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An autonomous laboratory for the 
accelerated synthesis of novel materials

Nathan J. Szymanski1,2,5, Bernardus Rendy1,2,5, Yuxing Fei1,2,5, Rishi E. Kumar3,5, Tanjin He1,2, 
David Milsted2, Matthew J. McDermott1,2, Max Gallant1,2, Ekin Dogus Cubuk4, Amil Merchant4, 
Haegyeom Kim2, Anubhav Jain3, Christopher J. Bartel2, Kristin Persson1,2, Yan Zeng2 ✉ & 
Gerbrand Ceder1,2 ✉

To close the gap between the rates of computational screening and experimental 
realization of novel materials1,2, we introduce the A-Lab, an autonomous laboratory 
for the solid-state synthesis of inorganic powders. This platform uses computations, 
historical data from the literature, machine learning (ML) and active learning to plan 
and interpret the outcomes of experiments performed using robotics. Over 17 days of 
continuous operation, the A-Lab realized 41 novel compounds from a set of 58 targets 
including a variety of oxides and phosphates that were identified using large-scale ab 
initio phase-stability data from the Materials Project and Google DeepMind. Synthesis 
recipes were proposed by natural-language models trained on the literature and 
optimized using an active-learning approach grounded in thermodynamics. Analysis 
of the failed syntheses provides direct and actionable suggestions to improve current 
techniques for materials screening and synthesis design. The high success rate 
demonstrates the effectiveness of artificial-intelligence-driven platforms for 
autonomous materials discovery and motivates further integration of computations, 
historical knowledge and robotics.

Although promising new materials can be identified at scale using 
high-throughput computations, their experimental realization is 
often challenging and time-consuming. Accelerating the experimen-
tal segment of materials discovery requires not only automation but 
autonomy—the ability of an experimental agent to interpret data and 
make decisions based on it. Pioneering efforts have demonstrated 
autonomy in several aspects of materials research, including robotic 
and Bayesian-driven optimization of carbon nanotube yield3,4, photo-
voltaic performance5 and photocatalysis activity6. In contrast to con-
ventional ML algorithms used for optimization, human researchers 
benefit from a wealth of background knowledge that informs their 
decision-making, and it is increasingly recognized7–9 that autonomy 
will require a fusion of encoded domain knowledge, access to diverse 
data sources and active learning.

Here we present the A-Lab, an autonomous laboratory that integrates 
robotics with the use of ab initio databases, ML-driven data interpreta-
tion, synthesis heuristics learned from text-mined literature data and 
active learning to optimize the synthesis of novel inorganic materials 
in powder form. Although autonomous workflows based on liquid 
handling have been demonstrated in organic chemistry10–13, the A-Lab 
addresses the unique challenges of handling and characterizing solid 
inorganic powders. These often require milling to ensure good reactiv-
ity between precursors, which can have a wide range of physical prop-
erties related to differences in their density, flow behaviour, particle 
size, hardness and compressibility. The use of solid powders is well 
suited for manufacturing and technological scaleup, and the approach 

of the A-Lab to synthesis produces multigram sample quantities that 
facilitate device-level testing.

Given a set of air-stable target materials (that is, desired synthesis 
products whose yield we aim to maximize) screened using the Materi-
als Project14, the A-Lab generates synthesis recipes using ML models 
trained on historical data from the literature and then performs these 
recipes with robotics. The synthesis products are characterized by X-ray 
diffraction (XRD), with two ML models working together to analyse 
their patterns. When synthesis recipes fail to produce a high target 
yield, active learning closes the loop by proposing improved follow-up 
recipes. Over 17 days of operation, the A-Lab successfully synthesized 
41 of 58 target materials that span 33 elements and 41 structural proto-
types (Supplementary Fig. 1 and Supplementary Table 1). Inspection of 
the 17 unobtained targets revealed synthetic as well as computational 
failure modes, several of which could be overcome through minor 
adjustments to the lab’s decision-making. With its high success rate 
in validating predicted materials, the A-Lab showcases the collective 
power of ab initio computations, ML algorithms, accumulated historical 
knowledge and automation in experimental research.

