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Illuminating protein space with a 
programmable generative model
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Three billion years of evolution has produced a tremendous diversity of protein 
molecules1, but the full potential of proteins is likely to be much greater. Accessing 
this potential has been challenging for both computation and experiments because 
the space of possible protein molecules is much larger than the space of those likely  
to have functions. Here we introduce Chroma, a generative model for proteins and 
protein complexes that can directly sample novel protein structures and sequences, 
and that can be conditioned to steer the generative process towards desired properties 
and functions. To enable this, we introduce a diffusion process that respects the 
conformational statistics of polymer ensembles, an efficient neural architecture for 
molecular systems that enables long-range reasoning with sub-quadratic scaling, 
layers for efficiently synthesizing three-dimensional structures of proteins from 
predicted inter-residue geometries and a general low-temperature sampling 
algorithm for diffusion models. Chroma achieves protein design as Bayesian inference 
under external constraints, which can involve symmetries, substructure, shape, 
semantics and even natural-language prompts. The experimental characterization  
of 310 proteins shows that sampling from Chroma results in proteins that are highly 
expressed, fold and have favourable biophysical properties. The crystal structures of 
two designed proteins exhibit atomistic agreement with Chroma samples (a backbone  
root-mean-square deviation of around 1.0 Å). With this unified approach to protein 
design, we hope to accelerate the programming of protein matter to benefit human 
health, materials science and synthetic biology.

Protein molecules perform most of the biological functions neces-
sary for life, but creating them is a complicated task that has taken 
billions of years of evolution. The field of computational protein design 
aims to shorten this process by automating the design of functional 
proteins in a programmable manner. Although there has been con-
siderable progress towards this goal over the past three decades2,3, 
including the design of previously unknown topologies, assemblies, 
binders, catalysts and materials4–7, most de novo designs have yet to 
approach the complexity and variety of macromolecules that are found 
in nature. Reasons for this include the fact that modelling the relation-
ship between sequence, structure and function is difficult, and most 
methods of computational design rely on iterative search and sampling 
processes that, just like evolution, must navigate a rugged fitness land-
scape incrementally8. Although many computational techniques have 
been developed to accelerate this search3 and to improve the prediction 
of natural protein structures9, the space of possible proteins remains 
combinatorially large and is only partly accessible to conventional 
computational methods. Determining how to efficiently explore the 
space of designable protein structures remains an open challenge.

An alternative and potentially appealing approach to protein design 
is to sample directly from the space of proteins that is compatible with 
a set of desired functions. Although this approach could address the 
fundamental limitation of iterative search methods, it would require 
a way to parameterize the a priori ‘plausible’ protein space, a way to 
draw samples from this space, and a way to bias this sampling towards 
desired properties and functions. Deep generative models have proven  
successful in solving these kinds of high-dimensional model-
ling and inference problems in other domains, for example in the 
text-conditioned generation of photorealistic images10–12. For this rea-
son, there has been considerable work to develop generative models of 
protein space, applied to both protein sequences13–19 and structures20–26.

Despite recent advances in generative models for proteins, we argue 
that there are three properties that have yet to be realized simultane-
ously in one system. These are: modelling the joint, all-atom likelihood 
of sequences and three-dimensional structures of full protein com-
plexes; achieving this with computation that scales sub-quadratically 
with the size of the protein system; and enabling conditional sampling 
under diverse design constraints without retraining. The first of these, 
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generating full complexes, is important because proteins function by 
interacting with other molecules, including other proteins. The second,  
the sub-quadratic scaling of computation, is important because it has 
been an essential ingredient for managing complexity in other mod-
elling disciplines, such as computer vision, in which convolutional 
neural networks scale linearly with the number of pixels in an image, 
and in computational physics, which uses fast N-body methods for the 
efficient simulation of everything from stellar systems to molecular 
ones27. Finally, the requirement to sample from a model without having 
to retrain it on new target functions is of considerable interest because 
protein design projects often involve many complex and composite 
requirements that may vary over time.

Here we introduce Chroma, a generative model for proteins that 
achieves all three of these requirements by modelling full complexes 
with quasi-linear computational scaling and by allowing arbitrary 
conditional sampling at generation time. It builds on the framework 
of diffusion models28,29, which model high-dimensional distributions 
by learning to gradually transform them into simple distributions in 
a reversible manner, and of graph neural networks30,31, which can effi-
ciently process geometric information in complex molecular systems. 
We show that Chroma generates high-quality, diverse and innovative 
structures that refold both in silico and in crystallographic experi-
ments, and that it enables the programmable generation of proteins 
conditioned on diverse properties such as symmetry, shape, pro-
tein class and even textual input. We anticipate that scalable gen-
erative models such as Chroma will enable a widespread and rapid 
increase in our ability to design and build protein systems that are fit  
for function.

A scalable generative model for protein systems
Chroma achieves high-fidelity, efficient generation of proteins by 
introducing a new diffusion process, neural-network architecture, and 
sampling algorithm based on principles from contemporary generative 

modelling and biophysical knowledge. Diffusion models generate 
data by learning to reverse a ‘noising’ process, which for previous 
image-modelling applications has typically been uncorrelated Gauss-
ian noise. By contrast, our model learns to reverse a correlated noise 
process to match the distance statistics of natural proteins, which have 
scaling laws that are well understood from biophysics (Fig. 1a, Supple-
mentary Appendix D). Previous generative models for protein structure 
have typically leveraged computation that scales quadratically, O(N2) 
(refs. 24,25), or cubically, O(N3) (refs. 9,23), in the number of residues 
N. This has either limited their application to small systems or required 
large amounts of computation for modestly sized systems. To over-
come this problem, Chroma introduces a novel neural-network archi-
tecture (Fig. 1b, Supplementary Figs. 4–8, Supplementary Tables 2–3  
and Supplementary Appendices E–G) for processing and updating 
molecular coordinates that uses random long-range graph connections 
with connectivity statistics inspired by fast N-body methods27 and that 
scales sub-quadratically (O(N) or O(Nlog[N]); Supplementary Fig. 4  
and Supplementary Appendix E). We found that these modelling com-
ponents improved performance, as measured by likelihood and in silico 
refolding across an ablation study of seven different model configura-
tions (Supplementary Fig. 22 and Supplementary Appendix L). Finally, 
we introduce methods for low-temperature sampling with a modified 
diffusion process that allows us to trade an increased quality of sam-
pled backbones (increasing likelihood) for reduced conformational 
diversity (reducing entropy; Supplementary Figs. 1–2, Supplementary 
Table 4 and Supplementary Appendix C). Given backbones from this 
diffusion process, the Chroma design network then generates sequence 
and side-chain conformations that are conditioned on the sampled 
backbone to yield a joint generative model for the sequences and struc-
ture of a protein complex. The design network is based on a similar 
graph neural-network architecture (Supplementary Figs. 7, 8 and 15),  
but with conditional sequence and side-chain decoding layers that 
build on previous studies15,16 that have seen further refinement and 
experimental validation32–34.
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Fig. 1 | Chroma is a generative model for proteins and protein complexes 
that combines structured diffusion for protein backbones with scalable 
molecular neural networks for backbone synthesis and all-atom design.  
a, A correlated diffusion process with chain and radius-of-gyration constraints 
gradually transforms protein structures into random collapsed polymers 
(right to left). The reverse process (left to right) can be expressed in terms of a 
time-dependent optimal denoiser ̂ t( , )θ tx x  that maps noisy coordinates xt at 
time t to predicted denoised coordinates 0x . b, We parameterize this in terms 

of a random graph neural network with long-range connectivity inspired by 
efficient N-body algorithms (middle) and a fast method for solving for a global 
consensus structure given predicted inter-residue geometries (right). Another 
graph-based design network (a, top right) generates protein sequences and 
side-chain conformations conditionally based on the sampled backbone.  
c, The time-dependent protein prior learnt by the diffusion model can be 
combined with composable restraints and constraints for the programmable 
generation of protein systems.
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An important aspect of our diffusion-based framework is that it ena-
bles programmability of proteins through conditional sampling under 
combinations of user-specified constraints. This is made possible by 
a key property of diffusion models: they learn a process that trans-
forms a simple distribution into a complex data distribution through 
a sequence of many infinitesimal steps. These ‘microscopic’ steps, 
therefore, can be biased or constrained by different user-specified 
requirements to produce a new conditional diffusion process at design 
time. We built on this with a diffusion-conditioner framework that 
allows us to automatically sample from arbitrary mixtures of hard con-
straints and soft penalties implemented as composable primitives 
(Fig. 1c and Supplementary Appendix M). We explored several condi-
tioner primitives including geometrical constraints that can outfill pro-
teins from fixed substructures (Supplementary Appendix N), enforce 
particular distances between atoms (Supplementary Appendix O),  
graft motifs into larger structures (Supplementary Appendix P), sym-
metrize complexes under arbitrary symmetry groups (Supplementary 
Appendix Q) and enforce shape adherence to arbitrary point clouds 
(Supplementary Appendix R). We also explored the possibilities of 
semantic prompting by training neural guidance networks that pre-
dict multi-scale protein classifications (Supplementary Appendix S) 
and natural language annotations (Supplementary Appendix T) from 
protein structures. We can invert these predictive models by sampling 
proteins that optimize classifier predictions. Any subset of conditioners 
may then be composed for bespoke, on-demand protein generation 
subject to problem-specific requirements.

Analysis of unconditional samples
We sought to characterize the space of possible proteins parameterized 
by Chroma by generating a large number of unconditional samples of 

proteins and protein complexes (100,000 single-chain proteins and 
20,000 complexes across two versions of the models, v.0 and v.1; Sup-
plementary Appendix G and Supplementary Table 2). As can be seen 
in Fig. 2a, unconditional samples display many properties shared by 
natural proteins, such as complex layering of bundled α-helices and 
β-sheets in cooperative, unknotted folds. In some cases, we observed 
recognizable protein-complex configurations, including what seems 
to be an antibody–antigen complex in Fig. 2a (centre-right); note 
that the closest Protein Data Bank (PDB) structural matches to the 
two ‘antigen’ chains of this complex are at template-modelling (TM) 
scores41 of 0.46 and 0.43, indicating that this sample is not a result of 
memorization. We provide grids of random samples in Supplementary 
Figs. 9 and 10 for single-chain and complex structures, respectively. 
To quantitatively characterize the agreement of Chroma samples with 
natural proteins, we computed distributions of several key structural 
properties, including secondary-structure utilization, contact order35, 
length-dependent radius of gyration36, length-dependent long-range 
contact frequency and density of inter-residue contacts (Supplemen-
tary Table 5 and Supplementary Appendix J). We observe a general 
agreement of these statistics with corresponding distributions from 
the PDB (Supplementary Fig. 11), although we do see an overrepresen-
tation of α-helices in the later version of Chroma (v.1) that seems to be 
a consequence of low-temperature sampling, which accentuates the 
already increased frequency of helices relative to strands in natural 
proteins (Supplementary Fig. 11b). Because these protein properties 
focus on low-order structural statistics, we also sought to characterize 
the extent to which they reproduce higher-order atomic geometries of 
natural protein structures. Natural protein structures exhibit consid-
erable degeneracy in their use of local tertiary backbone geometries, 
such that completely unrelated proteins tend to use very similar ter-
tiary motifs37,38. Chroma-generated structures exhibit the same type 
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Fig. 2 | Analysis of unconditional samples reveals diverse geometries that 
exhibit new higher-order structures and refold in silico. a, A representative 
set of Chroma-sampled proteins and protein complexes exhibits complex and 
diverse topologies with high secondary-structure content, including familiar 
TIM (triose-phosphate isomerase) barrel-like folds (top left), antibody–
antigen-like complexes (centre right) and new arrangements of helical bundles 
and β-sheets. b,c, Despite these qualitative similarities, samples frequently 

have low nearest-neighbour similarity to structures in the PDB, as measured by 
nearest-neighbour TM score 41 (b; Supplementary Appendix J.4), with 
structures demonstrating frequent novelty across length ranges (c). d,e, When 
we attempted to refold samples in silico using only a single sequence sample 
per structure, we observed widespread refolding with a high degree of 
superposition (d), including occasionally in the very high length range of more 
than 800 residues (e).
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of degeneracy, utilizing natural tertiary motifs in a way that closely 
resembles native proteins, including complex tertiary geometries with 
four or five disjoint backbone fragments (Supplementary Fig. 11c and 
Supplementary Appendix J).

Although reproducing native-like properties of backbone geometries 
is important in design, our top priority is the extent to which the pro-
teins can be realized as sequences that fold and function as intended. 
The definitive answer to this question involves experimental charac-
terization (see below), but in silico evidence can be gathered more 
systematically. We sought to evaluate the fidelity of sequence–structure 
pairs generated by Chroma by measuring their agreement with three 
state-of-the-art methods for structure prediction9,39,40. We sampled 
one sequence for each backbone with Chroma’s design network and 
assessed whether each structure-prediction method would predict 
these sequences to fold into the corresponding generated structures 
(Supplementary Fig. 14 and Supplementary Appendix J). We observed 
widespread refolding of Chroma samples, whether stratified by protein 
length (Fig. 2e) or helical content and novelty (Supplementary Fig. 14). It 
is not surprising that successful refolding is less frequent for longer pro-
teins, but it is remarkable that high TM scores41 are routinely achieved 
even for proteins more than 800 residues in length. Interestingly, helix 
content does not seem to be as strong of a predictor of refolding as the 
distance to the nearest neighbour in the PDB (Supplementary Fig. 15, 
middle and bottom rows, respectively). We note that this sequence–
structure consistency test is not perfect because it rests on the assump-
tion that structure-prediction models will generalize to new folds and 
topologies. However, the test does provide partial supporting evidence 
for the generation of realizable protein models in instances in which the 
predicted and generated structures have strong agreement.

Quantification of the structural homology between Chroma- 
generated samples and proteins in the PDB indicates that the model 
generates previously unseen structures at a frequency that increases 
sharply with length (Fig. 2c and Supplementary Fig. 12a). However, this 
analysis suffers from the problem that coverage of longer structures 
is expected to be lower in any finite database. To get a better under-
standing of the novelty of Chroma samples at different lengths, we 
defined a novelty score as the number of CATH42 domains required 
to greedily cover 80% of the residues in a protein at a TM score above 
0.5, normalized by protein length (Supplementary Appendix J). Note 
that most valid proteins will be covered by at least some finite number 
of CATH domains because we retain even very small domains (such as 
single secondary-structural elements) in the coverage test. As shown 
in Supplementary Fig. 12c,d, there is a clear gap between native and 
Chroma-generated proteins by this metric, with most native backbones 
requiring approximately 2–5 times fewer CATH domains to be covered 
per length than generated backbones.

We also find that samples from Chroma are diverse and cover natu-
ral protein space. In Supplementary Fig. 13, we present samples from 
Chroma and a set of native structures with global topology descriptors 
derived from knot theory43,44 and embed them into two dimensions with 
UMAP45. The resulting embedding seems to be semantically meaningful 
because subsets of structures belonging to different categories by size 
and secondary structures cluster in this projection (sub-panels on the 
left in Supplementary Fig. 13a). False colour of the points in the embed-
ding shows that novelty is spread broadly and is not biased to only 
certain types of structure space. This is especially clear when looking at 
a representative selection of samples shown in Supplementary Fig. 13b.

Programmability
An important aspect of Chroma is its programmability, which means 
it is straightforward to specify high-level desired protein properties 
(such as symmetry groups) that are compiled into a set of sampling 
conditioners that bias the diffusion process towards these properties 
(Fig. 1c, Supplementary Fig. 23 and Supplementary Appendix M). To 

demonstrate the range of protein properties that can be programmed 
with conditional generation, we explored several composable con-
ditioning primitives (Supplementary Table 6, Supplementary Figs. 
23–33 and Supplementary Appendices N–T). Although we believe that 
each of these represents only a preliminary demonstration of possible 
conditioning modes, they provide a glimpse of the potential for pro-
grammable protein design.

We began by considering analytic conditioners that can control pro-
tein backbone geometry. We found that conditioning on the symmetry 
of protein complexes can readily generate samples under arbitrary 
symmetry groups (Fig. 3a, Supplementary Figs. 17, 27–29 and Sup-
plementary Appendix Q). Figure 3a illustrates symmetry-conditioned 
generation across many groups, from simple four-subunit cyclic sym-
metries up to a capsid-sized icosahedral complex with 60,000 total 
residues and more than 240,000 atoms. This also demonstrates why 
favourable computational scaling properties, such as quasilinear com-
putation time (Supplementary Appendix E), are important, as efficient 
computation enables scaling to larger systems. Symmetric assemblies 
are common in nature and there have been some successes with de novo 
symmetric designs46,47, but it has generally been difficult to simultane-
ously optimize for both the desired overall symmetry and the molecular 
interaction details between protomers. Symmetry conditioning within 
the generation process in Chroma should make it simpler to sample 
structures that simultaneously meet both requirements.

We next explored substructure conditioning (Fig. 3b, Supplementary 
Figs. 16, 24–26, Supplementary Appendices N–P), which is a central 
problem for protein design because it can enable the preservation of one 
part of the structure of a protein (such as an active site) while modifying 
another part of the structure (and potentially function). In the top row, 
we cut the structure of human dihydrofolate reductase (DHFR; PDB code 
1DRF) into two halves with a plane, remove one of the halves and regener-
ate the missing half. The cut plane introduces multiple discontinuities 
in the chain simultaneously, and the generative process must sample a 
solution that simultaneously satisfies these boundary conditions while 
being biophysically plausible. Nevertheless, the samples achieve both 
goals and, interestingly, do so in a manner very different from each other 
and from natural DHFR. In the second row of Fig. 3b, we cut out the 
complementarity-determining regions of a VHH antibody and rebuilt 
them conditioned on the remaining framework structure. Finally, the 
bottom three rows of Fig. 3b condition on sub-structure in an unregis-
tered manner, meaning that the exact alignment of the substructure 
(motif) within the chain is not specified a priori, as it was in the previous 
examples. We outfilled the protein structure around several structural 
and functional motifs, including an αββ packing motif, backbone frag-
ments encoding the catalytic triad active site of chymotrypsin and the 
EF-hand Ca-binding motif. Again, these motifs are accommodated in a 
realistic manner using diverse and structured solutions.

In Fig. 3c we provide an early demonstration of a more exotic kind 
of conditioning in which we attempted to solve for backbone con-
figurations subjected to arbitrary volumetric shape specifications. 
We accomplished this by adding heuristic classifier gradients based 
on optimal transport distances48 between atoms in the structures and 
user-provided point clouds (Supplementary Appendix R). As a stress 
test of this capability, we conditioned the generation of single protein 
chains on the shapes of the Latin alphabet and Arabic numerals (Sup-
plementary Fig. 18 and Supplementary Appendix K.3). We see the model 
routinely implementing several core phenomena of protein backbones, 
such as high secondary-structure content, close packing with room 
for designed side chains, and volume-spanning α-helical bundle and 
β-sheet elements. Although these shapes represent purely a challeng-
ing set of test geometries, more generally shape is intimately related 
to function in biology, for example, with membrane transporters, 
receptors and structured assemblies that organize molecular events 
in space. Being able to control shape would be a useful subroutine for 
generalized programmable protein engineering.

https://doi.org/10.2210/pdb1DRF/pdb


1074 | Nature | Vol 623 | 30 November 2023

Article

Finally, we demonstrate in Fig. 4 that it is possible to condition on 
protein semantics, such as secondary structure, fold class (Fig. 4a, Sup-
plementary Figs. 19, 30 and Supplementary Appendix S) and natural 
language (Fig. 4b, Supplementary Figs. 20, 31–33, and Supplementary 
Appendix T). Unlike geometric conditioning, in which the classifier is 
correct by construction (for example, the presence of a motif with less 
than a certain root-mean-square deviation is unambiguous), here the 
classifiers are neural networks trained on structure data, so there can 
be a discrepancy between the label assigned by the classifier and the 
ground truth class. Thus, for the fold-conditioned generation (Fig. 4a),  
we see that conditional samples always improve classifier probabilities 
over unconditioned samples taken from the same random seed, but 
the classification is not always perfect. For example, for the ‘Rossman 
fold’ class, the generated samples reproduce the canonical mixed topol-
ogy. However, in the ‘Ig fold’ and ‘β-barrel fold’ examples, the struc-
tures exhibit some of the features characteristic of the classes (for 
example, β-sheets packed against each other) but do not contain all 
such features (for example, the Ig topology does not appear canonical 
and the barrel does not form a closed cycle). In Fig. 4b we demonstrate 
two examples of semantic conditioning on natural language captions, 
where we again occasionally observe alignment between samples 
and intended prompts, especially for highly-represented protein 
classes. It is exciting to imagine the potential of such a capability, that 

is being able to request desired protein features and properties directly 
through natural language prompts. Generative models such as Chroma 
can reduce the challenge of function-conditioned generation to the 
problem of building accurate classifiers for functions given structures. 
Although there is clearly much more work to be done to make this useful 
in practice, high-throughput experiments and evolutionary data are 
likely to enable this in the near term.

Supplementary Appendix K demonstrates extensive  in silico 
refolding studies of samples generated with the conditioners 
described above. As shown in Supplementary Figs. 16–20, all of these 
conditional-generation processes can produce samples that refold 
accurately to their generated backbones. The rates at which this hap-
pens vary according to the specific condition and protein length (and 
are subject to the caveats of this test mentioned above), but even 
in the challenging cases of shape-, complex symmetry-, class- and 
language-conditioned designs, we observe widespread refolding across 
specific conditions and structure prediction methods.

Experimental validation
To experimentally validate Chroma, we built a simple design protocol 
(based on Chroma v.0) that was intended to generate high-likelihood 
samples drawn from the model. Specifically, the protocol involved 
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three steps: generate backbones by drawing independent samples 
from Chroma at low temperature; design sequences for each backbone 
using the Chroma design network; and automatically select a subset for 
experimental characterization to match the desired experimental scale, 
driven primarily by sequence and/or structure likelihood (as shown in 
Supplementary Table 7 and Supplementary Appendix U.1). Notably, we 
deliberately did not filter designs for refolding by a structure-prediction 
method or using any structure–energetic calculations. However, 
such filtering could potentially be used to improve the success rate  
of design.

We generated 310 proteins (unconditional or semantically condi-
tioned on CATH class or topology) for attempted expression and struc-
tural characterization (Fig. 5a). We first addressed an initial set of 172 
unconditional proteins, ranging between 100 and 450 amino acids in 
length (Supplementary Fig. 36). We used a pooled protein solubility 
assay that was based on the split-GFP reporter system49 to prioritize 
tractable proteins for subsequent characterization (Supplementary 
Fig. 38a). After FACS and Nanopore sequencing (Supplementary 
Fig. 38b), enrichment scores were assigned to categorize the soluble 
expression levels of each protein (Supplementary Fig. 38c). All 172 
tested proteins were assigned higher enrichment scores than the nega-
tive control (human β3 adrenergic receptor, Supplementary Table 8),  
indicating that a wealth of Chroma-designed unconditional proteins 
can be solubly expressed in Escherichia coli (Fig. 5b). We confirmed 
stable fluorescence in sorted cell populations (Supplementary Fig. 38d) 
and corroborated our split-GFP screen results using western blotting, 
observing soluble expression of 19 of the 20 top-scoring proteins and 0 

of the 20 lowest-scoring proteins (Supplementary Fig. 39). We created 
an additional set of 96 unconditional Chroma proteins encompassing 
a wider range of lengths (from 100 to 950 amino acids; Supplementary 
Fig. 40a), which performed similarly to the first unconditional protein 
set using the split-GFP reporter assay (Supplementary Fig. 40b,c). In 
this additional set, soluble expression of nine of the ten top-scoring 
proteins was confirmed by western blotting (Supplementary Fig. 40d).

Of the proteins identified in the top 10% of the split-GFP solubility 
screen, we purified seven for interrogation using circular dichroism 
(CD; Fig. 5e) and differential scanning calorimetry (Supplementary 
Fig. 41 and Extended Data Table 1). The results indicate that most of 
the isolated proteins were stably folded with appreciable secondary 
structure. From these proteins, we were able to obtain X-ray crystal 
structures (Extended Data Table 2) for UNC_079 (PDB 8TNM; Fig. 5c) 
and UNC_239 (PDB 8TNO; Fig. 5d). The observed structures matched 
the anticipated designs to a high degree (root-mean-square devia-
tion = 1.1 Å and 1.0 Å, respectively), indicating that Chroma-generated 
structures are realizable. Importantly, these structures are unique with 
respect to the PDB, with the top PDB hit to UNC_079 (PDB entry 4NH2, 
chain E) having query and target TM scores of 0.7 and 0.3, respectively, 
and the top hit to UNC_239 (PDB entry 6AFV, chain A) having query and 
target TM scores of 0.5 and 0.23, respectively (Fig. 5c,d).

The results of the split-GFP assay show that it is more difficult to 
succeed with longer designs, because there is an inverse correlation 
between length and split-GFP score (Supplementary Fig. 34). Inter-
estingly, although we might expect the extent of refolding by struc-
ture prediction to also correlate with experimental success, we saw 
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Fig. 4 | Protein structure classifiers and caption models can bias the 
sampling process towards user-specified properties. a, Neural networks 
trained to predict protein properties can bias unconditional samples (top) 
towards states that optimize predicted properties, such as secondary-structure 
composition (bottom) indicated by CATH class level codes (C1, Mainly Alpha; 
C2, Mainly Beta; C3, Alpha Beta). b, A neural network trained to predict CATH 
topology annotations can routinely drive generation towards samples with 
high predicted probabilities of the intended class label, which sometimes 
aligns with our intended fold topology for highly abundant labels. Left, highly 
abundant Rossmann fold (CATH topology 3.40.50, 14.0% of training set); middle, 

highly abundant Ig fold (CATH topology 2.60.40, 9.8% of training set); right,  
a rare specific β-barrel fold (CATH topology 2.40.155, 0.07% of training set).  
c, Fine-tuning a multi-label predictor to bias a pretrained large language model 
into a structure caption predictor can enable natural language conditioning. 
We begin to see examples of semantic alignment between prompts and output 
structures for highly abundant classes of structures, although we do not always 
see this reflected in the time-zero caption perplexity (CP, lower is better). Left, 
‘crystal structure of a Rossmann fold’; right, ‘crystal structure of a Fab antibody 
fragment’.
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no correlation when length is corrected for (Supplementary Fig. 34). 
Similarly, we saw no correlation between soluble expression and struc-
tural novelty. We did find model likelihoods to be weakly predictive 
of experimental success for the first conditional set, but this did not 
hold true for the second set, in which lengths were extended up to 950 
amino acids (Supplementary Fig. 35).

To test the ability of Chroma to propose well-behaved proteins in a 
conditioned setting, we next evaluated a set of 42 proteins conditioned 
by ProClass on CATH class (36 designs split among the classes mainly 
α, mainly β and mixed α/β) and on CATH topology (six designs condi-
tioned on the β-barrel topology 2.40.155; Supplementary Fig. 37a). In 
the split-GFP solubility assay, 40 of these proteins (95%) scored above 
the negative control, indicating a high success rate of soluble protein 
expression (Supplementary Fig. 37b). We purified one representative 
protein from each secondary-structure category (two designs condi-
tioned on mainly-α and mixed α/β classes, and one design conditioned 
on the β-barrel topology). Differential scanning calorimetry data for 
these proteins were consistent with relatively stable folding, with 
melting temperatures ranging from 64 °C to 78 °C (Supplementary 
Fig. 37c). On the basis of secondary-structure predictions from CD 
spectra50, we observed higher α-helical content in the mainly-α design, 
higher β-sheets in the β-barrel design, and mixed secondary structure 
in the mixed-content protein (Fig. 5f). Indeed, across both conditional 
and unconditional designs, the inferred secondary-structure content 
from CD was closely correlated with the secondary-structure content 

calculated from Chroma-generated models, for both the fraction of 
α-helices (R2 = 0.84; Fig. 5g) and β-sheets (R2 = 0.51; Supplementary 
Fig. 5h), indicating that proteins with various structural compositions 
can be designed by Chroma.

Discussion
In this work we present Chroma, a generative model that can gener-
ate new and diverse proteins across a broad array of structures and 
properties. Chroma is programmable in the sense that it can sample  
proteins with a wide array of user-specified properties, including  
inter-residue distance and contact, domain, sub-structure and seman-
tic specification from classifiers. Chroma is able to generate proteins 
that have arbitrary and complex shapes, and it has even begun to dem-
onstrate the ability to accept descriptions of desired properties as 
free text. Its efficient design, with an innovative diffusion process, 
quasilinear scaling neural architecture and low-temperature sam-
pling method, means that Chroma can generate extremely large 
proteins and protein complexes (with more than 3,000 residues) on 
a commodity graphics processing unit (such as an NVIDIA V100) in  
a few minutes.

We reasoned that the best way to determine the plausibility of the 
protein space parameterized by Chroma was to draw independent 
samples from the model and test them experimentally. Note that 
this is a departure from the prototypical protein-design protocol, in 
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which initial proposal designs are down-selected using a custom set 
of filters intended to avoid known or hypothesized model deficiencies 
and help focus on designs that are more likely to work experimentally. 
Although the latter practice, which is broadly adopted in the field, 
can be effective at increasing design success rates, it does require 
a custom set of filters for each design project and makes fully auto-
mated design difficult to achieve. Furthermore, such an approach 
would detract from our intention of characterizing the distribution 
learned by Chroma.

Our experimental validation shows that Chroma has learnt a suf-
ficiently accurate distribution such that sampling from it results in 
proteins that express, fold, have favourable biophysical properties 
and conform to intended structures at non-trivial rates. Even under 
the highly conservative view that only the proteins we purified and 
characterized individually in solution constitute successful designs 
(as opposed to others that performed comparably by split-GFP, 
for example), Chroma would still have a 3% success rate. Moreover, 
the two designs with experimentally determined crystal structures 
demonstrate that a non-trivial fraction of this distribution should be 
expected to be atomistically accurate. Given the breadth and novelty 
of the structure space learned by Chroma (Fig. 2 and Supplementary 
Figs. 9, 10 and 13), even these conservative estimates of success rate 
would translate into immense swaths of unexplored actionable pro-
tein space that can now be accessible through commodity computing  
hardware.

The task of exploring protein structure space in a way that can pro-
duce physically reasonable and designable conformations has been a 
long-standing challenge in protein design. In a few protein systems, it 
has been possible to parameterize the backbone conformation space 
mathematically—most notably the α-helical coiled coil51 and a few other 
cases that have high symmetry52—and in these cases, design efforts have 
benefited tremendously, creating possibilities that are not available in 
other systems52,53. For all other structure types, however, a great amount 
of computational time has been spent on the search for reasonable 
backbones, often leaving the focus on actual functional specifications 
out of reach. Chroma has the potential to address this problem, ena-
bling a shift from focusing on generating feasible structures towards a 
focus on the specific task at hand—namely, what the protein is intended 
to do. By leveraging proteins sampled over more than 3 billion years of 
evolution, and by finding new ways to assemble stable protein matter, 
generative models such as Chroma are well poised to drive another 
expansion of biomolecular diversity with benefits for human health 
and bioengineering.
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Article
Extended Data Table 1 | Differential scanning calorimetry data

Differential scanning calorimetry data for Chroma proteins evaluated experimentally.



Extended Data Table 2 | X-ray crystallography data collection and refinement statistics

Statistics related to protein X-ray crystal structures solved in this article. Values in parentheses are for the highest-resolution shell.
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