, show weak trends 
in the gridded observational ensemble mean (Fig. 2b), which belie 
directionally inconsistent trends in individual data products (Fig. 1b,e 
and Extended Data Fig. 1).

Coupled climate model simulations forced with historical human 
and natural forcing capture some features of the observed historical 
spatial pattern of snow change, particularly the large snow loss over 
most of Europe and modest gains over Northern Eurasia (Fig. 2c and 
Extended Data Fig. 2). The historical climate model experiments cap-
ture parts of the spatial structure of snow change over North America, 
including declines in the southwest and northeast, but show modest 
declines in the continental interior where observations report deep-
ening snowpacks (Extended Data Fig. 2). Meanwhile, simulations that 
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Fig. 1 | Observed long-term warming trends are robust throughout the 
Northern Hemisphere, but snowpack trends are not. a,b, Agreement across 
observational products (Supplementary Table 1) on the sign of trends in 
November–March average temperature (winter T, a) and March SWE (b) from 
1981 to 2020. Numbers in bottom left show the percentage of basins with each 
category of agreement indicated on the colour bar. Insets: the hemispheric 
trends for each individual product. c–e, The trends for the four most populous 
river basins in North America (c), Europe (d) and Asia (e) that are generally 

considered snow dominated, as well as each continent (Methods). The locations 
of the basins are indicated on the map in a, corresponding to the number in 
parentheses. Temperature (red triangles) is referenced to the top x axis and 
SWE (blue squares) is referenced to the bottom x axis. The 2020 basin population 
is indicated in the top-right corner. Maps were generated using cartopy v0.18.0. 
River basin boundaries come from the Global Runoff Data Centre’s Major River 
Basins of the World database44.
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exclude anthropogenic emissions fail to capture the observed pattern 
of snow change (Fig. 2d).

To be able to claim that human interference in the climate system is 
responsible for the observed hemispheric pattern of snowpack trends, 
we calculate the chances that the observed pattern of snow change 
could have arisen from natural climate variability alone. We follow a 
widely used attribution approach26–29 and generate a distribution of 
pattern correlations between 40-year SWE trends from forced (histori-
cal or HIST) and unforced (pre-industrial control or PIC) climate model 
simulations (Methods). This exercise provides a null distribution (the 
grey background histogram in Fig. 2e) indicating how much a spatial 
pattern of SWE trends arising from model-simulated natural variabil-
ity alone could resemble a pattern consistent with those that include 
anthropogenic forcing. We then correlate the spatial pattern of SWE 

trends in each observational dataset with those from the ensemble 
mean of two different climate experiments: the HIST simulations (red 
symbols in Fig. 2e), representing historical anthropogenic forcing and 
the historical-nat, or HIST-NAT, simulations (blue symbols in Fig. 2e), 
representing a historical climate without human-caused greenhouse 
gas emissions. Finally, we compare the observed correlations to the null 
distribution to calculate the probability that the degree of similarity 
between the observations and HIST and HIST-NAT simulations could 
have arisen from natural variability.

We find that, in the language of the IPCC, it is virtually certain (>99% 
probability) that human emissions have contributed to the observed 
pattern of March snowpack trends in in situ observations and in the aver-
age of the gridded ensemble, as well as in the TerraClimate reanalysis 
and the Japanese 55-year Reanalysis ( JRA-55). We note that the strength 
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Fig. 2 | Climate model experiments reveal that human-caused warming has 
influenced Northern Hemisphere snowpack trends. a–d, Trend in March 
SWE from 1981 to 2020 in in situ observations (a), the ensemble mean of five 
long-term gridded SWE products (b), and the multimodel mean of CMIP6 
historical simulations with (c) and without (d) anthropogenic emissions.  
e, Spatial pattern correlation (ρ) of 1981–2020 March SWE trends between the 
CMIP6 multimodel mean HIST (red symbols) and HIST-NAT (blue symbols) 

simulations and each observational (OBS) SWE product (see legend). The grey 
histogram indicates the empirical probability density function of spatial 
correlations between trends from the historical simulations and all possible 
40-year trends from unforced pre-industrial control (PIC) simulations 
(N = 78,601). The red (orange) vertical dashed line indicates the 99th (95th) 
percentile of this empirical distribution. Maps were generated using cartopy 
v.0.18.0.
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of this claim is subject to the choice of dataset, as the ERA5-Land rea-
nalysis (97%) and the satellite remote sensing-based Snow-CCI product 
(97%) show a slightly lower, but still an ‘extremely likely’ probability, 
and there is no detectable influence when examining the MERRA-2 rea-
nalysis (78%). Thus, despite the substantial observational uncertainty in 
long-term snow trends among data products, there seems to be a shared 
structure in the spatial pattern of observed change that is consistent 
with that from anthropogenic forcing. Crucially, this similarity is absent 
when these products are compared with simulations that include only 
solar and volcanic forcing on the climate system (HIST-NAT; blue sym-
bols in Fig. 2e), as not a single pattern is distinguishable from natural 
variability. As such, we can considerably strengthen the recent IPCC 
claim about snow trends and say with a high degree of confidence 
that human emissions have contributed to the observed pattern of 
spring snowpack trends across the Northern Hemisphere over the 
past 40 years.

River-basin-scale snowpack changes
The coupled climate model experiments such as those presented in 
Fig. 2 are a powerful tool for detecting and attributing human influ-
ence on the broad features of the hemispheric pattern of SWE trends. 
Yet the ability of these models to capture the magnitude and detailed 
spatial structure of observed trends is limited (see the range of the x 
axis in Fig. 2e), undermining the ability to assess forced snow change 
and its consequences at impact-relevant scales. To that end, we pursue 
a data–model fusion approach using a random forest machine-learning 
algorithm that has been applied in a wide variety of attribution con-
texts8,30–34, where we combine empirical models of SWE with climate 
model simulations to allow us to flexibly estimate how anthropogenic 
emissions have affected the temperature and precipitation that drive 
SWE at finer scales (Methods). We combine a number of gridded snow-
pack, temperature and precipitation datasets (Extended Data Table 1) 
in an effort to produce an ensemble of empirical reconstructions of 
historical March SWE at the basin scale (Methods) that skillfully repro-
duce observed trends and variability in those datasets, with the spatial 
pattern correlations of reconstructed and observed trends ranging 
from 0.9 to 0.97 (Extended Data Fig. 3) and a median root-mean-square 
error (RMSE) across all products and basins of under 8% (Extended Data 
Fig. 4). Furthermore, the snowpack reconstruction models are able to 
skillfully hindcast long-term trends and variability in out-of-sample 
in situ snow data, with a trend pattern correlation across roughly 3,000 
sites of 0.72 and a median RMSE of 22% (Extended Data Fig. 5).