Autonomous materials-discovery platform
The materials-discovery pipeline followed by the A-Lab is schematically 
shown in Fig. 1. All target materials considered in this work are new 
to the lab, that is, not present in the training data for the algorithms 
it uses to propose synthesis recipes, and 52 of the 58 targets have no 
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previous synthesis reports, to the best of our knowledge (Methods). 
The experiments reported in this study represent the first attempts by 
the A-Lab to synthesize any of these targets. Each target is predicted to 
be on or very near (<10 meV per atom) the convex hull formed by stable 
phases taken from the Materials Project14 and cross-referenced with an 
analogous database from Google DeepMind. Because the A-Lab handles 
samples in open air, we only considered targets that are predicted not 
to react with O2, CO2 and H2O (Methods).

For each compound proposed to the A-Lab, up to five initial synthesis 
recipes are generated by a ML model that has learned to assess target 
‘similarity’ through natural-language processing of a large database 
of syntheses extracted from the literature15, mimicking the approach 
of a human to base an initial synthesis attempt on analogy to known 
related materials. A synthesis temperature is then proposed by a sec-
ond ML model trained on heating data from the literature16 (Methods).  
If these literature-inspired recipes fail to produce >50% yield for their 
desired targets, the A-Lab continues to experiment using Autonomous 
Reaction Route Optimization with Solid-State Synthesis (ARROWS3), 
an active-learning algorithm that integrates ab initio computed reac-
tion energies with observed synthesis outcomes to predict solid-state 
reaction pathways17. Experiments are performed under the guidance 
of this algorithm until the target is obtained as the majority phase or 
all synthesis recipes available to the A-Lab are exhausted.

The A-Lab carries out experiments using three integrated stations for 
sample preparation, heating and characterization, with robotic arms 
transferring samples and labware between them (Fig. 1 and Extended 
Data Figs. 1 and 2). The first station dispenses and mixes precursor 
powders before transferring them into alumina crucibles. A robotic arm 
from the second station loads these crucibles into one of four available 
box furnaces to be heated (Methods). After allowing the samples to 
cool, another robotic arm transfers them to the third station, where they 

are ground into a fine powder and measured by XRD. The operations of 
the lab are controlled through an application programming interface, 
which enables on-the-fly job submission from human researchers or 
decision-making agents (Extended Data Fig. 3).

The phase and weight fractions of the synthesis products are 
extracted from their XRD patterns by probabilistic ML models trained 
on experimental structures from the Inorganic Crystal Structure Data-
base (ICSD) following the methodology outlined in previous work18,19. 
Because the target materials considered in this work have no experi-
mental reports, their diffraction patterns are simulated from computed 
structures available in the Materials Project and corrected to reduce 
density functional theory (DFT) errors (Supplementary Note 1). For 
each sample, the phases identified by ML are confirmed with automated 
Rietveld refinement (Methods and Supplementary Note 2) and the 
resulting weight fractions are reported to the management server of 
the A-Lab to inform subsequent experimental iterations, if necessary, 
in search of an optimal recipe with high target yield.

Experimental synthesis outcomes
Using the described workflow, the A-Lab synthesized 41 of the 58 target 
compounds over 17 days of continuous experimentation, representing 
a 71% success rate. We show in the next section that this success rate 
could be improved to 74% with only minor modifications to the lab’s 
decision-making algorithm, and further to 78% if the computational 
techniques were also improved. The high success rate demonstrates 
that comprehensive ab initio calculations can be used to effectively 
identify new, stable and synthesizable materials. The outcome for all 
58 compounds is plotted in Fig. 2 against their decomposition energies 
(on a log scale), a common thermodynamic metric that describes the 
driving force to form a compound from its neighbours on the phase 
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Fig. 1 | Autonomous materials discovery with the A-Lab. Air-stable unreported 
targets are identified using DFT-calculated convex hulls consisting of ground 
states from the Materials Project and Google DeepMind. Synthesis recipes for 
each target are proposed using ML models trained on synthesis data from the 
literature. These recipes are tested using a robotic laboratory that automates 
(1) powder dosing, (2) sample heating and (3) product characterization with 
XRD. All sample transfer between these stations is performed using robotic 

arms, forming a fully automated sequence from chemical input to 
characterization. Phase purity is assessed from XRD, which is analysed by  
ML models trained on structures from the Materials Project and the ICSD,  
and confirmed with automated Rietveld refinement. In cases in which high 
(>50%) target yield is not obtained, new synthesis recipes are proposed by  
an active-learning algorithm that identifies reaction pathways with maximal 
driving force to form the target.



