Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for chiral supercurrent in quantum Hall Josephson junctions


Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation1,2,3. However, despite recent experimental progress towards this hybridization4,5,6,7,8,9,10,11,12,13,14,15, concrete evidence for a chiral QH Josephson junction16—the elemental building block for coherent superconducting QH circuits—is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2ϕ0 magnetic flux periodicity16,17,18,19 (ϕ0 = h/2e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h/2e2 ≈ 12.9 kΩ. We observe reproducible 2ϕ0-periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface19,20,21,22. Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes23,24,25,26,27,28,29,30,31,32.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Josephson effect through QH edge channels.
Fig. 2: The 2ϕ0-periodic chiral supercurrent oscillations.
Fig. 3: Edge-state wavefunction shrinkage.
Fig. 4: Aharonov–Bohm interferometry with CAES.

Data availability

All data described here are available at Zenodo49.


  1. Stern, A. & Lindner, N. H. Topological quantum computation–from basic concepts to first experiments. Science 339, 1179–1184 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Alicea, J. & Stern, A. Designer non-Abelian anyon platforms: from Majorana to Fibonacci. Phys. Scr. 2015, 014006 (2015).

    Article  Google Scholar 

  3. Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Rickhaus, P., Weiss, M., Marot, L. & Schonenberger, C. Quantum Hall effect in graphene with superconducting electrodes. Nano Lett. 12, 1942–1945 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Komatsu, K., Li, C., Autier-Laurent, S., Bouchiat, H. & Guéron, S. Superconducting proximity effect in long superconductor/graphene/superconductor junctions: from specular Andreev reflection at zero field to the quantum Hall regime. Phys. Rev. B 86, 115412 (2012).

    Article  ADS  Google Scholar 

  6. Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article  Google Scholar 

  7. Wan, Z. et al. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures. Nat. Commun. 6, 7426 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  9. Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).

    Article  CAS  Google Scholar 

  10. Park, G.-H., Kim, M., Watanabe, K., Taniguchi, T. & Lee, H.-J. Propagation of superconducting coherence via chiral quantum-Hall edge channels. Sci. Rep. 7, 1–9 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Seredinski, A. et al. Quantum Hall-based superconducting interference device. Sci. Adv. 5, eaaw8693 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, L. et al. Interference of chiral Andreev edge states. Nat. Phys. 16, 862–867 (2020).

    Article  CAS  Google Scholar 

  13. Wang, D. et al. Andreev reflections in NbN/graphene junctions under large magnetic fields. Nano Lett. 21, 8229–8235 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Gül, Ö. et al. Andreev reflection in the fractional quantum Hall state. Phys. Rev. X 12, 021057 (2022).

    Google Scholar 

  15. Zhao, L. et al. Loss and decoherence at the quantum Hall-superconductor interface. Phys. Rev. Lett. 131, 176604 (2023).

  16. Ma, M. & Zyuzin, A. Y. Josephson effect in the quantum Hall regime. Europhys. Lett. 21, 941–945 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Stone, M. & Lin, Y. Josephson currents in quantum Hall devices. Phys. Rev. B 83, 224501 (2011).

    Article  ADS  Google Scholar 

  18. Van Ostaay, J. A. M., Akhmerov, A. R. & Beenakker, C. W. J. Spin-triplet supercurrent carried by quantum Hall edge states through a Josephson junction. Phys. Rev. B 83, 195441 (2011).

    Article  ADS  Google Scholar 

  19. Alavirad, Y., Lee, J., Lin, Z.-X. & Sau, J. D. Chiral supercurrent through a quantum Hall weak link. Phys. Rev. B 98, 214504 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Manesco, A. L. R., Flór, I. M., Liu, C.-X. & Akhmerov, A. R. Mechanisms of Andreev reflection in quantum Hall graphene. SciPost Phys. Core 5, 045 (2022).

    Article  Google Scholar 

  21. Kurilovich, V. D., Raines, Z. M. & Glazman, L. I. Disorder-enabled Andreev reflection of a quantum Hall edge. Nat. Commun. 14, 2237 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, Y., Knapp, C. & Alicea, J. Vortex-enabled Andreev processes in quantum Hall–superconductor hybrids. Phys. Rev. B 106, 245411 (2022).

    Article  ADS  CAS  Google Scholar 

  23. Qi, X. L., Hughes, T. L. & Zhang, S. C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 82, 184516 (2010).

    Article  ADS  Google Scholar 

  24. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2012).

    Article  ADS  Google Scholar 

  25. Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-Abelian statistics on the edges of Abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).

    Google Scholar 

  26. Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013).

    Article  ADS  Google Scholar 

  27. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems. Nat. Phys. 10, 877–882 (2014).