Our strategy to empirically reconstruct basin-scale SWE many times 
using a large number of dataset combinations has three goals. First, we 
want to be able to effectively sample the observational uncertainty in 
snow and climate that has undermined snow attributions so far (Fig. 1). 
Second, we need to reconstruct snowpack as a function of temperature 
and precipitation to isolate how forced and unforced changes in those 
quantities have shaped observed snowpack changes at impact-relevant 
scales. Our ensemble of empirical snowpack reconstructions give us the 
experimental control to assess the drivers of snow changes. Lastly, we 
want to be able to assess whether signals of forced snowpack changes 
emerge above the noise of observational, internal variability and cli-
mate model uncertainties, and to quantify those sources of uncertain-
ties to improve snowpack constraints18 (Extended Data Fig. 7). By using 
all factorial combinations of observations and climate models, we can 
fully characterize and quantify these sources of uncertainty and achieve 
a better estimate of the true forced signal than could be achieved with 
any single dataset5,32.

Our ensemble of observations-based reconstructions of March 
SWE (Fig. 3 and Extended Data Fig. 4) shows that spring snowpack 
has declined over the past four decades in many mid-latitude basins, 
with modest increases in cold, high-latitude basins (Fig. 3a). The larg-
est decreases of around 10% per decade are seen in the river basins of 

the southwestern USA and Europe, in agreement with the long-term 
trends from in situ SWE measurements there35,36. Despite the substantial 
uncertainty in March SWE trends in the gridded observational products 
themselves (Fig. 1), our empirical reconstructions show a consistent 
direction of trends in about half of all major river basins (82 out of 169). 
At the same time, however, there are large concentrations of basins with 
insignificant March SWE trends in High Mountain Asia, northern North 
America and Siberia (outside of the Far East, where increases similarly 
agree with in situ observations37) driven largely by disagreement on 
the direction of trends across the ensemble of SWE reconstructions.

The value of our basin-scale SWE reconstructions is that they allow us 
to isolate the influence of anthropogenically forced trends in tempera-
ture and precipitation on snowpack trends at hydrologically relevant 
scales while fully sampling observational, empirical and climate model 
uncertainties. We difference the Coupled Model Intercomparison Pro-
ject Phase 6 (CMIP6) HIST and HIST-NAT experiments to estimate the 
forced response of temperature and precipitation. We then remove 
that from the observed temperature and precipitation time series 
and re-estimate our snowpack reconstructions, giving us an ensem-
ble of counterfactual no-anthropogenic-climate-change snowpack 
(Methods). Although fewer than a quarter of all basins (37 out of 169) 
show significant counterfactual trends (Supplementary Fig. 1), some 
basins, such as the Rio Grande (6.3% per decade), still show consistent 
declines over the past 40 years, even without human interference with 
the climate. Such declines are consistent with regional teleconnections 
to low-frequency oceanic variability, such as the Pacific Decadal Oscil-
lation10, which can drive decadal-scale hydroclimate trends in these 
regions independent of those from anthropogenic warming.

We note that the CMIP6 models tend to over-estimate the historical 
warming trend compared with observations in some regions, particu-
larly over central North America and eastern Europe (Extended Data 
Fig. 6 and Supplementary Fig. 2). At the same time, however, fewer 
than 1% of apparent biases over the hemisphere fall outside the range 
of model internal variability, suggesting that models are skillfully 
capturing Northern Hemisphere winter land-temperature trends38. 
The models also underestimate the multidecadal drying in the south-
western USA, which has seen historical precipitation declines driven 
by both internal ocean–atmosphere variability and anthropogenic 
forcing8, and underestimate observed wetting over the Tibetan Plateau 
(Extended Data Fig. 6 and Supplementary Fig. 2). Once again, however, 
fewer than 3% of precipitation biases lie outside that possible from 
modelled internal variability, suggesting these biases do not under-
mine our attribution.

Our approach sifts through the observational and model noise to 
reveal that human-forced changes to temperature and precipitation 
have altered spring snowpack trends in 31 major river basins across 
the Northern Hemisphere (Fig. 3e). The spatial pattern of forced SWE 
trends is similar to the historical trends (compare Fig. 3a and 3e), with 
anthropogenic climate change having reduced spring snowpacks 
in the mid-latitudes (basins south of 60° N) by 4.1 ± 3.4% per decade 
(mean ± s.d.) and enhanced them in the cold, high-latitude basins that 
drain into the Arctic Ocean by 2.5 ± 1.8% per decade (Fig. 3e). Interest-
ingly, we are able to detect a forced SWE decline in major basins such as 
the Columbia (4.8% per decade) where historical observations indicate 
modest increases since 1981 or the Saint Lawrence (6.9% per decade), 
where observed trends have been small and statistically insignificant. 
These examples suggest that internal variability in the climate system 
has been masking large forced snowpack reductions in some regions17. 
Likewise, there are basins like the Rio Grande, which have suffered 
large historical snowpack declines of over 10% per decade, but for 
which there is little agreement that forced temperature and precipi-
tation changes have caused those declines, reinforcing the notion that 
low-frequency variability can overwhelm forced signals in snow and 
hydroclimate, even on multidecadal timescales17,39. Indeed, internal 
variability is the dominant source of uncertainty in the magnitude 
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of forced response—over climate model structural differences and 
observational uncertainty in SWE, temperature and precipitation— 
in roughly one in eight basins (Extended Data Fig. 7).

Our isolation of the effects of forced changes in temperature (Fig. 3c) 
and precipitation (Fig. 3d) show that anthropogenic temperature 
changes have generally reduced March SWE across the hemisphere, 
except in the coldest basins, although uncertainty in the underly-
ing SWE observations and in the regional temperature response of 
the climate models limits agreement over much of northern North 
America and Asia (Fig. 2c and Extended Data Fig. 7). Anthropogenically 
forced precipitation increases have offset some warming-driven losses  
(Fig. 3d) consistent with observed human-caused increases in winter 
precipitation in many of the Northern Hemisphere’s cold regions23. 
Outside of cold continental interiors40, however, forced snowpack 
increases from precipitation are generally insignificant, reflecting 

both the greater model uncertainty in precipitation and the larger 
contribution of internal variability to hydroclimate uncertainty19,41.

Nonlinear sensitivity of snow to warming
Disentangling forced from unforced snow changes (as presented in 
Fig. 3) is essential to inform decisions to manage present and future 
snow loss. Our analysis makes clear that there is indeed a fingerprint of 
anthropogenically forced SWE trends across the Northern Hemisphere 
and that for some regions, natural variability has been sufficient to 
mask or reverse snow trends. But such an analysis is not just valuable 
for what it says about snow changes so far. It is valuable because it 
helps reveal the highly nonlinear sensitivity of snowpack to warming 
(Fig. 4), and in doing so, resolve the conundrum of why it is that—despite 
warming—there has not been a commensurate decline in snow water 
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Fig. 3 | Empirical snowpack reconstructions reveal the countervailing 
effects of human-forced temperature and precipitation trends on basin- 
scale snow changes. a, Average observed 1981–2020 March SWE trends from  
5 long-term SWE data products in 169 major Northern Hemisphere river  
basins. b, As in a but for our observation-based reconstructions. c, Effect of 
anthropogenically forced temperature changes on March SWE trends, given by 
the ensemble mean difference between the statistically reconstructed historical 

trend and the reconstructed trend with forced changes to temperature removed. 
d, As in c but for forced precipitation changes. e, As in c and d but for forced 
changes to both temperature and precipitation. The hatching indicates basins 
where fewer than 80% of observations or reconstructed estimates agree on the 
sign of the trend or forced effect. Maps were generated using cartopy v.0.18.0. 
River basin boundaries come from the Global Runoff Data Centre’s Major River 
Basins of the World database44.
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storage across the Northern Hemisphere (for example, Fig. 1). It also 
makes clear why we should expect snow losses to rapidly accelerate, 
with widespread water security consequences (Fig. 4b).

