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Solving olympiad geometry without human 
demonstrations

Trieu H. Trinh1,2 ✉, Yuhuai Wu1, Quoc V. Le1, He He2 & Thang Luong1 ✉

Proving mathematical theorems at the olympiad level represents a notable milestone 
in human-level automated reasoning1–4, owing to their reputed difficulty among the 
world’s best talents in pre-university mathematics. Current machine-learning 
approaches, however, are not applicable to most mathematical domains owing to the 
high cost of translating human proofs into machine-verifiable format. The problem is 
even worse for geometry because of its unique translation challenges1,5, resulting in 
severe scarcity of training data. We propose AlphaGeometry, a theorem prover for 
Euclidean plane geometry that sidesteps the need for human demonstrations by 
synthesizing millions of theorems and proofs across different levels of complexity. 
AlphaGeometry is a neuro-symbolic system that uses a neural language model, 
trained from scratch on our large-scale synthetic data, to guide a symbolic deduction 
engine through infinite branching points in challenging problems. On a test set of  
30 latest olympiad-level problems, AlphaGeometry solves 25, outperforming the 
previous best method that only solves ten problems and approaching the performance 
of an average International Mathematical Olympiad (IMO) gold medallist. Notably, 
AlphaGeometry produces human-readable proofs, solves all geometry problems in 
the IMO 2000 and 2015 under human expert evaluation and discovers a generalized 
version of a translated IMO theorem in 2004.

Proving theorems showcases the mastery of logical reasoning and the 
ability to search through an infinitely large space of actions towards a 
target, signifying a remarkable problem-solving skill. Since the 1950s 
(refs. 6,7), the pursuit of better theorem-proving capabilities has been 
a constant focus of artificial intelligence (AI) research8. Mathematical 
olympiads are the most reputed theorem-proving competitions in 
the world, with a similarly long history dating back to 1959, playing an 
instrumental role in identifying exceptional talents in problem solving. 
Matching top human performances at the olympiad level has become 
a notable milestone of AI research2–4.

Theorem proving is difficult for learning-based methods because 
training data of human proofs translated into machine-verifiable lan-
guages are scarce in most mathematical domains. Geometry stands out 
among other olympiad domains because it has very few proof exam-
ples in general-purpose mathematical languages such as Lean9 owing 
to translation difficulties unique to geometry1,5. Geometry-specific 
languages, on the other hand, are narrowly defined and thus unable to 
express many human proofs that use tools beyond the scope of geom-
etry, such as complex numbers (Extended Data Figs. 3 and 4). Overall, 
this creates a data bottleneck, causing geometry to lag behind in recent 
progress that uses human demonstrations2–4. Current approaches 
to geometry, therefore, still primarily rely on symbolic methods and 
human-designed, hard-coded search heuristics10–14.

We present an alternative method for theorem proving using syn-
thetic data, thus sidestepping the need for translating human-provided 
proof examples. We focus on Euclidean plane geometry and exclude 
topics such as geometric inequalities and combinatorial geometry. 

By using existing symbolic engines on a diverse set of random theo-
rem premises, we extracted 100 million synthetic theorems and their 
proofs, many with more than 200 proof steps, four times longer than 
the average proof length of olympiad theorems. We further define and 
use the concept of dependency difference in synthetic proof genera-
tion, allowing our method to produce nearly 10 million synthetic proof 
steps that construct auxiliary points, reaching beyond the scope of pure 
symbolic deduction. Auxiliary construction is geometry’s instance of 
exogenous term generation, representing the infinite branching fac-
tor of theorem proving, and widely recognized in other mathematical 
domains as the key challenge to proving many hard theorems1,2. Our 
work therefore demonstrates a successful case of generating synthetic 
data and learning to solve this key challenge. With this solution, we 
present a general guiding framework and discuss its applicability to 
other domains in Methods section ‘AlphaGeometry framework and 
applicability to other domains’.

We pretrain a language model on all generated synthetic data and 
fine-tune it to focus on auxiliary construction during proof search, del-
egating all deduction proof steps to specialized symbolic engines. This 
follows standard settings in the literature, in which language models 
such as GPT-f (ref. 15), after being trained on human proof examples, 
can generate exogenous proof terms as inputs to fast and accurate 
symbolic engines such as nlinarith or ring2,3,16, using the best of both 
worlds. Our geometry theorem prover AlphaGeometry, illustrated in 
Fig. 1, produces human-readable proofs, substantially outperforms 
the previous state-of-the-art geometry-theorem-proving computer 
program and approaches the performance of an average IMO gold 
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medallist on a test set of 30 classical geometry problems translated 
from the IMO as shown in Fig. 2.

Synthetic theorems and proofs generation
Our method for generating synthetic data is shown in Fig. 3. We 
first sample a random set of theorem premises, serving as the input 
to the symbolic deduction engine to generate its derivations. A full 
list of actions used for this sampling can be found in Extended Data 
Table 1. In our work, we sampled nearly 1 billion of such premises in 
a highly parallelized setting, described in Methods. Note that we do 
not make use of any existing theorem premises from human-designed 
problem sets and sampled the eligible constructions uniformly  
randomly.

Next we use a symbolic deduction engine on the sampled prem-
ises. The engine quickly deduces new true statements by following 
forward inference rules as shown in Fig. 3b. This returns a directed 
acyclic graph of all reachable conclusions. Each node in the directed 
acyclic graph is a reachable conclusion, with edges connecting to its 
parent nodes thanks to the traceback algorithm described in Methods. 
This allows a traceback process to run recursively starting from any 
node N, at the end returning its dependency subgraph G(N), with its 
root being N and its leaves being a subset of the sampled premises. 
Denoting this subset as P, we obtained a synthetic training example 
(premises, conclusion, proof) = (P, N, G(N)).

