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The social and structural architecture of the 
yeast protein interactome

André C. Michaelis1, Andreas-David Brunner1,2, Maximilian Zwiebel1, Florian Meier1,3, 
Maximilian T. Strauss4, Isabell Bludau1 & Matthias Mann1,4 ✉

Cellular functions are mediated by protein–protein interactions, and mapping  
the interactome provides fundamental insights into biological systems. Affinity 
purification coupled to mass spectrometry is an ideal tool for such mapping, but it has 
been difficult to identify low copy number complexes, membrane complexes and 
complexes that are disrupted by protein tagging. As a result, our current knowledge  
of the interactome is far from complete, and assessing the reliability of reported 
interactions is challenging. Here we develop a sensitive high-throughput method  
using highly reproducible affinity enrichment coupled to mass spectrometry combined 
with a quantitative two-dimensional analysis strategy to comprehensively map the 
interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well 
format enabled replicate analysis of the endogenous GFP-tagged library covering the 
entire expressed yeast proteome1. The 4,159 pull-downs generated a highly structured 
network of 3,927 proteins connected by 31,004 interactions, doubling the number  
of proteins and tripling the number of reliable interactions compared with existing 
interactome maps2. This includes very-low-abundance epigenetic complexes, 
organellar membrane complexes and non-taggable complexes inferred by abundance 
correlation. This nearly saturated interactome reveals that the vast majority of yeast 
proteins are highly connected, with an average of 16 interactors. Similar to social 
networks between humans, the average shortest distance between proteins is 4.2 
interactions. AlphaFold-Multimer provided novel insights into the functional roles  
of previously uncharacterized proteins in complexes. Our web portal (www.yeast- 
interactome.org) enables extensive exploration of the interactome dataset.

The large-scale study of cellular interactomes using mass spectrometry- 
based proteomics dates back over 20 years3,4, culminating in 2 studies 
in which nearly half the expressed yeast proteome was successfully 
purified with identified interactors5,6. These datasets have been mined 
extensively, leading to a network-based view of the cellular proteome. 
Given the importance of the interactome for functional understanding 
and the substantial improvements in mass spectrometry technology 
during the past decade7,8, we set out to generate a substantially com-
plete interactome of all proteins present in an organism in a given 
state. We made use of an endogenously GFP-tagged yeast library con-
taining the 4,159 proteins that are detectable by fluorescence under 
standard growth conditions1. Miniaturization and standardization 
of the workflow in combination with an ultra-robust liquid chroma-
tography system with minimal overhead time coupled to a sensitive 
trapped ion mobility mass spectrometer utilizing the PASEF scan 
mode9,10 resulted in very high data completeness across pull-downs. 
This workflow required only 1.5 ml instead of litres of yeast culture, 
provided a constant throughput of 60 pull-downs per day and enabled 
the use of the same conditions for soluble or membrane proteins of 
vastly different abundances (Fig. 1a).

 
Measurement of the yeast interactome
To test the quantitative reproducibility of our workflow, we performed 
24 biological replicates of pull-downs of 3 nuclear complexes, which 
resulted in complete retrieval of these complexes from a single bait 
each, with 9% average coefficients of variation of enriched complex 
members (Fig. 1b). This compares with a 69% repeatability of assigned 
interactions in the previous large-scale screens11.

Three layers of evidence help to establish an interaction between 
two proteins. The first two are statistically significant enrichment of 
the proteins in the forward and in the reverse pull-downs (in which the 
prey pull-down significantly enriches the bait). Instead of using only 
a t-test of bait pull-down against a pull-down of a strain expressing 
GFP, we made use of our vast number of diverse GFP-tagged strains, to 
combine them into a single control group, thereby efficiently removing 
false positives not specifically binding to the bait (Methods, ‘Enrich-
ment analysis’). Using this affinity enrichment (rather than affinity 
purification) concept12, we quantitatively compared all proteins across 
more than 8,000 pull-down measurements, making use of the profile 
similarities of interacting proteins in correlation analysis. This third 
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Fig. 1 | A comprehensive and scalable interactomics technology. a, Sample 
preparation in 96-well format and mass spectrometric measurement. Each 
strain of the GFP-tagged library is lysed by mechanical disruption and 
transferred to anti-GFP nanobody coated microtitre plates, where weak 
interactions are preserved by gentle washing. After enzymatic in-well 
digestion, resulting peptides are transferred to standardized C18-StageTips 
from which they are eluted directly into a standardized 60 samples per day 
gradient. Data are acquired in the PASEF scan mode on a trapped ion mobility—
time-of-flight mass spectrometer. LC, liquid chromatography. b, Streamlined 
workflow and reduced transfer steps reduce the risk of manual errors and 
sample variation. Demonstration of workflow reproducibility and sensitivity 
on three nuclear complexes in biological replicates. A tagged member (bait) of 
each complex pulls down the known preys in very similar amounts based on 

label-free quantification (LFQ) intensities. Bottom, coefficient of variation 
(within 24 replicates), mean with standard deviation (n = 16 (RSC), 7 (COMPASS) 
and 18 (SAGA) complex members). c, Two-dimensional interaction scoring. 
Columns represent pull-down experiments in replicates (light colour). Squares 
depict intensities of detected proteins across the pull-down experiments. 
Three levels of evidence support each interaction: t-test of forward pull-down 
against complementary experiments, t-test of reverse pull-down, and protein 
profile correlation—the correlated abundance profile against all other proteins 
across all experiments (z-scored; Methods, ‘Protein correlation’). d, Overlap of 
proteins with at least one interactor and interactions detected in this study 
with the previous state-of-the-art network2. e, The proportion of interactions 
backed by multiple layers of evidence in the complete network and the network 
excluding inter-cluster interactions.
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type of evidence was highly informative owing to the high quantita-
tive accuracy combined with a nearly complete set of virtual controls 
(Fig. 1c and Methods, ‘Protein correlation’).

We combined all three layers of each interaction into a single interac-
tion score and retained those with a minimum score of 2, corresponding 
to: (1) a single pull-down at 1% false discovery rate (FDR); (2) a correla-
tion z-score of at least 5; (3) forward and reverse pull-downs at 5% FDR 
each; or (4) a pull-down at 5% FDR combined with a correlation z-score 
greater than 4. To retrieve clusters and complexes from our interac-
tome data, we used Markov clustering with the interaction scores as 
the edge weights, without any training or a priori knowledge (Fig. 1c 
and Methods, ‘Network generation’).