Examining the shape of the relationship between average winter 
temperatures and the marginal sensitivity of snow change to tem-
perature change clarifies why snow detection has been elusive so 
far and why even modest levels of warming suggest much sharper 
snow declines to come (Fig. 4a). The responsiveness of snow to 
1 °C of warming depends on climatological winter temperatures. 
Below historical temperatures of about −8 °C (determined from 
change-point analysis), spring snowpack is little affected by warming; 
however, each additional 1 °C of warming beyond that point results in  
accelerating losses.

There are several notable features in these curves. First, is their scale 
and data invariance: the location of the inflection point in temperature 
sensitivity is consistent when it is estimated from point measurements, 
gridded data products, climate models or our basin-scale reconstruc-
tions. This consistency suggests that despite substantial measurement 
and modelling uncertainties, simple thermodynamics can explain much 
of snow’s historical and future response to warming. As the climatologi-
cal temperature of a location warms towards the freezing point, the 
likelihood of subseasonal temperatures exceeding thresholds where 
precipitation is partitioned towards rain over snow or accumulated 
snowpack will melt increases exponentially. We note, however, that 
these thresholds themselves are not constant in space, owing to fac-
tors such as topography and distance from oceanic moisture sources42, 
which may account for some of the uncertainty in snow sensitivities at 
any one climatological temperature (shading in Fig. 4a). Second, the 
marginal sensitivity of snow to temperature change provides some 
intuition for the spatial pattern of SWE trends shared by the observa-
tions and climate models in Fig. 2: in general, the largest snowpack 
declines are seen in the climatologically warmest places, which sit just 
beyond the inflection point in the curve presented in Fig. 4a. There, 
small increases in temperature have led to large declines in snowpack. 
In contrast, cold regions see little change or in some cases, increased 
SWE. Such locations sit on the flat, insensitive part on the curve 

defining the relationship between climatological temperatures and snow  
sensitivity (Fig. 4a).

Lastly, the fact that snow is relatively insensitive to warming below 
climatological winter temperatures of about −8 °C helps explain the 
lack of clear snow trends at the hemispheric scale despite substan-
tial warming so far: over 80% of the March snow mass in the North-
ern Hemisphere is found in places to the left of this inflection point 
(upper inset distribution, Fig. 4a). In those regions, warming has little 
effect. Notably, much of the 20% of hemispheric snow mass remaining 
resides just to the right of the −8 °C inflection point, hovering near a 
snow-loss cliff, where marginal increases in temperature imply larger 
and larger snow losses to come. What is clear is that in these regions, 
snow declines so far have been relatively small compared with natural 
variability. Indeed, the likelihood of observing a statistically significant 
trend in SWE begins increasing around this inflection point in clima-
tological temperature (Supplementary Fig. 3). Such a relationship 
suggests that further warming and thus additional time spent beyond 
this −8 °C threshold will homogenize snow trends towards more con-
sistent declines, portending widespread and accelerating snow losses 
for many basins over the coming decades.

Crucially, the highly nonlinear relationship between snow sensitiv-
ity and climatological temperature implies rapidly emerging water 
security risks to people. Although 80% of the Northern Hemisphere’s 
snow mass is found in cold places that have historically been insensi-
tive to warming, 80% of the hemisphere’s inhabitants reside in the 
snow-dependent regions beyond this inflection point (lower inset dis-
tribution, Fig. 4a). As such, further warming is likely to have rapidly 
emerging impacts on snow water resources in the mid-latitude basins 
where people reside and place competing demands on fresh water.

To assess this, we consider the population exposure to both pro-
jected snow loss and attendant spring snowmelt driven runoff 
change (Fig. 4b). Under Shared Socioeconomic Pathway (SSP) 2–4.5, 
a ‘middle-of-the-road’ emissions scenario, the most highly populated 
basins are expected to see strong declines in spring runoff as a result 
of nonlinear snow loss, even in the face of relatively modest warm-
ing projected in those regions (Fig. 4b and Extended Data Fig. 8).  
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winter temperatures in in situ observations (green), gridded data products 
(blue), climate models (red) and our basin-scale statistical reconstructions 
(orange). The solid line (shading) indicates the average sensitivity (±1 s.d.) in a 
rolling 5 °C temperature window across all in situ locations, grid cells or river 
basins. The red vertical line indicates the change point at which the temperature 
sensitivity of snowpack becomes nonlinear (based on a change-point analysis 
using the basin-scale reconstructions). The bottom histograms show the 
distribution of climatological Northern Hemisphere March SWE and human 

population in 2° temperature bins, with the values indicating how much of each 
distribution falls on each side of the change point. Temperatures on the x axis 
are the average November–March temperature over the 1981–2020 period 
from each in situ location or grid cell. Only climatologically snow-covered grid 
cells are used to calculate the basin-average temperature. b, Percentage change 
in basin-scale March SWE-driven April–June runoff in 2070–2099 under SSP2-4.5 
relative to 1981–2020 (Methods) versus basin population. The dots are coloured 
by the percentage change in March SWE in 2070–2099 relative to 1981–2020 
and sized by the CMIP6 ensemble mean projected end-of-century temperature 
change.
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The western USA, for example, is poised to see particularly sharp spring 
runoff declines in the upper Mississippi (84 million people, 30.2% spring 
runoff decline), Colorado (14 million, 42.2%), Columbia (8.8 million, 
32.7%) and San Joaquin (6.8 million, 40.9%) river basins (Extended Data 
Fig. 8). The most populous basins in Europe, such as the Danube (92 mil-
lion, 41.0%), Volga (60 million, 39.5%), Rhine (51 million, 33.0%) and Po 
(18 million, 40.5%) could face water-availability challenges of a similar 
magnitude. Future changes to SWE-driven spring runoff in Asia, the 
continent with the greatest number of people living in snow-influenced 
basins, show substantially less agreement (hatching in Extended Data 
Fig. 8). Snowpack in cold and sparsely populated basins, meanwhile, 
is likely to be resilient to high levels of winter warming exceeding 5 °C, 
such as that arising from Arctic amplification43, and the coldest may 
see increased snowpacks and enhanced spring runoff into the Arctic 
Ocean of over 10% on average (Fig. 4b and Extended Data Fig. 8).