In geometry, the symbolic deduction engine is deductive database 
(refs. 10,17), with the ability to efficiently deduce new statements from 
the premises by means of geometric rules. DD follows deduction rules 
in the form of definite Horn clauses, that is, Q(x) ← P1(x),…, Pk(x), in 
which x are points objects, whereas P1,…, Pk and Q are predicates 
such as ‘equal segments’ or ‘collinear’. A full list of deduction rules 
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Fig. 1 | Overview of our neuro-symbolic AlphaGeometry and how it solves 
both a simple problem and the IMO 2015 Problem 3. The top row shows how 
AlphaGeometry solves a simple problem. a, The simple example and its diagram. 
b, AlphaGeometry initiates the proof search by running the symbolic deduction 
engine. The engine exhaustively deduces new statements from the theorem 
premises until the theorem is proven or new statements are exhausted.  
c, Because the symbolic engine fails to find a proof, the language model 
constructs one auxiliary point, growing the proof state before the symbolic 
engine retries. The loop continues until a solution is found. d, For the simple 
example, the loop terminates after the first auxiliary construction “D as the 

midpoint of BC”. The proof consists of two other steps, both of which make use 
of the midpoint properties: “BD = DC” and “B, D, C are collinear”, highlighted in 
blue. The bottom row shows how AlphaGeometry solves the IMO 2015 Problem 
3 (IMO 2015 P3). e, The IMO 2015 P3 problem statement and diagram. f, The 
solution of IMO 2015 P3 has three auxiliary points. In both solutions, we arrange 
language model outputs (blue) interleaved with symbolic engine outputs to 
reflect their execution order. Note that the proof for IMO 2015 P3 in f is greatly 
shortened and edited for illustration purposes. Its full version is in the 
Supplementary Information.
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Fig. 2 | AlphaGeometry advances the current state of geometry theorem 
prover from below human level to near gold-medallist level. The test 
benchmark includes official IMO problems from 2000 to the present that  
can be represented in the geometry environment used in our work. Human 
performance is estimated by rescaling their IMO contest scores between 0 and 
7 to between 0 and 1, to match the binary outcome of failure/success of the 
machines. For example, a contestant’s score of 4 out of 7 will be scaled to 0.57 
problems in this comparison. On the other hand, the score for AlphaGeometry 
and other machine solvers on any problem is either 0 (not solved) or 1 (solved). 
Note that this is only an approximate comparison with humans on classical 
geometry, who operate on natural-language statements rather than narrow, 
domain-specific translations. Further, the general IMO contest also includes 
other types of problem, such as geometric inequality or combinatorial geometry, 
and other domains of mathematics, such as algebra, number theory and 
combinatorics.
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can be found in ref. 10. To widen the scope of the generated synthetic 
theorems and proofs, we also introduce another component to the 
symbolic engine that can deduce new statements through algebraic 
rules (AR), as described in Methods. AR is necessary to perform angle, 
ratio and distance chasing, as often required in many olympiad- 
level proofs. We included concrete examples of AR in Extended Data 
Table 2. The combination DD + AR, which includes both their for-
ward deduction and traceback algorithms, is a new contribution in 
our work and represents a new state of the art in symbolic reasoning  
in geometry.

Generating proofs beyond symbolic deduction
So far, the generated proofs consist purely of deduction steps that are 
already reachable by the highly efficient symbolic deduction engine 
DD + AR. To solve olympiad-level problems, however, the key missing 
piece is generating new proof terms. In the above algorithm, it can be 
seen that such terms form the subset of P that N is independent of. In 
other words, these terms are the dependency difference between the 
conclusion statement and the conclusion objects. We move this dif-
ference from P to the proof so that a generative model that learns to 
generate the proof can learn to construct them, as illustrated in Fig. 3c. 
Such proof steps perform auxiliary constructions that symbolic deduc-
tion engines are not designed to do. In the general theorem-proving 
context, auxiliary construction is an instance of exogenous term gen-
eration, a notable challenge to all proof-search algorithms because it 
introduces infinite branching points to the search tree. In geometry 
theorem proving, auxiliary constructions are the longest-standing 
subject of study since inception of the field in 1959 (refs. 6,7). Previ-
ous methods to generate them are based on hand-crafted templates 
and domain-specific heuristics8–12, and are, therefore, limited by a 
subset of human experiences expressible in hard-coded rules. Any 
neural solver trained on our synthetic data, on the other hand, learns 
to perform auxiliary constructions from scratch without human  
demonstrations.

 
Training a language model on synthetic data
The transformer18 language model is a powerful deep neural network 
that learns to generate text sequences through next-token predic-
tion, powering substantial advances in generative AI technology. We 
serialize (P, N, G(N)) into a text string with the structure ‘<premises>
<conclusion><proof>’. By training on such sequences of symbols, a 
language model effectively learns to generate the proof, conditioning 
on theorem premises and conclusion.

Combining language modelling and symbolic engines
On a high level, proof search is a loop in which the language model and 
the symbolic deduction engine take turns to run, as shown in Fig. 1b,c. 
Proof search terminates whenever the theorem conclusion is found or 
when the loop reaches a maximum number of iterations. The language 
model is seeded with the problem statement string and generates one 
extra sentence at each turn, conditioning on the problem statement 
and past constructions, describing one new auxiliary construction 
such as “construct point X so that ABCX is a parallelogram”. Each time 
the language model generates one such construction, the symbolic 
engine is provided with new inputs to work with and, therefore, its 
deduction closure expands, potentially reaching the conclusion. We 
use beam search to explore the top k constructions generated by the 
language model and describe the parallelization of this proof-search 
algorithm in Methods.

Empirical evaluation
An olympiad-level benchmark for geometry
Existing benchmarks of olympiad mathematics do not cover geometry 
because of a focus on formal mathematics in general-purpose lan-
guages1,9, whose formulation poses great challenges to representing 
geometry. Solving these challenges requires deep expertise and large 
research investment that are outside the scope of our work, which 
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Fig. 3 | AlphaGeometry synthetic-data-generation process. a, We first sample 
a large set of random theorem premises. b, We use the symbolic deduction 
engine to obtain a deduction closure. This returns a directed acyclic graph  
of statements. For each node in the graph, we perform traceback to find its 
minimal set of necessary premise and dependency deductions. For example, 

for the rightmost node ‘HA ⊥ BC’, traceback returns the green subgraph.  
c, The minimal premise and the corresponding subgraph constitute a synthetic 
problem and its solution. In the bottom example, points E and D took part in the 
proof despite being irrelevant to the construction of HA and BC; therefore, they 
are learned by the language model as auxiliary constructions.
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focuses on a methodology for theorem proving. For this reason, we 
adapted geometry problems from the IMO competitions since 2000 
to a narrower, specialized environment for classical geometry used in 
interactive graphical proof assistants13,17,19, as discussed in Methods. 
Among all non-combinatorial geometry-related problems, 75% can be 
represented, resulting in a test set of 30 classical geometry problems. 
Geometric inequality and combinatorial geometry, for example, can-
not be translated, as their formulation is markedly different to classical 
geometry. We include the full list of statements and translations for 
all 30 problems in the Supplementary Information. The final test set 
is named IMO-AG-30, highlighting its source, method of translation 
and its current size.

