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Imaging quantum oscillations and millitesla 
pseudomagnetic fields in graphene

Haibiao Zhou1,5, Nadav Auerbach1,5, Matan Uzan1,5, Yaozhang Zhou1, Nasrin Banu1, 
Weifeng Zhi1, Martin E. Huber2, Kenji Watanabe3, Takashi Taniguchi4, Yuri Myasoedov1, 
Binghai Yan1 & Eli Zeldov1 ✉

The exceptional control of the electronic energy bands in atomically thin quantum 
materials has led to the discovery of several emergent phenomena1. However, at 
present there is no versatile method for mapping the local band structure in advanced 
two-dimensional materials devices in which the active layer is commonly embedded 
in the insulating layers and metallic gates. Using a scanning superconducting 
quantum interference device, here we image the de Haas–van Alphen quantum 
oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, 
which shows several highly tunable bands2–4. By resolving thermodynamic quantum 
oscillations spanning more than 100 Landau levels in low magnetic fields, we 
reconstruct the band structure and its evolution with the displacement field with 
excellent precision and nanoscale spatial resolution. Moreover, by developing 
Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields 
and map their spatial dependence. In contrast to artificially induced large strain, 
which leads to pseudomagnetic fields of hundreds of tesla5–7, we detect naturally 
occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting 
by 1 millidegree, two orders of magnitude lower than the typical angle disorder in 
twisted bilayer graphene8–11. This ability to resolve the local band structure and strain 
at the nanoscale level enables the characterization and use of tunable band 
engineering in practical van der Waals devices.

Determining the band structure (BS) and the Fermi surface is a crucial 
step in understanding and using the electronic properties of materials.  
The most sensitive canonical method for mapping the BS of bulk 
metals and semiconductors is the measurement of the de Haas–van 
Alphen (dHvA) oscillations12. In this quantum mechanical effect, in 
the presence of magnetic field B, electrons coherently circulate in 
closed electronic orbits, giving rise to quantum oscillations (QOs) 
in the grand thermodynamic potential Ω and in the associated mag-
netization M = −∂Ω/∂B (ref. 12). In two-dimensional (2D) systems, these 
oscillations are described by the formation of Landau energy levels 
(LLs) with sharp peaks in the density of states (DOS). Charge carriers 
orbiting in the metallic LL states give rise to diamagnetic response, 
whereas ground-state currents flowing in the gapped edge states 
contribute to paramagnetic magnetization, resulting in magnetiza-
tion oscillations with either magnetic field or carrier density12. As the 
measured total magnetic moment scales with sample volume, obser-
vation of dHvA effect in 2D systems has been challenging13,14, in which 
non-thermodynamic Shubnikov–de Haas (SdH) oscillations are the 
benchmark characterization tool15.

The advances in the fabrication of van der Waals (vdW) atomic layer 
devices have provided an opportunity for a lot of electronic phases, 
including tunable correlated insulators16, orbital magnetism17–19, integer 

and fractional Chern insulators20–23 and unconventional superconduc-
tivity24,25. Using material selection, stacking order and twist angle, a 
wide variety of structures with different properties can be engineered. 
Their BS can be further manipulated through the transverse electric 
field, magnetic field, strain or pressure. The investigation of the BS in 
micron-sized vdW devices presently centres on detecting QOs by SdH 
effect15,26 and capacitance4,25. However, various types of disorder, such 
as charge inhomogeneity, twist-angle disorder and strain, are seen 
in these samples9,27,28, and the aforementioned methods lack spatial 
information. The various inhomogeneities also obscure the QOs in 
global measurements, requiring the application of elevated magnetic 
fields to overcome the spatial disorder. Although several scanning 
probe techniques, including scanning tunnelling microscopy29,30 and 
single-electron transistors22,31, are powerful probes of local electronic 
properties, the former requires the electron layers to be exposed to 
vacuum as in photoemission studies, and neither of them is suitable 
for devices encapsulated with a metallic top gate required for applying 
displacement fields. The development of a tool to measure the local BS 
in the diverse family of 2D quantum materials is thus highly desirable.

Strain emerges as a particularly intriguing, yet challenging, tunable 
parameter in vdW devices because of their high mechanical flexibility. 
In addition to changing the BS and breaking of crystal symmetries, 
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non-uniform strain creates pseudomagnetic fields (PMFs) because 
of the valley degree of freedom in hexagonal vdW materials32. PMFs of 
tens to hundreds of teslas have been observed in artificially strained 
graphene nanostructures6,7. These gauge fields create effective LLs 
with sharp peaks in DOS that strongly vary in space and alter the elec-
tronic transport properties5. Yet, PMFs stemming from the natural 
strain formed during the fabrication process have remained unknown.

Using scanning SQUID (superconducting quantum interference 
device)-on-tip (SOT) microscopy33, we imaged the dHvA effect in 
hBN-encapsulated dual-gated Bernal-stacked trilayer graphene (TLG) 
(Fig. 1a). The high magnetic sensitivity of the SOT enables imaging of 
the QOs at low fields resolving the multi-band electronic structure with 
sub-meV energy resolution and unperturbed by elevated magnetic 
fields. The quantitative information provided by the thermodynamic 
oscillations enables high-precision derivation of the tight-binding 
hopping parameters and accurate reconstruction of the tunable 
band hybridization induced by the displacement field. Moreover, the 
nanoscale spatial resolution enables a detailed quantitative study of 
the spatial variations of the QOs over the entire device, showing the 
presence of PMFs of millitesla magnitude in micron-sized domains.

BS of ABA graphene
The Bernal-stacked ABA TLG is the minimal graphene structure requir-
ing the full set of parameters in the Slonczewski–Weiss–McClure 
(SWMc) tight-binding model34 (Fig. 1e) with six hopping parameters 
γi (i = 0–5), on-site energy difference δ due to stacking, potential differ-
ence ∆1 between the adjacent graphene layers induced by the applied 

displacement field D and potential difference ∆2 that describes the 
non-uniform charge distribution between the middle and the outer 
layers. The influence of these parameters on the BS is shown in Extended 
Data Fig. 4.

Owing to the mirror symmetry of the crystal, the bands decompose 
into a monolayer-graphene (MLG)-like band with Dirac dispersion and 
a bilayer-graphene (BLG)-like quadratic band, with an energy shift 
between them (Fig. 1f, left). The D field breaks this symmetry, leading 
to band hybridization and Lifshitz transitions with multiple changes 
in the band topology. At high D, the Dirac band divides into three sec-
tions (Fig. 1f, right), with M1 and M3 sections separated from the BLG 
bands B1 and B2, whereas M2 merges with B1 and evolves into gapped 
mini-Dirac cones at the bottom of B1 (Fig. 1g). These cones (gullies) 
exhibit three-fold rotational symmetry leading to various possible 
quantum Hall ferromagnetic and nematic states35,36.

Previous studies have explored SdH and capacitance oscillations in 
TLG at elevated fields3,37,38 to determine the BS and identify broken- 
symmetry states4,39,40, yielding a wide span of derived SWMc parameters 
(Extended Data Table 1), with details of the BS still under debate. In 
particular, the size and polarity of the Dirac gap, Eg

0, at D = 0 (Fig. 1f, 
inset) is controversial40. Moreover, it was predicted that the trigonal 
warping induced by γ3 breaks the rotational symmetry with notable 
consequences on the LL structure, resulting in LL anticrossings, which 
occur between a given MLG LL and every third BLG LL36,41. Although 
some single anticrossings were reported40, the predicted periodicity 
has not been observed directly. Moreover, symmetry breaking leading 
to gully-polarized states has been reported in high magnetic fields4, 
but gully coherence at low fields remains an open question.
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Fig. 1 | Experimental setup and ABA graphene BS. a, Schematic sample 
structure with TLG encapsulated by hBN and top (TG) and bottom (BG) Pt gates, 
with scanning SOT. b, Scanning electron microscope image of the indium SOT. 
c, Optical image of the TLG device. d, The stacking geometry of the device with 
indicated Vtg and Vbg voltages applied to the top and bottom gates, respectively, 
for controlling the carrier density n and displacement field D. e, Atomic 
structure of ABA graphene with indicated SWMc parameters. f, The BS of ABA 