Managing and leveraging snow uncertainty
Our analysis uses snowpack observations, climate models and an 
observations-based ensemble of snowpack reconstructions to attribute 
changes in spring snow water storage at the hemispheric and river-basin 
scales. Our results explain why snowpack has been a poor sentinel 
system to assess the pace and magnitude of global warming so far, but 
why despite that, we should expect unprecedented snowpack declines 
with only modest additional warming. There is a highly nonlinear tem-
perature sensitivity of snowpack, foreshadowing marked reductions 
in spring snowpack and associated snow-driven runoff in highly popu-
lated basins where snowmelt has an important role in water supply. 
Our analysis reveals that many of the world’s most populous basins 
are hovering on the precipice of rapid snow declines and that such 
losses may only be detected across all observational data products 
once the water security impacts of snow loss have already manifested. 
Thoughtful adaptive planning and risk mitigation—particularly around 
capital-intensive and contentious infrastructure to manage winter 
flood risks coupled with reduced warm-season streamflow—requires 
advance warning. The highly nonlinear marginal sensitivity to snow 
we identify clarifies why such warning in the observations so far has 
been elusive, and also why waiting until the impacts manifest could be 
too late to effectively manage their risks. Such warning, we show, will 
probably only come from the observations once warming is sufficient 
to push regions into this highly nonlinear snow-loss regime.

We emphasize that we can report these findings to provide mean-
ingful warning because of—rather than despite—uncertainty. Snow 
datasets may not agree with one another on the magnitude of snow-
pack or its variability and long-term trends through time (Fig. 1a and 
Extended Data Fig. 1). Yet in situ measurements and all gridded data 
products, apart from one, show a spatial structure consistent with 
anthropogenic forcing of the climate system. The consistency across 
diverse datasets allows for a much higher degree of confidence in 
the identification of forced snowpack trends than could be achieved 
using a single snow dataset alone. Furthermore, the lack of precise 
knowledge about the true state of snowpack over time, cold-season 
temperature and precipitation, and their response to anthropogenic 
emissions allows us to leverage multiple sources of uncertainty 
to produce over 12,000 estimates of the effects of anthropogenic  
climate change on spring snowpack in each of the major river basins of 
the Northern Hemisphere and identify a statistically stable estimate 
of the forced signal.

In addition, there is value in identifying and quantifying these sources 
of uncertainty in forced snowpack changes (Extended Data Fig. 7), 
as it can guide future scientific and operational decision-making18. 
For instance, uncertainty in the forced response of temperature and 
precipitation arising from structural differences between climate mod-
els is the dominant source of uncertainty in the magnitude of forced 
March SWE trends in over half (95 out of 169) of all basins (Extended 

Data Fig. 7), suggesting that improving the skill of climate models in 
capturing regional climate would go a long way towards constraining 
historical and future snow change. Uncertainty in SWE data products 
themselves is also a limiting factor in many basins where in situ obser-
vations are sparse or non-existent (Extended Data Fig. 7), suggesting 
that constraining observational estimates of SWE would be valuable. 
Finally, identifying the contribution of irreducible uncertainty in SWE 
trends from internal variability in the climate system (Extended Data 
Fig. 7) is also essential, as it indicates the range of physically consist-
ent snowpack trajectories for which water resource managers and 
stakeholders must be prepared17,18.

Together, our findings portend serious water-availability challenges 
in basins where snowmelt runoff constitutes a major component of the 
water supply portfolio. Improving our understanding of where and 
how climate change has and will affect snow water resources is vital 
to informing the difficult water resource management decisions that 
a less snowy future will require.
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Methods

We use two approaches to evaluate the effects of anthropogenic climate 
change on spring snowpack. First, we follow an attribution that uses 
the correlation between observed historical snowpack trends from 
several SWE data products and those from climate model simulations. 
Second, we take a data–model fusion approach in which we generate a 
large observation-based ensemble of historical snowpack and estimate 
what March SWE would have been in the absence of anthropogenically 
forced changes to cold-season temperature and precipitation. The 
former indicates forced changes to hemispheric snowpack and the 
latter indicates forced snow changes at hydrologically relevant scales.

Data
Our ensemble of SWE observations consists of five long-term gridded 
datasets from the European Center for Medium-Range Weather Fore-
casting’s (ECMWF) ERA5-Land reanalysis45; the Japan Meteorological 
Agency’s JRA-55 reanalysis46; NASA’s MERRA-2 reanalysis47; the European 
Space Agency’s Snow-CCI, Version 2.048; and TerraClimate49. Products 
with a submonthly temporal resolution are averaged across all avail-
able March values. We focus on March because it is climatologically the 
month of maximum snow mass in the Northern Hemisphere20 and there 
is an extensive collection of in situ measurements taken during March 
against which we can benchmark our results. Because the satellite 
remote-sensing-based Snow-CCI product is masked over mountainous 
terrain, we follow the approach of ref. 20 and fill SWE values in moun-
tainous cells with the mean value from the other four data sources. For 
non-mountainous grid cells, we use the unaltered Snow-CCI data. In 
addition, we use in situ SWE data from the Snowpack Telemetry Network 
(SNOTEL) network in the western USA50; the Canadian historical Snow 
Water Equivalent dataset (CanSWE)51; and the Northern Hemisphere 
Snow Water Equivalent (NH-SWE) dataset, a hemispheric dataset that 
converts far more abundant snow depth observations to SWE using a 
well validated model52. Only in situ observations with records for at 
least 35 years between 1981 and 2020 are retained, resulting in a set of 
550 from SNOTEL, 341 from CanSWE and 2,119 from NH-SWE.

Gridded precipitation data come from the ECMWF’s ERA5 reanalysis53; 
the Global Precipitation Climatology Centre (GPCC)54; MERRA-247; Multi- 
Source Weighted-Ensemble Precipitation (MSWEP), Version 255; and 
TerraClimate49. Gridded temperature data come from Berkeley Earth 
(BEST)56; NOAA’s Climate Prediction Center (CPC) Global Unified  
Temperature57; ERA553; and MERRA-247. Daily gridded runoff data come 
from the ECMWF’s Global Flood Awareness System (GloFAS)58. Details 
of all datasets used in the analysis are given in Extended Data Table 1.

For the climate-model-based attribution and observation-based 
reconstructions, we regrid all data to 2° × 2° and 0.5° × 0.5° horizontal 
resolution, respectively, using conservative regridding. For all data 
except runoff, grid cells where March SWE is zero in more than half of 
all product years are masked out, as is Greenland.