Geometry theorem prover baselines
Geometry theorem provers in the literature fall into two categories. 
The first category is computer algebra methods, which treats geom-
etry statements as polynomial equations of its point coordinates. 
Proving is accomplished with specialized transformations of large 
polynomials. Gröbner bases20 and Wu’s method21 are representative 
approaches in this category, with theoretical guarantees to success-
fully decide the truth value of all geometry theorems in IMO-AG-30, 
albeit without a human-readable proof. Because these methods often 
have large time and memory complexity, especially when processing 
IMO-sized problems, we report their result by assigning success to any 
problem that can be decided within 48 h using one of their existing  
implementations17.

AlphaGeometry belongs to the second category of solvers, often 
described as search/axiomatic or sometimes ‘synthetic’ methods. These 
methods treat the problem of theorem proving as a step-by-step search 
problem using a set of geometry axioms. Thanks to this, they typically 
return highly interpretable proofs accessible to human readers. Base-
lines in this category generally include symbolic engines equipped 
with human-designed heuristics. For example, Chou et al. provided 18 
heuristics such as “If OA ⊥ OB and OA = OB, construct C on the oppo-
site ray of OA such that OC = OA”, besides 75 deduction rules for the 
symbolic engine. Large language models22–24 such as GPT-4 (ref. 25) 
can be considered to be in this category. Large language models have 
demonstrated remarkable reasoning ability on a variety of reasoning 
tasks26–29. When producing full natural-language proofs on IMO-AG-30, 
however, GPT-4 has a success rate of 0%, often making syntactic and 
semantic errors throughout its outputs, showing little understanding 
of geometry knowledge and of the problem statements itself. Note that 
the performance of GPT-4 performance on IMO problems can also be 
contaminated by public solutions in its training data. A better GPT-4 per-
formance is therefore still not comparable with other solvers. In general, 
search methods have no theoretical guarantee in their proving perfor-
mance and are known to be weaker than computer algebra methods13.

Synthetic data generation rediscovers known theorems and 
beyond
We find that our synthetic data generation can rediscover some fairly 
complex theorems and lemmas known to the geometry literature, 
as shown in Fig. 4, despite starting from randomly sampled theorem 
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not to be symmetrical like human-discovered theorems, as they are not biased 
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premises. This can be attributed to the use of composite actions 
described in Extended Data Table 1, such as ‘taking centroid’ or ‘tak-
ing excentre’, which—by chance—sampled a superset of well-known 
theorem premises, under our large-scale exploration setting described 
in Methods. To study the complexity of synthetic proofs, Fig. 4 shows 
a histogram of synthetic proof lengths juxtaposed with proof lengths 
found on the test set of olympiad problems. Although the synthetic 
proof lengths are skewed towards shorter proofs, a small number of 
them still have lengths up to 30% longer than the hardest problem in the 
IMO test set. We find that synthetic theorems found by this process are 
not constrained by human aesthetic biases such as being symmetrical, 
therefore covering a wider set of scenarios known to Euclidean geom-
etry. We performed deduplication as described in Methods, resulting 
in more than 100 millions unique theorems and proofs, and did not find 
any IMO-AG-30 theorems, showing that the space of possible geometry 
theorems is still much larger than our discovered set.

Language model pretraining and fine-tuning
We first pretrained the language model on all 100 million synthetically 
generated proofs, including ones of pure symbolic deduction. We then 
fine-tuned the language model on the subset of proofs that requires 
auxiliary constructions, accounting for roughly 9% of the total pre-
training data, that is, 9 million proofs, to better focus on its assigned 
task during proof search.

Proving results on IMO-AG-30
The performance of ten different solvers on the IMO-AG-30 benchmark 
is reported in Table 1, of which eight, including AlphaGeometry, are 
search-based methods. Besides prompting GPT-4 to produce full proofs 
in natural language with several rounds of reflections and revisions, we 
also combine GPT-4 with DD + AR as another baseline to enhance its 
deduction accuracy. To achieve this, we use detailed instructions and 
few-shot examples in the prompt to help GPT-4 successfully interface 
with DD + AR, providing auxiliary constructions in the correct gram-
mar. Prompting details of baselines involving GPT-4 is included in the 
Supplementary Information.

AlphaGeometry achieves the best result, with 25 problems solved in 
total. The previous state of the art (Wu’s method) solved ten problems, 
whereas the strongest baseline (DD + AR + human-designed heuristics) 

solved 18 problems, making use of the algebraic reasoning engine devel-
oped in this work and the human heuristics designed by Chou et al.17. To 
match the test time compute of AlphaGeometry, this strongest baseline 
makes use of 250 parallel workers running for 1.5 h, each attempting 
different sets of auxiliary constructions suggested by human-designed 
heuristics in parallel, until success or timeout. Other baselines such 
as Wu’s method or the full-angle method are not affected by parallel 
compute resources as they carry out fixed, step-by-step algorithms 
until termination.

Measuring the improvements made on top of the base symbolic 
deduction engine (DD), we found that incorporating algebraic deduc-
tion added seven solved problems to a total of 14 (DD + AR), whereas the 
language model’s auxiliary construction remarkably added another 11 
solved problems, resulting in a total of 25. As reported in Extended Data 
Fig. 6, we find that, using only 20% of the training data, AlphaGeometry 
still achieves state-of-the-art results with 21 problems solved. Similarly, 
using less than 2% of the search budget (beam size of 8 versus 512) dur-
ing test time, AlphaGeometry can still solve 21 problems. On a larger 
and more diverse test set of 231 geometry problems, which covers 
textbook exercises, regional olympiads and famous theorems, we find 
that baselines in Table 1 remain at the same performance rankings, with 
AlphaGeometry solving almost all problems (98.7%), whereas Wu’s 
method solved 75% and DD + AR + human-designed heuristics solved 
92.2%, as reported in Extended Data Fig. 6b.