    Article  CAS  Google Scholar 

  28. Mong, R. S. K. et al. Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).

    Google Scholar 

  29. San-Jose, P., Lado, J. L., Aguado, R., Guinea, F. & Fernández-Rossier, J. Majorana zero modes in graphene. Phys. Rev. X 5, 041042 (2015).

    Google Scholar 

  30. Finocchiaro, F., Guinea, F. & San-Jose, P. Topological π junctions from crossed Andreev reflection in the quantum Hall regime. Phys. Rev. Lett. 120, 116801 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Snizhko, K., Egger, R. & Gefen, Y. Measurement and control of a Coulomb-blockaded parafermion box. Phys. Rev. B 97, 081405 (2018).

    Article  ADS  CAS  Google Scholar 

  32. Nielsen, I. E., Flensberg, K., Egger, R. & Burrello, M. Readout of parafermionic states by transport measurements. Phys. Rev. Lett. 129, 037703 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Takagaki, Y. Transport properties of semiconductor-superconductor junctions in quantizing magnetic fields. Phys. Rev. B 57, 4009–4016 (1998).

    Article  ADS  CAS  Google Scholar 

  35. Hoppe, H., Zülicke, U. & Schön, G. Andreev reflection in strong magnetic fields. Phys. Rev. Lett. 84, 1804–1807 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Williams, J. R., Abanin, D. A., DiCarlo, L., Levitov, L. S. & Marcus, C. M. Quantum Hall conductance of two-terminal graphene devices. Phys. Rev. B 80, 045408 (2009).

    Article  ADS  Google Scholar 

  38. Coissard, A. et al. Absence of edge reconstruction for quantum Hall edge channels in graphene devices. Sci. Adv. 9, eadf7220 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Déprez, C. et al. A tunable Fabry–Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16, 555–562 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Ronen, Y. et al. Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. Nat. Nanotechnol. 16, 563–569 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Kurilovich, V. D. & Glazman, L. I. Criticality in the crossed Andreev reflection of a quantum Hall edge. Phys. Rev. X 13, 031027 (2023).

    CAS  Google Scholar 

  42. Chtchelkatchev, N. M. & Burmistrov, I. S. Conductance oscillations with magnetic field of a two-dimensional electron gas–superconductor junction. Phys. Rev. B 75, 214510 (2007).

    Article  ADS  Google Scholar 

  43. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  ADS  CAS  Google Scholar 

  44. Teyssandier, F. & Prêle, D. Commercially available capacitors at cryogenic temperatures. In Ninth International Workshop on Low Temperature Electronics - WOLTE9 (HAL, 2010).

  45. Zülicke, U., Hoppe, H. & Schön, G. Andreev reflection at superconductor-semiconductor interfaces in high magnetic fields. Physica B Condens. Matter 298, 453–456 (2001).

    Article  ADS  Google Scholar 

  46. Kim, H., Gay, F., Del Maestro, A., Sacépé, B. & Rogachev, A. Pair-breaking quantum phase transition in superconducting nanowires. Nat. Phys. 14, 912–917 (2018).

    Article  CAS  Google Scholar 

  47. Mazin, I. I., Golubov, A. A. & Zaikin, A. D. “Chain scenario” for Josephson tunneling with π shift in YBa2Cu3O7. Phys. Rev. Lett. 75, 2574–2577 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry-Pérot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article  ADS  Google Scholar 

  49. Vignaud, H. et al. Evidence for chiral supercurrent in quantum Hall Josephson junctions. Zenodo (2023).

Download references


We thank D. Basko, C. Beenakker, M. Feigelman, L. Glazman, M. Houzet, V. Kurilovich, J. Meyer, Y. Nazarov, K. Snizhko and A. Stern for valuable discussions. We thank F. Blondelle for technical support on the experimental apparatus, and P. David for the MoGe deposition. The samples were prepared at the Nanofab facility of the Néel Institute. This work has received funding from the Horizon 2020 research and innovation programme of the European Union under the ERC grant SUPERGRAPH no. 866365. This study is also supported by a French government grant managed by the ANR agency under the France 2030 plan, with reference to ANR-22-PETQ-0003. B.S., H.S. and W.Y. acknowledge support from the QuantERA II Program that has received funding from the Horizon 2020 research and innovation program of the European Union under grant agreement no. 101017733. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos 20H00354, 21H05233 and 23H02052) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations



H.V. and D.P. fabricated the samples. H.V. and D.P. performed the measurements. H.V., D.P., H.S. and B.S. analysed the data. K.W. and T.T. supplied the hBN crystals. E.W. and F.G. provided technical support for the experiment. W.Y., B.K., H.C. and Z.H. contributed to the discussions. B.S. conceived the project and wrote the paper with inputs from all the authors.