We also use climate model output from 12 models that archived 
monthly SWE (‘snw’) data from the pre-industrial control (PIC), histori-
cal (HIST), historical-nat (HIST-NAT) and SSP2-4.5 CMIP6 experiments, 
as well as monthly air temperature (‘tas’) and precipitation (‘pr’) data 
from the HIST, HIST-NAT and SSP2-4.5 experiments27,28. All model out-
put are regridded and masked as with the gridded observational data. 
Consistent with the Detection and Attribution Model Intercomparison 
Project (DAMIP) protocol, the HIST simulations, which end in 2014, 
are extended to 2020 using the SSP2-4.5 scenario59. For simplicity,  
‘historical’ (HIST) will always refer to these extended time series. Model 
details are given in Extended Data Table 2.

To provide estimates of hydrologic quantities at decision-meaningful 
scales, we aggregate from the gridded to the river-basin scale using 
basin extents from the Global Runoff Data Center’s Major River Basins of 
the World database44. All empirically estimated grid-cell values of SWE, 
precipitation and runoff (in mm, or equivalently kg m−2) are multiplied 

by the grid cell area (in m2) before summing all grid cells within a basin 
to calculate basin-scale mass (in kg). Basin- and hemisphere-average 
temperatures are given by the area-weighted mean temperature of all 
snow-covered grid cells.

All estimates of basin population are calculated using the 2020 values 
from the 15 arcmin Gridded Population of the World, Version 4 (GPWv4) 
dataset from NASA’s Socioeconomic Data and Applications Center60.

Attributing SWE trends to anthropogenic forcing
Our hemispheric attribution approach tests whether the similarity 
between observed and climate-model-simulated forced SWE trends 
exceeds what could be possible from natural climate variability alone26–29. 
To evaluate the null hypothesis that the pattern of SWE trends in the 
HIST simulations could be the result of natural variability alone, we 
calculate the spatial pattern of trends in March SWE from 1981 to 2020 
in each model’s HIST simulation and for every unique 40-year period 
from those same models’ unforced PIC simulations (for example, for a 
500-year PIC simulation, we generate 461 maps of 40-year trends). All 
trends are calculated using the Theil–Sen estimator, a non-parametric 
technique for estimating a linear trend that is more robust to data that 
is skewed or contains outliers than trends calculated using ordinary 
least squares regression. Then, we calculate the Spearman (rank) cor-
relation coefficient between the spatial maps of HIST and PIC trends to 
quantify the pattern similarity. The resulting empirical distribution of 
78,601 correlations (background histogram on Fig. 2) represents the 
likelihood that the pattern in the forced historical simulations could 
have arisen from natural variability alone.

We quantify the similarity between the observed pattern of SWE 
trends and the model-estimated response to forcing by taking the 
Spearman spatial correlation between the map of trends from each 
observational product and the multimodel mean map from the HIST 
simulations (red symbols in Fig. 2e). For this analysis, the in situ observa-
tions are aggregated to the same 2° × 2° grid as the gridded observations 
and climate models by taking the mean trend of all stations within each 
grid cell (Fig. 2a). If the correlations between the observations and HIST 
simulations are greater than almost all of the correlations between the 
HIST and PIC simulations, we can reject the null hypothesis that the 
observed historical pattern could have arisen from natural variability 
alone and claim that a response to historical forcing is present in the 
observed pattern. Furthermore, if we cannot reject the null hypothesis 
using the correlations between the observations and HIST-NAT simula-
tions with only solar and volcanic forcing, then it is unlikely that the 
observed pattern is the result of natural radiative forcing. Combined,  
these two lines of evidence strongly indicate that anthropogenic  
forcing is causing the observed patterns of SWE trends.

Observation-based snow reconstructions
As another means of attributing historical SWE change, and to better 
understand its patterns and drivers at scales more commensurate 
with the impacts of snow loss, we generate a large observation-based 
ensemble of historical March SWE with and without the effects of 
anthropogenic forcing. We do so by using the common random forest 
machine-learning algorithm, which fits randomized regression trees 
on bootstrapped samples of the data and averages their predictions 
together. The decision tree framework is particularly well suited to 
pick up nonlinear interactions, such as that between temperature and 
precipitation in the context of snow, as well as correlated predictors. 
The random forest algorithm has been applied to reconstruct a wide 
variety of biogeophysical variables that are shaped by temperature, 
precipitation and their interaction, including historical runoff61, crop 
yields62 and climate-induced species range shifts63. In each instance, 
the random forest model was found to significantly outperform both 
other machine-learning algorithms and more traditional approaches 
such as linear regression. In addition, for this particular application 
of reconstructing historical snowpack, the model imposes no prior 
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assumptions about temperature thresholds for rain–snow partitioning 
or snowmelt, which can vary substantially in space and are themselves a 
contributor to uncertainty in modelled estimates of SWE42,64. We model 
March SWE as a function of average monthly temperature and cumu-
lative monthly precipitation from the previous November to March:

(1)f T P T P T P T P T PSWE = ( , , , , , , , , , )y i y i y i y i y i y i y i y i y i y i y i, ,11, ,11, ,12, ,12, ,1, ,1, ,2, ,2, ,3, ,3,

where SWEy,i is average March SWE in water year (October–September) 
y at grid cell i, f is the random forest model, Ty,m,i is the average tem-
perature in month m of water year y and grid cell i, and Py,m,i is the total 
precipitation in month m of water year y and grid cell i. We fit the model 
using the full spatiotemporal panel of 0.5° × 0.5° gridded data (that 
is, all grid-cell years from 1981 to 2020), then aggregate the predicted 
gridded values to the river-basin scale. We find that training a single 
model on the full panel of data offers two main advantages over training 
multiple models on more local data (for example, a model for each river 
basin). First is that the out-of-sample prediction skill of the full panel 
model is significantly higher in many highly populated mid-latitude 
basins of the western USA, western Europe and High Mountain Asia; 
local models are more skilful in fewer than 20% of basins, concentrated 
in sparsely populated high-latitude basins where the skill of the full 
panel model is already high (Extended Data Fig. 3). Second, training 
a single model on data from the entire hemisphere provides greater 
statistical stability of projections made with large perturbations to 
the input variables, such as adding an end-of-century climate change 
signal (Extended Data Fig. 8), which could exceed the support of local 
historical observations as records fall at an increasing rate65,66.

To adequately sample and quantify the observational uncertainty 
in snowpack, temperature and precipitation and create a sufficiently 
wide ensemble of possible SWE values, we repeat this procedure for 
all combinations of 6 SWE (5 gridded + in situ), 4 temperature and 5 
precipitation datasets (Extended Data Table 1), providing 120 (6 × 4 × 5) 
estimates of basin-scale March SWE from 1981 to 2020. Our ensemble 
approach is motivated by two main considerations. First, it is difficult to 
determine what represents ‘true’ snowpack at hydrologically relevant 
scales. All methods of estimating spatially distributed snowpack (for 
example, remote sensing or reanalysis) have their intrinsic limitations 
that result in high levels of disagreement on snow mass, its variability 
and long-term trends5,6, as we show in Fig. 1. In situ measurements may 
represent truth at the locations at which they are collected, but are 
difficult to generalize, especially in complex terrain. As a result, using 
these point observations to adjudicate which gridded products (whose 
values represent averages over tens to tens of thousands of kilometres) 
lie closest to ‘truth’ is challenging. Given the inability to know the true 
state of snowpack or rigorously rule out any of its various gridded esti-
mates, we choose to consider these observational products as equally 
valid estimates of truth in which we can attempt to identify shared 
responses. Second, the ensemble approach allows us to capture the 
structural uncertainty in how SWE responds to changes in temperature 
and precipitation, which are themselves subject to data uncertainties 
(Supplementary Fig. 2). Using all dataset combinations, we can sample 
and characterize uncertainty in SWE, temperature and precipitation 
and their covariance with one another. Such an approach has been 
used to estimate forced changes in components of the Earth system 
in which both the dependent and independent variables of interest are 
themselves uncertain32,67.

We compare the model-predicted time series generated through 
this process with the observational SWE product on which the model is 
trained, using the common R2 and RMSE metrics (Extended Data Fig. 4). 
In addition, as the emphasis of the analysis is on long-term trends in 
SWE, we compare the reconstructed trends with the observed trends 
over the study period and find that our models faithfully reproduce the 
spatial pattern and magnitude of the trends quite well, with correlations 
for all data products falling between 0.9 and 0.97 (Extended Data Fig. 3).  

Furthermore, the RMSE of the construction model predictions is com-
parable across the 10 coldest, 10 warmest and 20 ‘average’ years in the 
1981–2020 period, indicating that the reconstructions are stable even 
in extreme years (Supplementary Fig. 4).

As an additional test of model skill, we use the model trained on only 
the gridded observational products to predict fully out-of-sample 
March SWE at 2,961 in situ sites from the SNOTEL, CanSWE and NH-SWE 
datasets. Our reconstructions are able to capture the interannual vari-
ability in in situ SWE quite well, with a median R2 across stations of 
0.59 and an RMSE of around 22% (Extended Data Fig. 5). The recon-
struction model predictions are similarly able to capture skillfully the 
long-term SWE trends at the in situ sites, with a pattern correlation of 
0.72 (Extended Data Fig. 5). Finally and crucially, we confirm that there 
are no systematic trends in time of the bias of our reconstructions 
against the in situ observations (Supplementary Fig. 5), indicating that 
the reconstruction models are capturing the real-world rate of change 
of snowpack with high fidelity.

Counterfactual snowpack reconstructions
To identify where and how anthropogenic climate change has 
altered spring snowpack at impact-relevant scales, we combine our 
observation-based reconstructions, which are highly skilful at captur-
ing historical SWE trends at impact-relevant scales, with climate model 
simulations that allow us to estimate forced changes to temperature 
and precipitation. Such a data–model fusion approach has been used 
to attribute anthropogenically forced changes to a wide variety of sys-
tems, both physical (for example, soil moisture8,31, wildfire30 and lake 
water storage32) and socioeconomic (for example, crop indemnities33 
and climate damages34).

We calculate the temperature response to anthropogenic forcing as 
the difference between the 30-year rolling mean average temperature 
for each month in the HIST and HIST-NAT runs. For precipitation, we 
calculate the forced response as the percentage difference between 
30-year rolling mean monthly precipitation in HIST versus HIST-NAT. 
By differencing experiments from the same model, we hope to limit 
the influence of model biases in climatological temperature and 
precipitation, as each model is benchmarked to its own climatology. 
Systematic biases in the model-simulated trends (for example, too 
rapid warming or wetting), however, could potentially lead to over- or 
under-estimating the forced response. To address this possibility, we 
evaluate model biases in the 1981–2020 trends in winter temperature 
and precipitation against observed trends by taking the difference 
between the CMIP6 HIST ensemble mean and the mean of the observa-
tional products for each quantity (Extended Data Fig. 6). To test whether 
the observed and modelled trends are consistent, we ask whether the 
observed trend falls within a plausible range of forcing plus internal 
variability, given as the 2.5–97.5th percentile range of the CMIP6 HIST 
trends. Only 1% (3%) of grid cells fall outside this range for temperature 
(precipitation), indicating that the climate models capture realistic 
historical climate trends.

Having estimated anthropogenically forced changes in gridded 
temperature and precipitation, we create counterfactual time series 
of temperature and precipitation by downscaling the output to the 
0.5° × 0.5° resolution of the observational ensemble using conserva-
tive regridding and removing the forced response from each model 
realization from each gridded temperature and precipitation dataset. 
Temperature is adjusted by subtracting the forced change from the 
observations and precipitation is adjusted by the forced percentage 
change. Then, we use the reconstruction models trained on historical 
data (equation (1)) to predict March SWE using the counterfactual 
temperature and precipitation data, giving an estimate of what SWE 
would have been absent human-caused climate change. In addition, we 
isolate the effects of forced changes to temperature and precipitation 
individually by removing the forced response of only one or the other 
quantity from the observations, while leaving the other at its observed 



historical values. These gridded counterfactual reconstructions are 
then similarly aggregated to the basin scale and linear trends in SWE 
for these counterfactual scenarios are calculated using the Theil–Sen 
estimator. The effect of forced changes to temperature and precipita-
tion individually (Fig. 3c,d) and in combination (Fig. 3e) is calculated 
as the difference between each historical trend and the counterfactual 
trends based on the same SWE–temperature–precipitation dataset 
combination. For each of the 120 reconstruction ensemble members, 
we have 101 estimates of the anthropogenic effect (one from each cli-
mate model realization; Extended Data Table 2), for a total of 12,120 
estimates for each basin. Using only the first realization from each 
climate model, rather than all available runs, produces nearly identical 
results (Supplementary Fig. 6).

To further test the validity of this approach of using forced changes 
in temperature and precipitation to estimate counterfactual SWE, 
we repeat this protocol using exclusively climate model output in a 
‘perfect model’ framework. For each model, we fit the empirical model 
described in equation (1) using SWE, temperature and precipitation 
data from the CMIP6 HIST simulations over the 1981–2020 period, 
rather than observations. Then, we use the random forest trained on 
these HIST data to predict counterfactual SWE using temperature and 
precipitation from the HIST-NAT simulations. Finally, we compare the 
forced (HIST minus HIST-NAT) trends calculated from the reconstruc-
tion approach to the ‘true’ forced trends calculated by using the direct 
SWE output from the HIST and HIST-NAT climate model experiments 
(Extended Data Fig. 9 and Supplementary Fig. 7). The strong similar-
ity in the patterns of the ‘true’ and reconstructed forced responses 
indicates that using observations with forced changes in temperature 
and precipitation removed produces reasonable estimates of a forced 
SWE change.