TLG for zero displacement field (Δ1 = 0 meV) and for Δ1 = 50 meV. Inset, a small 
Dirac gap E g

0 is present in the MLG band at Δ1 = 0 meV, which grows rapidly with Δ1.  
g, Three-dimensional rendering of the BS reconstructed from the dHvA 
oscillations with overlaid contours of the calculated LLs. The LLs are shown for 
Ba = 1 T for clarity. At our Ba = 320 mT, the LLs are three times denser. The colour 
map represents the wavefunction projection onto the MLG-like (red) and 
BLG-like (blue) bands. Scale bars, 200 nm (b) and 1 μm (c).
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Nanoscale magnetic imaging and results
The TLG was encapsulated by approximately 30 nm hBN with top and 
bottom Pt gates for controlling the carrier density n and displacement 
field D (Fig. 1 and Methods). Transport measurements of Rxx versus n 
and applied magnetic field Ba show a Landau fan with several LL cross-
ings (Extended Data Fig. 1), similar to those in previous reports40. Local 
dHvA oscillations measurements were performed using indium SOT 
of 150 nm diameter at a height of h ≈ 150 nm above the graphene at 
T ≈ 160 mK (Fig. 1b and Methods). A small a.c. voltage Vbg

ac at about 
1.8 kHz modulates n by nac, inducing a local a.c. magnetic field Bz

ac 
recorded by the scanning SOT. This Bz

ac reflects the differential change 
mz in the local orbital magnetization Mz, mz = ∂Mz/∂n.

Figure 2c shows dHvA oscillations acquired at Ba = 320 mT at a single 
point above the sample versus D and low carrier densities n between 
−1.2 × 1012 cm−2 and 2.3 × 1012 cm−2. A line cut of the data at D = 0 V nm−1 
is shown in Fig. 2a. Notably, in this relatively small n range, we observe 
more than 100 LLs, in sharp contrast to transport measurements 
(Extended Data Fig. 1), in which no SdH oscillations can be discerned 
at such low Ba. Moreover, we can resolve dHvA oscillations at fields as 
low as 40 mT (Extended Data Fig. 2). To our knowledge, this is the lowest 
Ba at which QOs have been observed in 2D systems. As shown in Fig. 1g, 
mapping these dense LLs offers a distinctive quantitative approach 
for high-precision BS reconstruction and derivation of high-accuracy 
SWMc parameters as summarized in Extended Data Table 1.

Figure 2b,d shows dHvA oscillations calculated from the fitted BS, 
showing remarkable qualitative and quantitative agreement with the 
experiment. Such accurate reconstruction is possible because the 
thermodynamic QOs can be calculated quantitatively from the BS 
(Methods). The observed QOs can be classified by five sets of LLs.

In the B1 and B2 bands, as the DOS in the BLG bands is much higher 
than in MLG bands, the LLs in B1 and B2 bands appear as dense hori-
zontal lines in Fig. 2c,d. At low fields, the LLs are four-fold valley and 
spin degenerate, dispersing as approximately n n B± ( − 1)B B a where 
nB is the BLG LL index. At Ba = 320 mT, the energy spacing between the 
B1 LLs is about 1 meV and 0.6 meV in B2, defining our energy resolution 
of better than 0.6 meV.

In the M1 band, the MLG LLs disperse as approximately ∣ ∣n B± M a  
and are much sparser because of the low DOS. Displacement field opens 
a large gap Eg between the MLG sections (Fig.  1f,g) resulting in 
parabolic-like upturn of M1 LLs with D in Fig. 2c,d. At LL crossings, B1 
LLs show a phase shift because an M1 LL has to be filled before sub
sequent B1 LLs can be occupied, with the shift magnitude determined 
by the LL degeneracy. The high M1 LLs are four-fold degenerate, causing 
a 2π phase shift as indicated by the dotted white line in Fig. 2c,e. Owing 
to the topological nature of the Dirac point, the zeroth MLG LLs are 
valley polarized with 0M1

−  LL (zeroth LL in K− valley) residing at the bot-
tom of the M1 band, whereas 0M2

+  LL (zeroth LL in K+ valley) is pinned to 
the top of the M2 band. As these two zeroth LLs are two-fold spin degen-
erate36,41, their crossing with the four-fold degenerate B1 LLs results in 
a π rather than a 2π shift (Fig. 2c,e, red dotted lines). Moreover, higher 
M1 LLs show a pronounced negative (dark) diamagnetic signal42. By 
contrast, the 0M1

−  and 0M2
+  LLs in Fig. 2c–e are invisible with their presence 

discerned by only B1 LLs phase shift. This arises from the Berry phase 
pinning of the zeroth LL compressible states to band extrema with  
zero kinetic energy and hence no diamagnetism. However, the incom
pressible states in the MLG LL gaps show a paramagnetic response42  
determined by the Chern number C as shown in Extended Data Fig. 2e.

In the M2 band, the band hybridization results in a small M2 hole 
pocket with the total DOS that is too low to accommodate even a single 
LL at elevated Ba. Consequently, the M2 LLs could not be identified 
previously4,37,40. Our low Ba and high sensitivity enable clear resolution 
of M2 LLs (Fig. 2c–e and Extended Data Fig. 2). Figure 2e also shows a 
gap E g

0 between the 0M1
−  and 0M2

+  LLs at D = 0, comparable to the gap 
between the two B1 LLs (about 1 meV). The zeroth LLs rapidly separate 

with D, indicating that Eg grows continuously without intermediate 
gap closure, contrary to previous suggestions4,40.

In the M3 band, at elevated hole doping, the M3 LLs mirror the behav-
iour of M1 LLs. At low doping, in contrast, the strong hybridization 
between M3 and B2 bands induces unusual valley polarization. This is 
demonstrated in Fig. 2f, in which the four-fold degenerate −1M3 LL splits 
into valley polarized −1M3

+  and −1M3
−  LLs, accompanied by multiple LL 

crossings and anticrossings (Extended Data Fig. 6). In particular, 
avoided crossings with every third BLG LL have been predicted36,41 
because of trigonal warping. This triple period, unidentified so far, to 
our knowledge, is resolved in our data (white bars in Fig. 2f) in agree-
ment with the calculations in Extended Data Fig. 6. We also resolve the 
0M3

−  LL with no diamagnetism, which induces a π shift in the B2 LLs 
(Fig. 2f, red dotted line).

In LLs in the gullies, near charge neutrality point (CNP), on increasing 
D, the enhanced band hybridization and trigonal warping results in 
three-fold rotationally symmetric Dirac gullies36,41 with highly intrigu-
ing LL evolution. The low-energy BLG LLs, which are mostly valley 
degenerate at D = 0, undergo valley polarization and intertwining, 
forming valley-polarized six-fold degenerate LLs in the gully pockets 
(Extended Data Fig. 3f). The zeroth gully LLs, 0G

−  and 0G
+, exhibit no dia-

magnetism and the ∆G
0 gap between them has C = 0. Consequently, a 

magnetism-free strip of width corresponding to 12-fold degeneracy 
(0G

−, 0G
+  and ∆G

0) is observed around the CNP in Fig. 2c,d,f at elevated D. 
The positive and negative (yellow and blue) signals outside the strip 
are the paramagnetic responses in the LL gaps ∆G

1  and ∆G
−1 (Fig. 2f and 

Extended Data Fig. 3e,f).
The marked consistency between the experimental data (Fig. 2c) and 

the single-particle BS calculations (Fig. 2d) across the entire (n, D) plane 
suggests that the electron–electron interactions play a negligible part 
in ABA graphene at low Ba and that the band parameters do not vary in 
our accessible parameter range. Our dHvA imaging technique is also 
applicable to moiré systems as demonstrated in Extended Data Fig. 9 
for twisted double bilayer graphene, showcasing intricate crossings 
between LLs in flat and dispersive bands, which can provide indispen-
sable information for the study of correlation effects.