The replicate GFP pull-down measurement in the 4,147 yeast strains 
resulted in the enrichment of 82% of the baits (Extended Data Fig. 1). 
Our mass spectrometry data provided statistically significant evidence 
for more than 30,000 physical interactions, corresponding to an aver-
age of 15.8 interactions per protein. Most were supported by forward 
pull-down (35%), followed by forward pull-down and significant prey 
correlation (29%), whereas nearly all interactions with both forward 
and reverse evidence also had significant correlation z-scores (95%) 
(Extended Data Fig. 2).

Owing to the limited overlap of the interactions reported by two 
previous large-scale studies (13% shared interactions), Collins et al. 
merged and reanalysed these datasets to create a consensus network 
with 1,622 proteins2 (nodes in a network). Our data encompass 95% of 
these proteins, but places nearly the entire expressed yeast proteome 
in a network (3,927 nodes). Our dataset of 30,000 significant protein–
protein interactions confirms 63% of the much smaller Collins et al. 
dataset2 (Fig. 1d). Based on a comparison with the BioGRID database13, 
more than two-thirds of the interactions reported here are novel.

Affinity enrichment coupled to mass spectrometry (AE–MS) is a 
‘co-complex’-oriented approach, in contrast to binary interaction 
mapping. AE–MS can define interactions between all complex mem-
bers even if their interaction is not direct but bridged via other mem-
bers. By contrast, binary methods detect direct physical interactions 
between protein pairs14,15. By its nature, a large-scale, reproducible 
co-complex-oriented approach will therefore generate higher num-
bers of interactions overall, and especially in large complexes. In 
our dataset, the inherently high ‘redundancy’ in combination with 
an efficient scoring turned out to be fundamental for a clustering 
that identifies functional units. As also observed in human interac-
tion data15, about one-quarter of published interaction data within 
our co-complex network overlaps that of binary detection methods 
(Extended Data Fig. 3).

Organization of interactions in clusters
Markov clustering analysis—with our interaction scores as edge 
weights—condensed the network into 617 clusters, with about 20,000 
interactions, most supported by at least two statistically significant 
levels of evidence (Fig. 1e). When we inspected known protein com-
plexes from different cellular compartments, especially membrane 
complexes, we found them to recapitulate the literature to a large 
degree. Furthermore, we retrieved 4,076 interactions between anno-
tated membrane proteins, compared with 853 in a dedicated membrane 
proteome16. We show this exemplarily for the endosomal retromer 
complex, the conserved oligomeric Golgi complex and the plasma 
membrane exocyst complex, which are fully retrieved in our experi-
ments (Fig. 2a). Our unbiased and high coverage analysis also identi-
fied novel subunits with tight association to known complexes. For 
instance, we found three subunits of the essential endoplasmic reticu-
lum membrane oligosaccharyl transferase (OST) complex—an integral 
component of the translocon—associated with α-1,2-mannosidase 
(Mns1; human homologue, MAN1B1), an enzyme that catalyses the 
endoplasmic reticulum glycoprotein trimming reaction which is 

required for endoplasmic reticulum-associated protein degradation 
(ERAD). This indicates that the enzymatic activity of N-linked oligo-
saccharide chain addition is physically connected to the removal of a 
terminal sugar, at least in one isoform of the OST complex. The slow 
enzymatic activity of Mns1 acts as a timer17 and we speculate that it 
co-translationally primes stalled or erroneous proteins directly at its 
site of translocation for ERAD.

Many biological complexes share members and these can be difficult 
to disentangle by clustering algorithms. We speculated that our highly 
quantitative data could nevertheless resolve these cases. Applying a 
network layout algorithm (Methods, ‘Network generation’) to members 
of the transcription factor TFIID and SAGA complexes separately recon-
structed these complexes while correctly assigning shared members 
(Fig. 2a). At the global scale, we found that about two-thirds of all inter-
actions connected members within clusters, whereas the remainder 
connected clusters to each other. For example, the cytoplasmatic signal 
recognition particle (SRP) is connected to another cluster containing 
the SRP receptor (SRP101–SRP102). The largest connected clusters were 
the small and large subunits of the ribosome, with 400 inter-complex 
connections.

Leveraging the common, endogenous GFP tag on more than 3,405 
detected baits, we next investigated whether the mass spectrometry 
signal of the GFP peptides could be used to quantify each bait. Indeed, 
these intensities correlated well (r = 0.77) with a recent compilation of 
yeast protein abundances18 (Fig. 2b). This validates our interaction work-
flow and enables tag-based estimation of the relative abundances of 
proteins in a cluster, which is useful to determine their functional role19.

For further validation, we used strains with N-terminally tagged 
proteins instead of C-terminally tagged proteins for a subset of baits 
of special interest (highlighted in Figs. 4 and 5). All baits associated 
with the corresponding 13 clusters that were tested and 12 of them 
confirmed novel interactions or had uncharacterized proteins in the 
cluster (Fig. 2c and Supplementary Fig. 1).

For some proteins—for example, the members of the chaperonin 
containing t-complex (CCT)—tagging is not possible because it inter-
feres with protein stability or function20. Based on highly significant 
correlations between profiles of the subunits, CCT was nevertheless 
fully recovered (Fig. 2d). Besides the 8 conserved, ring-forming mem-
bers, we also detected a distinct set of 21 interacting proteins, about 
half of which were previously unreported. Two of these were catalytic 
subunits of protein phosphatase 2A, suggesting regulatory functions, 
and others, such as tubulin and actin-related proteins (Tub1, Tub3 and 
Arp1) were major known folding substrates. CCT may have a restricted 
or broad set of folding substrates21, and our results quantitatively sup-
port the former possibility.

The above examples only scratch the surface of the interesting biologi-
cal leads contained in the data. To enable ready exploration of interac-
tions of interest, we created a web portal (www.yeast-interactome.org), 
which supplies statistical evidence for protein–protein associations, 
and summarizes the resulting clusters (Fig. 2e).