Uncertainty quantification
The methods detailed above yield 12,120 estimates of the effect of 
climate change on March snowpack trends in each of 169 major river 
basins. Contributing to the spread of these estimates are four main 
sources of uncertainty: (1) uncertainty in the SWE data products on 
which the reconstructions are based; (2) uncertainty in the tempera-
ture and precipitation data products and their relationship with SWE;  
(3) differences in the forced response of temperature and precipi-
tation due to structural differences between climate models; and  
(4) uncertainty due to internal climate variability in temperature and 
precipitation.

To quantify the magnitude of uncertainty introduced by each source, 
we calculate the standard deviation of forced SWE trends across a single 
dimension, holding all others at their mean. For instance, the uncer-
tainty due to differences in model structure is given by the standard 
deviation of forced SWE trends across the 12 climate models (consid-
ering only the first realization from each), taking the mean across all 
SWE–temperature–precipitation dataset combinations.

To isolate the uncertainty from internal variability in temperature 
and precipitation, we use 50 pairs of HIST and HIST-NAT simulations 
from the MIROC6 model68, which differ in only their initial conditions. 
We take the standard deviation of forced SWE trends for all 50 realiza-
tions, taking the mean across all SWE, temperature and precipitation 
data product combinations.

Consistent with previous work in uncertainty partitioning19,41,69, we 
consider total uncertainty U in the forced SWE trend in basin b to be 
the sum of all four sources:

U S M I= + TP + + (2)b b b b b

where S is the uncertainty from SWE observations, TP is the uncertainty 
from temperature and precipitation observations, M is the uncertainty 
from model structure, and I is the uncertainty from internal variabil-
ity. To assess which sources are the largest contributor to uncertainty 

in each basin, we consider the fractional uncertainty of each (for 
example, Sb/Ub gives the proportion of uncertainty in basin b attribu-
tion to SWE observational uncertainty). This fractional uncertainty 
is reported in Supplementary Fig. 12. For each source, we hatch out 
basins where the magnitude of uncertainty is insufficient to change 
the sign of the ensemble mean estimate of the forced SWE trend  
(that is, the signal-to-noise ratio is >1).

Temperature sensitivity of snowpack
To better understand the drivers of the heterogeneous spatial response 
of SWE and its potential future changes with further warming, we eval-
uate the temperature sensitivity of March SWE across a gradient of 
climatological winter temperatures in in situ observations, gridded 
observations, our basin-scale reconstructions and climate models. The 
marginal effect of an additional degree of warming, ∂SWE/∂T or β1, is 
calculated as the regression coefficient of March SWE on cold-season 
(November–March) temperature:

β β TSWE = + (3)y i i i y i, 0, 1, ,

where SWEy,i is March SWE in unit i (in situ station, grid cell or river 
basin) in water year y and Ty,i is average cold-season temperature in 
that same unit. We run this regression at each in situ location, for all 
20 combinations of gridded SWE and temperature products, for all 12 
climate models (using the HIST simulations), and for all 120 basin-scale 
reconstructions. We then calculate the average and standard deviation 
of all of the coefficients for a given type of data (in situ, gridded obser-
vations, climate models and basin-scale reconstructions) in a rolling 
5° temperature window to produce the curves in Fig. 4a. As such, the 
uncertainty estimate includes both parametric and data uncertainty.

Snowpack-driven runoff changes
To evaluate the differential water security implications of the 
human-caused snowpack declines, we quantify the spring (April–July) 
runoff change due to forced March SWE changes. We once again use 
the random forest algorithm, modelling April–July run-off as a func-
tion of March SWE and monthly temperature and precipitation from 
the previous November to July:

Q f T P T P T P= (SWE , , , , , …, , ) (4)y b y b y b y b y b y b y b y b, , ,11, ,11, ,12, ,12, ,7, ,7,

where Qy,b is April–July total runoff in water year (October–September)  
y in basin b, SWEy,b is average March SWE in water year y in basin  
b—unlike the SWE reconstructions, which were fit at the grid-cell level 
and aggregated to the basin scale, the runoff model is fit using basin- 
scale data—Ty,m,b is the area-weighted basin-average temperature in 
month m of water year y, and Py,m,b is the total basin-scale precipita-
tion in month m of water year y. We fit this model using all 120 SWE– 
temperature–precipitation dataset combinations and the GloFAS 
runoff data (Extended Data Table 1). We evaluate model skill using 
the same methods as those used to validate our SWE reconstructions 
(Extended Data Fig. 10).

Analogous to the basin-scale March SWE attribution described above, 
the spring runoff change due to forced changes to snowpack is given 
by the difference between runoff estimated with historical SWE and 
runoff estimated with the effects of forced temperature and precipita-
tion changes on SWE removed.

Future snowpack and runoff changes
To better understand the differential water-availability implications of 
future warming-driven SWE changes, we combine our statistical models 
and projections of future temperature and precipitation change to 
produce estimates of end-of-century (2070–2099) snowpack under 
the SSP2-4.5 forcing scenario. Specifically, we use a ‘delta’ method 
in which we adjust the observed climatology for each month by the 
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difference between the end-of-century and historical (1981–2020) 
climate from the climate models. We additively adjust temperature 
and adjust precipitation by the percentage change between histori-
cal and future climate. We then make predictions of future climato-
logical snowpack using the adjusted data and the model described in  
equation (1) trained on historical data.

Future runoff changes due to changes in SWE are calculated using 
equation (4), but substituting estimates of future SWE climatology for 
the historical, while keeping temperature and precipitation at their 
observed historical climatological values.

Snow dominance
To identify a priori the river basins considered to be snow dominant in 
Fig. 1, we use the ratio R of water year (October–September) cumula-
tive snowfall to runoff1, calculated from ERA5-Land45. Basins where the 
average R is greater than 0.5 are considered to be snowmelt dominant.

Data availability
All data that support this study are publicly available at the following 
locations: CMIP6 model outputs, https://esgf-node.llnl.gov/; SNOTEL, 
https://wcc.sc.egov.usda.gov/nwcc/tabget; CanSWE, https://zenodo.
org/records/5889352; NH-SWE, https://zenodo.org/records/7565252; 
Snow-CCI, https://climate.esa.int/en/projects/snow/Snow_data/; ERA5, 
ERA5-Land and GloFAS, https://cds.climate.copernicus.eu/. JRA-55, 
https://rda.ucar.edu/datasets/ds628.0/; MERRA-2, https://gmao.gsfc.
nasa.gov/reanalysis/MERRA-2/; TerraClimate, https://www.climatolo-
gylab.org/terraclimate.html; GPCC, https://psl.noaa.gov/data/grid-
ded/data.gpcc.html; MSWEPv280, http://www.gloh2o.org/mswep/; 
Berkeley Earth, https://berkeleyearth.org/data/; Climate Prediction 
Center (CPC), https://www.cpc.ncep.noaa.gov/; Gridded Population of 
the World (GPW), https://sedac.ciesin.columbia.edu/data/collection/
gpw-v4; Global Runoff Data Center Major River Basins, https://www.
bafg.de/GRDC/. Source data are provided with this paper.

Code availability
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Extended Data Fig. 1 | Heterogenous long-term trends in observed March 
SWE make claims about snow responses to warming a challenge. a-e, Trend 
in March SWE from 1981 to 2020 from individual gridded SWE data products.  

f, Average trend across all 5 products. Grid cells where fewer than 4 products 
agree on the sign of the trend are hatched. Maps were generated using cartopy 
v0.18.0.
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Extended Data Fig. 2 | Historical trends in March SWE from CMIP6 models 
exhibit uncertainty outside of the Western United States, Europe, and 
Northern Eurasia. a-k, Trend in March SWE from 1981 to 2020 from historical 
climate model simulations. Details of models can be found in Extended Data 

Table 2. l, Ensemble mean trend. Grid cells where fewer than 80% of models 
agree on the sign of the trend are hatched. Maps were generated using cartopy 
v0.18.0.



Extended Data Fig. 3 | Ensemble reconstructions based on the Random 
Forest model skillfully reproduce the pattern and magnitude of long- 
term SWE trends in each snow product. Observed (a-f) and reconstructed 
(g-l) 1981–2020 March SWE trends for 5 gridded SWE data products and their 
mean. m-r, Scatterplot of reconstructed versus observed trends, where each 

dot represents a river basin. Dashed line denotes perfect reconstruction. 
Pearson’s correlation is shown in bottom right corner. Maps were generated 
using cartopy v0.18.0. River basin boundaries come from the Global Runoff 
Data Centre’s Major River Basins of the World database44.
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Extended Data Fig. 4 | The Random Forest model exhibits high snowpack 
reconstruction skill based on temperature and precipitation data. 
Basin-scale R2 (a-e) and root-mean-square error (RMSE; f-j) for 5 gridded SWE 
data products over the period 1981–2020. Each metric shows the skill of the 
mean of all reconstructions for a single SWE product versus the observed 

values from that product. Insets show the distribution of skill across basins, 
with the red line and value indicating the median. Maps were generated using 
cartopy v0.18.0. River basin boundaries come from the Global Runoff Data 
Centre’s Major River Basins of the World database44.



Extended Data Fig. 5 | The ensemble reconstruction based on the Random 
Forest model skillfully predicts the variability and trends in out-of-sample 
in situ snowpack data. R2 (a) and RMSE (b) of Random Forest model predictions 
of in situ March SWE at 2,961 locations over the period 1981–2020. Insets show 
the distribution of skill across sites, with the red line and value indicating the 
median. Observed (c) and reconstructed (d) 1981–2020 March SWE trends.  

c, Scatterplot of reconstructed versus observed trends, where each dot 
represents an in situ location. Points are colored by their density. Dashed  
line denotes perfect agreement between reconstructed and observed trends. 
Pearson’s correlation is shown in bottom right corner. Maps were generated 
using cartopy v0.18.0.
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Extended Data Fig. 6 | CMIP6 model bias in winter temperature and 
precipitation trends largely within range of natural variability. Observed 
trends in November-March average temperature (a) and total precipitation (d) 
from 1981 to 2020. b, e. Ensemble mean of historical CMIP6 simulations.  

c, f. Average bias in trends across all observation-model combinations. Hatching 
indicates regions where the observed trend falls outside the 2.5–97.5th 
percentile range of the CMIP6 trends. Maps were generated using cartopy 
v0.18.0.



Extended Data Fig. 7 | Uncertainty in the attribution of human-caused 
snowpack trends resides with climate model structure and modeled 
internal variability, not observations. a, Dominant source of uncertainty  
in reconstruction-based estimates of forced March SWE trends from 1981 to 
2020. b-e, Percentage of total uncertainty in forced SWE trends attributable  
to (b) observational uncertainty in gridded SWE products, (c) observational 
uncertainty in temperature and precipitation data products, (d) uncertainty in 

the forced response of temperature and precipitation across different climate 
models, and (e) uncertainty in the forced response of temperature and 
precipitation arising from internal variability (Methods). Hatching indicates 
basins where the uncertainty attributable to a given source is insufficient to 
change the sign of the ensemble mean estimate of the forced SWE trend. Maps 
were generated using cartopy v0.18.0. River basin boundaries come from the 
Global Runoff Data Centre’s Major River Basins of the World database44.
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Extended Data Fig. 8 | Historical associations among climate, snowpack, 
and snow-driven runoff portend accelerating changes to snow hydrology. 
Column 1: Historical change in November-March average temperature (a), total 
precipitation (c), March average SWE (e), and snowpack-driven April-July runoff 
(g) over the period 1981–2020. Values represent averages across all data products 
and hatching indicated basins where fewer than 80% of products agree on the 
sign of the change. Column 2: 2070–2099 changes under the SSP2-4.5 forcing 

scenario relative 1981–2020. Temperature (b) and precipitation (d) are 
calculated as the difference within each model realization between the 
end-of-century and climatological periods and future SWE (f) and runoff (h) 
changes are calculated according to Equations 1 and 2, respectively. Maps were 
generated using cartopy v0.18.0. River basin boundaries come from the Global 
Runoff Data Centre’s Major River Basins of the World database44.



Extended Data Fig. 9 | The Random Forest snowpack reconstruction 
methodology exhibits high skill based on a perfect model framework. 
CMIP6 ensemble mean forced (HIST minus HIST-NAT) trends in March SWE 
from 1981–2020 based on (a) climate model SWE output and (b) SWE estimated 
using climate model temperature and precipitation and Random Forest model. 

c, Scatterplot of reconstructed versus original trends, where each dot represents 
a grid cell. Points are colored by their density. Dashed line denotes perfect 
agreement between reconstructed and original trends. Spatial correlation is 
shown in the bottom right corner.
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Extended Data Fig. 10 | The Random Forest model is extended to predict 
runoff from snowmelt skillfully. R2 (a) and RMSE (b) of Random Forest model 
predictions of April-July basin-scale runoff from 1981 to 2020. Insets show  
the distribution of skill across sites, with the red line and value indicating the 
median. Observed (c) and reconstructed ensemble mean (d) 1981–2020 
April-July runoff trends. e, Scatterplot of reconstructed versus observed 

trends, where each dot represents a basin. Dashed line denotes perfect 
agreement between reconstructed and observed trends. Spatial correlation is 
shown in center left. Maps were generated using cartopy v0.18.0. River basin 
boundaries come from the Global Runoff Data Centre’s Major River Basins of 
the World database44.



Extended Data Table 1 | Summary of observational data products used in the analysis
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Extended Data Table 2 | Summary of CMIP6 models used in the analysis

Monthly snow water equivalent “snw” is used from the “piControl”, “historical” (1850–2015), “historical-nat” (1850–2020) and “ssp245” (2015–2100) experiments. Monthly air temperature (“tas”) 
and precipitation (“pr”) is used from the “historical”, “historical-nat”, and “ssp245” experiments. *No monthly snow water equivalent from the pre-industrial control run archived.
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