LL interferometry and strain-induced PMF
Next, we analyse QOs over the full range of accessible carrier densities 
|n| ≲ 9 × 1012 cm−2, which enables resolving much finer details of the BS 
and its spatial dependence. Because at Ba = 320 mT in this n range there 
are about 500 BLG and more than 100 MLG LLs, we focus on the spar
ser MLG LLs by applying a larger V bg

ac  (Methods). Figure 3a–d shows  
the spatial dependence of B x y( , )z

ac  at several densities, whereas  
Fig. 3f presents B x( )z

ac  versus n along the dotted line in Fig. 3a. For 
|n| ≲ 3 × 1012 cm−2, shown in Fig. 2, the QOs exhibit relatively high spatial 
uniformity as shown in Fig. 3d and at the bottom of Fig. 3f, demonstrat-
ing high sample quality. At higher n, however, distinctly different 
behaviour is observed depending on the location as demonstrated in 
Fig. 3g,h showing the QOs at sites A and B indicated in Fig. 3b. Large 
parts of the sample, exemplified by site A, show continuous evolution 
of QOs (Fig. 3g), consistent with the calculations. In other parts of the 
sample as site B, however, striking low-frequency beating of the MLG 
LLs is found (Fig. 3h). At a lower Ba = 170 mT, the beating nodes are 
shifted to lower LL indices (Fig. 3i).

As the MLG and BLG bands have very different dispersions, the beat-
ing cannot arise from their interference. It must therefore originate 
from small symmetry breaking between the four flavours of the MLG 
band. In the Methods, we consider various possible mechanisms, includ-
ing staggered substrate potential, Kekulé distortions, band shifting,  
Zeeman effects and spin–orbit coupling, as well as non-symmetry- 
breaking disorder, and show that they are inconsistent with the 
observed behaviour. Below, we demonstrate that the interference of 
the QOs is well described by strain-induced PMF (BS).
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Long-wavelength mechanical strain induces an effective gauge field 
in graphene, with opposite signs for the two valleys. Isotropic or uni-
axial strains yield zero PMF, whereas non-uniform shear strain produces 
a finite BS (ref. 32). In the presence of Ba, carriers in the K+ and K− valleys 

experience effective fields Beff of Ba + BS and Ba − BS, inducing a relative 
shift in the LLs and interference (Fig. 4a). In the MLG Dirac band, the 
LL energies are given by E eħv B N= 2N F

2
eff , where e is the elementary 

charge, ħ is the reduced Plank constant and vF is the Fermi velocity. 
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Hence for BS ≪ Ba, the energy shift between the LLs in the two valleys  
is δE eħv N B B B B B eħv N B= 2 ( + − − ) ≈ 2 /N F

2
a S a S S F

2
a . Because δEN 

scales with √N, the lowest LLs remain almost degenerate. For higher 
LLs, the relative shift between the valley-polarized LLs grows continu-
ously with energy, resulting in beating. The first destructive inter-
ference occurs when δEN = ΔEN/2, where E E E∆ = − ≈N N N+1 eħv B N/2F

2
a  

is the LL energy spacing, resulting in the first beating node at 
N N B B= = /4b

1
a S.

Figure 4b shows the theoretical Nb
1  dependence on BS, and the calcu-

lated beating patterns of the QOs versus BS are presented in Fig. 4d. At 
the nodes, the K+ and K− LLs are out of phase, resulting in amplitude 
suppression and a barely visible frequency doubling. In Fig.  3h  
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shaded in white. f, Line scans of B x( )z

ac  versus n measured along the dotted line 
marked in a showing QOs from the MLG LLs in the M1 band. g, The measured 

QOs due to MLG LLs (top) at location A indicated in b and the calculated QOs 
(bottom). h, The measured QOs (top) at location B and the calculated QOs 
(bottom) with BS = 4.2 mT. The LL indices at the beating nodes are indicated.  
i, Same as h at Ba = 170 mT. The applied larger V = 10 mVbg

ac  rms in a–d and i, and 
20 mV rms in f–h averages out the QOs due to BLG LLs intensifying the visibility 
of MLG LLs. Scale bar, 1 μm (e).
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(red curve), we observe the first node at N = 19b
1 , yielding B B N= /4 =S a b

1

4.2 mT. The calculated QOs with BS = 4.2 mT (black curve) show an excel-
lent agreement with the data and also well reproduce the secondary 
nodes at −19 and 57. Moreover, the observed evolution of the interfer-
ence with D (Fig. 4e) is well reproduced by the simulations (Fig. 4f), both 
in the position of all the three beating nodes (red arrows) and in their 
evolution with D using a single fitting parameter BS. Because the BS 
changes profoundly with D and the strain-induced PMF should be inde-
pendent of the BS, the fact that the observed beating is well described 
by a D-independent BS provides extra strong support for the model. 
Furthermore, the PMF should affect all the bands. An important 
self-consistency check is, therefore, the observation of beating also in 
the BLG LLs.

Extended Data Fig. 7 shows a closer examination of the BLG QOs at 
the same location B. Beating is observed and well reproduced by sim-
ulations using the same set of parameters. Finally, a crucial test of the 
PMF origin of the interference is the predicted linear dependence of 
Nb

1  on Ba, distinguishing it from other possible mechanisms (Methods). 
Figure  3i (red curve) presents the LL interference measured at 
Ba = 170 mT, showing several beating nodes. The calculated QOs (black 
curve) show an excellent agreement with the data, confirming the 
linear dependence (Fig. 4c).

Analysing the LL interference over the entire sample, we derive a map 
of BS (Fig. 3e). In large regions, BS is below our resolution of about 1 mT, 

set by the highest accessible n (Methods). We find four regions with 
characteristic length L ≈ 1 µm with smoothly varying BS reaching up to 
6 mT. Several types of lattice distortion—finely tuned triaxial strain, 
arc-like in-plane bending or stretching a trapezoid-like geometry— 
have been shown theoretically to produce relatively homogenous BS 
(refs. 5,43,44). In our sample, the strain probably arises because of the 
in-plane bending introduced during the fabrication processes (Fig. 4b, 
inset). An arc segment of length L with a twist angle θ in a graphene strip 
generates B cβ θ≈

φ
aLS

0  (ref. 43), where a = 0.14 nm is the graphene inter-
atomic distance, c ≈ 1 is a numerical constant, β ≈ 2 describes the hop-
ping parameter dependence on a, ϕ0 = h/e is the flux quantum and h is 
the Planck constant. The measured 1 < BS < 6 mT thus corresponds to 
twisting by 1 < θ < 6 millidegrees, or equivalently bending radius of 
1 < R < 6 cm and corresponding strain of 8 × 10−6 < ū < 5 × 10−5, where 
R = L/θ and ū = θ/2 (ref. 43). These minute bending angles and strains 
should be abundant in exfoliated atomic layer devices. Strains of larger 
orders of magnitude and angle disorder have been reported to occur 
naturally in twisted and stacked graphene structures8–11,30,45.

Discussion
The local dHvA QO technique developed provides a tool for high- 
precision, quantitative reconstruction of the BS in 2D materials 
and of its spatial dependence at the nanoscale level. Unlike global 
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Fig. 4 | LL interferometry of strain-induced PMF. a, Schematic of LL beating 
in the presence of PMF (BS) in graphene. Only the MLG Dirac bands with LLs are 
shown for clarity. b, The LL index of the first beating node Nb

1  in the Dirac band 
versus BS at Ba = 320 mT. Inset, schematic of a graphene strip with arc-like bent 
section (red) of length L and bend angle θ generating strain-induced BS. The 
illustrated θ is greatly exaggerated compared with the maximal derived 

θ ≈ 6 × 10−3 degrees. c, Calculated dependence of Nb
1  on Ba for BS = 4.2 mT (red). 

The open circles show the measured Nb
1  at Ba = 170 mT and 320 mT. d, Calculated 

QOs in the MLG band versus n and BS at Ba = 320 mT and D = 0 V nm−1. The 
locations of the beating nodes Nb

1  to Nb
3 are highlighted in red. e, The measured 

QOs in the MLG bands versus n and D using V = 20 mVbg
ac  rms showing beating 

nodes (red arrows). f, Calculated QOs versus n and D at Ba = 320 mT and BS = 4.2 mT.
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measurements, which are affected by spatial inhomogeneities and 
strain, the local dHvA effect offers high energy resolution approaching 
the limit of intrinsic lifetime broadening of the energy bands. Moreover, 
the magnetic QOs are not obscured by metallic gates and multilayer 
structures, enabling investigation of most of the state-of-the-art vdW 
devices with in situ tunable BS. Most importantly, the method is not 
limited to single-particle physics and can show the BS governed by 
many-body effects and strong interactions in flat-band materials. It 
can thus improve our modelling and understanding of a wide range of 
strongly correlated 2D systems and moiré quantum materials.