Notably, AlphaGeometry solved both geometry problems of the 
same year in 2000 and 2015, a threshold widely considered difficult 
to the average human contestant at the IMO. Further, the traceback 
process of AlphaGeometry found an unused premise in the translated 
IMO 2004 P1, as shown in Fig. 5, therefore discovering a more general 
version of the translated IMO theorem itself. We included AlphaGeo-
metry solutions to all problems in IMO-AG-30 in the Supplementary 
Information and manually analysed some notable AlphaGeometry 
solutions and failures in Extended Data Figs. 2–5. Overall, we find that 
AlphaGeometry operates with a much lower-level toolkit for proving 
than humans do, limiting the coverage of the synthetic data, test-time 
performance and proof readability.

Human expert evaluation of AlphaGeometry outputs
Because AlphaGeometry outputs highly interpretable proofs, we 
used a simple template to automatically translate its solutions to 
natural language. To obtain an expert evaluation in 2000 and 2015, 
during which AlphaGeometry solves all geometry problems and 
potentially passes the medal threshold, we submit these solutions 
to the USA IMO team coach, who is experienced in grading mathe-
matical olympiads and has authored books for olympiad geometry 
training. AlphaGeometry solutions are recommended to receive 
full scores, thus passing the medal threshold of 14/42 in the corre-
sponding years. We note that IMO tests also evaluate humans under 
three other mathematical domains besides geometry and under 
human-centric constraints, such as no calculator use or 4.5-h time 
limits. We study time-constrained settings with 4.5-h and 1.5-h limits 
for AlphaGeometry in Methods and report the results in Extended  
Data Fig. 1.

Learning to predict the symbolic engine’s output improves the 
language model’s auxiliary construction
In principle, auxiliary construction strategies must depend on the 
details of the specific deduction engine they work with during proof 
search. We find that a language model without pretraining only 
solves 21 problems. This suggests that pretraining on pure deduction 
proofs generated by the symbolic engine DD + AR improves the suc-
cess rate of auxiliary constructions. On the other hand, a language 
model without fine-tuning also degrades the performance but not as 
severely, with 23 problems solved compared with AlphaGeometry’s full  
setting at 25.

Table 1 | Main results on our IMO-AG-30 test benchmark

Method Problems solved 
(out of 30)

Computer algebra Wu’s method21 (previous state of 
the art)

10

Gröbner basis20 4

Search (human-like) GPT-4 (ref. 25) 0

Full-angle method30 2

Deductive database (DD)10 7

DD + human-designed heuristics17 9

DD + AR (ours) 14

DD + AR + GPT-4 auxiliary 
constructions

15

DD + AR + human-designed heuristics 18

AlphaGeometry 25

• Without pretraining 21

• Without fine-tuning 23

We compare AlphaGeometry to other state-of-the-art methods (computer algebra and search 
approaches), most notably Wu’s method. We also show the results of DD + AR (our contribution) 
and its variants, resulting in the strongest baseline DD + AR + human-designed heuristics. 
Finally, we include ablation settings for AlphaGeometry without pretraining and fine-tuning.
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Hard problems are reflected in AlphaGeometry proof length
Figure 6 measures the difficulty of solved problems using public scores 
of human contestants at the IMO and plots them against the corre-
sponding AlphaGeometry proof lengths. The result shows that, for 
the three problems with the lowest human score, AlphaGeometry also 
requires exceptionally long proofs and the help of language-model 
constructions to reach its solution. For easier problems (average human 
score > 3.5), however, we observe no correlation (p = −0.06) between 
the average human score and AlphaGeometry proof length.

Conclusion
AlphaGeometry is the first computer program to surpass the per-
formance of the average IMO contestant in proving Euclidean plane 
geometry theorems, outperforming strong computer algebra and 
search baselines. Notably, we demonstrated through AlphaGeometry a 
neuro-symbolic approach for theorem proving by means of large-scale 
exploration from scratch, sidestepping the need for human-annotated 
proof examples and human-curated problem statements. Our method 
to generate and train language models on purely synthetic data provides 
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“Let ABC be an acute-angled triangle with AB ≠ AC. 
The circle with diameter BC intersects the sides AB and AC at 
M and N respectively. Denote by O the midpoint of the side
BC. The bisectors of the angles ∠BAC and ∠MON intersect  
at R. Prove that the circumcircles of the triangles BMR and 
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a general guiding framework for mathematical domains that are facing 
the same data-scarcity problem.
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Methods

Geometry representation
General-purpose formal languages such as Lean31 still require a large 
amount of groundwork to describe most IMO geometry problems 
at present. We do not directly address this challenge as it requires 
deep expertise and substantial research outside the scope of 
theorem-proving methodologies. To sidestep this barrier, we instead 
adopted a more specialized language used in GEX10, JGEX17, MMP/
Geometer13 and GeoLogic19, a line of work that aims to provide a logi-
cal and graphical environment for synthetic geometry theorems with 
human-like non-degeneracy and topological assumptions. Examples 
of this language are shown in Fig. 1d,f. Owing to its narrow formulation, 
75% of all IMO geometry problems can be adapted to this representa-
tion. In this type of geometry environment, each proof step is logically 
and numerically verified and can also be evaluated by a human reader 
as if it is written by IMO contestants, thanks to the highly natural gram-
mar of the language. To cover more expressive algebraic and arithmetic 
reasoning, we also add integers, fractions and geometric constants to 
the vocabulary of this language. We do not push further for a complete 
solution to geometry representation as it is a separate and extremely 
challenging research topic that demands substantial investment from 
the mathematical formalization community.

Sampling consistent theorem premises
We developed a constructive diagram builder language similar to that 
used by JGEX17 to construct one object in the premise at a time, instead 
of freely sampling many premises that involve several objects, there-
fore avoiding the generation of a self-contradicting set of premises. 
An exhaustive list of construction actions is shown in Extended Data 
Table 1. These actions include constructions to create new points that 
are related to others in a certain way, that is, collinear, incentre/excentre 
etc., as well as constructions that take a number as its parameter, for 
example, “construct point X such that given a number α, ∠ABX = α”. One 
can extend this list with more sophisticated actions to describe a more 
expressive set of geometric scenarios, improving both the synthetic 
data diversity and the test-set coverage. A more general and expressive 
diagram builder language can be found in ref. 32. We make use of a 
simpler language that is sufficient to describe problems in IMO-AG-30 
and can work well with the symbolic engine DD.