Network architecture of the interactome
The availability of data for large networks in systems including power 
grids, genetic networks and human social networks has enabled 
the study of their underlying architecture, commonalities and dif-
ferences22. This topic also has a long history in protein interaction 
networks. However, these analyses have been limited by the incom-
pleteness of the data, especially in multicellular species23. With an 
in-depth protein–protein interaction map in hand, we compared its 
characteristics with networks in different domains. Yeast proteins are 
highly connected, with an average of 16 and a median of 6 interactions 
per protein, significantly more than the human BioPlex interactome24 
(average interactions: 8) (Fig. 3a). Influential nodes—those with the 
highest number of normalized interactors (or degree centrality)—were 

http://www.yeast-interactome.org
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more common than in the yeast binary dataset and the human BioPlex 
interaction dataset (Extended Data Fig. 4a).

One of the key features of most real-life networks with complex topol-
ogy in contrast to random networks is the scale-free power law distri-
bution of interactors25,26. Scale-free network properties are thought 
to arise by preferential attachment over evolutionary time to already 
well-connected nodes and can be identified by a linear relation of the 
node degree or number of interactors with its frequency (number of 
nodes with that degree) plotted in log–log space. Although this has been 
difficult to demonstrate for biological networks (they instead appear 
to be exponential or have a truncated power law degree distribution27), 
our yeast interactome clearly indicates scale-free properties (Fig. 3c). 
In accordance with previous protein–protein interaction networks5,28, 
the exponent was below 2, at the lower end of the range 2 to 4 for other 
scale-free networks.

The high connectivity of most proteins organizes almost all of them 
(3,839) into a single giant connected component, accompanied by 41 
small components (88 proteins) (Fig. 3d). A total of 476 proteins were 
outside of the network because mass spectrometry analysis of their 
pull-downs only identified the bait itself. There was a highly significant 
enrichment for 94% of these baits (FDR < 0.01%), indicating that there 

were no identifiable interactors under our standard conditions despite 
a successful pull-down (Extended Data Fig. 5, see volcano plots on the 
web portal).

We next investigated the large-scale organization of the yeast inter-
actome using the Louvain community detection algorithm (Meth-
ods, ‘Network comparisons’). This revealed that yeast is organized 
in smaller communities than the yeast binary curated network or the 
human Bioplex (Fig. 3e). Important ‘bottleneck’ proteins that form 
part of many shortest paths have a high ‘betweenness centrality’. The 
yeast interactome has comparably more of these central nodes, and 
bioinformatic enrichment analysis highlighted proteins involved in 
‘RNA polymerase II’, ‘mitochondrial nucleoid’, ‘gluconeogenesis’ and 
‘misfolded protein binding’ (Extended Data Fig. 4b and Extended Data 
Table 1).

Altogether, based on the total of 4,403 identified yeast proteins, 
with 74.1% having at least two interactors, 15.1% had one and only 10.8% 
had no discernable interaction partner. To investigate whether the 
latter set is truly ‘non-social’ or is an artefact of expression level or its 
tag position, we performed our workflow on a subset of the proteins 
using N-terminal tagged strains with identical promoters29 (Extended 
Data Fig. 5). This yielded additional interactors for about half of the 
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proteins. Notably, the overall average of identified interactors in this 
set was around 2, compared with 16 in the main dataset, indicating 
that this set of proteins was indeed poorly connected (Supplemen-
tary Fig. 2). Although reciprocal tagging was beneficial, complexes 
with higher numbers of interactions would already be picked up by 
the redundancy effect of our screen. Given that some of our baits will 
have context-dependent interactions that are not captured here, our 
estimates are conservative and we conclude that almost all yeast pro-
teins are ‘social’.

Insights from global organization
Intensive research over the past decades has made S. cerevisiae argu-
ably the best understood single-cell eukaryotic organism, leading to 
the discovery of crucial conserved cellular functions such as meta-
bolic pathways, mechanisms of DNA replication and transcription, 
protein quality control and modifications that were later confirmed 
in human and other organisms. Nevertheless, our interactome con-
tained uncharacterized proteins or interactions that are not reported 
in the BioGRID13 database and thus provides novel biological insights 
(extended selection in Supplementary Fig. 3). Furthermore, BioGRID 
has accumulated binding events from very disparate experiments 
without a common confidence score (133,900 physical interactions 
from about 10,000 publications). We reasoned that our homoge-
neous, high-quality dataset would help biologists to highlight true 
positive interactors with biological relevance, several of which we 
discuss below.

A total of 11 evidences connect the uncharacterized protein 
YDL176Wp with the conserved glucose-induced degradation (GID) 
complex, only a few of which had been indicated by previous pull-down 
or genetic interaction data5,30 (Fig. 4c). These types of high-confidence 
associations assist in prioritizing interactions and form the basis for 
a detailed mechanism and structure discovery of a novel GID modula-
tor31. Similarly, our data ties the uncharacterized protein YJR011Cp 
to the conserved transcription and translation regulatory CCR4–Not 
complex32 via high-significance interactions to a majority of its subunits 
(Fig. 4h). Finally, YHR131Cp is linked to three subunits of the kinase CK2 
and YLR407Wp is linked to the fourth subunit (Fig. 4o).

We identified an interaction of Cue4—a protein of unknown func-
tion containing a ubiquitin-binding domain—with the endoplasmic 
reticulum membrane complex (EMC), a potential membrane protein 
chaperone (Fig. 4m). As Cue4 is a paralogue of Cue1 (coupling ubiquitin 
conjugation to endoplasmic reticulum degradation), a component of 
ERAD33, this physical link and the known aggravating genetic interac-
tions of ∆cue1 with EMC knockouts34 suggests an ERAD-related quality 
control mechanism for EMC.

The transcriptional regulator SWI/SNF unexpectedly interacts with 
the phosphate transporters Pho87 and Pho90 (Fig. 4e). Out of four 
plasma membrane phosphate transporters only Pho87 and Pho90 have 
a cytoplasmatic accessible SPX domain. Although an SPX-dependent 
phosphate-sensing mechanism has been found in plants35, such a 
mechanism remains unknown in S. cerevisiae. In Arabidopsis, inositol 
pyrophosphate (InsP8) concentration increases under phosphate-rich 
conditions and promotes the interaction between SPX domains and 
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Fig. 3 | Properties of the protein interaction network. a, Distribution of the 
number of interactors. The sorted cumulative number of interactions reaches 
saturation at 30,000 interactions. b, The distribution of average shortest path 
length between all possible pairs of nodes within the giant component shows a 
mean of 4.2 steps, corresponding to 3.2 intermediaries (degrees of separation). 
c, Power law fit (green; equals a linear fit on a log–log scale) of the frequency of 
proteins with a given number of interactions highlights the scale-free properties 

of the network. An exponential fit is depicted in orange. d, Nearly all nodes  
of the network are connected with each other in the giant component. e, The 
cumulative distribution function of the community sizes (Louvain algorithm) 
detects more smaller communities for S. cerevisiae compared with other 
interactome datasets. f, Comparison of the yeast co-complex interactome  
(this study) to a curated yeast binary network (APID database15), showing the 
distribution of shortest path lengths.
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a four-stranded coiled-coil motif of phosphate starvation response 
transcription factors36. Notably, the recently solved structure of SWI/
SNF reveals such a coiled-coil four-helix bundle at its spine region37, 
providing a potential SPX interaction site. This raises the possibil-
ity of a novel cytoplasmatic sensing and retention mechanism of 
this key transcriptional regulator, which is known to be necessary 
for a phosphate starvation response38,39. Of note, both the SWI/
SNF complex and a SPX domain-containing phosphate transporter 
(XPR1, which has recently been shown to be controlled by InsP8

40) are  
present in humans.

Illustrating translational relevance, we expand the known interaction 
of the GTPase-activating proteins Ira1 and Ira2 (neurofibromin (NF1) in 
humans), and Gpb1 and Gpb2 (ETEA in humans)41 by Trx2 a thioredoxin 

isoenzyme (human homologue, TXN) and Gpx1 (human homologues, 
GPX3–6), an antioxidant enzyme whose glutathione peroxidase activ-
ity is neuroprotective in models of Huntington’s disease42 (Fig. 4l).

Additionally, we find a new physical interaction between the two 
uncharacterized proteins YPR063Cp and YNR021Wp (Supplementary 
Fig. 3), whose dimerization and structure has just been predicted in a 
deep learning approach43.

As well as known and novel protein complexes, the yeast interactome 
(depicted in Fig. 4) clearly shows evidence of high order connections. 
These often map to different compartments of the cell, such as the promi-
nent connections between ribosomes in the cytoplasm and the nucleolus, 
its site of maturation or those that connect large and small ribosomal 
subunits that despite their ‘stickiness’ are organized in individual clusters.
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Structural prediction by deep learning
We envisioned that recent breakthroughs in protein structure predic-
tion44–46, including the ability to model several subunits of protein 
complexes43,47, would add an additional dimension to our interactome 
dataset. Considering the current computational limitations for larger 
protein complexes (Methods, ‘Structure predictions’), we started with 
all clusters in our interactome that contained uncharacterized proteins 
or unreported interactions (Supplementary Fig. 3). We ran Alphafold2 
on all of these below a size limit (2,500 amino acids) and recorded 
results on those that yielded a model confidence score of at least 0.7. 
For increased coverage, we then refined the results by running Alpha-
Fold2 on a subset of clusters of interest. From the entire collection 
of these structurally predicted complexes (Supplementary Fig. 4), 
we focused on a selection with high confidence score and biological 
interest (Fig. 5).

CK2 is an essential eukaryotic kinase that is involved in a multitude 
of cellular pathways covering most hallmarks of cancer—such as cell 
death evasion and promotion of cell proliferation. The holoenzyme is 
built from two regulatory beta and two catalytic active alpha subunits48 
(Ckb1, Ckb2, Cka1 and Cka2). Our cluster for the yeast CK2 contains the 
uncharacterized interacting protein YLR407Wp, and CK2 was its only 
interaction partner (Fig. 4o). Furthermore, this interaction with Cka2 is 
direct and does not include the other subunits (and vice versa, validated 
by N-terminal tagging; Supplementary Fig. 1), suggesting a competitive 
binding mode. This was supported by the predicted structure, in which 
one of the two binding domains of YLR407Wp directly overlaps with the 
Ckb1–Ckb2-binding interface of Cka2 (Fig. 5a (i)). YLR407Wp contains 
a conserved domain of unknown function (DUF4050) that is found in 
more than 3,000 proteins across 1,000 eukaryotic species according to 
InterPro49. The structural models revealed that only the bound state has 
structurally defined domains, namely a clamp region (rear-hinge-front) 
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and a lock region that closes the structure by binding to the front clamp 
(Fig. 5a (iv)). Modelling suggested two conformations, one in which a 
prominent loop is unstructured and reminiscent of a lasso and one in 
which it fits like a ‘gag’ into the catalytic groove (Fig. 5a (ii) and (iii)). 
Notably, UniProt annotations indicate that this region contains up to 
12 phosphorylatable sites, suggesting a kinase-driven mechanism of 
conformation change.

For this reason, we renamed YLR407Wp to Gag1. The major structural 
difference between the two similar catalytic subunits Cka1 and Cka2 is 
an insertion loop at the rear of Cka1 (S91–N128). This loop clashes with 
the potential binding of Gag1 (Fig. 5a (v)), which would explain Cka2 
selectivity and provide a functional reason for this structural differ-
ence. Phenotypic assays support this competitive and selective binding 
mode, which is already based on strong interaction and modelling data 
as well. The growth defect caused by overexpression of YLR407Wp can 
be rescued by the deletion of the interacting subunit Cka2, but not by 
the deletion of the non-interacting subunit Cka1 (Fig. 5b).

We also identified a novel complex defined by three unreported 
interactions (all with the maximum interaction score of 10) between 
Tcd1, Tcd2 (mitochondrial proteins that are involved in tRNA base 
modification) and YGR012Wp (a protein of unknown function that 
we rename to Tcd3) (Figs. 2a and 5c). A homologue of Tcd1 and Tcd2 
in Escherichia coli (TcdA) functions in a complex of three proteins in 
the cyclization of an essential tRNA modification that is found in all 
three domains of life, including humans50. Whereas the two paralogues 
Tcd1 and Tcd2 build the main interaction interface, Tcd3 interacts 
largely with Tcd2. Our modelling suggests that this interaction is ena-
bled by a characteristic insertion loop (amino acids 277–281) of Tcd2 
that is not present in Tcd1 (see alignment in Fig. 5c and Extended Data 
Fig. 6), thereby explaining the preferential interaction of Tcd3 with 
Tcd2 over Tcd1.

A third example shows how structural information based on inter-
action data helps to foster biology-driven hypotheses. In our model 
of the newly discovered interaction of ubiquitin E3 scaffold protein 
Cul3 with YIL001Wp (human homologue, ABTB1), Cul3 binds at the 
location where known adapter proteins are located (Fig. 4a and Sup-
plementary Fig. 4g).