88 | Nature | Vol 624 | 7 December 2023

Article

diagram20 (Supplementary Fig. 2). A negative (positive) decomposition 
energy indicates that a material is stable (metastable) at 0 K. Of the 
targets considered in this work, 50 are predicted to be stable, whereas 
the remaining eight are metastable but lie near the convex hull. Over 
the range of decomposition energies considered, we do not observe a 
clear correlation between decomposition energy and whether a mate-
rial was successfully synthesized.

In total, 35 of the 41 materials synthesized by the A-Lab were obtained 
using recipes proposed by ML models trained on synthesis data from 
the literature (Supplementary Note 3). These literature-inspired recipes 
were more likely to succeed when the reference materials are highly 
similar to our targets (Supplementary Fig. 3), confirming that target 
‘similarity’ is a useful metric to select effective precursors21. At the 
same time, precursor selection remains a highly nontrivial task, even 
for thermodynamically stable materials. Despite 71% of targets even-
tually being obtained, only 37% of the 355 synthesis recipes tested by 
the A-Lab produced their targets. This finding echoes previous work 
that has established the strong influence of precursor selection on 
the synthesis path, ultimately deciding whether it forms the target or 
becomes trapped in a metastable state22–25.

The active-learning cycle of the A-Lab17 identified synthesis routes 
with improved yield for nine targets, of which six had zero yield from 
the initial literature-inspired recipes. Targets optimized with active 
learning are indicated by the bars containing diagonal lines in Fig. 2. 
In this framework, improved synthesis routes are designed using two 
hypotheses: (1) solid-state reactions tend to occur between two phases 
at a time (that is, pairwise)26–28 and (2) intermediate phases that leave 
only a small driving force to form the target material should be avoided, 
as they often require long reaction time and high temperature22,23,29.

The A-Lab continuously builds a database of pairwise reactions 
observed in its experiments—88 unique pairwise reactions (Supplemen-
tary Table 2) were identified from the synthesis experiments performed 
in this work. This database allows the products of some recipes to be 
inferred, precluding their testing; a recipe that yields an observed set 
of intermediates (already present in the lab’s database) need not be 
pursued at higher temperatures, as the remaining reaction pathway is 
already known (Fig. 3a,b). This can reduce the search space of possible 
synthesis recipes by up to 80% when many precursor sets react to form 
the same intermediates (Fig. 3e and Supplementary Notes 4 and 5). Fur-
thermore, knowledge of reaction pathways can be used to give priority 
to intermediates with a large driving force to form the target, computed 
using formation energies available in the Materials Project (Fig. 3c,d). 
For example, the synthesis of CaFe2P2O9 was optimized by avoiding 
the formation of FePO4 and Ca3(PO4)2, which have a small driving force 
(8 meV per atom) to form the target. This led to the identification of an 
alternative synthesis route that forms CaFe3P3O13 as an intermediate, 
from which there remains a much larger driving force (77 meV per atom) 
to react with CaO and form CaFe2P2O9, causing an approximately 70% 
increase in the yield of the target (Supplementary Note 6).

Barriers to synthesis
Seventeen of the 58 targets evaluated by the A-Lab were not obtained 
even after its active-learning cycle. We identify slow reaction kinetics, 
precursor volatility, amorphization and computational inaccuracy as 
four broad categories of ‘failure modes’ that prevented the synthesis 
of these targets. The prevalence of each failure mode is shown in Fig. 4, 
accompanied by their affected targets.
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Fig. 2 | Outcomes from targeted syntheses of DFT-predicted materials. 
Results summary from the synthesis efforts targeting 58 new compounds, 
plotted against their decomposition energies (log scale). Arrows indicate values 
near zero. A total of 41 targets were successfully synthesized (blue bars), whereas 
the remaining 17 could not be obtained by the A-Lab (red bars). Targets optimized 
in the active-learning stage of the A-Lab are marked by diagonal lines; all other 
targets were only attempted using recipes proposed by ML algorithms trained 

on literature data. The scatter points above each bar represent the outcomes of 
attempted recipes for each target, ordered from top to bottom in the sequence 
in which they were performed. The inset pie charts show the fraction of successful 
targets (left) and recipes (right). Analyses performed after the fact suggest that 
the calculated decomposition energies for three targets, marked with stars, 
may be suspect owing to computational errors (see text).
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Sluggish reaction kinetics hindered 11 of the 17 failed targets, each 
containing reaction steps with low driving forces (<50 meV per atom; 
Supplementary Fig. 4). In principle, these targets can be made accessible 
by using a higher synthesis temperature, longer heating time, improved 
precursor mixing or intermittent regrinding—standard procedures that 
are at present outside the domain of the A-Lab’s active-learning algo-
rithm. As such, we manually reground the original synthesis products 
generated by the A-Lab and heated them to higher temperatures, which 
led to the successful formation of two further targets, Y3Ga3In2O12 and 
Mg3NiO4, bringing our total success rate to 74% (Supplementary Note 7). 
One could also use more reactive precursors to provide a greater driving 
force to form the target, although our experiments were constrained 
to air-stable binary precursors that sometimes restricted the A-Lab’s 
choice of synthesis routes to those forming highly stable intermedi-
ates. System modifications to enable multistep heating, intermediate 
regrinding and expanded precursor selection should improve the ability 
of the lab to adapt and overcome failed synthesis attempts.

Precursor volatility disrupted all synthesis experiments targeting 
CaCr2P2O9, causing a change in the net stoichiometry of its samples 
(Supplementary Note 8). This can be attributed to the use of ammo-
nium phosphate precursors, NH4H2PO4 and (NH4)2HPO4, which proceed 
through a series of decomposition reactions and ultimately evaporate 
above 450 °C (ref. 30). Still, recipes based on these precursors can suc-
ceed if the ammonium phosphate reacts with another precursor before 
its evaporation temperature, effectively locking the phosphate ions in 
the solid state. For example, volatility does not seem to be an issue for 
the Mn-containing phosphates targeted in this work, as each Mn oxides 
precursor reacts with the ammonium phosphates at low temperature 
(<500 °C) to form Mn2(PO4)3 as an intermediate. This precursor behav-
iour can, in principle, be learned when sufficient pairwise reaction data 
have been collected, after which the A-Lab may favour the selection of 
precursors that trap in phosphate ions at low temperature and therefore 
preclude unwanted volatility.

Melting of samples at high temperature inhibited the crystalliza-
tion of one target, Mo(PO3)5, whose synthesis attempts produced 

amorphous samples (Supplementary Fig. 5). Although the use of a 
molten flux can sometimes improve reaction kinetics31, the formation 
of an amorphous state that is low in energy may reduce the driving 
force for crystallization. Indeed, using the workflow outlined in ref. 32, 
we identified amorphous configurations of Mo(PO3)5 with energies as 
low as 61 meV per atom above the crystalline ground state, a finding 
that is consistent with the widely reported glass-forming ability of 
phosphate-rich compounds33,34.

Some failure modes result from inaccuracies in the computed stabil-
ity of the target and therefore cannot be addressed by modifications 
to the experimental procedures. Fundamental-electronic-structure 
challenges are probably affecting La5Mn5O16, as all the attempts to 
synthesize this phase instead yielded LaMnO3, which DFT unexpect-
edly predicts to be highly unstable (120 meV per atom above the hull), 
even though it is widely reported in the literature to be experimentally 
accessible35. If the energy of LaMnO3 were lowered, consistent with 
its experimental stability, La5Mn5O16 would be destabilized (above 
the hull). Errors in the computed energy of LaMnO3 may arise from 
its strong Jahn–Teller activity36, compositional off-stoichiometry37 
or the presence of f-states in La—all of which present challenges to 
conventional DFT. Problems with YbMoO4 were found to be because 
of a poor pseudopotential choice in the Materials Project that desta-
bilizes the well-known oxide, Yb2O3, and it is likely that, in more accu-
rate calculations, YbMoO4 is not stable. A similar lanthanide-related 
electronic-structure problem may also be responsible for the failure 
to synthesize BaGdCrFeO6. These examples demonstrate the ability of 
the A-Lab to provide important feedback to high-throughput computed 
datasets. With improved calculations that exclude the computation-
ally problematic compounds in this work, our total success rate would 
increase to 78% (43/55 targets).

Outlook
In 17 days of closed-loop operation, the A-Lab performed 355 experi-
ments and successfully realized 41 of 58 novel inorganic crystalline 
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solids with diverse structures and chemistries. This unexpectedly high 
success rate (71%) for the synthesis of computationally predicted com-
pounds was achieved by integrating robotics with: (1) DFT-computed 
data to survey the energetic landscape of precursors, reaction interme-
diates and final products; (2) heuristic suggestions for synthesis proce-
dures obtained from ML models trained on text-mined synthesis data; 
(3) ML interpretation of experimental data; and (4) an active-learning 
algorithm that improves on failed synthesis procedures. The study 
also revealed several opportunities to enhance the lab’s active-learning 
algorithm by addressing failures caused by slow reaction kinetics, 
which would enable an improved success rate of 74% with in-line  
solutions.

Our paper demonstrates that autonomous research agents can mark-
edly accelerate the pace of materials research. Researchers initialized 
the A-Lab by proposing 58 target materials, which were successfully 
realized at a rate of >2 new materials per day with minimal human inter-
vention. Such rapid discovery points to a vast landscape of opportu-
nities in materials synthesis and development. Although this work 
focused on a limited subset of all possible synthesis targets, many new 
candidates await evaluation. As the breadth of ab initio computations 
continues to grow, so will this list of novel materials.

Advances in simulations, ML and robotics have intersected to enable 
‘expert systems’ that show autonomy as an emergent quality by the 
sum of its automated components. The A-Lab demonstrates this by 
combining modern theory-driven and data-driven ML techniques 
with a modular workflow that can discover novel materials with mini-
mal human input. Lessons learned from continuing experiments can 
inform both the system itself and the greater community through 
systematic data generation and collection. The systematic nature 
of the A-Lab provides a unique opportunity to answer fundamental 
questions about the factors that govern the synthesizability of novel 
materials, serving as an experimental oracle to validate predictions 
made on the basis of data-rich resources such as the Materials Project. 
In future iterations of the platform, such an oracle may be expanded 
to investigate factors beyond synthesizability, including microstruc-
ture and device performance. Although our current success rate for 
the synthesis of novel compounds is high, the remaining discrepan-
cies between current predictions and their experimental outcomes 

is a crucial signal required to improve our understanding of materials  
synthesis.
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the remaining 16 stable targets fall under two categories: experimental barriers 

(blue, 13 targets) and computational barriers (green, three targets). We 
distinguish these barriers as four distinct failure modes: slow reaction kinetics, 
precursor volatility, product amorphization and limitations associated with 
DFT calculations performed at 0 K. A schematic explanation for each failure 
mode is provided.
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Methods

Materials screening
The 58 targets evaluated by the A-Lab were identified from the Materi-
als Project database (version 2022.10.28). We first obtained all entries 
from the Materials Project that were marked as ‘theoretical’ (that is, 
not represented in the ICSD) and predicted to be thermodynamically 
stable (at 0 K) or very close to the convex hull (<10 meV per atom). We 
did not consider materials with ≤2 elements nor those containing ele-
ments that are radioactive (Ac, Th, Pa, U, Np, Pu, Tc), exceedingly rare 
(Pd, Pt, Rh, Ir, Au, Ru, Os, Re, Tl, Sc, Tm, Pm, Rb, Cs) or toxic (Hg, As). 
Owing to concerns with the experimental handling of certain materials 
systems (for example, sulfides), we constrained our selection to only 
include the following types of material: oxides, carbonates, bicarbo-
nates, hydroxides, sulfates, sulfites, bisulfates, silicates, fluorides, chlo-
rides, bromides, orthoborates, metaborates, tetraborates, phosphates, 
phosphites, chlorates, chlorites and hypochlorites. Finally, we removed 
all compounds predicted to have uncommon and potentially challeng-
ing oxidation states (for example, Co4+), as determined by pymatgen38.

The novelty of each candidate material was verified by cross-checking 
with several experimental sources. We first removed all compositions 
that appeared in SynTERRA, a text-mined set of experimental synthesis 
data extracted from more than 24,000 publications39. Furthermore, we 
removed any materials with compositions appearing in the ‘Handbook 
of Inorganic Substances’40. Although these methods are not exhaus-
tive, they provide an automated and high-throughput approach to 
screen for materials novelty. For the remaining 432 candidates that were 
labelled as previously unsynthesized using this workflow, we filtered 
by thermodynamic stability in air. This was done by calculating the 
formation energy of each compound in a grand potential with respect 
to oxygen, assuming standard atmospheric conditions (pO2 = 21,200 Pa) 
and temperatures ranging from 600 to 1,100 °C. We further checked 
for reactivity with CO2 and H2O under those same conditions by using 
the Interface Reactions module in pymatgen38,41. From the resulting list 
of 146 new compounds that were stable in air, we selected 58 targets 
for which precursors were readily available. Later in the process, we 
found literature evidence for a small number of these compounds, 
but most (52/58 compounds) are believed to have no previous reports 
(Supplementary Note 9).

The algorithm we used for identifying potential synthesis tar-
gets is available on GitHub (https://github.com/mattmcdermott/
novel-materials-screening). It operates autonomously once given 
the following information: which elements to consider in the target 
materials, how large an upper limit to impose on each material’s energy 
above the convex hull, the atmospheric conditions under which the 
materials will be synthesized and a threshold on the reaction energies 
that exist between each material and the gaseous species present in the 
specified atmosphere. The algorithm then scrapes the Materials Project 
and produces a list of candidate materials that satisfy these criteria. 
Further filtering may be considered on the basis of the availability and 
cost of precursors for each target. Although this is done manually in 
the current version of the algorithm, potential improvements could 
automate the process by using online data from chemical inventory 
lists and vendor websites.

Synthesis recipes from text-mined knowledge
We have established a pipeline for recommending synthesis recipes 
by using a knowledge base of 33,343 solid-state synthesis procedures 
extracted from 24,304 publications16. For a given target, the initial 
recipe is selected on the basis of the most common precursors in the 
knowledge base. We then transition to a similarity-based strategy for 
recipe selection. Each target is transformed into a numerical vector 
by using a synthesis-context-based encoding model12. The similarity 
between a given (new) target and each known material in the knowledge 
base is evaluated using the cosine similarity between their encoded 

vectors. After identifying the reference material that is most similar 
to the target, its precursors are included in the new recommendation. 
When these precursors do not cover all the elements in the target, we 
use a masked precursor completion model12 to account for such missing 
precursors. Subsequent recommendations are implemented by moving 
down the list of known materials ranked to be most similar to the target.

For each set of recommended precursors, the most effective syn-
thesis temperature is predicted using an XGBoost regressor trained 
in previous work11. The target and its associated precursors are trans-
formed into three sets of features: (1) precursor properties including 
melting points, standard enthalpies of formation and standard Gibbs 
free energies of formation; (2) target compositional features indicating 
which elements are present; and (3) the calculated thermodynamic driv-
ing force associated with pairwise reaction paths from precursors to 
target. Although the proposed synthesis temperature is dependent on 
the precursors, not just the target, it may vary for each recipe. However, 
to maximize the efficiency with which the A-Lab operates, we chose 
to use one fixed temperature for each target. This temperature was 
calculated by averaging the proposed synthesis temperatures for the 
top five precursor sets recommended for a given target. This allowed 
all such precursor sets to be batched in a single furnace.

Robotic synthesis and characterization
The A-Lab performs fully automated solid-state synthesis and charac-
terization. It is a bespoke robotic platform that consists of a precursor 
preparation station with a central robot arm (Mitsubishi) for powder 
dispensing and mixing (custom-made with Labman Automation Ltd.), 
a high-temperature heating station with four box furnaces (based on 
F48055-60, Thermo Scientific, with custom actuators to control its 
door), a product-handling station developed in-house for powder 
retrieval and sample loading, a characterization station with a pow-
der X-ray diffractometer (Aeris Minerals, Malvern Panalytical) and 
two collaborative robot arms (UR5e, Universal Robots) that transfer 
samples and labware between stations. Further details on the robotic 
platform are provided in Supplementary Note 10.

The synthesis process starts from the precursor preparation station, 
where the necessary consumables (plastic vials, ZrO2 balls and cruci-
bles) and precursor dosing bottles containing between 50 and 100 g 
of powders are manually loaded before starting a new experimental 
campaign. Prescribed amounts of the precursor powders are dispensed 
into a plastic vial by an automatic dispenser balance (Quantos, Mettler  
Toledo). The precursor powders are then mixed thoroughly with etha-
nol and ten 5-mm ZrO2 balls in a dual asymmetric centrifuge (Smart 
DAC250, Hauschild) for 9 min. To ensure proper slurry viscosity, the 
ethanol amount is automatically calculated on the basis of the amount 
and density of each powder comprising the mixture. The resulting 
slurry is transferred with an automated pipettor (rLine LH-710969, 
Sartorius) into an alumina crucible, which is then dried at 80 °C in a 
closed evaporation system. A UR5e robot arm on a linear rail (Olympus 
Controls) removes the dried samples from the precursor preparation 
station and loads them into one of four box furnaces. Heating is per-
formed in batches, with each furnace containing up to eight samples 
on an alumina tray. Each batch is heated to 300 °C with a slow ramping 
rate of 2 °C min−1 to raise the likelihood that any phosphate precursor 
has time to react before it becomes volatile at higher temperature. The 
samples are then heated to the specified synthesis temperature with a 
nominal ramp rate of 15 °C min−1, followed by a 4-h dwell. After the dwell 
is complete, the samples are naturally cooled to 100 °C, at which point 
a UR5e arm removes the samples from the furnace and waits another 
10 min to allow the samples to cool to room temperature.

A separate UR5e arm transfers the cooled samples to the next station 
for powder retrieval and characterization. There, a 10-mm alumina ball 
is placed in each crucible by an automatic ball dispenser developed 
in-house and then sent to a vertical shaker that grinds the samples into 
fine powders. The resulting powders are then poured by the UR5e arm 

https://github.com/mattmcdermott/novel-materials-screening
https://github.com/mattmcdermott/novel-materials-screening


from the crucibles into a clean plastic vial covered using a steel mesh. 
By inverting the container, the powder is dispensed through the mesh 
onto an XRD sample holder and subsequently flattened with an acrylic 
disc. The UR5e arm transfers each flattened sample into the diffrac-
tometer for X-ray measurements, which are performed using 8-min 
scans that range from 2θ = 10° to 100°. The XRD sample holders must 
be cleaned manually when the lab has depleted its stock. Precursor 
powders should also be refilled or replaced, when necessary, although 
this can be performed without stopping the workflow of the lab.

Phase analysis
Given an XRD pattern obtained from an unknown sample, we apply 
XRD-AutoAnalyzer to identify the constituent phases and estimate 
their weight fractions18. This algorithm relies on a convolutional neural 
network (CNN) consisting of six convolutional layers, with max pool-
ing applied between each, followed by three fully connected layers 
with ReLU activation. Batch normalization and a dropout rate of 50% 
is applied between the fully connected layers for regularization. At 
inference, we apply Monte Carlo dropout to create an ensemble of 
100 networks with 50% of their connections randomly excluded. The 
final prediction is taken as the phase that seems most frequently in 
the ensemble and its associated confidence is defined as the fraction 
of models that predict it.

A unique model instance is trained on the chemical space defined by 
each target. Experimental-structure entries with elements shared by the 
given target are extracted from the ICSD, also including carbonates and 
hydroxides. For the DFT-calculated target, we apply a machine-learned 
volume correction to its lattice parameters (Supplementary Note 1) 
before including it in the training set. From each reference phase, 200 
diffraction patterns are simulated with stochastic variations derived 
from experimental artefacts including lattice strain, crystallographic 
texture, impurity peaks and poor crystallinity. These augmented pat-
terns are used to train the CNN for 50 epochs, after which they are ready 
for the analysis of novel patterns.

To confirm the predictions of the CNN, we use an automated 
approach to multiphase Rietveld refinement. An agent with two deep 
neural networks (actor/critic) were trained using reinforcement learn-
ing based on a proximal policy optimization algorithm42 implemented 
in a custom gym environment43 that interacts with the GSAS-II software 
package44 through a scripting interface45 (Supplementary Note 2). The 
environment is initialized by refining the background, followed by 
the scale factor and sample displacement. After initialization is per-
formed on the basis of these parameters, the algorithm freely refines 
the lattice parameters, phase fractions, isotropic microstrains and 
particle sizes. For each step in the refinement, our algorithm decides 
which parameters to refine and/or reset to the initial values, with the 
objective of minimizing the difference between the calculated and the 
experimentally observed patterns.

When the automated refinement gives a poor fit, manual analysis 
is performed. For targets for which we suspect the poor fit resulted 
from configurational disorder, we refined the XRD patterns using 
cation-disordered versions of the target’s structure taken from the 
Materials Project. The cations allowed to be exchanged (disordered) 
with one another were selected on the basis of the Hume-Rothery rules, 
as detailed in previous work18. Such cases were still considered suc-
cessful as long as the disordered version of the target retained the 
same crystal structure and overall composition as the ordered version.

Active-learning algorithm
Active learning is performed using ARROWS3, our recently developed 
algorithm that learns from previous experimental outcomes to identify 
improved reaction pathways. Given the products obtained from a set of 
precursors proposed by our natural-language models at temperature 
TNLP, ARROWS3 first suggests that a lower temperature (TNLP − 300 °C) 
be tested for the same precursor set. The intent of this approach is to 

reveal which intermediate phases lead to the formation of each impurity 
observed at higher temperature. From the low-temperature-synthesis 
outcome, information is extracted about the pairwise reactions 
that occurred, including those between the precursors (to form the 
observed intermediates), as well as those between the intermediates 
(to form the high-temperature impurities). New synthesis experi-
ments are then proposed on the basis of sets of precursors expected 
to avoid such reactions, giving priority to those with a maximal ther-
modynamic driving force to form the target. The driving force is calcu-
lated as the free-energy difference between a target and its associated 
precursors, in which all solid energies (at 0 K) are extracted from the 
Materials Project and corrected using a machine-learned descriptor 
that accounts for vibrational-entropy contributions at the specified  
temperature46.

After testing a precursor set at low temperature (TNLP − 300 °C), 
iteratively higher temperatures (ΔT = 100 °C) are examined until the 
target is obtained with a yield exceeding 50% or until the temperature 
reaches TNLP. At each step, the algorithm determines which pairwise 
reactions occurred and records them in a database that is referred to 
throughout all other experiments performed by the A-Lab. In subse-
quent iterations, ARROWS3 gives priority to sets of precursors con-
taining pairs of phases that are expected to form the desired target, 
while avoiding pairs that form unwanted impurities. Moreover, to avoid 
testing redundant synthesis routes for which different precursors form 
identical products, the algorithm checks whether the low-temperature 
(TNLP − 300 °C) intermediates obtained from a given precursor set differ 
from those obtained with previous (unsuccessful) recipes. If not, then 
no further experiments are proposed for that set of precursors. This 
process is repeated until the target is successfully obtained or until all 
the available precursor sets have been exhausted. Further details on 
the active-learning process are provided in Supplementary Notes 4–6 
and 11.

Data availability
All data generated during this study are included in the Supplementary 
Information. This includes the refined XRD patterns for each successful 
synthesis outcome, as well as their associated structure files.

Code availability
The screening algorithm we used for identifying potential syn-
thesis targets is available at https://github.com/mattmcdermott/
novel-materials-screening. The Python scripts and machine-learning 
models used to propose literature-inspired synthesis recipes can be 
found online at https://github.com/CederGroupHub/SynthesisSimi-
larity and https://github.com/CederGroupHub/s4 for precursor and 
temperature selection, respectively. The methods for XRD analysis 
are available at https://github.com/njszym/XRD-AutoAnalyzer. Active 
learning was performed using a package found at https://github.com/
njszym/ARROWS.
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Extended Data Fig. 1 | A-Lab hardware setup. Detailed overview of all physical components in the A-Lab, including the stations for precursor preparation, 
heating and product handling for XRD characterization.
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Extended Data Fig. 2 | Robotic installations for sample transfer in the A-Lab. 
Grippers on the UR5e robotic arms that are used for sample preparation (a), 
loading/unloading of crucible racks to/from the box furnaces (b) and sample 
retrieval and characterization (c). d, Linear rail used to increase the working 

envelope of the robotic arm that loads/unloads crucible racks to/from the 
furnaces. e, Carousel used to organize and move samples in the sample 
preparation station.



Extended Data Fig. 3 | Communication protocols connecting each module 
in the A-Lab. A local area network (LAN) is built to connect all the pieces of the 
A-Lab with a control computer using an RS-485 interface (or DB25 for the box 
furnaces). Each module on the RS-485 interface has an Internet Protocol (IP) 

assigned to enable communication with the computer. For enhanced 
cybersecurity, only the control computer has access to the internet, whereas 
the LAN is isolated from it.
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