The symbolic deduction engine
The core functionality of the engine is deducing new true statements 
given the theorem premises. Deduction can be performed by means 
of geometric rules such as ‘If X then Y’, in which X and Y are sets of geo-
metric statements such as ‘A, B, C are collinear’. We use the method of 
structured DD10,17 for this purpose as it can find the deduction closure 
in just seconds on standard non-accelerator hardware. To further 
enhance deduction, we also built into AlphaGeometry the ability to 
perform deduction through AR. AR enable proof steps that perform 
angle/ratio/distance chasing. Detailed examples of AR are shown in 
Extended Data Table 2. Such proof steps are ubiquitous in geometry 
proofs, yet not covered by geometric rules. We expand the Gaussian 
elimination process implemented in GeoLogic19 to find the deduction 
closure for all possible linear operators in just seconds. Our symbolic 
deduction engine is an intricate integration of DD and AR, which we 
apply alternately to expand the joint closure of known true state-
ments until expansion halts. This process typically finishes within a 
few seconds to at most a few minutes on standard non-accelerator  
hardware.

Algebraic reasoning
There has not been a complete treatment for algebraic deduction 
in the literature of geometry theorem proving. For example, in  
iGeoTutor12, Z3 (ref. 33) is used to handle arithmetic inferences but 

algebraic manipulations are not covered. DD (ref. 17) handles algebraic 
deductions by expressing them under a few limited deduction rules, 
therefore, it is unable to express more complex manipulations, leaving 
arithmetic inferences not covered. The most general treatment so far 
is a process similar that in ref. 34 for angle-only theorem discovery and 
implemented in GeoLogic19 for both angle and ratios. We expanded this 
formulation to cover all reasoning about angles, ratios and distances 
between points and also arithmetic reasoning with geometric constants 
such as ‘pi’ or ‘1:2’. Concrete examples of algebraic reasoning are given 
in Extended Data Table 2.

On a high level, we first convert the input linear equations to a matrix 
of their coefficients. In particular, we create a coefficient matrix A ∈ RM×N 
in which N is the number of variables and M is the number of input equa-
tions. In geometry, any equality is of the form a − b = c − d ⇔ a − b − c 
+ d = 0. For example, the angle equality ∠ABC = ∠XYZ is represented 
as s(AB) − s(BC) = s(XY) − s(YZ), in which s(AB) is the angle between 
AB and the x-direction, modulo pi. Similarly, ratios AB:CD = EF:GH are 
represented as log(AB) − log(CD) = log(EF) − log(GH), in which log(AB) 
is the log of the length of segment AB. For distances, each variable is a 
(point, line) pair, representing a specific point on a specific line.

Because all equalities are of the form ‘a − b − c + d = 0’, we populate 
the row for each equality with values +1, −1, −1, +1 at columns corre-
sponding to variables a, b, c and d. Running Gaussian elimination on 
A returns a new matrix with leading 1s at each of the columns, essen-
tially representing each variable as a unique linear combination of all 
remaining variables. As an example, suppose we have ‘a − b = b − c’, 
‘d − c = a − d’ and ‘b − c = c − e’ as input equalities, running the Gaussian 
elimination process (denoted GE in the following equation) returns 
the following result:

a b c d e a b c d e a d e
b d

c d e

1 −2 1 0 0
−1 0 −1 2 0
0 1 −2 0 1

→ 1 0 0 −1.5 0.5
0 1 0 −1 0
0 0 1 −0.5 −0.5

= 1.5 − 0.5
=

= 0.5 + 0.5

GE
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From this result, we can deterministically and exhaustively deduce 
all new equalities by checking if x1 = x2 or x1 − x2 = x2 − x3 or x1 − x2 = x3 − x4, 
in which {x1, x2, x3, x4} is any 4-permutation of all variables. In the above 
Gaussian Elimination, for example, AR deduced that b = d from the 
three input equalities. To handle geometric constants such as ‘0.5 pi’ 
or ‘5:12’, we included ‘pi’ and ‘1’ as default variables to all coefficient  
matrices.

Deductive database implementation
Unlike the original implementation of DD, we use a graph data structure 
to capture the symmetries of geometry, rather than using strings of 
canonical forms. With a graph data structure, we captured not only 
the symmetrical permutations of function arguments but also the 
transitivity of equality, collinearity and concyclicity. This graph data 
structure bakes into itself some deduction rules explicitly stated in the 
geometric rule list used in DD. These deduction rules from the original 
list are therefore not used anywhere in exploration but implicitly used 
and explicitly spelled out on-demand when the final proof is serialized  
into text.

Traceback to find minimal proofs. Each deduction step needs to 
be coupled with a traceback algorithm, which returns the minimal 
set of immediate ancestor statements that is necessary to deduce 
the conclusion statement of the step. This is the core building block 
for extracting proof graphs and minimal premises described in the 
main text. A minimal-premise-extraction algorithm is necessary to 
avoid superfluous auxiliary constructions that contribute to the 
proof through unnecessary transitivity. For example, ‘a = b’ and ‘b = c’ 
might not be necessary if ‘a = c’ can be obtained directly through other  
reasoning chains.
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Traceback for geometric-rule deduction
To do this, we record the equality transitivity graph. For example, if 
‘a = b’, ‘b = c’, ‘c = d’ and ‘a = d’ are deduced, which results in nodes a, 
b, c and d being connected to the same ‘equality node’ e, we maintain 
a graph within e that has edges [(a, b), (b, c), (c, d), (a, d)]. This allows 
the traceback algorithm to perform a breadth-first search to find the 
shortest path of transitivity of equality between any pair of variables 
among a, b, c and d. For collinearity and concyclicity, however, the 
representation is more complex. In these cases, hypergraphs G(V, E) 
with 3-edges or 4-edges are used as the equality transitivity graph. 
The traceback is now equivalent to finding a minimum spanning tree 
(denoted MST in the following equation) for the target set S of nodes 
(three collinear nodes or four concyclic nodes) whose weight is the 
cardinality of the union of its hyperedges e′:

S w e S TMST( ) = min ( ′) s.t. ⊂T E e T⊂ ′⊂⋃

Such optimization is NP-hard, as it is a reduction from the decision 
version of vertex cover. We simply use a greedy algorithm in this case 
to find a best-effort minimum spanning tree.

Traceback for algebraic deduction
Traceback through Gaussian elimination can be done by recogniz-
ing that it is equivalent to a mixed integer linear programming 
problem. Given the coefficient matrix of input equations A con-
structed as described in the previous sections and a target equa-
tion with coefficients vector b ∈ RN, we determine the minimal set 
of premises for b by defining non-negative integer decision vectors 
x, y ∈ ZM and solve the following mixed-integer linear programming  
problem:

∑x y x y A x y b, = min ( + ) s.t. ( − ) =x y i i i,
T

The minimum set of immediate parent nodes for the equality repre-
sented by b will be the ith equations (ith rows in A) whose corresponding 
decision value (xi − yi) is non-zero.

Integrating DD and AR
DD and AR are applied alternately to expand their joint deduction clo-
sure. The output of DD, which consists of new statements deduced 
with deductive rules, is fed into AR and vice versa. For example, if DD 
deduced ‘AB is parallel to CD’, the slopes of lines AB and CD will be 
updated to be equal variables in AR’s coefficient matrix A, defined in 
the ‘Algebraic reasoning’ section. Namely, a new row will be added to A 
with ‘1’ at the column corresponding to the variable slope(AB) and ‘−1’ at 
the column of slope(CD). Gaussian elimination and mixed-integer linear 
programming is run again as AR executes, producing new equalities 
as inputs to the next iteration of DD. This loop repeats until the joint 
deduction closure stops expanding. Both DD and AR are deterministic 
processes that only depend on the theorem premises, therefore they 
do not require any design choices in their implementation.

Proof pruning
Although the set of immediate ancestors to any node is minimal, this 
does not guarantee that the fully traced back dependency subgraph 
G(N) and the necessary premise P are minimal. Here we define minimal-
ity to be the property that G(N) and P cannot be further pruned without 
losing conclusion reachability. Without minimality, we obtained many 
synthetic proofs with vacuous auxiliary constructions, having shallow 
relation to the actual proof and can be entirely discarded. To solve 
this, we perform exhaustive trial and error, discarding each subset of 
the auxiliary points and rerunning DD + AR on the smaller subset of 
premises to verify goal reachability. At the end, we return the minimum 
proof obtainable across all trials. This proof-pruning procedure is done 

both during synthetic data generation and after each successful proof 
search during test time.

Parallelized data generation and deduplication
We run our synthetic-data-generation process on a large number 
of parallel CPU workers, each seeded with a different random seed 
to reduce duplications. After running this process on 100,000 CPU 
workers for 72 h, we obtained roughly 500 million synthetic proof 
examples. We reformat the proof statements to their canonical form 
(for example, sorting arguments of individual terms and sorting terms 
within the same proof step, etc.) to avoid shallow deduplication against 
itself and against the test set. At the end, we obtain 100 million unique 
theorem–proof examples. A total of 9 million examples involves at 
least one auxiliary construction. We find no IMO-AG-30 problems 
in the synthetic data. On the set of geometry problems collected in 
JGEX17, which consists mainly of problems with moderate difficulty and 
well-known theorems, we find nearly 20 problems in the synthetic data. 
This suggests that the training data covered a fair amount of common 
knowledge in geometry, but the space of more sophisticated theorems 
is still much larger.

Language model architecture and training
We use the Meliad library35 for transformer training with its base  
settings. The transformer has 12 layers, embedding dimension of 1,024, 
eight heads of attention and an inter-attention dense layer of dimension 
4,096 with ReLU activation. Overall, the transformer has 151 million  
parameters, excluding embedding layers at its input and output 
heads. Our customized tokenizer is trained with ‘word’ mode using 
SentencePiece36 and has a vocabulary size of 757. We limit the maxi-
mum context length to 1,024 tokens and use T5-style relative posi-
tion embedding37. Sequence packing38,39 is also used because more 
than 90% of our sequences are under 200 in length. During training, a  
dropout40 rate of 5% is applied pre-attention and post-dense. A 4 × 4 
slice of TPUv3 (ref. 41) is used as its hardware accelerator. For pre-
training, we train the transformer with a batch size of 16 per core 
and a cosine learning-rate schedule that decays from 0.01 to 0.001 
in 10,000,000 steps. For fine-tuning, we maintain the final learn-
ing rate of 0.001 for another 1,000,000 steps. For the set-up with 
no pretraining, we decay the learning rate from 0.01 to 0.001 in 
1,000,000 steps. We do not perform any hyperparameter tuning. 
These hyperparameter values are either selected to be a large round 
number (training steps) or are provided by default in the Meliad  
codebase.

Parallelized proof search. Because the language model decoding 
process returns k different sequences describing k alternative auxiliary 
constructions, we perform a beam search over these k options, using 
the score of each beam as its value function. This set-up is highly paral-
lelizable across beams, allowing substantial speed-up when there are 
parallel computational resources. In our experiments, we use a beam 
size of k = 512, the maximum number of iterations is 16 and the branch-
ing factor for each node, that is, the decoding batch size, is 32. This is 
the maximum inference-time batch size that can fit in the memory of a 
GPU V100 for our transformer size. Scaling up these factors to examine 
a larger fraction of the search space might improve AlphaGeometry 
results even further.

For each problem, we used a pool of four GPU workers, each hosting 
a copy of the transformer language model to divide the work between 
alternative beams, and a pool of 10,000 CPU workers to host the sym-
bolic solvers, shared across all beams across all 30 problems. This way, 
a problem that terminates early can contribute its share of computing 
power to longer-running problems. We record the running time of the 
symbolic solver on each individual problem, which—by design—stays 
roughly constant across all beams. We use this and the language model 
decoding speed to infer the necessary parallelism needed for each 



problem, in isolation, to stay under different time limits at the IMO in 
Extended Data Fig. 1.

The effect of data and search
We trained AlphaGeometry on smaller fractions of the original training 
data (20%, 40%, 60% and 80%) and found that, even at 20% of training 
data, AlphaGeometry still solves 21 problems, more than the strong-
est baseline (DD + AR + human-designed heuristics) with 18 problems 
solved, as shown in Extended Data Fig. 6a. To study the effect of beam 
search on top of the language model, we reduced the beam size and 
search depth separately during proof search and reported the results 
in Extended Data Fig. 6c,d. We find that, with a beam size of 8, that is, a 
64 times reduction from the original beam size of 512, AlphaGeometry 
still solves 21 problems. A similar result of 21 problems can be obtained 
by reducing the search depth from 16 to only two, while keeping the 
beam size constant at 512.

Evaluation on a larger test set
We evaluated AlphaGeometry and other baselines on a larger test set 
of 231 geometry problems, curated in ref. 17. This set covers a wider 
range of sources outside IMO competitions: textbook examples and 
exercises, regional olympiads and famous geometry theorems; some 
are even more complex than typical IMO problems, such as the five 
circles theorem, Morley’s theorem or Sawayama and Thébault’s theo-
rem. The results are reported in Extended Data Fig. 6b. The overall 
rankings of different approaches remained the same as in Table 1, with 
AlphaGeometry solving almost all problems (98.7%). The strongest 
baseline DD + AR + human-designed heuristics solves 92.2%, whereas 
the previous state of the art solves 75%.

AlphaGeometry framework and applicability to other domains. The 
strength of AlphaGeometry’s neuro-symbolic set-up lies in its ability 
to generate auxiliary constructions, which is an important ingredient 
across many mathematical domains. In Extended Data Table 3, we give 
examples in four other mathematical domains in which coming up with 
auxiliary constructions is key to the solution. In Extended Data Table 4, 
we give a line-by-line comparison of a geometry proof and an inequality 
proof for the IMO 1964 Problem 2, highlighting how they both fit into 
the same framework.

Our paper shows that language models can learn to come up with aux-
iliary constructions from synthetic data, in which problem statements 
and auxiliary constructions are randomly generated together and then 
separated using the traceback algorithm to identify the dependency 
difference. Concretely, the AlphaGeometry framework requires the 
following ingredients:
(1) An implementation of the domain’s objects and definitions.
(2) A random premise sampler.
(3) The symbolic engine(s) that operate within the implementation (1).
(4) A traceback procedure for the symbolic engine.

Using these four ingredients and the algorithm described in the main 
text, one can generate synthetic data for any target domain. As shown 
in our paper, there are non-trivial engineering challenges in building 
each ingredient. For example, current formalizations of combinatorics 
are very nascent, posing challenges to (1) and (2). Also, building pow-
erful symbolic engines for different domains requires deep domain 
expertise, posing challenges to (3) and (4). We consider applying this 
framework to a wider scope as future work and look forward to further 
innovations that tackle these challenges.

Transformer in theorem proving
Research in automated theorem proving has a long history dating back 
to the 1950s (refs. 6,42,43), resulting in highly optimized first-order 
logic solvers such as E (ref. 44) or Vampire45. In the 2010s, deep learn-
ing matured as a new powerful tool for automated theorem proving, 

demonstrating great successes in premise selection and proof guid-
ance46–49, as well as SAT solving50. On the other hand, transformer18 
exhibits outstanding reasoning capabilities across a variety of tasks51–53. 
The first success in applying transformer language models to theorem 
proving is GPT-f (ref. 15). Its follow up extensions2,16 further developed 
this direction, allowing machines to solve some olympiad-level prob-
lems for the first time. Innovation in the proof-search algorithm and 
online training3 also improves transformer-based methods, solving 
a total of ten (adapted) IMO problems in algebra and number theory. 
These advances, however, are predicated on a substantial amount of 
human proof examples and standalone problem statements designed 
and curated by humans.

Geometry theorem proving. Geometry theorem proving evolves in 
an entirely separate space. Its literature is divided into two branch-
es, one of computer algebra methods and one of search methods. 
The former is largely considered solved since the introduction of 
Wu’s method21, which can theoretically decide the truth value of 
any geometrical statement of equality type, building on specialized 
algebraic tools introduced in earlier works54,55. Even though com-
puter algebra has strong theoretical guarantees, its performance 
can be limited in practice owing to their large time and space com-
plexity56. Further, the methodology of computer algebra is not 
of interest to AI research, which instead seeks to prove theorems 
using search methods, a more human-like and general-purpose  
process.

Search methods also started as early as the 1950s (refs. 6,7) and 
continued to develop throughout the twentieth century57–60. With 
the introduction of DD10,17, area methods61 and full-angle methods30, 
geometry solvers use higher-level deduction rules than Tarski’s or 
Hilbert’s axioms and are able to prove a larger number of more com-
plex theorems than those operating in formal languages. Geometry 
theorem proving of today, however, is still relying on human-designed 
heuristics for auxiliary constructions10–14. Geometry theorem proving 
falls behind the recent advances made by machine learning because its 
presence in formal mathematical libraries such as Lean31 or Isabelle62 
is extremely limited.

Synthetic data in theorem proving. Synthetic data has long been 
recognized and used as an important ingredient in theorem prov-
ing63–66. State-of-the-art machine learning methods make use of  
expert iteration to generate a curriculum of synthetic proofs2,3,15. 
Their methods, however, only generate synthetic proofs for a fixed 
set of predefined problems, designed and selected by humans. Our 
method, on the other hand, generates both synthetic problems and 
proofs entirely from scratch. Aygun et al.67 similarly generated synthetic 
proofs with hindsight experience replay68, providing a smooth range 
of theorem difficulty to aid learning similar to our work. AlphaGeo-
metry, however, is not trained on existing conjectures curated by 
humans and does not learn from proof attempts on the target theo-
rems. Their approach is thus orthogonal and can be used to further 
improve AlphaGeometry. Most similar to our work is Firoiu et al.69, 
whose method uses a forward proposer to generate synthetic data by 
depth-first exploration and trains a neural network purely on these 
synthetic data. Our work, on the other hand, uses breadth-first explora-
tion, necessary to obtain the minimal proofs and premises, and uses a 
traceback algorithm to identify auxiliary constructions, thus introduc-
ing new symbols and hypotheses that the forward proposer cannot  
propose.

Data availability
The data supporting the findings of this work are available in the 
Extended Data and the Supplementary Information. Source data are 
provided with this paper.
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Code availability
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Extended Data Fig. 1 | The minimum number of parallel CPU workers to 
solve all 25 problems and stay under the time limit, given four parallel 
copies of the GPU V100-accelerated language model. Each problem has  
a different running time resulting from their unique size of the deduction 

closure. We observed that running time does not correlate with the difficulty of 
the problem. For example, IMO 2019 P6 is much harder than IMO 2008 P1a, yet 
it requires far less parallelization to reach a solution within IMO time limits.



Article

Extended Data Fig. 2 | Side-by-side comparison of AlphaGeometry proof 
versus human proof on the translated IMO 2004 P1. Both the AlphaGeometry 
and human solutions recognize the axis of symmetry between M and N through 
O. AlphaGeometry constructs point K to materialize this axis, whereas humans 
simply use the existing point R for the same purpose. This is a case in which 
proof pruning itself cannot remove K and a sign of similar redundancy in our 
synthetic data. To prove five-point concyclicity, AlphaGeometry outputs very 
lengthy, low-level steps, whereas humans use a high-level insight (OR is the 

symmetrical axis of both LN and AM) to obtain a broad set of conclusions all  
at once. For algebraic deductions, AlphaGeometry cannot flesh out its 
intermediate derivations, which is implicitly carried out by Gaussian elimination, 
therefore leading to low readability. Overall, this comparison points to the use 
of higher-level tools to improve the synthetic data, proof search and readability 
of AlphaGeometry. Note that in the original IMO 2004 P1, the point P is proven 
to be between B and C. The generalized version needs further contraints on the 
position of O to satisfy this betweenness requirement.



Extended Data Fig. 3 | Side-by-side comparison of human proof and 
AlphaGeometry proof for the IMO 2000 P6. This is a harder problem  
(average human score = 1.05/7), with a large number of objects in the problem 
statements, resulting in a very crowded diagram. Left, the human solution uses 
complex numbers. With a well-chosen coordinate system, the problem is greatly 
simplified and a solution follows naturally through algebraic manipulation. 
Right, AlphaGeometry solution involves two auxiliary constructions and more 

than 100 deduction steps, with many low-level steps that are extremely tedious 
to a human reader. This is a case in which the search-based solution is much less 
readable and much less intuitive than coordinate bashing. A more structural 
organization, that is, a high-level proof outline, can improve readability of the 
AlphaGeometry solution substantially. Again, this suggests building into 
AlphaGeometry many higher-level deduction rules to encapsulate large groups 
of low-level deductions into fewer proof steps.
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Extended Data Fig. 4 | Side-by-side comparison of human proof and 
AlphaGeometry proof for the IMO 2019 P2. This is one out of five unsolved 
problems by AlphaGeometry. Left, the human solution uses both auxiliary 
constructions and barycentric coordinates. With a well-chosen coordinate 
system, a solution becomes available through advanced algebraic manipulation. 
Right, AlphaGeometry solution when provided with the ground-truth auxiliary 
construction for a synthetic proof. This auxiliary construction can be found 

quickly with the knowledge of Reim’s theorem, which is not included in the 
deduction rule list used by the symbolic engine during synthetic data 
generation. Including such high-level theorems into the synthetic data 
generation can greatly improve the coverage of synthetic data and thus 
improve auxiliary construction capability. Further, higher-level steps using 
Reim’s theorem also cut down the current proof length by a factor of 3.



Extended Data Fig. 5 | Human proof for the IMO 2008 P6. This is an unsolved 
problem by AlphaGeometry and also the hardest one among all 30 problems, 
with an average human score of only 0.28/7. This human proof uses four auxiliary 
constructions (diameters of circles W1 and W2) and high-level theorems such  
as the Pitot theorem and the notion of homothety. These high-level concepts 
are not available to our current version of the symbolic deduction engine both 
during synthetic data generation and proof search. Supplying AlphaGeometry 

with the auxiliary constructions used in this human proof also does not yield 
any solution. There is also no guarantee that a synthetic solution exists for 
AlphaGeometry, across all possible auxiliary constructions, without enhancing 
its symbolic deduction with more powerful rules. Again, this suggests that 
enhancing the symbolic engine with more powerful tools that IMO contestants 
are trained to use can improve both the synthetic data and the test-time 
performance of AlphaGeometry.
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Extended Data Fig. 6 | Analysis of AlphaGeometry performance under 
changes made to its training and testing. a, The effect of reducing training 
data on AlphaGeometry performance. At 20% of training data, AlphaGeometry 
still solves 21 problems, outperforming all other baselines. b, Evaluation on a 
larger set of 231 geometry problems, covering a diverse range of sources outside 
IMO competitions. The rankings of different machine solvers stays the same as 

in Table 1, with AlphaGeometry solving almost all problems. c, The effect of 
reducing beam size during test time on AlphaGeometry performance. At beam 
size 8, that is, a 64 times reduction from its full setting, AlphaGeometry still 
solves 21 problems, outperforming all other baselines. d, The effect of reducing 
search depth on AlphaGeometry performance. At depth 2, AlphaGeometry still 
solves 21 problems, outperforming all other baselines.



Extended Data Table 1 | List of actions to construct the random premises

These actions include constructions to create new points that are related to others in a certain way, for example, collinear, incentre/excentre etc., and constructions that take a number as its 
parameter.



Article
Extended Data Table 2 | Three examples of algebraic reasoning (AR) in geometry theorem proving, with AR proof steps 
between the two tags <AR></AR>

In AlphaGeometry, the engine AR can execute all three examples efficiently, under a unified procedure of Gaussian elimination.



Extended Data Table 3 | Examples of auxiliary constructions in four different domains

In these examples, the construction is key to the proof, whereas the remaining proof is relatively more mechanical. In AlphaGeometry, the mechanical portion is efficiently handled by the 
symbolic engine DD + AR.
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Extended Data Table 4 | A comparison between a geometry proof and an IMO inequality proof through the lens of the 
AlphaGeometry framework

We assume AM-GM to be a symbolic engine capable of (1) algebraic rewrites and simplification and (2) applying the inequality rule of arithmetic means–geometric means. With the original 
premises, directly applying AM-GM fails to deliver a solution, which is similar to the geometry example, for which DD + AR fails to solve the simple problem. Some correct auxiliary constructions 
are necessary for both symbolic engines (DD + AR in the case of geometry and AM-GM in the case of inequality) to succeed, as shown in the last two rows of the table. Note that there are ten 
more common inequalities typically used at mathematical olympiads besides AM-GM, just as DD + AR itself encapsulates more than 50 different deduction rules for geometry commonly used at 
the olympiads.
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