The strain-induced PMFs have important implications for our com-
prehension of disorder and their impact on strongly correlated states. 
In particular, twisted bilayer and multilayer graphene are known to be 
susceptible to twist-angle disorder. Spatial variations in twist angle and 
strain induce fluctuations in the bandwidth of the flat bands, electron 
interactions and the emergence of symmetry-broken states46. Yet, 
the effects of the accompanying spatially varying PMFs have not been 
investigated experimentally. Our findings indicate that the typical 
reported twist-angle disorder of 0.1° (refs. 8–11) can generate BS ≈ 0.1 T, 
markedly influencing magnetotransport behaviour. Resolving LLs in 
transport at low fields is challenging in twisted devices, potentially aris-
ing from such highly spatially varying PMFs. Moreover, in the presence 
of a magnetic field, the PMF breaks the valley symmetry resulting in 
different DOS in the two valleys. BS fluctuations may thus affect the local 
Stoner instabilities and symmetry-breaking mechanisms that lead to 
the quantum anomalous Hall effect, Chern insulators and inhomogenei-
ties in the spontaneous orbital magnetization18–20. Finally, the recent 
development of programmable in-plane bending of graphene ribbons47 
provides an opportunity for microscale engineering and exploitation of 
PMFs towards the realization of zero-field quantum Hall and topologi-
cal insulator-like states5 and of all-graphene electronics48. The derived 
method of high-precision determination of local BS and PMF imaging 
provides a powerful tool for the characterization and optimization of 
tunable electronic bands and calls for further investigation of the role 
of strain-induced gauge fields in the formation of symmetry-broken, 
strongly correlated states of matter.
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Methods

Device fabrication
The hBN-encapsulated ABA graphene heterostructure was fabricated 
using the dry-transfer method. The graphene flakes were first exfoli-
ated onto a Si/SiO2 (285 nm) substrate. The number of layers in the 
graphene flakes was determined using Raman microscopy49. Then, the 
hBN (about 30 nm thick) and the graphene flakes were picked up using 
a polycarbonate on a polydimethylsiloxane dome stamp. The stacks 
were then released onto a pre-annealed Ti (2 nm)/Pt (10 nm) bottom 
gate, patterned on the Si/SiO2 wafer. The finalized stacks were annealed 
in a vacuum at 500 °C for strain release50. A Ti (2 nm)/Pt (10 nm) top 
gate was then deposited on top of the stack. The one-dimensional 
contacts were formed by SF6 and O2 plasma etching followed by 
evaporating Cr (4 nm)/Au (70 nm). Then, the device was etched into 
a Hall bar geometry. Finally, the device was re-annealed at 350 °C in a 
vacuum. The capacitances per unit area of the bottom and top gates 
are Cbg = 0.649 × 1012 e cm−2 V−1, Ctg = 0.668 × 1012 e cm−2 V−1. The top and 
bottom gates are used to control the carrier density n = (CbgVbg + CtgVtg)/e 
and the effective transverse displacement field D = (CtgVtg − CbgVbg)/2ε0, 
where ε0 is vacuum permittivity. From fitting the experimental QOs to 
simulations, we find that D = 1 V nm −1 corresponds to the energy differ-
ence between the adjacent graphene layers of Δ1 = 92 meV.

Transport measurements
Transport characterization of ABA graphene devices was carried out 
using standard lock-in techniques. The Rxx shows a peak along the 
diagonal charge neutrality line that increases with D, suggesting a gap 
opening (Extended Data Fig. 1a). The Landau fan shows LL crossings 
(Extended Data Fig. 1b), consistent with the previous reports3,37,38,40,51–56. 
The QOs from MLG band LLs are visible at low fields, but the BLG LLs 
can be only resolved above 0.75 T on the electron side and at notably 
higher fields on the hole doping side (Extended Data Fig. 1c).

SOT measurements and magnetization reconstruction
The local magnetic measurements were conducted in a custom-built 
scanning SOT microscope in a cryogen-free dilution refrigerator  
(Leiden CF1200) at a temperature of 160–350 mK (ref. 57). Indium SOT 
with an effective diameter of about 150 nm and magnetic sensitivity 
of 20 nT Hz−1/2 was fabricated as described previously33,58,59. The SOT 
readout circuit is based on SQUID series array amplifier60,61. The SOT 
is attached to a quartz tuning fork vibrating at about 32.8 kHz (Model 
TB38, HMI Frequency Technology), which is used as a force sensor for 
tip height control62. The scanning height was about 150 nm above the 
ABA graphene. An a.c. voltage V bg

ac  at a frequency of about 1.8 kHz was 
applied to the bottom gate to modulate the carrier density by 
n C V e= /ac

bg bg
ac . A lock-in amplifier was used to measure the correspond-

ing local B z
ac by the scanning SOT. The B z

ac data were symmetrized with 
respect to the displacement field D where applicable. In contrast to 
other scanning techniques, the magnetic signal is transparent to the 
metallic top gate, enabling the investigation of a wide range of hetero-
structures and encapsulated devices.

The 2D B x y( , )z
ac  images were used to reconstruct the magnetization 

mz(x, y) using the numerical inversion procedure described in  
ref. 63 (Extended Data Fig. 2). As the reconstruction of mz requires  
2D B x y( , )z

ac  information, the QOs at a single location or along the 
one-dimensional line scans are presented in the main text as the raw 
data of B z

ac.

Magnetic field and modulation amplitude dependence of QOs
The measured signal B n B n= (d /d )z z

ac ac  is proportional to the modula-
tion amplitude of the carrier density nac induced by V bg

ac . It is therefore 
desirable to use large nac to improve the signal-to-noise ratio. To resolve 
QOs, however, nac has to be substantially smaller than the period of the 
oscillations Δn. Extended Data Fig. 2c–e shows the QOs acquired at 

Ba = 320 mT using V = 8 mVbg
ac , 35 mV and 100 mV rms corresponding 

to nac of 5.19 × 109 cm−2, 2.27 × 1010 cm−2 and 6.49 × 1011 cm−2 rms, respec-
tively. The four-fold degenerate BLG LLs have a period of Δn = 4Ba/ϕ0 = 
3.1 × 1010 cm−2. The lowest V = 8 mVbg

ac  rms was chosen to result in a 
peak-to-peak value of nac of 1.47 × 1010 cm−2, approximately equal to 
Δn/2 = 1.55 × 1010 cm−2, which results in an optimal signal-to-noise ratio 
for detecting the BLG LLs, albeit suppresses the measured B n/z

ac ac ratio 
by a factor of π/2. A larger nac washes out the QOs from the BLG LLs, 
leaving the MLG LLs resolvable as demonstrated in Extended Data 
Fig. 2d,e. The largest nac also enables observation of the paramagnetic 
response ∂M/∂μ = C/ϕ0 in the gap between the zeroth and the first MLG 
LLs dictated by the Chern number C = 2 on the electron side and C = −2 
on the hole side (Extended Data Fig. 2e).

Extended Data Fig. 2f–h shows the QOs at Ba = 40 mT, 80 mT and 
170 mT. At these low fields, the Dingle broadening greatly suppresses 
the QOs due to BLG LLs (Extended Data Fig. 4) and reduces the visibil-
ity of the MLG LLs at large displacement fields because of the reduction 
in the gap energies. At 170 mT and V = 8 mVbg

ac  rms, the M2 LLs and the 
12-fold degenerate LLs in the gullies are resolved as seen in Extended 
Data Fig. 2h.

BS calculations
The BS of ABA graphene was calculated in the tight-binding model 
following refs. 2,36 based on SWMc parameterization34. On the basis 
of {A1, B1, A2, B2, A3, B3}, where Ai and Bi are the two sublattice sites in 
the ith layer, the low-energy effective Hamiltonian can be written as
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where Δ1 = −e(U1 − U3)/2 and Δ2 = −e(U1 − 2U2 + U3)/6, with Ui the potential 
of layer i. Δ1 is determined by the displacement field, whereas Δ2 
describes the asymmetry of the electric field between the layers. The 
band velocities vi (i = 0, 3, 4) are related to the tight-binding parameters 
γi by v ħ a γ=i i

3
2 c , where ac = 0.246 nm is the crystal constant of gra-

phene, π = ξkx + iky, and ξ is the valley index (ξ = ±1 for valley K+ and K−, 
respectively).
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For Δ1 = 0, the Hamiltonian can be block-diagonalized into MLG-like 
and BLG-like blocks, that is, HTLG = HMLG ⊕ HBLG. A finite displacement 
field hybridizes the two blocks.

In an external magnetic field, in the Landau gauge, the canonical 
momentum π can be replaced by π − eA, where A is the vector potential. 
π obeys the commutation relation [πx, πy] = −i/lB, where l ħ eB= ( / )B  is 
the magnetic length. As in the usual one-dimensional harmonic 



oscillator, on the basis of LL orbital |n⟩, the matrix elements of π, π† are 
given by
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Therefore, the new Hamiltonian can be written on the basis of LL 
orbitals. Using matrix elements of π and π† operators, the momentum 
operators are replaced by raising and lowering the diagonal matrix of 
dimensions Λ × Λ, where Λ is the cutoff number for the infinite matrix, 
restricting the Hilbert space with indices n ≤ Λ. All the other nonzero 
elements γi are substituted by γiIΛ, where IΛ is the identity matrix with 
dimensions Λ × Λ. As our measurements were performed in low mag-
netic fields and high-index LLs are often involved, a large cutoff was 
used so that it spans the energy range significantly larger than in the 
experiment. We also removed false LLs caused by imposing the cutoff, 
which usually have very large indices. In the simulations, Λ was set to 
400 for small carrier-density ranges (Fig. 2) and to 800 for calculations 
over larger ranges (Figs. 3 and 4).

Evolution of the BS and LLs with displacement field
Extended Data Fig. 3 shows the calculated BS of ABA graphene using 
the derived SWMc parameters and the evolution of the LLs with D and 
Ba. At D = 0 (Δ1 = 0), there is essentially no hybridization between the 
MLG and BLG bands. All the LLs are valley (and spin) degenerate except 
for the zeroth LLs of the MLG and BLG bands that are valley polarized 
because of the Berry curvature (Extended Data Fig. 3a). With increasing 
Δ1, the gaps of the MLG and BLG bands increase and the hybridization 
between the bands grows resulting in the formation of mini-Dirac cones 
(gullies) and in LL anticrossings (Extended Data Fig. 3b–d). At our high-
est accessible Δ1 ≈ 50 meV, the lowest LLs in the gullies are well isolated 
from the rest of the LLs as shown in Extended Data Fig. 3e,f. As the BLG 
bandgap ∆G

0 is characterized by C = 0, it has no magnetization. The 
six-fold degenerated compressible zeroth LLs 0G

+  and 0G
−  in the gullies 

also have no magnetization at low fields, M = −∂ε/∂B = 0, because of 
their zero kinetic energy. As a result, zero magnetization is observed 
around the CNP over a width of δn = 12Ba/ϕ0 in carrier density as indi-
cated in Fig. 2c,f. The first paramagnetic signal appears when the Fermi 
level reaches the C = ±6 gaps ∆G

1  and ∆G
−1 between the zeroth and the first 

gully LLs as shown in Fig. 2f. At elevated magnetic fields, the six-fold 
gully degeneracy of the zeroth LLs is partially lifted4,53.

Reconstruction of BS parameters
Several experimental studies3,4,37,38,40,51,52,54,64 have investigated the tight-
binding parameters of ABA graphene as shown in Extended Data Table 1. 
The high resolution of our data and the fine features attained at low 
magnetic fields allow high-precision reconstruction of SWMc para
meters as follows. We set γ0 to the standard literature value of 3,100 meV, 
which corresponds to Fermi velocity of graphene v a γ= = 10 m sħF

3
2 c 0

6 −1. 
The γ0 sets the overall energy scale, whereas the value of the remaining 
seven parameters, relative to γ0, determine the BS. The fitting of the 
parameters was performed manually. We first determined the effect 
of the individual parameters on particular features of the BS as shown 
in Extended Data Fig. 4, which then guided us in the iterative fitting 
process. In particular, in the absence of displacement field, Δ1 = 0, the 
MLG band is affected by only γ0, γ2, γ5 and δ, with the gap at the Dirac 
point given by E δ= +

γ γ
g
0 −

2
2 5 . The BLG band is strongly dependent on 

γ0, γ1 and γ3, weakly dependent on γ4 and essentially independent of γ5 

and δ. The BLG gap size is mainly governed by γ2 and Δ2. The relative 
energy shift between the MLG and BLG bands is mainly governed  
by γ2.

The dependence of the measured QOs on n and D at low Ba provides a 
very sensitive tool for determining the SWMc parameters. After devel-
oping an understanding of the influence of the individual parameters 
on the relative position of the LLs in specific regions in the (n, D) plane, 
an initial set of parameters was chosen to attain an approximate fit to 
the data. Then fine-tuning of the parameters is achieved by calculat-
ing the QOs for each set of parameters and comparing with the data at 
D = 0 V nm−1. This process is repeated manually adjusting the different 
parameters in an iterative manner. After attaining a good fit at D = 0, 
additional fine-tuning was performed to fit the entire range of D. As the 
different parameters have a distinctive effect on the relative positions 
of the LLs, this manual procedure is readily manageable. The error bars 
were determined by the values of the individual parameters for which 
a visible deviation from the data was observed.

The following attributes were particularly informative for the fit-
ting processes:
1.	 The number of BLG LLs between the adjacent MLG LLs
2.	The relative energy shift between MLG and BLG bands
3.	LL anticrossings in the gullies
4.	The gap size of MLG band

Attribute 1 is determined by the DOS ratio of the two bands, which is 
predominantly governed by γ1. By adjusting γ1 to fit the relative number 
of BLG and MLG LLs along with optimization of other parameters we 
obtain γ1 = 370 ± 10 meV.

Attribute 2 is then used to determine γ2. The energies of the band 
extrema and hence the relative position of the zeroth LLs can be cal-
culated analytically. In particular, for Δ1 = 0, the 0M1

−  LL at the bottom 
of M1 band is positioned at energy Δ2 − γ2/2, whereas the top of BLG 
valence band is at Δ2 + γ2/2. Thus, the relative position between MLG 
and BLG bands is determined by γ2 and Δ2. As the LL spectrum is quite 
sensitive to Δ2, γ2 is determined first. We use the relative position 
between −1M3 and the nearby BLG LLs to fit γ2, and we get 
γ2 = −19 ± 0.5 meV.

Attribute 3 is governed by γ3, which induces trigonal warping of the 
BLG bands. As shown in Extended Data Fig. 6, this results in the 
anticrossings between the BLG LLs and MLG 0M3

−  and −1M3
+  LLs. From 

fitting to the experimental data, we obtain γ3 = 315 ± 10 meV.
Attributes 2 and 4 are used to derive δ and γ5. The MLG band gap at 

D = 0 V nm−1 is E δ γ γ= + ( − )/2g
0

2 5 , whereas the gap centre is located at 
2Δ2 + δ − (γ2 + γ5)/2. In our experimental data, one BLG LL fits within the 
MLG gap and 20 BLG LLs reside between 0M1

−  and −1M3, from which we 
attain δ = 18.5 ± 0.5 meV and γ5 = 20 ± 0.5 meV. Note that E g

0 can be either 
positive or negative. We find that E g

0 is negative, which means that the 
zeroth K− LL (0M1

− ) resides at the bottom of the M1 band and the zeroth 
K+ LL (0M2

+ ) is at the top of M2. In this case, the Dirac gap Eg increases with 
Δ1 and the 0M1

−  and the 0M2
+  LLs spread apart with the displacement field 

as shown in Extended Data Fig. 3f, consistent with experimental data in 
Fig. 2c,e and calculations in Fig. 2d. If E g

0 is positive, the zeroth K− LL will 
reside at the top of M2, whereas the zeroth K+ LL will be at the bottom 
of M1. In this case, on increasing D, the Dirac gap closes and then reopens 
with the crossing of the two zeroth LLs, such that Eg is always negative 
at high D with zeroth K− LL at the bottom of M1. Extended Data Table 1 
shows that the value and the sign of E g

0 varies notably in the literature. 
However, only in ref. 40 and in the present work the Dirac gap is reported 
directly. For the rest of the references, the E g

0 values presented in the 
table are calculated from the reported values of δ, γ2 and γ5.

Δ2 mainly affects the gap of the BLG bands and as −1M3 resides closely 
to the BLG band gap, we use the number of BLG LLs between −1M3 and 
−2M3 to fit Δ2 and get Δ2 = 3.8 ± 0.05 meV. γ4 plays the most negligible 
role, slightly adjusting the shape of the BLG bands. The fitting pro-
cedure is to choose these parameters such that the inaccuracy of the 
number of BLG LLs between any pair of MLG LLs is no more than one. 
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By optimizing all parameters for best fit to the experimental data, we 
derive γ4 = 140 ± 15 meV, as shown in Extended Data Table 1.

Orbital magnetization calculations
Oscillations in orbital magnetization M from the LLs can be calculated 
analytically for either parabolic or Dirac bands as shown previously65. 
However, there is no analytical expression for the LL spectrum in ABA 
graphene; therefore, the magnetization oscillations have to be calcu-
lated numerically. We follow the method described in ref. 14 to derive 
the magnetization M(n) and then calculate its derivative ∂M/∂n.

We first consider the case with zero LL broadening. For an arbitrary 
LL spectrum Ei with degeneracy Di (i is the Landau-level index), the DOS 
N0(ε) of the system is

∑N ε D δ ε E( ) = ( − ) .
i

i i0

Ei describes spin-degenerate LLs from both valleys with degeneracy 
D = 2i

eB
h . The grand thermodynamic potential Ω0(μ, B) is then given by

∫Ω kT N ε ε= − ( )ln(1 + e )d ,µ ε kT
0 −∞

∞

0
[ ( − ) / ]

where k is the Boltzmann constant, T is the temperature and μ is the 
chemical potential.

Now we consider LL broadening of width Γ (Dingle parameter) with 
a Lorentzian form

L ε
π

Γ
ε Γ

( ) =
1

+
.2 2






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

The DOS and the grand potential are then described by

∑N ε D L ε E( ) = ( − ) ,
i

i i

∫
∫ ∑

kT N ε ε

kT D L ε E ε

Ω = − ( )ln(1 + e )d
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Then M  is given by
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B

kT
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B

L ε E D L ε E
E
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∂
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∂
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where L ε L ε ε′ ( ) = ∂ ( )/∂ . In the zero-temperature limit (T → 0), M can be 
simplified:









∫ ∑M

D
B

L ε E D L ε E
E
B

µ ε ε=
∂
∂

( − ) − ′( − )
∂
∂

( − )d .
µ

i

i
i i i

i

−∞

To compare with our experiment, we need to calculate

M
n

n
M
µ

n
µ
n

n
∂
∂

( ) =
∂
∂

( )
∂
∂

( ) ,

where n( )
µ
n

∂
∂  is the inverse of the DOS as a function of the carrier density 

and ∫n µ N ε ε( ) = ( )d
µ

−∞
.

Extended Data Fig. 5 shows the calculated n(μ), µ( )n
µ

∂
∂

, n( )n
µ

∂
∂

, µ( )M
µ

∂
∂

, 
n( )M

µ
∂
∂

 and n( )M
n

∂
∂  versus Δ1 at Ba = 320 mT using the derived SWMc 

parameters and Dingle broadening Γ = 0.3 meV. The modulation in 
DOS, ∂n/∂μ, is well resolved in Extended Data Fig. 5b,c, but it is relatively 

small because of the LL broadening, except near CNP, in which large 
gaps with vanishing DOS open between the lowest LLs in the gullies at 
elevated Δ1.

The calculated ∂M/∂μ versus μ in Extended Data Fig. 5d shows that 
the crossing of the MLG and BLG LLs does not cause any phase shift. By 
contrast, in ∂M/∂μ versus n in Extended Data Fig. 5e, the BLG LLs show 
a 2π shift on crossing the four-fold degenerate MLG LLs and a π shift 
on crossing the two-fold degenerate zeroth LLs. This arises from the 
fact that the filling an MLG LL delays filling the next BLG LL versus total 
n, but not versus μ. As the DOS modulation n( )n

µ
∂
∂

 is quite small, n( )M
n

∂
∂  

in Extended Data Fig. 5f looks very similar to n( )M
µ

∂
∂

 except near CNP.

Derivation of the Dingle parameter
The energy bands are broadened by the intrinsic broadening Γ, given 
by the quantum scattering time τq = ħ/2Γ. Hence Γ sets the finest mean-
ingful energy resolution with which the band energy can be described. 
To attain this energy resolution experimentally, we need to use the 
lowest Ba for which the LL energy gaps are comparable to Γ. In this limit, 
the amplitude of the QOs is rapidly suppressed with increasing Γ. 
Extended Data Fig. 4c–g shows the calculated QOs for various Dingle 
parameters Γ = 0.2–0.8 meV. As the energy spacing of the BLG LLs in 
the conduction band is about 1 meV, the amplitude of their QOs is sup-
pressed by about two orders of magnitude over this range of Γ, whereas 
in the valence band, in which the LL gaps are about 0.6 meV, the QOs 
are completely quenched with the higher Γ. By contrast, the amplitude 
of the QOs of the MLG LLs, which have an order of magnitude larger 
gaps at low carrier densities, is much less affected by these Γ values. As 
a result, the relative amplitude of the MLG and BLG QOs is strongly 
dependent on Γ, enabling its accurate determination. By fitting to the 
experimental data in Fig. 2, we obtain Γ = 0.3 ± 0.05 meV, which also 
provides a very good agreement in quantitative comparison between 
the amplitudes of the measured B z

ac and the calculated mz taking into 
account the 2D magnetization reconstruction.

The finite nac modulation by V bg
ac  also causes a suppression of the 

apparent amplitude of the QOs. It can be shown that if the peak-to-peak 
value of the carrier-density modulation is less than half of the LL degen-
eracy, nac < 2Ba/ϕ0, which is the case in our high-resolution measure-
ments, the suppression is less than a factor of π/2. For larger nac,  the 
visibility is suppressed rapidly as shown in Extended Data Fig. 2d,e. In 
particular, in Figs. 3 and 4 we have intentionally used larger nac  to sup-
press the QOs due to BLG LLs and to improve the signal-to-noise ratio 
for detections of the MLG LLs. As this type of suppression of the appar-
ent amplitude of QOs is harder to simulate in our BS calculations, we 
have used Γ = 0.3 meV for the calculations presented in all the figures 
except in Figs. 3 and 4, where Γ = 0.6 meV was used instead for suppres-
sion of the BLG QOs artificially. This larger Γ  does not affect the shape 
of the calculated MLG QOs appreciably but reduces their amplitude.

Our derived Γ = 0.3 meV with corresponding local quantum scattering 
time τq = ħ/2Γ ≈ 1 ps, is about four times lower than the value reported 
based on global SdH oscillations40. This is consistent with the observa-
tion that the lowest magnetic field for detection of QOs in our local dHvA 
measurements is substantially lower than what is required for detection 
of the SdH oscillations (Extended Data Fig. 1). The large Γ reported based 
on SdH oscillations is probably because of sample inhomogeneity, such 
as charge disorder and the PMFs (BS). Hence, the measurement of the 
local dHvA QOs enables the determination of the local BS with energy 
resolution set by the intrinsic broadening Γ of the energy bands. This is 
of key importance for the study of BS of twisted vdW materials that are 
particularly prone to strain and spatial inhomogeneities.

LL anticrossings
The hybridization between the BLG and MLG bands on increasing Δ1 
with the displacement field gives rise to partial lifting of valley degen-
eracy of the LLs. This effect is particularly pronounced near the top of 
the BLG valence band at intermediate values of Δ1 as shown in Extended 



Data Fig. 6c,d. Here, when MLG and BLG LLs in the same valley intersect, 
the strong band hybridization and non-vanishing γ3 leads to avoided 
crossing between the LLs as marked by the open symbols. Interestingly, 
the anticrossing occurs between the MLG LLs and every third BLG LL. 
Our derived SWMc parameters provide an excellent fit to the experi-
mentally observed anticrossings as demonstrated in Extended Data 
Fig. 6a,b. Moreover, the strong hybridization lifts the valley degeneracy 
of the first MLG LL in the M3 sector as shown by the pronounced split-
ting between −1M3

−  and −1M3
+  in Extended Data Fig. 6b–d. This splitting 

is resolved experimentally in Extended Data Fig. 6a.

Interference of BLG LLs
The interference of the LLs can be observed also in the BLG bands at 
the same locations at which it is present in the MLG bands. Extended 
Data Fig. 7 shows the QOs acquired at site B as in Figs. 3h and 4e, but 
using lower V = 8 mVbg

ac  rms that enables resolving the BLG LLs. The 
beating nodes at around 0.5 × 1012 cm−2and 1.8 × 1012 cm−2 are seen 
(Extended Data Fig. 7b), which can be well reproduced by the simula-
tions using BS = 4.2 mT (Extended Data Fig. 7c).

Resolution of the PMF by LL interference
The minimal PMF that can be measured using the interference method 
is determined by the highest accessible LL index of the beating node 
Nb

1 . At Ba = 320 mT in the accessible range of n, the highest MLG LL index 
in ABA graphene is ±70, and hence the minimal B B N= /(4 ) = 1.14 mTS a b

1 . 
For comparison, the lowest PMF that has been recently resolved by 
scanning tunnelling microscope is BS ≈ 0.5 T (ref. 66).

PMFs on different length scales
In moiré 2D materials, notable lattice relaxation occurs, giving rise to 
periodic strain and PMFs up to tens of tesla within moiré unit cell67–69. 
This short-range periodic PMF is part of the periodic potential that 
determines the BS70,71, but does not affect the usual LLs. By contrast, 
the strain that we probe varies gradually on a much larger length scale 
(about 1 µm). This strain gives rise to smooth PMFs, which shift the LLs 
in the presence of Ba and form strain-induced LLs at zero magnetic 
field6,72–75.

Towards characterization and use of PMFs
Strain engineering has been proposed to realize programmable PMFs 
leading to topological phases and various electronic devices5,48. 
Although large, short-range PMFs have been widely observed6,7,67–69,72–75, 
long-range homogeneous and controllable PMFs required for the 
development of new functionalities and valleytronics have not been 
realized5,43,44. Several methods have been proposed to induce variable 
mesoscale strain, including bending, MEMS, piezoelectric devices and 
polyimide deformation47,76–79, but the generated PMFs could not be 
detected. Our method enables the integration of such in situ control-
lable strain engineering, transport measurements and high-resolution 
local PMF imaging, laying the groundwork for investigation and use 
of PMFs.

Discussion of possible alternative mechanisms of interference 
of QOs
We consider below several other possible mechanisms that can alter the 
BS and induce degeneracy lifting, which may lead to interference of the 
LLs, and show that they are incompatible with the experimental data.

Band shifting. Spin–orbit coupling as well as the Zeeman effect at ele-
vated fields can lift flavour degeneracy producing an energy shift  
between the bands of opposite spin or valley. Both the intrinsic spin–
orbit coupling in graphene and the Zeeman contributions at our low 
magnetic fields result in a negligible energy shift of the order of µeV 
(refs. 80,81), which cannot account for the experimental data. Nevertheless, 
we explore whether a generic rigid shift between bands can reproduce 

the revealed LL interference pattern. In Fig. 3h, the first node in the in-
terference of the MLG LLs occurs at an index N ≈ 19. The corresponding 
LL energy gap is E E E eħv B N N∆ = − = 2 ( + 1 − ) ≈ 2.5 meVN N N+1 aF

2 . For the 
destructive interference, the LLs of the two bands have to be out of phase, 
namely, shifted by δEN ≈ 1.25 meV. Extended Data Fig. 8a shows the BS 
with a rigid shift of 1.25 meV between the K+ and K− bands with the cor-
responding calculated QOs presented in Extended Data Fig. 8b. The 
main resulting feature is that the MLG LLs are split into two, which is 
markedly different from the experimental QOs. This points out that to 
reproduce the observed QOs, the energy shift δEN between the interfer-
ing LLs has to grow with the LL index rather than being constant or de-
creasing with N. This is the behaviour in the case of PMF, where 

δE eħv N B B B B B eħv N B= 2 ( + − − ) ≈ 2 /N F
2

a S a S S F
2

a  grows as N.

Staggered substrate potential. The possible alignment between 
the hBN and ABA graphene can cause an on-site potential difference  
between the A and B sublattices. Here we consider the simplest situa-
tion in which one of the graphene layers (bottom) is aligned with the  
hBN giving rise to a staggered substrate potential. In this case, the 
Hamiltonian can be written on the basis of {A1, B1, A2, B2, A3, B3} as

H
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For concreteness, we choose δA3 = 2 meV and δB3 = −2 meV. The result-
ing BS is shown in Extended Data Fig. 8c (red) in comparison with the 
original BS (black). The staggered substrate potential increases the 
gaps of the MLG and BLG bands but does not lift the valley degeneracy 
and therefore does not lead to beating. Extended Data Fig. 8d presents 
the calculated QOs showing no LL beating.

Kekulé distortion. Kekulé distortions are the bond density waves that 
have been observed in graphene epitaxially grown on copper82 or  
in the presence of strain83. In contrast to the O-type Kekulé distortion 
that opens a gap at the Dirac point, we find that the Y-type84 distortion  
can result in LL interference. The Y-shaped modulation of the bond 
strength, parametrized by the hopping parameters γ0 and γ′0 (Extended 
Data Fig. 8e), gives rise to valley-momentum locking and to inequivalent 
Fermi velocities for both the MLG and BLG bands. Hence, it lifts the 
valley degeneracy of the LLs resulting in chiral symmetry breaking. In 
the SWMc model, γ0 is the sole parameter that controls the Fermi velo
city vF of the MLG band (v =

aγ
ħF

3
2

0 ). The energy difference between  
the LLs from the two valleys with the same index N is δE eħNB v= 2 ∆N a F,  
where v γ γ∆ = ( − ′ )a

ħF
3

2 0 0 . The first beating node appears when δEn is 
equal to half of the gap size: eħNB v2 ∆ =a F eħv B N/2 /2F

2
a , which yields 

N v v= /(4∆ )b
1

F F  as shown in Extended Data Fig. 8f. In Fig. 3h, N = 19b
1 , 

which corresponds to a very weak Kekulé distortion with ΔvF/vF =  
1.4 × 10−2. However, the Kekulé distortion results in Nb

1  that is independ-
ent of Ba as corroborated by the calculated QOs for Ba =  320 mT and 
170 mT in Extended Data Fig. 8h,i. This is because the LLs shift in the 
same proportion in the two valleys with Ba. This is in sharp contrast to 
beating due to PMF for which N B B= /(4 )b

1
a S  is proportional to Ba.  

The experimental data points in Extended Data Fig. 8g (circles) are 
consistent with PMF and incompatible with the Kekulé distortion.

Disorder in BS parameters. The BS can vary in space because of vari-
ous types of disorder. Focusing on the Dirac bands, for example, the 
energy of the Dirac point or vF could be position dependent without 
breaking the valley symmetry. If the parameters change gradually in 
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space on lengths scale larger than our spatial resolution of about 
150 nm, the LLs will shift gradually in space following the variations in 
the BS without showing interference at any location. Let us now con-
sider the opposite case of sharp boundaries between domains with 
different BS. In this situation, at the boundaries, the finite size of our 
SOT may result in the simultaneous detection of LLs originating from 
the two neighbouring domains giving rise to apparent interference. In 
such a case, we expect to observe interference along a network of grain 
boundaries with width comparable to our SOT size. Instead, Fig. 3e 
shows well-defined domains of typical width of 1 µm and length of up 
to 2 µm, much larger than the SOT size, over which the interference is 
rather uniform. Furthermore, most of the domains showing beating 
are located at the ends or corners of the device, so they do not have two 
neighbouring domains that can cause the apparent interference.  
Finally, if there is a relative shift in the Dirac point between the neigh-
bouring domains, the apparent interference patterns at the boundary 
would evolve similar to that calculated in Extended Data Fig. 8b,  
whereas if vF changes between the domains the beating node Nb

1  of the 
apparent interference would be independent of Ba as calculated in 
Extended Data Figs. 8f–i. Both these possibilities are inconsistent with 
the experimental data. More generally, the Ba dependence of the LL 
interference due to variations in BS is distinctly different from the one 
caused by BS. We therefore conclude that disorder that causes spatial 
variations in BS without creating PMFs cannot explain the observed LL 
interference.

Data availability
The data that support the findings of this study are available from the 
corresponding authors on reasonable request.

Code availability
The BS calculations codes used in this study are available from the 
corresponding authors on reasonable request.
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Extended Data Fig. 1 | Transport characterization of ABA graphene.  
a, A dual-gate sweep measurement of Rxx at T = 200 mK in B =a  0 T in device  
A described in the main text. b, The Landau fan of σxx in device B at T = 1.67 K.  

c, The Shubnikov–de Haas oscillations in σxx at 0.6, 0.75 and 1.0 T along the lines 
marked in b with indicated MLG LLs. The BLG LLs are visible only at B ≳a  0.75 T 
for electron doping.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Reconstruction of the local magnetization from 
B x y( , )z

ac  and comparison of B n D( , )z
ac  at different magnetic fields and V bg

ac .  
a, Example of the measured B x y( , )z

ac  at n = 5.16 × 1012 cm−2, Ba = 320 mT, and  
V bg

ac  = 10 mV rms. b, Differential magnetization m M n= ∂ /∂z  reconstructed from a.  
c, The measured QOs at Ba = 320 mT and V bg

ac  = 8 mV rms. The induced peak-to-
peak carrier density modulation, nac = 1.47 × 1010 cm−2, is about half of the LL 
degeneracy B φ4 /a 0 allowing clear resolution of the BLG and MLG LLs. d, QOs at 
Ba = 320 mT and V bg

ac  = 35 mV rms. The BLG LLs are washed out by the large carrier 
modulation while MLG LLs and the 12-fold degenerate LLs in the gullies are well 

resolved. e, At V bg
ac  = 100 mV rms the MLG QOs are smeared out. The paramagnetic 

response in the MLG LL gaps with Chern numbers C = ± 2 are clearly visible as 
indicated. f, QOs at Ba = 40 mT and V bg

ac  = 20 mV rms. At this low field most of the 
LLs are smeared by the intrinsic LL broadening and only the lowest MLG LLs in 
sections M1 and M2 can be resolved at low displacement fields. g, Same as f at  
Ba = 80 mT. h, At Ba = 170 mT and V bg

ac  = 8 mV rms the BLG LLs cannot be resolved, 
but all the MLG LLs and the 12-fold degenerate LLs in the gullies are very 
prominent.
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Extended Data Fig. 3 | Evolution of ABA graphene band structure with 
displacement field. a–d, Projected 3D band structure of ABA graphene (left 
panels) and the corresponding evolution of LLs with Ba at ∆1 = 0, 10, 25, and  
50 meV (right panels). Red and blue lines denote the LLs in K+ and K− valleys 
respectively. The tight-binding parameters used for the calculations are given 
in Extended Data Table 1 (bottom row). With increasing ∆1, the MLG and BLG 

bandgaps grow and band hybridization is enhanced forming mini-Dirac cones 
(gullies) near CNP. e, Zoomed-in view of the evolution of LLs with Ba at ∆1 = 50 meV.  
At low fields the zeroth LLs 0G

+  and 0G
−  are six-fold degenerate (including spin) 

and have vanishing magnetization. The six-fold degeneracy of the gully LLs is 
partially lifted at high Ba. The Chern numbers C in the large gaps are indicated.  
f, Evolution of LLs with ∆1 at Ba = 320 mT.



Extended Data Fig. 4 | The dependence of the band structure on the SWMc 
parameters γ0 to γ5, δ, and Δ2 at Δ1 = 0 and suppression of QOs by LL broadening. 
a, The effect of individual parameters on the BS, calculated using the parameters 
of ref. 40 (see Extended Data Table 1) and multiplied by a factor 0.8, 1.1, 1.4, 1.7  
and 2 denoted by the different colors from black to red. b, Calculated M n( )  at  

D = 0 V nm−1, Ba = 320 mT, and Dingle parameter Γ  = 0.3 meV. The V-shaped dip in M  
(black arrow) corresponds to the McClure peak at the Dirac point of the MLG 
band14. c–g, Calculated differential magnetization m M n= ∂ /∂z  for different Γ  = 0.2 
to 0.8 meV. The QOs due to BLG LLs with small energy gaps are suppressed much 
stronger by Γ  than the MLG LLs with large gaps.



Article

Extended Data Fig. 5 | Calculations of the orbital magnetization. a, Calculated 
carrier density n as a function of chemical potential µ and displacement-field- 
induced potential difference ∆1. b, n µ∂ /∂  versus µ and ∆1. c, n µ∂ /∂  versus n and ∆1. 

d, Calculated differential magnetization M µ∂ /∂  versus µ. e,f, Calculated  
M µ∂ /∂  (e) and differential magnetization m M n= ∂ /∂z  (f) versus n.  

Ba = 320 mT and Γ = 0.3 meV in all the calculations.



Extended Data Fig. 6 | Landau level anticrossings. a, Measured QOs in Bz
ac versus 

n and D at B =a  320 mT near the top of the BLG valence band reproduced from Fig. 2f. 
b, Calculated mz using the derived SWMc parameters providing an excellent fit to 
the experimental data. c, A zoom-in of the region marked in b with overlaid 

schematic LLs. d, Calculated LLs in the K− (blue) and K+ (red) valleys. The open 
symbols denote the points of valley splitting and LL anticrossings between the 
MLG and BLG LLs. The splitting of −1M3 LL into valley polarized −1 M3

−  and −1 M3
+  LLs is 

clearly resolved in calculations and in the experimental data.
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Extended Data Fig. 7 | Beating of the BLG LLs. a, QOs versus n and D at Ba = 320 mT acquired at site B in Fig. 3b using V bg
ac  = 8 mV rms. b, Bz

ac versus n profile at  
D = 0 V nm−1. c, Calculated QOs with BS = 4.2 mT. The black arrows indicate the positions of the beating nodes.



Extended Data Fig. 8 | Alternative mechanisms of LL interference. a, Band 
structure of ABA graphene with a relative energy shift of δE  = 1.25 meV between 
the K+ and K− bands. b, The corresponding calculated QOs show splitting of the 
lowest MLG LLs inconsistent with the experimental data. c, Band structure of 
ABA graphene with (red) and without (black) staggered sublattice potential  
δA3 = 2 meV, δ = −B3 2 meV. d, Corresponding calculated QOs showing no LL 

interference. e, Kekulé-Y distortion with γ′
0 hopping parameter along the bonds 

emphasized in black. f, The dependence of the first beating node N b
1  on the 

difference of the Fermi velocities v v∆ /F F  of the two valleys. Inset, schematic of 
the MLG band dispersions of the two valleys. g, The dependence of N b

1  on Ba for 
Kekulé-Y distortion (blue), PMF (red), and the experimental data (circles). h, 
The calculated QOs with v v∆ /F F  = 1.4% at Ba = 320 mT. i, Same as h at Ba = 170 mT.
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Extended Data Fig. 9 | Band structure and QOs in twisted double bilayer 
graphene (TDBLG). a, Calculated single-particle BS of TDBLG under an 
electrostatic potential difference of 30 meV, which causes an overlap between 
the valence flat and dispersive bands. b, QOs measured in TDBLG as a function 

of moiré filling factor ν and the displacement field D at 310 mT. The evolution of 
the flat and dispersive bands with D gives rise to very complicated QO patterns, 
which exemplifies the applicability of the dHvA technique to a broad range of 
vdW materials.



Extended Data Table 1 | Comparison of SWMc parameters in different works

The parameters are in units of meV.
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