Outlook
Here we have developed and applied a novel and highly scalable interac-
tome technology, enabling replicate measurement of the yeast network 
in a fraction of the measurement time and starting materials needed 
previously. Our screen reached near saturation and contained nearly 
all complexes that were expected under our experimental conditions 
(Figs. 3a and 4). We show that high-confidence interaction data provides 
an ideal foundation for recently developed deep learning models that 
predict complex structures from their sequences43–45,47, resulting in 
functionally relevant de novo structural models.

The high connectivity of the resulting network is reflected in a mean 
shortest path between yeast proteins of 4.2, ranging from highly con-
nected proteins with only three steps to less connected ones with an 
average of more than 7 steps (Fig. 3b). This is very similar to the 4.7 
path length for world-scale Facebook relationships51.

Given its streamlined nature, our workflow can now be readily used 
in other endogenously tagged model organisms52 or to study remodel-
ling of the interactome in the presence of dynamic biological processes 
or perturbations. Similarly, we envision its use with other interaction 
technologies such as BioID or APEX53 using tagged libraries that can 
be easily generated using platforms such as SWAp-Tag54. The compre-
hensive yeast interactome data can be further used as prior knowledge 
for hypothesis-driven analysis of protein complexes—for example, for 
native protein complex co-fractionation coupled to mass spectrom-
etry55. Additionally, we imagine that such interactome data could also 
be combined with mass spectrometry–crosslinking studies.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/ 
s41586-023-06739-5.
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Methods

Cell growth
To achieve samples with similar cell numbers, pre-cultures of the  
S. cerevisiae GFP-tagged library1,29 were grown in YPD medium (1% yeast 
extract, 2% bacto peptone, 2% glucose) for two days in 2 ml, U-bottom 
96-deep-well plates. This allowed cell concentration convergence of 
different strains during the slow growing post-exponential phase. Cells 
were resuspended and 50 µl of each pre-culture was used to inocu-
late 1.5 ml of fresh YPD medium (corresponding to an optical density 
of 0.5 at 600 nm) in 96-deep-well plates (LoBind, 2 ml, 0030504305, 
Eppendorf). Plates were covered with an air-permeable membrane and 
incubated while shaking at 300 rpm and 30 °C for 6 h. This allowed the 
progression through the lag phase and three cell cycles followed by 
collection under standard growth conditions. Cells were pelleted in the 
96-deep-well plates by centrifugation at 3,500 rpm (2,451g) for 5 min. 
The supernatant was discarded by fast decanting and quick dabbing 
on paper towels. Plates with pellets were sealed with plastic covers and 
stored at −80 °C until cell lysis.

Cell lysis
Deep-well plates with cell pellets were thawed on ice for 5 min. 100 µl of 
glass beads (0.5 mm, acid-washed, G8772, Merck) were added to each well 
using a 96-well bead dispenser (LabTIE International). After 5 min 250 µl 
of 4 °C cold lysis buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 5% glycerol, 
0.05% IGEPAL CA-630, protease inhibitor EDTA-free (cOmplete, 1 tablet 
per 50 ml, 11873580001, Merck), 1 mM MgCl2, 0.75 U µl−1 in-house Serratia 
marcescens endonuclease/SmDNase) were added. Plates were sealed 
using a heat sealer (S200, 5392000005, Eppendorf), the low-profile plate 
adapter (5392070020, Eppendorf) and transparent heat-sealing films 
(0030127838, Eppendorf) for 2 s at 180 °C and immediately put back 
on ice. Cell lysis was performed within the 96-deep-well plates at 4 °C 
via bead-beating (2010 Geno/Grinder, SPEX SamplePrep) for 4 cycles 
of 1.5 min each at 1,750 rpm. Plates were cooled in ice water and covered 
with ice for 7 min in between cycles and for 10 min after the last cycle.  
4 plates were processed in parallel during bead-beating and top and bot-
tom positions were switched at each cycle. Cell debris was spun down at 
max speed (4,300 rpm (4,347g)) for 10 min at 4 °C. Plates were carefully 
put back on ice and immediately used for the pull-down protocol (Fig. 1a).

Interactor enrichment
Pull-downs and all sample handling steps were performed at 4 °C. 
Anti-GFP nanobody coated 96-well microtitre plates were custom made 
and optimized for this protocol allowing efficient and high reproduc-
ible in-well digestion, and mass spectrometry compatibility (plates 
are now commercially available as GFP-Trap Multiwell Plate, gtp-96, 
Chromotek). Plates were prepared with 200 µl wash buffer 1 (50 mM Tris 
HCl pH 7.5, 150 mM NaCl, 5% glycerol, 0.05% IGEPAL CA-630) per well on 
a shaker for 1 min at 800 rpm followed by removal of the buffer. The cell 
lysates were carefully transferred from the 96-deep-well plates by slow 
uptake of 175 µl supernatant without dislodging glass beads nor the cell 
debris pellet to the GFP-Trap plate. The GFP-Trap plate was incubated 
for 1 h at 800 rpm on a small stroke (3 mm) shaker (TiMix 5 control, 
Edmund Bühler) to enrich for GFP-tagged proteins and their interac-
tors. Cell lysates were discarded and plate wells were washed twice with 
200 µl wash buffer 1 and twice with wash buffer 2 (50 mM Tris HCl pH 
7.5, 150 mM NaCl, 5% glycerol). To allow stable binding of unspecific 
background proteins—an important factor for label-free quantifica-
tion—wash buffer was added slowly, and plates were not shaken during 
wash steps. Emptied, protein-enriched plates were covered and stored 
at −80 °C until mass spectrometry sample preparation (Fig. 1a).

Sample preparation for mass spectrometry
Protein-enriched GFP-Trap plates were brought to room temperature 
and 50 µl of digestion mix 1 (4.5 M urea, 1.5 M thiourea, 10 mM Tris HCl 

pH 8.5, 3 mM dithiothreitol, 2 ng µl−1 LysC) were added per well. Plates 
were incubated at 30 °C and 1000 rpm on a small stroke (3 mm) shaker. 
After 3 h, 100 µl of digestion mix 2 (10 mM Tris HCl pH 8.5, 7.5 mM chlo-
roacetamide, 2 ng µl−1 LysC) were added and microtitre plates and lids 
were sealed with parafilm. The plates were incubated overnight at 30 °C 
at 800 rpm. The reaction was stopped and the sample was acidified with 
15 µl of 10% TFA per well. Plates with peptides were stored at −80 °C till 
sample loading on EvoTips (Evosep) (Fig. 1a).

Loading of peptide samples on Evotips
Evotips (Evosep) were activated for 5 min in a 1-propanol Evotips-box 
reservoir at room temperature, followed by a wash step with 50 µl buffer 
B (acetonitrile with 0.1% formic acid) and centrifugation at 500g for 
1 min at room temperature. The flow-through was discarded and Evotips 
were placed back into 1-propanol. Evotips were conditioned with 50 µl 
of buffer A (ddH2O with 0.1 % formic acid) and centrifugation at 500g 
for 1.5 min at room temperature and were placed in a container with 
buffer A. Forty microlitres of thawed peptide sample were loaded and 
Evotips were centrifuged at 500g for 1.5 min at room temperature and 
placed back in a container with buffer A. Two-hundred microlitres 
of buffer A was added and partially washed through the Evotips by 
centrifugation at 500g for 50 s. Evotips boxes with buffer A at the con-
tainer bottom were placed on the Evosep One liquid chromatography 
platform (Evosep, Odense, Denmark) for liquid chromatography–mass 
spectrometry (LC–MS) analysis. Pull-downs were acquired in technical 
duplicates and the injection order was reversed after the first measure-
ment (Fig. 1a).

Liquid chromatography
For separating peptides by hydrophobicity and eluting them into the 
mass spectrometer, we used the EvoSep One liquid chromatography 
system and analysed the yeast interactome pull-down proteomes with 
the standardized 21 min (60 samples per day) gradient. We employed a 
15 cm × 150 µm inner diameter column with 1.9 µm C18 beads (PepSep) 
heated at 60 °C coupled to a 20 µm ID electrospray emitter (Bruker 
Daltonik). The column was replaced between replicate measurements. 
Mobile phases A and B were 0.1 % formic acid in water and 0.1 % formic 
acid in acetonitrile, respectively. The EvoSep system was coupled online 
to a trapped ion mobility spectrometry quadrupole time-of-flight mass 
spectrometer57 (timsTOF Pro, Bruker Daltonik) via a nano-electrospray 
ion source (Captive spray, Bruker Daltonik). A 24-fraction library of 
wild-type S. cerevisiae was generated using the high-pH reversed-phase 
‘spider fractionator’58 and data were acquired using the same sample 
set-up.

Mass spectrometry
Mass spectrometric analysis was performed in a data-dependent 
(dda) PASEF mode. For ddaPASEF, 1 MS1 survey trapped ion mobility  
spectrometry–mass spectrometry (TIMS–MS) and 4 PASEF tandem 
mass spectrometry (MS/MS) scans were acquired per acquisition cycle. 
The cycle overlap for precursor scheduling was set to 2. Ion accumula-
tion and ramp time in the dual TIMS analyser was set to 100 ms each 
and we analysed the ion mobility range from 1/K0 = 1.3 V s cm−2 to 
0.8 V s cm−2. Precursor ions for MS/MS analysis were isolated with a 
2 Th window for m/z < 700 and 3 Th for m/z > 700 in a total m/z range 
of 100–1,700 by synchronizing quadrupole switching events with the 
precursor elution profile from the TIMS device. The collision energy 
was lowered linearly as a function of increasing mobility starting from 
59 eV at 1/K0 = 1.6 V s cm−2 to 20 eV at 1/K0 = 0.6 V s cm−2. Singly charged 
precursor ions were excluded with a polygon filter (otof control, Bruker 
Daltonik). Precursors for MS/MS were picked at an intensity threshold 
of 2,000 arbitrary units (a.u.) and re-sequenced until reaching a target 
value of 24,000 a.u. considering a dynamic exclusion of 40 s elution. 
The capillary voltage was set to 1,600 V and dry gas temperature to 
180 °C.
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Raw data processing
Mass spectrometry raw files were processed using MaxQuant 
(v1.6.17.0)59,60, which extracts features from four-dimensional isotope 
patterns and associated MS/MS spectra, on a computing cluster (SUSE 
Linux Enterprise Server 15 SP2) utilizing UltraQuant (github.com/kent-
sisresearchgroup/UltraQuant). To allow processing in an acceptable 
time frame, RAW files were handled in 5 parallel batches of approxi-
mately 1,700 files each containing plates equally distributed across 
the measurement period. Files were searched against the S. cerevisiae 
Uniprot databases (UP000002311_559292; canonical and isoform, 
reviewed-sp and unreviewed-tr from 02/2020). For high-significance 
identification the FDRs were reduced and controlled at 0.1% both on 
peptide spectral match and protein levels. Peptides with a minimum 
length of seven amino acids were considered for the search including 
N-terminal acetylation and methionine oxidation as variable modifica-
tions and cysteine carbamidomethylation as fixed modification, while 
limiting the maximum peptide mass to 4,800 Da. Enzyme specificity 
was set to LysC cleaving C-terminal to lysine. A maximum of two missed 
cleavages were allowed. The parameter ‘type’ was set to ‘TIMS-DDA’ 
with ‘TIMS half width’ at 4. The instrument was set to ‘Bruker TIMS’ 
and main search peptide tolerance reduced to 8 ppm, the maximum 
charge set to 5 and minimum peak length to 3. Peptide identifications 
by MS/MS were transferred by matching four-dimensional isotope 
patterns between the runs (4D-MBR) using a narrow elution match 
time window of 12 s and a reduced ion mobility window of 0.01 1/K0. 
Protein quantification was performed by label-free quantification 
using a minimum ratio count of 2. The 24-fraction library was added as 
an additional parameter group with the same group-specific settings, 
but LFQ disabled and ‘separate LFQ in parameter groups’ under global 
parameters enabled. The writing of additional tables was disabled for 
performance reasons.

Data processing and normalization
Twelve outdated samples of the GFP library were eliminated. These 
included wrongly annotated open reading frames that were merged 
with others: YAR044W, YPR090W, YDR474C, YFR024C, YJL021C, 
YJL017W, YGL046W, YFL006W, YGR272C, YBR100W, YJL018W and 
YJL012C-A. After the removal of potential contaminants, reverse and 
‘only identified by site’ hits, MaxQuant proteinGroups.txt output 
files from the five batches were merged using the majority protein 
IDs column. Values were filtered for two valid values within at least 
one replicate group. To adjust for potential differences between the 5 
MaxQuant batches caused by the parallel applied label-free normaliza-
tion algorithm and for potential handling batch effects between 96-well 
plates, values were median-normalized if there were more than 5% of 
valid values in each of the corresponding groups.

Missing value imputation
Missing values were imputed in a two-tiered approach. For proteins 
with measured values in more than 5% of all samples (or minimally 400 
samples), a protein-specific missing value imputation approach was 
used. Here, a random value was sampled from a normal distribution 
with following properties: mean = median of all measured intensity 
values for the given protein, standard deviation = standard deviation 
of all measured intensity values for the given protein. Lower and upper 
bounds for the normal distribution were set to three standard devia-
tions from the mean and minimally to zero. The function rtruncnorm 
from the R library truncnorm was employed. For proteins with less 
than 5% valid values (or in less than 400 samples), global metrics were 
employed for missing value imputation. Here, missing values were 
sampled from a normal distribution with the following parameters: 
mean = mean of all quantified values across all proteins and samples 
minus 1.8 times the standard deviation, standard deviation = the stand-
ard deviation of all quantified values across all proteins and samples 

multiplied by 0.3. The accompanying R script is in Supplementary Data 
1 as Preprocessing.R.

Protein correlation
Due to the large sample number that would negatively influence cor-
relation, we chose a subsampling approach: For each protein pair across 
the sample profile, the top 2% of samples with the highest intensities 
for both proteins were selected (resulting in 2–4% depending on 
their overlap) and complemented by twice the number of randomly 
selected samples as background. The selected subset of samples was 
used to calculate the Pearson correlation coefficients of the protein 
pair (Fig. 1c). The effect of weighted correlation can be visualized by 
enabling ‘subsample values’ under protein correlation in our web appli-
cation (yeast-interactome.org). Since the distributions of correlation 
coefficients varies between proteins and in order to define a universal 
cut-off for significant correlations, correlation coefficients were nor-
malized via row wise z-scoring. A z-scored Pearson correlation coef-
ficient above 4 and 5 therefore corresponds to a chance probability of 
below 3.2 × 10−5 and 2.9 × 10−7, respectively. The accompanying Python 
script is available in Supplementary Data 1 as CorrelationAnalysis.py.

Enrichment analysis
A two-tailed Welch’s t-test was performed on each replicate-grouped 
pull-down sample using all corresponding complement samples as 
a combined control12. Within the combined control group, samples 
with the highest bait correlation (top 5%) were excluded in order to 
provide a bait-unrelated control. FDR cut-off lines were calculated 
using an analytical approach using an S0 parameter of 0.5 (ref. 61). 
The accompanying R script is available in Supplementary Data 1 as 
DifferentialAnalysis.R. We performed analysis for the N-terminal subset 
using PerseusNet62.

Network generation
Interactions for the first two layers of evidence (forward and reverse 
pull-down) were defined between bait proteins and significantly 
enriched prey proteins from the t-tests. They were scored based on their 
FDR of 5%, 1%, 0.1% and 0.01% at 1, 2, 3 and 4, respectively (score_FDR). 
For the third layer of evidence, an interaction for z-scored Pearson 
correlation coefficients above 4 and 5 was scored at 1 and 2, respec-
tively (score_cor). All three layers of evidence were combined into a 
single interaction score ranging from 1–10 (score_FDR+cor), thereby 
weighting interactions based on their experimental significance 
(Fig. 1c). The accompanying R script is available in Supplementary 
Data 1 as networkCreatoR.R. Networks were created and exported 
into Cytoscape56 for further analysis and visualization strategies. The 
network was filtered for interactions with a combined score equal to 
or above 2, thereby excluding interactions based only on a single t-test 
with an FDR of above 1% or a z-scored Pearson correlation coefficient 
of below 5. Further individual filtering can be achieved via the edge 
columns (that is, scores) within the Cytoscape filtering tab or any 
other table handling software. The Markov clustering algorithm was 
applied using the interaction score as edge weight and a granularity 
parameter of 2.5 while retaining inter-cluster edges (interactions). 
Clustering calculations were performed with 16 iterations and not 
stopped if residual increased. The CompoundSpringEmbedder (CoSE) 
layout algorithm was applied to single clusters using an ‘ideal edge 
length’ parameter of 150. A small subset of baits that did not gener-
ate a significant number of mass spectrometry detectable peptides, 
but still enriched significantly for preys are marked as ‘inferred from 
bait’. Protein abundance is based on the intensity of the GFP tag in 
each sample (tag-based quantification, indicated in the TaBaQ col-
umn; see Fig. 2b) and the relative size of the nodes in the network is 
based on that value. The network including edges (interactions) and 
nodes (proteins), annotations, scores, and layouts (including the 
‘highlight novel’ style) can be downloaded as Cytoscape session file at  

http://github.com/kentsisresearchgroup/UltraQuant
http://github.com/kentsisresearchgroup/UltraQuant


(www.yeast-interactome.org). Alternatively, the Cytoscape session 
file and the interaction data including annotations and scores can be 
found in Supplementary Data 2 as The_Yeast_Interactome.cys, The_
Yeast_Interactome_Edges.csv and The_Yeast_Interactome_Nodes.csv.

Organelle-based mapping of clusters
The AutoAnnotate plugin63 v1.3.5 was used to generate a single 
localization-based term for each Markov cluster utilizing WordCloud64. 
Within WordCloud clustering and normalization was disabled and 
AutoAnnotate was run using a ‘minimum word occurrence’ and ‘max. 
words per label’ of 1. Therefore, based on the Uniprot localization 
annotation (most abundant word within the ‘Subcellular localiza-
tion [CC]_simplified’ column), a single cellular localization term was 
defined for most clusters. Within the Cytoscape group preferences the 
attribute aggregation was enabled and the ‘visualization for group’ 
was set to ‘none’. Collapsed localization (collapse singleton clusters 
enabled)-based labelled groups were organized using the ‘Boundary 
layout’ using self-defined areas representing major cellular organelles. 
Node repulsion was increased to 1,000,000. Clusters were expanded 
and their positions manually adjusted. For cluster annotation the 
standard complex name from EMBL Complexportal was used. For each 
cluster the most frequent names is shown, (maximum words per label: 
1, minimum word occurrence: 2; normalization and clustering off). 
An extended naming can manually be selected in Cytoscape under 
AutoAnnotate labelled ‘Complex name (long)’. The image of the back-
ground cell in Fig. 4, the Cytoscape session and the web application is 
an adopted version from SwissBioPics by the Swiss-Prot group of the 
SIB Swiss Institute of Bioinformatics65.

Network comparisons
Network comparison analysis was performed in Python 3.8.1. Tabu-
lar data was loaded via the pandas package (1.3.1) and converted to a 
network via NetworkX (2.6.2). To calculate ‘Betweeness’ and ‘Degree 
centrality’, the respective NetworkX functions were used. To per-
form community analysis, a Python implementation of the Louvain 
algorithm was used (https://github.com/taynaud/python-louvain, 
version 0.15). Cumulative distribution functions were plotted using 
the matplotlib-library (3.4.2) and NumPy (1.20.3). Reference datasets 
were downloaded from the Stanford Large Network Dataset Collection 
(http://snap.stanford.edu/data/), the BioPlex Interactome homepage 
(https://bioplex.hms.harvard.edu/interactions.php) and BioGRID 
(https://downloads.thebiogrid.org/; Saccharomyces_cerevisiae_S288c-
4.3.196). The accompanying notebook is available in Supplementary 
Data 1 as Yeast_Network_comparisons.ipynb. Gene annotation enrich-
ment was performed using the 1D tool in Perseus (v.1.6.7.0). Annotation 
terms were filtered for 5% FDR (Benjamini–Hochberg correction) and 
a score above 0.

Structure predictions
All structures were calculated on a Linux cluster utilizing up to 4 Nvidia 
A100 GPUs, 512 GB RAM and 72 CPUs. AlphaFold-Multimer version 2.2.0 
(ref. 47) was used and predictions are based on full length sequences. 
An exception to this is the structure in Fig. 5a (iii) which was predicted 
using v2.1.1 and Fig. 5c,d, middle, which was predicted without the 
N-terminally processed targeting sequences. Global model confidence 
scores (ipTM+pTM) are weighted in favour of the interface score ipTM 
as described47. For the calculations of clusters in Supplementary Fig. 3 
containing novel interactions and uncharacterized proteins, we filtered 
based on their total residue size below 2,500—an approximate limit that 
is set by the unified GPU memory size. For runs that did not succeed 
within 24 h or resulted in model confidences below 0.7 subclusters were 
selected and resubmitted. The final structures were included if they had 
a score above 0.7 (median scores above 0.85). Structures with not all 
submitted subunits clearly participating in a single complex interaction 
were excluded and Supplementary Fig. 9r,t were rerun with optimized 

stoichiometry. Molecular graphics were generated with UCSF ChimeraX 
(v1.4), developed by the Resource for Biocomputing, Visualization, and 
Informatics at the University of California, San Francisco, with support 
from National Institutes of Health R01-GM129325 and the Office of 
Cyber Infrastructure and Computational Biology, National Institute 
of Allergy and Infectious Diseases66. Alignments were generated using 
Jalview (v2.11.2.0)67 and the protein domain map with DOG 2.0 (ref. 68).

Spotting assay
We generated the knockout strains by replacing the endogenous loci 
of CKA1 and CKA2 with the URA3 marker gene in the diploid wild-type 
strain BY4743 via standard LiAc transformation and PCR validation69. 
Haploid strains were retrieved by sporulation and tetrad dissection 
of diploid strains and 2:2 segregation was validated by replica plating 
on corresponding marker and mating type plates. We generated the 
galactose-induced overexpression plasmid pGAL1-YLR407W via Gibson 
cloning. Insert and plasmid backbone were generated by high-fidelity 
PCR amplification of the endogenous locus of YLR407W and the plas-
mid p415-GAL1, respectively. Plasmids were validated by sequencing 
and transformed into competent haploid wild-type strain BY4742 and 
corresponding haploid knockout strains. Spotting was carried out in 
1:6 serial dilution series.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All main mass spectrometry raw data and MaxQuant output tables have 
been deposited to the ProteomeXchange Consortium70 via the PRIDE 
partner repository with the dataset identifier PXD031940. The dataset 
is publicly available under www.yeast-interactome.org.

Code availability
Custom code is available in Supplementary Data 1 as indicated in the 
relevant sections in Methods.
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Extended Data Fig. 1 | Schematic of the GFP-tagged library. 4,147 different 
endogenous c-terminally tagged yeast strains1 were used for 4,147 independent 
pull-down experiments. Each strain therefore allows the purification of the 
individually tagged protein (bait) and its specific interactors. The original 
library of 4,159 strains was reduced by twelve strains to 4147, due to updates in 
ORF annotations (see Methods: Data processing and normalization).
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Extended Data Fig. 2 | Detailed layers of evidence for all interactions. 
Detailed proportion of interactions backed by multiple layers of evidence.
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Extended Data Fig. 3 | Comparison of affinity-enrichment purification 
coupled to mass-spectrometry (AE-MS) network (co-complex, this study) 
to curated binary network (from APID database). a, Edge weighted network 
(score and publication count, respectively) using spring-layout. Colors 

representing different Markov clusters. (Fruchterman-Reingold algorithm).  
b, Frequency of degree (number of interactors) of both datasets. c, Overlap of 
nodes and edges between both datasets. d,e, Distribution of shortest path 
length (mean per node and all).
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Extended Data Fig. 4 | Comparison of centrality to different complex 
networks. a, Cumulative distribution function of the degree centrality. 
Comparison of different complex networks: S. cerevisiae has more influential 
(high degree centrality) nodes than BioPlex, APID and GitHub, and less than 

Facebook. b, Cumulative distribution function of betweenness centrality: The 
S. cerevisiae interactome has more nodes with a high betweenness-centrality 
than the comparison data sets.
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Extended Data Fig. 5 | “Asocial” proteins. Representation of 476 significantly 
enriched and detected bait proteins that lack any significant interactor under 
given conditions in this study. Colored: Random selection of 65 baits for 

N-terminal GFP tagged pull-downs retrieved interactors for about have of them 
(yellow, no interactor; green, interactors; red, no bait detected). Blue edges 
depict self-edges.
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Extended Data Fig. 6 | Sequence alignment of Tcd1 and Tcd2. Alignment of 
the paralogs Tcd1 and Tcd2 highlighting the insertion loop (red square).



Extended Data Table 1 | Gene ontology term enrichment

Gene ontology term enrichment on betweenness-centrality of nodes (proteins) in the network (1-dimensional annotation enrichment, two-sided, FDR < 5%, score > 0).
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