Corresponding author

Correspondence to Benjamin Sacépé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gil-Ho Lee, Enrico Rossi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 hBN-encapsulated graphene nanoribbon samples.

a, Schematic describing the uncertainty in the junction width δW (red lines) and length δL (vertical black dashed lines in the zoom). Horizontal black dashed lines indicate the uncertainty in the graphene width δWAFM from AFM imaging. Blue rectangles represent MoGe electrodes correctly aligned, dashed blue lines indicate the MoGe electrode position with a misalignment (δx, δy), which results in an uncertainty δWal on the graphene edges position. b, AFM picture for sample HV88, the encapsulated graphene is readily visible with contrast enhancement. c, Zoom on the graphene narrow part in (b), with the lithography pattern overlayed (Ti/Au lines in orange and MoGe electrodes in blue). Red lines indicate the total width uncertainty ± δW/2 around the graphene edges. d, AFM picture of the graphene nanoribbon of sample DP24 before hBN encapsulation. Inset: higher resolution AFM picture. The arrows indicate the nanoribbon width of 125 nm. e, AFM picture of sample DP24 after hBN encapsulation. The yellow arrows indicate the nanoribbon position. The lithography pattern is overlayed on the picture. The scale bars are 5 μm (b), 400 nm (c), 2 μm (d), 500 nm (d) inset, 500 nm (e). f, AFM picture of sample DP24 contact fabrication. The scale bar is 1 μm. g, h, Height profiles along the blue and green lines in the AFM image in f. The excess thickness on the contact edge results from the liftoff process of the MoGe.

Extended Data Fig. 2 Shapiro steps of the chiral supercurrent.

I − V characteristics measured at 3.45 T on sample HV88-C, under microwave radiation of frequency f = 1 GHz. The I − V curves are extracted from the data of Fig. 1e at a microwave power of -13.8 dBm. The color-coded arrows indicate the current sweep direction.

Extended Data Fig. 3 Chequerboard patterns.

a–c, Differential resistance modulation with magnetic field and measured voltage showing a characteristic chequerboard pattern. d–f, Fourier transform amplitude at the chequerboard oscillation frequency as a function of the measured voltage. The orange curve is a fit to the data following the same procedure as in ref. 39. a,d, Junction DP24-D with fit parameters ETh = 640 μeV and x = 0. b,e, Junction HV88-C with fit parameters ETh = 240 μeV and x = 0.02. c,f, Junction HV88-F with fit parameters ETh = 140 μeV and x = 0.02.

Extended Data Fig. 4 Wide graphene Josephson junction.

ad, Top panels show differential resistance maps as a function of back-gate voltage and dc current bias of sample HV88-G (W = 2.3 μm, L = 107 nm). Bottom panels are linecuts of the differential resistance at dc current biases of 0 nA and 26 nA, which show the emergence of supercurrent pockets (zero resistance reached by the blue curve), and the corresponding resistive state (yellow curve). The magnetic field is indicated in each top panel. Supercurrent is visible only when the resistance is not quantized, that is, at filling factors of QH plateaus that are not developed, or in between plateaus. When a QH plateau emerges, as for instance the h/2e2 plateau for B ≥ 4 T or the h/6e2 plateau for B ≥ 6 T, the supercurrent vanishes. This weakness is even more marked in sample HV88-H shown in SI, which is twice longer. Note that the oscillatory behavior of the resistance (see red curve at 26 nA) is characteristic of QH devices in two-terminal configuration with LW, see ref. 37.

Extended Data Fig. 5 Coulomb blockade on the QH plateau edge.

a, Differential resistance as a function of back-gate voltage for different dc current biases at B = 14 T on sample DP24-D. At low current, Coulomb diamonds appear as high frequency and high amplitude oscillations visible at the transition to the ν = 1 plateau. 2ϕ0-quantum interference gives rise to oscillations with larger period and a very small amplitude on the plateau. The vertical dash line indicates the limit of Coulomb diamonds seen in (b). The horizontal dashed line indicates the resistance value of h/2e2. b, Differential conductance as a function of back-gate voltage and applied voltage across the junction. Measurements are performed in voltage bias configuration. The Coulomb diamonds disappearance coincides with the start of the chequerboard pattern of the Aharonov-Bohm interference. c, Schematics of the scattering process through a compressible island in the bulk49, with the back-gate voltage corresponding to the edge of the plateau, leading to the Coulomb diamonds in (b).

Extended Data Table 1 Device parameters

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignaud, H., Perconte, D., Yang, W. et al. Evidence for chiral supercurrent in quantum Hall Josephson junctions. Nature 624, 545–550 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing