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Embryo-scale reverse genetics at single-cell 
resolution

Lauren M. Saunders1,8, Sanjay R. Srivatsan1,8, Madeleine Duran1, Michael W. Dorrity1, 
Brent Ewing1, Tor H. Linbo2, Jay Shendure1,3,4,5, David W. Raible1,2, Cecilia B. Moens6, 
David Kimelman1,7 ✉ & Cole Trapnell1,3,5 ✉

The maturation of single-cell transcriptomic technologies has facilitated the 
generation of comprehensive cellular atlases from whole embryos1–4. A majority  
of these data, however, has been collected from wild-type embryos without an 
appreciation for the latent variation that is present in development. Here we present 
the ‘zebrafish single-cell atlas of perturbed embryos’: single-cell transcriptomic data 
from 1,812 individually resolved developing zebrafish embryos, encompassing 19 
timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of 
replication in our study (eight or more embryos per condition) enables us to estimate 
the variance in cell type abundance organism-wide and to detect perturbation- 
dependent deviance in cell type composition relative to wild-type embryos. Our 
approach is sensitive to rare cell types, resolving developmental trajectories and 
genetic dependencies in the cranial ganglia neurons, a cell population that comprises 
less than 1% of the embryo. Additionally, time-series profiling of individual mutants 
identified a group of brachyury-independent cells with strikingly similar 
transcriptomes to notochord sheath cells, leading to new hypotheses about early 
origins of the skull. We anticipate that standardized collection of high-resolution, 
organism-scale single-cell data from large numbers of individual embryos will enable 
mapping of the genetic dependencies of zebrafish cell types, while also addressing 
longstanding challenges in developmental genetics, including the cellular and 
transcriptional plasticity underlying phenotypic diversity across individuals.

Understanding how each gene in our genome contributes to our 
individual phenotypes during embryogenesis is a fundamental goal 
of developmental genetics. Genetic screens in multicellular animals 
have enabled the dissection of diverse developmental processes, illu-
minating the functions of thousands of genes. Although advances in 
automation, imaging and genetic tools have increased the sophistica-
tion of phenotyping and yielded new insights into vertebrate develop-
ment, phenotyping remains a substantial bottleneck in characterizing 
gene function. Single-cell RNA sequencing (scRNA-seq) applied at 
whole-embryo scale offers a comprehensive means of simultaneously 
measuring molecular and cellular phenotypes1–4. However, realizing 
this promise requires overcoming several challenges: sequencing a very 
large number of cells through developmental time, rapidly generating 
mutant embryos and sampling many individuals to account for biologi-
cal variability during embryogenesis. These challenges have, until now, 
limited analyses to few genetic perturbations in comparatively less 
complex animals or at early stages of development.

Recent technological advances have created an opportunity to over-
come these challenges, spurring a new era of developmental genomics. 
Combinatorial cellular indexing, or ‘sci-seq’, profiles the transcrip-
tomes of millions of nuclei in one experiment, enabling embryo-scale 

analyses2. Labelling techniques that ‘hash’ cells or nuclei from dis-
tinct samples allow one to multiplex specimens or whole embryos 
together5, facilitating the analysis of many individuals. Parallel advances 
in CRISPR–Cas9 mutagenesis now enable programmatic, highly effi-
cient genome editing at the F0 stage6, circumventing the generation 
time required to create mutant embryos.

Here, we describe the application of these three technologies to 
zebrafish, a model organism that develops rapidly, exhibits exten-
sive cell type diversity and is made up of a relatively small number of 
cells. The ‘zebrafish single-cell atlas of perturbed embryos’ (ZSCAPE) 
constitutes two major efforts: (1) the establishment of an annotated, 
individually resolved reference atlas, comprising 1,167 individuals 
and 1.2 million cells over 19 timepoints, filling a major gap in existing 
zebrafish atlases; and (2) the collection of perturbation data from 23 
genetic perturbations over multiple timepoints, totalling 645 individu-
als and 2 million cells. By collecting many replicate embryos (eight 
or more embryos per condition), we implement statistical tests to 
systematically assess the gains and loss of cell types consequent to 
perturbation throughout the developing zebrafish. By comparing 
our harmonized reference and perturbation datasets, we dissect the 
genetic dependencies of rare cell types such as the the sensory neurons 
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of the cranial ganglia, which comprise less than 1% of the cells in the 
organism. Finally, we leverage time-resolved, differential cell type 
abundance analysis to characterize a cryptic population of cranial 
cartilage, explicating new hypotheses regarding the evolutionary ori-
gins of the vertebrate skull. Together, our scalable approach is flexible, 
comprehensive, cost-effective and more uniform than conventional 
phenotyping strategies. We anticipate that this new experimental and 
analytical workflow will enable rapid, high-resolution phenotyping of 
whole animals to better understand the genetic dependencies of cell 
types in a developing organism.

An atlas of individual embryos
To robustly detect perturbation-dependent changes in cellular compo-
sition, we adapted sci-Plex5, a workflow for multiplexing thousands of 
samples during scRNA-seq, to barcode individual embryos and to cap-
ture single-nucleus transcriptomes from whole organisms (Methods). 
We optimized whole-embryo dissociations followed by oligonucleotide 
hashing to label each nucleus with an embryo-specific barcode, finding 
that we can unambiguously recover the embryo of origin for around 
70% of cells passing quality control thresholds (Extended Data Fig. 1a,b 
and Supplementary Table 1).

Existing single-cell atlases of zebrafish development document the 
emergence of diverse cell types from 3.3 h (pregastrulation) to 5 days 
(late organogenesis) post-fertilization, in addition to a few selected 
mutants at a single timepoint7–9. While these datasets resolved diverse 
cellular states during zebrafish embryogenesis, each timepoint was 
a pool of embryos, thus masking heterogeneity between individu-
als. To assess variation resulting from gene knockouts, estimating the 
baseline heterogeneity present between individual wild-type embryos 

is critical. Moreover, after late segmentation (18 h post-fertilization 
(hpf)), intervals between sampling timepoints in these datasets were 
very sparse and therefore were not well resolved for key differentiation 
events during organogenesis. Thus, we first set out to establish a more 
high-resolution reference atlas with individual embryo resolution and 
fine-grained timepoint sampling.

We collected and labelled individual zebrafish embryos over 19 time-
points during embryonic and early larval development, spanning from 
18 hpf, during late somitogenesis, with 2 h resolution until 48 hpf, then a 
72 hpf timepoint and 96 hpf timepoint, a period marking the early larval 
stages (Fig. 1a). After quality control, our dataset included approxi-
mately 1.25 million cells from 1,223 barcoded individual embryos. At 
each timepoint, we collected between 48 and 140 embryos and amassed 
around 17,000–231,000 high-quality, single-nucleus transcriptomes 
per timepoint across four single-cell combinatorial indexing RNA 
sequencing (sci-RNA-seq3) experiments (Fig. 1b,c and Extended 
Data Fig. 1c–g). These data also integrated coherently with published 
zebrafish scRNA-seq data from earlier and overlapping timepoints, 
despite collection on different platforms (Extended Data Fig. 1h,i). 
Cell type identity was inferred by inspection of marker genes for each 
cluster, which were cross-referenced with annotated gene expression 
data from the zebrafish genome database, ZFIN. Overall, we hierarchi-
cally classified cells into 33 major tissues, 99 broad cell types and 156 cell 
subtypes (Fig. 1d, Extended Data Fig. 2a,b and Supplementary Table 2).

Given the continuity of many of our trajectories from one cell type to 
another, we sought to understand the lineal relationships reflected in 
our data (for example, the differentiation of mesodermal progenitors 
to fast muscle myocytes) (Extended Data Fig. 2d). However, inferring 
true lineage relationships from transcriptional similarity alone can be 
fraught1. For instance, pseudotime inference in the muscle trajectory 
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Fig. 1 | Collection of an individual-resolved single-cell zebrafish atlas using 
oligonucleotide hashing. a,b, Number of individuals (a, right) and cells per 
individual embryo (b) profiled from each developmental timepoint. Thick 
horizontal lines show medians, box edges delineate first and third quartiles, 
whiskers extend to ±1.5× interquartile range and dots show outliers. 
Representative drawings for select stages are shown (left) with colours matching 
timepoints in the bar graph. c, Cells originating from two individual embryos 
from 24 hpf (left) and 48 hpf (right) titled with the hash oligonucleotide barcodes. 
d, Uniform manifold approximation and projection (UMAP) embedded in three 

dimensions, coloured by tissue annotation. Inset coloured by developmental 
time, matching colours in a,b. e, Cell type count mean (x axis) versus variance 
( y axis) for a subset of timepoints. The coefficient of variation (black line) and 
standard error (grey fill) for each cell type’s abundance is modelled using a 
generalized linear model with a gamma-distributed response. Cell types that 
vary significantly more than expected relative to the model are coloured in red 
(P < 0.05, maximum likelihood estimation). CNS, central nervous system; RBC, 
red blood cell; hindbrain NP, hindbrain neural progenitor (R7/8).
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suggested that slow and fast muscle cells share a common progenitor; 
however, slow muscle cells differentiate from an independent popula-
tion of precursor cells that are present before 18 hpf (ref. 10), our earliest 
sampled timepoint (Extended Data Fig. 2e). To distinguish between 
bona fide lineage relationships and mere continuous transcriptional 
relationships across cell states in our atlas, we manually constructed 
a graph of documented lineage relationships, harmonized with our 
cell type annotations (Extended Data Fig. 2f).

Using our individual-resolved, whole-organism data, we were also 
able to estimate the variability of cell type abundances over devel-
opmental time. To estimate variance, we adapted a statistical frame-
work commonly used to account for mean–variance relationships in 
sequencing experiments to model variability in cell abundances11. We 
found that most cell types vary in line with expectation given the nature 
of cell-count data, but we did see excess variance in some cell types. 
Cell types that were significantly variable (P < 0.05; Methods) include 
the enveloping layer (EVL), mesodermal progenitor cells (MPCs) and 
notochord cells at 20 hpf, and neural progenitor, optic cup, notochord 
and head mesenchyme cells at 36 hpf (Fig. 1e and Extended Data Fig. 3a). 
In addition to offering clues about the dynamic and transient nature 
of particular cell types, these variance estimates serve as important 
bases for our statistical assessment of perturbation-induced cell type 
abundance changes.

Phenotyping embryos with scRNA-seq
Next, we used sci-Plex to label and measure single-cell profiles across 
time from developing zebrafish F0 knockouts (crispants) generated 
by CRISPR–Cas9 mutagenesis (Methods). We first compared indi-
vidual crispants with mutants deficient for tbx16 or both tbx16 and 
msgn1, which have well-studied phenotypes at 24 hpf (ref. 12). Nearly 
all crispants were indistinguishable from stage-matched null mutants 
by gross morphology, displaying disorganized tail somite formation 
and the characteristic enlarged tail bud. We also looked for molecular 
or cellular differences between cells from knockout (crispant or null) to 
controls across 28 individual embryos. As previously documented13–15, 
both exhibited a marked loss of slow and fast muscle and accumulated 
MPCs, demonstrating the ability of our methodology to accurately pair 
genetic changes to loss of specific cell types (Extended Data Fig. 3b,c).

We then scaled up our approach to profile many different genetic 
perturbations spanning multiple timepoints during embryogenesis 
(Fig. 2a). In total, we targeted 23 genes or gene pairs involved in the 
development of either mesoderm (cdx4, cdx1a, tbxta, tbx16, tbx16l, 
msgn1, wnt3a, wnt8a, noto, smo, tbx1, hand2), central or peripheral 
nervous system (egr2b, epha4a, hoxb1a, mafba, zc4h2, phox2a, foxi1, 
hgfa, met) or neural crest lineages (foxd3, tfap2a) (Supplementary 
Table 3). We designed two to three guide RNAs (gRNAs) per gene and 
checked for editing efficiency at target regions via a sequencing-based 
assay (Extended Data Fig. 3d,e and Supplementary Table 4). A final 
set of gRNAs were chosen based on their ability to produce expected 
phenotypes in F0 knockouts without inducing non-specific cell death 
(Extended Data Fig. 3f,g). For each gene target, we collected eight 
embryos at an average of three of five timepoints that overlapped 
with the reference dataset: 18, 24, 36, 48 and 72 hpf. Altogether we 
profiled cells from 804 uniquely barcoded embryos across 98 condi-
tions (including injection controls (n = 159), perturbations (n = 645) 
and multiple timepoints) and sequenced 2.7 million cells from a single 
sci-RNA-seq3 experiment and up to an estimated 10% of cells from each 
embryo (Fig. 2a and Extended Data Fig. 4a–d). Of these, the 600,000 
or so cells from control-injected embryos did not display batch effects 
when co-embedded with our wild-type time-series reference, and they 
are included in the final reference dataset (Extended Data Fig. 1g).

To annotate cells by type for perturbed embryos and to facilitate 
cell type abundance analyses, we first projected the mutant data onto 
our reference atlas and then transferred annotations using a fast, 

approximate nearest-neighbour algorithm (Methods and Extended 
Data Fig. 4e,f). To assess perturbation-dependent cell type abundance 
changes, we transformed the data from a gene expression matrix into 
a cell type abundance matrix, effectively summarizing the number of 
each cell type observed within each embryo (Fig. 2b). After normal-
izing for the total cells recovered from each embryo, we performed 
dimensionality reduction to visualize these compositional data. Across 
the whole experiment, the primary source of variation in cell type pro-
portions are embryo age and genotype, with marginal differences 
associated with embryo collection (Extended Data Fig. 4g–j). Within 
individual timepoints, perturbations with similar gross phenotypes 
readily grouped together; for example, loss of function for tbxta or 
wnt3a;wnt8a, all of which are important for maintenance of neu-
romesodermal progenitor cells (NMps)16. In contrast, knocking out 
the hedgehog receptor smoothened (smo) resulted in a distinct cell type 
composition at the whole-embryo scale, consistent with the widespread 
requirements of hedgehog signalling during development17 (Fig. 2c).

Phenotyping with cell type compositions
To systematically discern and rank all changes in cell type abundances 
across perturbations, we applied a beta-binomial regression model, 
which is well suited for assessing proportional changes in cell-count 
data18 (Methods). To robustly measure changes in cell type abundance, 
we collected replicate embryos (n = 8) for each perturbation/timepoint 
combination and compared them with stage-matched, control-injected 
embryos. Our analyses identified a range of significant differentially 
abundant cell types (DACTs) across the perturbations tested (Fig. 2d and 
Extended Data Fig. 5a). For example, crispant embryos for transcription 
factors that regulate the development of early somitic lineages—Tbx16, 
Msgn1 and Tbx16l (refs. 13–15)—exhibited both pronounced and subtle 
cell type abundance changes that were concordant between embryos 
(Extended Data Fig. 6a,b). This suite of transcription factors regulates 
differentiation of the NMp population that gives rise to MPCs and poste-
rior spinal cord progenitors (pSCps) (Fig. 2e)12. Accumulation of stalled 
MPCs has been well characterized in tbx16/msgn1 single and double 
mutants; however, the consequences to the pSCp lineage have not been 
examined. Our data show that within individual embryos, both MPC and 
pSCp lineages become progressively more abundant across single and 
double crispants (Fig. 2f). Thus, by examining whole transcriptomes, 
our data suggest that Tbx16, Tbx16l and Msgn1 interact to cooperatively 
control the differentiation of both mesodermal and neural progenitor 
cells from the NMp population and uncover putative sets of new target 
genes for these transcription factors in both cell populations.

Perturbation-specific expression
To identify the transcriptional responses of each cell type to genetic 
perturbation, we performed differential gene expression tests to com-
plement the differential abundance analysis. For each embryo, we com-
bined cell data by type before testing (Methods). Pairwise differential 
gene expression tests between pseudo-bulked control and perturbed 
cells revealed an average of 1,470 differentially expressed genes (DEGs) 
for each perturbation, summed across all cell types (Extended Data 
Fig. 7a). Moreover, hierarchical clustering of DEGs highlighted that 
perturbations within a given genetic circuit induced common patterns 
of differential expression.

For example, we identified DEGs for neural progenitors for a suite 
of crispant perturbations that are known to affect neurogenesis (cdx4, 
cdx1, wnt3a, wnt8a, mafba, hoxb1a, egr2b, smo and epha4a) (Fig. 3a). 
While these perturbations did not result in robust cell type composition 
changes, we nevertheless uncovered many perturbation-induced DEGs 
(Extended Data Fig. 7f). Knocking out genes important for hindbrain 
neuron development—egr2b, mafba, epha4a and hoxb1a (ref. 19)—
exemplified this phenomenon (Fig. 3b). Previous studies have revealed 
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important roles for these factors in the segmentation and specifica-
tion of neural progenitor cells in the hindbrain, but cell type-specific 
transcriptome-wide consequences of loss of function are unknown. 

When we compared DEGs for these perturbations, they form two major 
groups in accordance with known genetic interactions20–22. Moreover, 
the DEGs are enriched for biological processes and pathways involved 
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in brain and nervous system development, offering new hypotheses 
for downstream effectors of our target genes (Fig. 3c).

Because neural progenitor cells at these stages have generally simi-
lar transcriptional programmes and do not form distinct bounda-
ries in low dimensional space, we additionally sought to identify 
perturbation-dependent shifts in transcriptional states that were clus-
ter agnostic (Fig. 3d). Here, we define the transcriptional states within 
the population of hindbrain progenitors by enrichment of gene expres-
sion in neural progenitors from rhombomeres 1–6 (for example, egr2b, 
epha4a, mafba), 7–8 (for example, hoxa4a), the diencephalon and tel-
encephalon (for example, vax1, vax2, fgfrl1a) or differentiating neural 
progenitors (for exampled elavl3, dla, dlc, ebf2). We used the Getis–Ord 
test to identify regions of the reference UMAP embedding that were 
either enriched or depleted of perturbed cells in a co-embedded subset 
of the data (Methods). This analysis revealed distinct regions of the 
reference UMAP space that were depleted for perturbed hindbrain 
neural progenitor cells (Fig. 3e, Extended Data Fig. 7b). These regions 
corresponded to differential gene expression, such as a significant 
downregulation of epha4a expression in egr2b crispant neural progeni-
tors, which is consistent with previous work23 (Fig. 3f). Previous stud-
ies of cdx1 and cdx4 identified functions during posterior mesoderm 

development, where they coordinate multiple pathways and activate 
hox gene expression24. Studies of zebrafish cdx4;cdx1a mutants also 
revealed the importance of these genes in hindbrain patterning25. 
Indeed, we find that three hox genes are significantly downregulated 
in cdx4 and cdx4;cdx1a crispant neural progenitor cells (Fig. 3g). More 
broadly, our whole-embryo, single-cell measurements across time 
now enable a comprehensive view of candidate targets for these key 
transcription factors. These analyses highlight our ability to leverage 
individual-level transcriptome measurements to systematically evalu-
ate perturbation-dependent transcriptional changes in each cell type 
and provide new hypotheses for functional studies.

Dissecting the cranial sensory ganglia
Specialized subsets of some cell types can express highly similar 
transcriptomes despite having distinct functions, lineage origins or 
anatomic locations26,27. Alternatively, cell types arising from distinct 
lineal origins can give rise to identically functioning cells1,8,28. Disen-
tangling these unique scenarios may not be possible from snapshots 
of normal development, regardless of the resolution of the data. The 
cranial sensory neurons, which transmit information from the head, 
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ear, heart and viscera, are examples of a cell type that has been difficult 
to study in zebrafish owing to their relatively low cellular abundance 
in the embryo, complex developmental history and a lack of known 
markers to distinguish their subtypes29. Despite their scarcity, we cap-
tured around 30,000 cranial sensory neurons (approximately 20 cells/
embryo) contained within a single cluster, which formed four distinct 
branches upon subclustering. To identify whether these branches 
reflected placodal origins, neuronal function or something else, we 
manually compared branch-specific gene expression with published 
expression data. We concluded that, consistent with their distinct pla-
codal origins, the branches represent the epibranchial, trigeminal, 
statoacoustic and lateral line cells, all radiating from a putative set of 
progenitors (Fig. 4a–c and Extended Data Fig. 8a).

We next sought to characterize the molecular differences between 
the subtypes of cranial sensory neurons and to identify the putative 
lineage-determining factors that distinguish them. Differential expres-
sion analysis identified 45 transcription factors that were expressed 
in the progenitors and just one of the daughter branches (Fig. 4d). 
This set of genes included some factors identified to regulate sensory 
neuron development30, but most have no previously reported role for 
these ganglia. To validate our cell type annotations and characterize 
new subtype markers, we additionally selected 11 terminally expressed 
genes to analyse by whole mount in situ hybridization (WISH). We were 
able to synthesize in situ hybridization (ISH) probes for 9 of these and 
found 8 that labelled the expected sensory ganglia at 72 hpf, establish-
ing a new set of molecular markers for these subpopulations (Fig. 4e 
and Extended Data Fig. 8d).

To explore the genetic requirements of the cranial sensory ganglia, 
we disrupted two transcription factors that are important for their 
development: foxi1 and phox2a (refs. 31,32). Foxi1 is expressed early in 
development in placodal progenitor cells and is required broadly for 
proper differentiation of cranial ganglia neurons. Phox2a is required 
downstream of foxi1 for development of epibranchial neurons, where 
it is specifically and robustly expressed (Extended Data Fig. 8b). Con-
sistent with previous studies, we found that loss of phox2a led to a 
significant reduction of epibranchial neurons and an increase in pro-
genitor cells, suggesting that these cells have stalled in a progenitor 
state. In foxi1 crispants, progenitor cells and all four classes of cranial 
sensory ganglia were reduced, consistent with the early requirement 
of foxi1 in placodal precursors of these lineages (Fig. 4f and Extended 
Data Fig. 8c).

Cranial sensory ganglia neurons have origins in the ectodermal pla-
codes and embryonic neural crest, and the relative contributions from 
either origin are both ganglion and species dependent33. In zebrafish, 
the lineage contributions to each of the cranial ganglia are still unclear. 
Zebrafish cranial ganglia arise early in development predominantly 
from ectodermal placodes; later on, the neural crest contributes to 
trigeminal ganglia and potentially other classes34,35. In tfap2a;foxd3 
crispants, for which corresponding mutants lack nearly all neural 
crest derivatives36, we predicted that if neural crest cells contributed 
to specific ganglia, that we would detect corresponding decreases in 
cell abundance. We identified mean reductions (50–70%) in numbers 
of neurons of the trigeminal, epibranchial, statoacoustic and lateral 
line ganglia but not progenitors at 48 hpf (Fig. 4f and Extended Data 
Fig. 8c). Moreover, although their depletions did not reach statisti-
cal significance in any single timepoint, epibranchial and lateral line 
ganglia cells were consistently reduced across all three timepoints 
collected (36, 48 and 72 hpf). To more directly quantify neural crest 
contributions to epibranchial neurons, we performed lineage-tracing 
experiments which showed that they are not neural crest-derived at 
these developmental stages (Fig. 4g), as they are, to a certain extent, in 
other vertebrates37,38, and thus primarily depend on neural crest cells 
in a non-cell autonomous manner39. We did, however, detect a subset 
of trigeminal ganglion neurons that were neural crest-derived, consist-
ent with previous fate-mapping results34. We additionally imaged the 

cranial ganglia in foxd3;tfap2a crispants and found a marked reduc-
tion in trigeminal and epibranchial ganglion size, consistent with our 
scRNA-seq results (Extended Data Fig. 8g–j). Taken together, our results 
demonstrate the potential of applying sci-Plex in conjunction with 
lineage-tracing tools to dissect the dependencies between cell types 
as the developmental programme unfolds.

A shared notochord and cartilage programme
Because the notochord is the defining feature of chordates and serves 
critical structural and signalling roles in the vertebrate embryo40, we 
targeted two highly conserved transcription factors essential for its 
development: noto and tbxta/brachyury41,42. Our differential cell type 
abundance analyses largely reflected the expected phenotypes for noto 
and tbxta, for example, reduced slow muscle and notochord cells, and 
increased floorplate cells in tbxta crispants (Fig. 5a). In both noto and 
tbxta crispants, there is a near-complete loss of notochord cells at both 
18 and 24 hpf. However, despite the absence of a visible notochord, 
we detected a near-complete recovery of putative notochord cells by 
36 hpf in tbxta crispants (Fig. 5b).

To investigate these unexpected cells (referred to as NLCs, 
notochord-like cells), we refined our annotations to distinguish the 
developmental trajectories of the two cell types that comprise the 
notochord: inner vacuolated cells and outer sheath cells (Fig. 5c). Vacu-
olated cells aid in embryonic axis elongation, while sheath cells form a 
surrounding epithelial layer that secretes a collagen-rich extracellular 
matrix around the notochord43. In tbxta crispants a majority of NLCs 
transcriptionally resembled maturing wild-type sheath cells (Fig. 5d). 
Comparison of NLCs relative to wild-type sheath cells revealed 157 genes 
with enriched expression, but all were still detected in both NLCs and 
wild-type sheath cells (q < 0.01, Extended Data Fig. 9a–e). At this point 
our mutant data had unmasked NLCs, a cryptic, sheath cell-like cell 
type (epyc+, col2a1a+, shha+) (Fig. 5e), arising between 24 and 36 hpf, 
despite the absence of a visible notochord.

To anatomically locate NLCs, we visualized the spatial localization 
of epyc expression using WISH. In control embryos, epyc is expressed 
weakly throughout the notochord and strongly in the parachordal 
cartilage, a conserved, mesodermally derived cartilage structure 
that later develops into the cranial base of the skull (Fig. 5f)44,45.  
Furthermore, another putative NLC marker revealed by our differ-
ential analysis, tgm2l, labelled parachordal cartilage cells but not 
notochord in wild-type embryos (Extended Data Fig. 9b,f). Consistent 
with the proposed similarities of the notochord sheath to cartilage40, 
we found that both cell types share the core conserved module of 
gene expression for cartilage formation (sox5/6, col2a1a), despite 
having thousands of DEGs (Fig. 5e and Extended Data Fig. 9h–j). 
Thus, the apparent and unexpected ‘recovery’ of notochord cells in 
tbxta crispants revealed that the NLCs, which are transcriptionally 
nearly indistinguishable from notochord sheath cells, are indeed 
parachordal cartilage cells.

The similarity between parachordal cartilage and notochord led 
us to wonder how their genetic requirements overlapped, so we visu-
alized these cells in embryos lacking the lineage-determining fac-
tors noto and tbxta. In tbxta crispants and mutants, while notochord 
cells are missing, epyc+ early parachordal cartilage cells are present 
(Fig. 5f,g, Extended Data Fig. 9g). In noto mutants, epyc is weakly 
expressed by some cells in the posterior head, but these cells lack 
any organization around the midline. We next determined whether 
the tbxta-independent, early parachordal cartilage cells retained the 
ability to mature into chondrocytes by staining head cartilage at 72 hpf 
(Fig. 5j–l). The notochord sheath, the parachordal cartilage and the rest 
of the head cartilage is Alcian positive, supporting a common structural 
relationship between parachordal cartilage and notochord (Extended 
Data Fig. 10a,b). While Alcian-positive parachordal cartilage cells are 
present at 72 hpf in control and tbxta crispant embryos, posterior 
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parachordal cartilage does not form in noto, consistent with the lack 
of epyc+ precursor cells (Fig. 5h). Thus, tbxta and noto have separate 
functions during parachordal cartilage and notochord development. 
To probe the earlier genetic requirements of these cells, we generated 
crispants for both foxa2 and foxa3, two transcription factors with 

conserved roles during axial mesoderm specification. In mice, foxa2 
alone is required for notochord development, whereas in zebrafish, 
knockdown of foxa2 and foxa3 together leads to loss of all axial meso-
derm derivatives46,47. We found that in the absence of both foxa2 and 
foxa3, the notochord fails to develop, epyc + parachordal cartilage cells 
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are missing, and no parachordal cartilage forms by 72 hpf (Fig. 5i,m and 
Extended Data Fig. 10c,d). Thus, while both the notochord and para-
chordal cartilage derive from the early embryonic foxa2/3-dependent 
axial mesoderm progenitor pool48,49, notochord development addition-
ally requires noto and tbxta, whereas parachordal cartilage develop-
ment only requires noto (Extended Data Fig. 10e). And although we 
sampled tbxta embryos at earlier timepoints (18 and 24 hpf), we did not 
identify any cells along the early notochord trajectory. This indicates 
that while differentiated parachordal cartilage cells share a transcrip-
tional signature with notochord sheath cells, their progenitors are 
transcriptionally different and travel along separate differentiation 
trajectories. Together, these results show that parachordal cartilage 
and notochord fate divergence occurs early in the axial mesoderm, 
which is reflected by the different genetic requirements of the para-
chordal cartilage and the notochord.

Discussion
Here we present a new approach (whole-organism labelling) and data-
set, termed ZSCAPE, for systematically analysing the impact of genetic 
perturbations on each cell type in thousands of developing zebrafish 
at single-cell resolution. Critically, our workflow’s costs are dominated 
by sequencing, so profiling cells from many samples is only margin-
ally more expensive than profiling a similar number of cells from few 
specimens. We first established an individual-resolved reference atlas 
of zebrafish development. Our data fill a gap in existing zebrafish atlas 
datasets7–9, providing a single-cell dataset comprising 19 timepoints 
from 18 to 48 hpf. This developmental period features the differentia-
tion of diverse cell types and tissues throughout the organism, and the 
accompanying cell type annotations reflect this richness (33 major 
tissues, 99 broad cell types and 156 cell subtypes). Because the atlas 
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relationship between the notochord (NC) and cranial cartilage and bone 
elements over chordate evolution.
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is derived from cells from over 1,000 individually barcoded animals, 
we used it to quantify variability in proportions of each cell type in 
the embryo.

Although forward genetic screens have revealed hundreds of genes 
required for zebrafish development, the field’s inventory of cell types 
that depend on each is incomplete. We studied 23 genes with pheno-
types ranging from well characterized (for example, tbxta and tbx16) 
to largely unexplored (epha4a). Our experiments expand these geno-
type–phenotype mappings embryo-wide by describing the molec-
ular and cellular consequences of each perturbation. We collected 
2.7 million single-cell transcriptomes from 804 mutant or crispant 
embryos across 98 conditions in a single sequencing experiment. The 
unprecedented depth of replication in the experiment, with at least 
16 embryos per genotype, afforded statistical power to comprehen-
sively detect gains and losses in the abundance of both common and 
rare cell types throughout the embryo. For example, we dissected the 
molecular signatures of the sensory cranial ganglia neurons and their 
precursors, which are a diverse set of cells that together comprise fewer 
than 1% of the embryo. Sequencing whole crispants focused our use of 
more conventional genetic tools on phenotypes in specific cell types 
and tissues of interest without requiring complex reporter systems or 
other means of purifying cells of interest, a priori. Our experiments also 
expanded phenotypes for even intensively studied genes. For example, 
we detected stalled spinal cord progenitor cells in tbx16, tbx16-msgn 
or tbx16-tbx16l, suggesting a previously unappreciated dependency 
on these genes. Moreover, by integrating cell type-specific molecular 
phenotypes with morphological and spatial information in tbxta and 
noto mutants, both of which fail to develop notochords, we identified 
the parachordal cartilage as transcriptionally indistinguishable from 
notochord sheath cells. This revealed independent genetic require-
ments for these two cell types, a finding that provides new clues about 
the origins of the vertebrate skull.

The high degree of transcriptional similarity and differing genetic 
requirements of parachordal cartilage cells (‘true cartilage’) and noto-
chord sheath cells (‘cartilage like’)50 offers clues into the evolutionary 
origin of vertebrate cranial skeletons. While it is now clear that much 
of the anterior head cartilage is neural crest derived, the evolutionary 
origin of the ancient mesodermal head cartilage, which produces the 
posterior skull, is unknown44,45. Based on the shared location, gene 
expression and transcriptional regulation of the progenitors for para-
chordal cartilage and notochord, we speculate that the cartilage-like 
notochord cells are the direct precursors to skeletal cranial elements 
in the vertebrate lineage. Thus, we suggest that as creatures evolved 
from an amphioxus-like vertebrate ancestor, some of the embryonic 
anterior notochord cells split to form the parachordal cartilage just 
lateral to the notochord, which allowed the development of more com-
plex mesodermal cartilage structures. Later, these joined with neural 
crest-derived cartilage to form the modern vertebrate skull (Fig. 5n)51. 
These findings highlight the promise of high-resolution molecular 
phenotyping to deepen our understanding of the relationship between 
gene expression and genetic networks, facilitating new hypotheses 
about the evolutionary origins of individual cell types.

Our method is not without limitations for future research to address. 
First, while we are well powered to detect changes in certain lowly abun-
dant cell types, the statistical power required is still dependent on 
the magnitude of the effect and the number of replicates profiled. 
Additionally, while observing phenotypes in a whole-organism context 
offers advantages, profiling larger organisms that may contain billions 
to trillions of cells may be infeasible. Nevertheless, in a concurrently 
published study in this issue, a similar approach is taken in the mouse52, 
such that replicate embryos of multiple genotypes can be profiled at 
single-cell resolution. Finally, while we assessed mutagenesis efficiency 
at the whole-embryo level before single-cell sequencing, low levels of 
mosaicism in F0 crispants are a concern, especially when this approach 
is used for morphogens or other secreted factors where a small amount 

of mosaicism may be sufficient to rescue a mutant phenotype. An ideal 
assay would capture both the single-cell transcriptome and the per-
turbed genetic allele, allowing for the interpretation of perturbations 
with no apparent phenotype.

Looking forward, we anticipate that using single-cell sequencing 
to measure the consequences of many embryos perturbed in differ-
ent ways will open up rich opportunities for developmental genet-
ics. Sequencing many embryos in each genotype or treatment group 
enables one to use tools from statistical inference that are unavail-
able when analysing only a handful of specimens. In related work, we 
applied sci-Plex in hundreds of embryos to quantify cell type-specific 
responses to increased temperature during zebrafish development53. 
We expect that the data presented here will inspire new computational 
tools aimed at reconstructing gene networks, clarifying cell-lineage 
relationships and illuminating new mechanisms of robustness, as all 
these areas of computational biology are rich with statistical challenges 
posed by inherent variability, missing data, feedback and hypothe-
sis testing. Moreover, cell-hashing techniques are compatible with 
other single-cell sequencing modalities, so in principle, phenotyp-
ing could be conducted at the level of chromatin, spatial readouts of 
morphology or the proteome. As our field accumulates a catalogue of 
whole-embryo, single-cell transcriptional phenotypes, the potential 
for discovering mechanisms through which the vertebrate genome 
controls development using computational and statistical tools  
will only grow.
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Methods

Animal rearing, staging and stocks
Staging followed54 and fish were maintained at around 28.5 °C under 
14:10 light:dark cycles. Fish stocks used were: wild-type AB, noton1  
(ref. 41), tbx16b104 (ref. 13), Tg(isl1:gfp)rw0, Tg(p2rx3:gfp)sl1, mafbab337 
(ref. 55), hgfafh528, metfh533 (ref. 56) and Tg(sox10:nlsEos)w18 (ref. 57). Fish 
were anaesthetized before imaging or dissociation with MS222 and 
euthanized by overdose of MS222. All procedures involving live animals 
followed federal, state and local guidelines for humane treatment and 
protocols approved by Institutional Animal Care and Use Committees of 
the University of Washington and the Fred Hutchinson Cancer Center.

Image analysis
Confocal image stacks of the cranial ganglia from individual fish were 
processed equally, and cell counts were made in ImageJ by comparing 
nuclear and cytoplasmic fluorescence in parallel. Area measurements 
of cranial ganglia were done in ImageJ by applying manual bounds to 
maximum projections of HuC staining, which labels the cell bodies of 
neurons. Images were counted and measured blindly.

In situ hybridization, immunohistochemistry and labelling
Alkaline phosphatase ISH was performed using standard conditions58. 
We used the following riboprobes and antibodies: col2a1a, tgm2l, epyc, 
syt9b, hs6st3a, kcnq2b, nfl, cpne7, cpne4a (all this study), hand259, 
epha4a60, egr2b61, anti-HuC/D (mouse monoclonal antibody, Thermo 
Fisher, catalogue no. 16A11, 1:750), Goat anti-Mouse IgG Alexa Fluor 
647 (Thermo Fisher, catalogue no. A21236, 1:400). For all immunohis-
tochemistry, embryos were collected at reported stages, anaesthetized 
with MS222 (10 mg ml−1 in buffered embryo medium; Sigma-Aldrich) 
and fixed in 4% paraformaldehyde overnight at 4 °C. Antibody staining 
was performed as previously described62. Alcian blue staining followed 
an online procedure (The Society for Developmental Biology Online 
Short Course, Zebrafish Alcian Blue), except that embryos were raised in 
1-phenyl-2-thiourea (MilliporeSigma, catalogue no. P7629) to suppress 
pigment formation rather than bleaching. After staining, the embryos 
were moved into 70% glycerol, the yolk was removed and the embryos 
were flat-mounted under a coverslip. Alcian Blue-stained embryos and 
ISH embryos were imaged on a Nikon AZ100 microscope. For confocal 
images in Fig. 4 and Extended Data Fig. 8g–j, imaging was performed 
on a Zeiss LSM 880 laser scanning confocal microscope with a ×10 
Plan-Apochromat 0.45 objective and an Airyscan super-resolution 
module, and Zen Black acquisition software (Zeiss). Fish were imaged 
for Alexa Fluor 594 (anti-Hu) with a 561 nm laser and for nuclear-Eos with 
a 488 nm laser. A step size of approximately 1.5 µm was used to acquire 
40–80 slices, depending on the sample. To increase signal-to-noise ratio 
and resolution, acquired images were processed by two-dimensional 
Airyscan filter strength 7.0 with Zen Black software. Images were 
opened in Fiji as .czi files for nuclei counts across conditions. For confo-
cal imaging in Extended Data Fig. 3g, embryos were anaesthetized with 
MS222 and mounted in 1% low-melt agarose on a coverslip and imaged 
on an LSM700 inverted confocal microscope at ×20 magnification.

CRISPR–Cas9 mutagenesis in zebrafish embryos
gRNAs were designed using either the Integrated DNA Technologies 
(IDT) or CRISPOR63 online tools. gRNA and RNP preparation closely 
follow a recently published protocol for efficient CRISPR–Cas9 
mutagenesis in zebrafish6. Briefly, gRNAs were synthesized as crispr 
RNAs (crRNAs, IDT), and a 50 µmol crRNA:trans-activating crispr RNA 
(tracrRNA) duplex was generated by mixing equal parts of 100 µmol 
stocks. Cas9 protein (Alt-R S.p. Cas9 nuclease, v.3, IDT) was diluted to 
a 25 µmol stock solution in 20 nmol HEPES-NaOH (pH 7.5), 350 mmol 
KCl, 20% glycerol. The RNP complex mixture was prepared fresh for 
each injection by combining 1 µl 25 µmol crRNA:tracrRNA duplex (with 
equal parts each gRNA per gene target), 1 µl of 25 µmol Cas9 Protein and 

3 µl nuclease-free water. Before injection, the RNP complex solution 
was incubated for 5 min at 37 °C and then kept at room temperature. 
Approximately 1–2 nl was injected into the cytoplasm of one-cell-stage 
embryos.

Genotyping
At 2 days after CRISPR–Cas9 RNP injections (48 hpf), pools of five 
F0-injected embryos for each gRNA set were lysed in 100 µl alkaline 
lysis buffer (25 mmol NaOH, 0.2 mmol ethylene-diamine-tetra-acetic 
acid (EDTA)) and heated at 95 °C for 30 min. The solution was neutral-
ized by an equal volume of neutralization buffer (40 mmol Tris-HCl, 
pH 5.0). Rhamp-seq primers were designed using the Rhamp-seq IDT 
design tool. Rhamp-seq primers were reconstituted in low-Tris-EDTA 
buffer (10 mmol Tris/HCl ph 7.4, 0.1 mmol EDTA) to a final concen-
tration of 10 µmol. These primers were then mixed in four pools as 
specified by the IDT design tool (Pool1-FWD, Pool1-REV, Pool2-FWD 
and Pool2-REV). Each primer in these pools was mixed such that the 
primer’s final concentration in the pool was 0.25 µmol. Genotyping 
PCRs for each crispant were performed using 5 µl of 4× Rhamp-seq 
Master Mix 1 (IDT), 2 µl of FWD pool, 2 µl of REV pool and 11 µl of gDNA 
template. Twenty cycles of PCR were performed using the following 
thermocycler programme:
1. 95 °C for 10 min
2. 95 °C for 15 s
3. 61 °C for 4 min
4. Return to step 2 for 10 cycles total
5. 99.5 °C for 15 min

Following amplification, PCR products were purified using a 1.5× SPRI 
bead cleanup (Beckman Coulter, catalogue no. A63880) and eluted 
in 15 µl low-Tris-EDTA buffer. Index PCR was performed using 5 µl of 
4× Rhamp-seq Master Mix 2, 2 µl of Indexing PCR primer (i5), 2 µl of 
Indexing PCR primer (i7) and 11 µl of purified PCR product. An addi-
tional 20 cycles of index PCR were then performed using the following 
thermocycler programme:
1. 95 °C for 10 min
2. 95 °C for 15 s
3. 60 °C for 30 s
4. 72 °C for 30 s
5. Return to step 2 for 20 cycles total
6. 72 °C for 1 min

After the index PCR, sequencing libraries were pooled, purified with 
a 1× SPRI bead cleanup and sequenced on the Illumina MiSeq 600 cycle 
kit with 2 × 300 cycle paired-end reads. Reads were analysed using 
the ampliCan software package with default settings and standard 
vignette workflow64.

Preparation of barcoded nuclei
Individual zebrafish embryos (18 to 96 hpf) were manually dechori-
onated with forceps and transferred to a 10 cm petri dish containing 
1× TrypLE (Thermo Fisher, catalogue no. 12604013). Using a widebore 
tip, embryos were transferred, one by one, into separate wells of a 
96-well V-bottom plate containing 75 µl of 1× TrypLE (Thermo Fisher, 
catalogue no. 12604013) + 2 mg ml−1 Collagenase P (MilliporeSigma, 
catalogue no. 11213865001). Embryos were then dissociated by 10 
strokes of manual trituration at 30 °C once every 5 min. Dissociation 
continued until no visible chunks were present under a dissecting 
scope, which took between 20 and 40 min depending on embryo stage 
(for example, 20 min for 18 hpf and 40 min for 72 hpf). Stop solution 
(1× Dubecco’s phosphate-buffered saline (dPBS) (Thermo Fisher cata-
logue no. 10010023), 5% FBS (Thermo Fisher catalogue no. A4736401)) 
was then added to each well to quench the proteases. Cells were then 
spun down at 600g for 5 min. Cells were then re-suspended in 200 µl 
in cold dPBS and spun down again. After rinsing, the supernatant was 
removed fully and cells were re-suspended in 50 µl of cold lysis buffer 
(10 mmol Tris/HCl pH 7.4, 10 mmol NaCl, 3 mmol MgCl2, 0.1% IGEPAL, 



1% (v/v) SuperaseIn RNase Inhibitor (20 U µl−1, Ambion), 1% (v/v) BSA 
(20 mg ml−1, NEB)) + 5 µl of hash oligonucleotide (10 µmol, IDT) and 
incubated for 3 min on ice. Following lysis, 200 µl of ice cold, 5% fixa-
tion buffer (5% paraformaldehyde (EMS, catalogue no. 50-980-493), 
1.25× dPBS) was added to each well. After an additional round of mixing, 
nuclei were fixed on ice for 15 min. All wells were then pooled together 
in a 15 ml conical tube and spun down for 15 min at 750g. Supernatant 
was decanted and cells rinsed in 2 ml of cold NBB (Nuclei Buffer + BSA: 
10 mmol Tris/HCl pH 7.4, 10 mmol NaCl, 3 mmol MgCl2, 1% (v/v) BSA, 1% 
(v/v) SuperaseIn RNase Inhibitor) at 750g for 6 min. Supernatant was 
then carefully aspirated, and the nuclei were re-suspended in 1 ml of 
NBB and flash frozen in LN2 and stored at −80 °C.

sci-RNA-seq3 library construction
The fixed nuclei were processed similarly to the published 
sci-RNA-seq3 protocol2 with some modifications. Briefly, frozen, 
paraformaldehyde-fixed nuclei were thawed, centrifuged at 750g for 
6 min and incubated with 500 µl NBB (see previous) including 0.2% (v/v) 
Triton X-100 for 3 min on ice. Cells were pelleted and re-suspended in 
400 µl NBB. The cell suspension was sonicated on low speed for 12 s 
(Diagenode, Bioruptor Plus). Cells were then pelleted at 750g for 5 min 
before re-suspension in NB + dNTPs. The subsequent steps were similar 
to the original sci-RNA-seq3 protocol (with paraformaldehyde-fixed 
nuclei) with some modifications, and a detailed, step-by-step protocol 
is available in the Supplementary Protocol.

Sequencing, read processing and cell filtering
Libraries were sequenced on either an Illumina NextSeq 500 (High 
Output 75 cycle kit), Nextseq 2000 (P2 100 cycle kit) or Novaseq 6000 
(S4 200 cycle kit) with sequencing chemistries compatible with library 
construction and kit specifications. Standard chemistry: Index 1, 
10 bp; Index 2, 10 bp; Read 1, 34 bp; Read 2, remaining cycles (more 
than 45 bp). Read alignment and gene-count matrix generation were 
performed using the Brotman Baty Institute pipelines for sci-RNA-seq3 
(https://github.com/bbi-lab/bbi-dmux; https://github.com/bbi-lab/
bbi-sci). After the single-cell gene-count matrix was generated, lower  
unique molecular identifier (UMI) thresholds were determined for 
each experiment  (from 100–250), followed by removal of cells with 
UMIs greater than four standard deviations from the mean. For mito-
chondrial signatures, we aggregated all reads from the mitochondrial 
chromosome, and cells with more than 25% mitochondrial reads were 
removed. Each cell was assigned to a specific zebrafish embryo based 
on the enrichment of a single hash oligonucleotide, as described previ-
ously5. Enrichment cutoffs were set manually based on the distribution 
of enrichment ratios (Supplementary Table 1). Removing cells with 
low hash-enrichment ratios eradicated most multiplets5. Additional 
clusters of multiplets not removed using this procedure were manually 
inspected for marker genes and removed.

scRNA-seq analysis
After RNA and hash-quality filtering, data were processed using the 
Monocle3 (v.1.3.1) workflow defaults except where specified: esti-
mate_size_factors(), detect_genes(min_expr = 0.1), preprocess_cds() with 
100 principal components (using all genes) for whole-embryo and 
50 principal components for subsets, align_cds(residual_model_for-
mula_str = “~log10(n.umi)”), reduce_dimension(max_components = 3, pre-
process_method = ‘Aligned’) and finally, cluster_cells (resolution = 1e-4).

Hierarchical annotation and subclustering
To build maps where cluster annotations corresponded broadly to 
cell types, we first split the global reference dataset into four major 
groups that each contained either the epidermis, muscle, central ner-
vous system neurons or mesenchyme cells, along with other nearby 
cell types. Each of these groups was re-processed, embedded in three 
dimensions with UMAP and subclustered. Cluster resolution was 

optimized such that major groups were composed of 30–70 clusters 
that qualitatively represented the transcriptional diversity in a given 
set. Clusters were then assigned annotations based on the expression 
of marker genes (using the top_markers function, significance assessed 
using a two-sided likelihood ratio test with multiple comparisons 
adjusted; Supplementary Table 8) based on literature by an unsuper-
vised signature-scoring method using anatomical-term gene lists from 
the ZFIN database (zfin.org). With the exception of a few additional 
subclustering examples (that is, the cranial ganglia), each cluster was 
assigned on ‘cell_type_sub’ annotation. These subtype annotations were 
manually merged into ‘cell_type_broad’ classifications based on cluster 
proximity or cell type functional groupings. We further merged these 
annotations into ‘tissue’ groups based on whether broad cell types 
together composed a broader tissue. Finally, we designated each cell 
type into a ‘germ_layer’ group based on the known germ layer of origin.

Individual-level composition analysis
After cell type annotation, counts per cell type were summarized per 
embryo to generate an embryo × cell type matrix. Embryo composition 
size factors were calculated independently for each timepoint. The 
embryo × cell type matrix was stored as a cell_data_set object, allowing 
for preprocessing (PCA) and dimensionality reduction (UMAP) using 
the standard Monocle3 workflow.

Query dataset projection and label transfer
The PCA rotation matrix, batch-correction linear model and UMAP 
transformation were computed and saved during the processing of 
the reference dataset. This computation was done on two levels: first, 
with all combined reference cells (global reference space), and second, 
in each of four subgroups (subreference space). The query dataset 
was first projected into the global reference space using the following 
procedure: the PCA rotation matrix, which contains the coefficients 
to transform gene expression values into PCA loadings, was applied 
to the query dataset. The batch-correction model was then applied 
to the resulting query PCA matrix to remove the effects of the UMI 
count. Finally, the reference-calculated UMAP transformation was 
applied to the batch-adjusted PCA loadings to project the query data 
into the stable reference coordinate space. This procedure is similar 
to the procedure used in Andreatta et al.65 One of four major subgroup 
labels was transferred (mesoderm, mesenchyme-fin, periderm, CNS) 
using the majority label of its annotated nearest neighbours (k = 10). 
Nearest neighbours were calculated using annoy, a fast, approximate 
nearest-neighbour algorithm (https://github.com/spotify/annoy, 
v.0.0.20). The query dataset was split into four subgroups based on 
these assigned major group labels. Each query subgroup was projected 
into the subreference spaces using the corresponding saved PCA, batch 
correction and UMAP transformation models using the same projection 
procedure. Finer resolution annotations (germ layer, tissue, broad cell 
type, subcell type) were transferred in this subspace using the majority 
vote of reference neighbours (k = 10).

Differential expression testing
Before differential expression testing, expression values were aggre-
gated for each embryo across each cell type into ‘pseudo-cells’. We 
pooled embryos across timepoints and only compared embryos from 
the same sets of timepoints in each test. Differential expression analy-
sis for pseudo-cells was performed using generalized linear models 
as described previously5, with modifications to account for differen-
tial underlying count distributions in the ‘fit_models()’ function in  
Monocle3 (v.1.3.1)2.

Spatial autocorrelation of transcriptional responses to 
perturbation
The local spatial statistic Getis–Ord index (Gi)

66 was used to identify 
statistically significant regions of the UMAP embedding that were 
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enriched or depleted of perturbed cells. A high-value Gi indicates a 
perturbed cell is surrounded by other cells with the same perturba-
tion, whereas a Gi close to zero indicates a perturbed cell is surrounded 
by cells with other perturbation labels. A Gi was calculated for each 
cell’s local neighbourhood (k = 15) using the ‘localG()’ function in the 
spdep package (v.1.2-8). This returns a z score that indicates whether 
the observed spatial clustering is more pronounced than expected by 
random. Multiple testing correction was performed using a Bonferroni 
correction. Areas of the UMAP where a given perturbation is enriched 
are called ‘hot spots’ while areas where a given perturbation is depleted 
are referred to as ‘cold spots’.

Cell-count variance testing
We used above the beta-binomial generalized linear models (GLMs) for 
each cell type, to analyse their variability across individual embryos. At 
each timepoint, we calculated the coefficient of variation (coefficient of 
variation = σ/μ) for each cell type at each timepoint. We then regressed 
the cell type coefficient-of-variation values against their means with a 
gamma-valued GLM of the form identical to that of DESeq11 to capture 
the trend between the average number of cells in a cell type and that cell 
type’s coefficient of variation (with the VGAM package67,68, v.1.1-7). The 
curves in Fig. 1e illustrate the maximum likelihood estimate of a ‘typical’ 
cell type’s coefficient of variation at a given relative abundance, and the 
ribbon around it shows the 95% confidence interval of this estimate.

Statistical assessment of cell-abundance changes
Changes in the proportions of each cell type were assessed by first 
counting the number of each annotated cell type in each embryo. To 
control for technical differences in cell recovery across embryos, ‘size 
factor’ normalization was performed by dividing the total number of 
cells recovered from an embryo by the geometric mean of total cell 
counts across all embryos. The number of cells of each type recovered 
from each embryo were then divided by that embryo’s size factor.

Normalized counts for each cell type i at time t were then compared 
across genotypes using a generalized linear model defined by the equa-
tions:

µ β β xlogit( ) = +i t t g t g, ,

ρ xlogit( ) = χ + χi t t g t g, ,

y µ ρ= BeBin( , )i t i t i t, , ,

Where yi,t, the normalized counts of cell type i at time t is modelled as 
a beta-binomially distributed random variable with mean μi,t and ‘litter 
effect’ ρi,t (that is, overdispersion with respect to the binomial distribu-
tion). We modelled both parameters of the beta-binomial response as 
a function of genotype, reasoning that crispants might exhibit greater 
variability than wild-type embryos. We also included the number of 
periderm cells as a nuisance term as a proxy for variation in overall 
animal size. The binary indicator variable xg denotes whether gene g 
is knocked out in each embryo, and the corresponding βg,t encodes the 
effect size on the relative abundance of the cell type at time t. Separate 
models for each gene in each cell type and at each timepoint were fit 
using the VGAM package (v.1.1-7)69. Significance of knockout effects in 
each model were assessed by Wald test on βg,t.

Gene-set enrichment analyses
After differential expression testing, genes that had significant coef-
ficients (q < 0.05) were used for gene-set enrichment analysis (GSEA) 
with the g:Profiler2 R package (v.0.2.1)70. Gene sets were filtered for 
significance (q < 0.01), and of the top gene sets, those having to do 
with neuronal development processes were chosen for visualization. 
For GSEA across all perturbations to look for generalized CRISPR–Cas9 

editing effects, we averaged the normalized-effect scores across cell 
types and ranked the gene set by this averaged value for each pertur-
bation. In this gene set, we included any gene that was called differ-
entially expressed for at least one cell type and perturbation, which 
included over 10,000 ranked genes per perturbation. We performed 
GSEA using the msigdbr (https://davislaboratory.github.io/msigdb) 
and fgsea (v.1.26.0) R packages71 and the MSigDB ‘Hallmarks’ database 
via the msigdbR package (v.7.5.1)72, which summarizes 50 well-defined 
biological states and processes.

Comparison of published zebrafish developmental atlases
Datasets for each study7–9 were downloaded. The authors of each 
dataset had used different naming conventions for gene names. To 
harmonize the datasets, the gene names from each dataset were first 
converted to the GRCz11 ENSEMBL gene names. Genes with duplicated 
names were removed and only genes found in all three datasets were 
retained. Datasets were then aligned with the IntegrateData func-
tion in Seurat V3. To compare wild-type transcriptomes at 24 hpf to 
stage-matched transcriptomes from refs. 7–9, wild-type reference 
data was first downsampled and then integrated using reciprocal PCA. 
Default hyperparameters were used for integration, PCA and dimen-
sionality reduction. Following co-embedding, labels were transferred 
from refs. 7–9 to the wild-type reference data in the co-embedded space 
using the majority label from the 10 nearest neighbours. These labels 
were then used to calculate the concordance between the two datasets 
(Extended Data Fig. 1h).

Statistics and reproducibility
For all WISH staining, the number of individuals analysed was at  
least ten.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the current study are avail-
able in the NCBI Gene Expression Omnibus (GEO) repository under 
accession number GSE202639. The data have also been made avail-
able via their own website to facilitate their ongoing annotation by the 
research community at https://cole-trapnell-lab.github.io/zscape/. 
Source data not available via the GEO repository is available alongside 
the code at https://github.com/cole-trapnell-lab/sdg-zfish. The pub-
lished datasets that were analysed for this study were accessed via either 
GEO repository GSE112294 or http://zebrafish-dev.cells.ucsc.edu9 and 
re-processed together. Published ISH images were downloaded from 
the ZFIN database73. Source data are provided with this paper.

Code availability
Pipelines for generating count matrices from sci-RNA-seq3 sequencing 
data are available at https://github.com/bbi-lab/bbi-dmux and https://
github.com/bbi-lab/bbi-sci. Analyses of the single-cell transcriptome 
data were performed using Monocle3; a general tutorial can be found at 
http://cole-trapnell-lab.github.io/monocle-release/monocle3. Analy-
sis was performed in R and custom scripts can be found on GitHub at 
https://github.com/cole-trapnell-lab/sdg-zfish.
 

54. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of 
embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

55. Moens, C. B., Yan, Y. L., Appel, B., Force, A. G. & Kimmel, C. B. valentino: a zebrafish gene 
required for normal hindbrain segmentation. Development 122, 3981–3990 (1996).

56. Isabella, A. J., Barsh, G. R., Stonick, J. A., Dubrulle, J. & Moens, C. B. Retinoic acid organizes 
the zebrafish vagus motor topographic map via spatiotemporal coordination of Hgf/Met 
signaling. Dev. Cell 53, 344–357.e5 (2020).

https://davislaboratory.github.io/msigdb
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE202639
https://cole-trapnell-lab.github.io/zscape/
https://github.com/cole-trapnell-lab/sdg-zfish
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294
http://zebrafish-dev.cells.ucsc.edu
https://github.com/bbi-lab/bbi-dmux
https://github.com/bbi-lab/bbi-sci
https://github.com/bbi-lab/bbi-sci
http://cole-trapnell-lab.github.io/monocle-release/monocle3
https://github.com/cole-trapnell-lab/sdg-zfish


57. Prendergast, A. et al. The metalloproteinase inhibitor Reck is essential for zebrafish DRG 
development. Development 139, 1141–1152 (2012).

58. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish 
embryos. Nat. Protoc. 3, 59–69 (2008).

59. Yelon, D. et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart 
and pectoral fin development. Development 127, 2573–2582 (2000).

60. Cooke, J. E., Xu, Q., Wilson, S. W. & Holder, N. Characterisation of five novel zebrafish 
Eph-related receptor tyrosine kinases suggests roles in patterning the neural plate.  
Dev. Genes Evol. 206, 515–531 (1997).

61. Oxtoby, E. & Jowett, T. Cloning of the zebrafish krox-20 gene (krx-20) and its expression 
during hindbrain development. Nucleic Acids Res. 21, 1087–1095 (1993).

62. Raible, D. W. & Kruse, G. J. Organization of the lateral line system in embryonic zebrafish. 
J. Comp. Neurol. 421, 189–198 (2000).

63. Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 
genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

64. Labun, K. et al. Accurate analysis of genuine CRISPR editing events with ampliCan. 
Genome Res. 29, 843–847 (2019).

65. Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data 
using reference atlases. Nat. Commun. 12, 1–19 (2021).

66. Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. 
Geogr. Anal. 24, 189–206 (2010).

67. Yee, T. W. & Wild, C. J. Vector generalized additive models. J. R. Stat. Soc. Series B Stat. 
Methodol. 58, 481–493 (1996).

68. Yee, T. W. Vector Generalized Linear and Additive Models: With an Implementation in R 
(Springer, 2015); https://doi.org/10.1007/978-1-4939-2818-7.

69. Yee, T. W. The VGAM package for categorical data analysis. J. Stat. Softw. 32, 1–34 (2010).
70. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and 

conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).
71. Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using 

cumulative statistic calculation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).
72. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 

interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 
(2005).

73. Thisse, B. et al. Expression of the zebrafish genome during embryogenesis (NIH R01 
RR15402). ZFIN Direct Data Submission https://zfin.org/ZDB-PUB-010810-1 (2001).

74. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference 
through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

75. Bradford, Y. M. et al. Zebrafish information network, the knowledgebase for Danio rerio 
research. Genetics 220, iyac016 (2022).

76. Covassin, L. et al. Global analysis of hematopoietic and vascular endothelial gene 
expression by tissue specific microarray profiling in zebrafish. Dev. Biol. 299, 551–562 
(2006).

77. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are 
coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

78. Carney, T. J. et al. A direct role for Sox10 in specification of neural crest-derived sensory 
neurons. Development 133, 4619–4630 (2006).

Acknowledgements We thank N. Klemfuss and the Brotman Baty Institute Advanced 
Technology Lab for support with sequencing and the data processing pipeline; F. Steemers 
and F. Zhang for additional sequencing support; B. Hamilton for custom illustrations; T. Kaneko 
and J. Stonick for help with live imaging of sensory neurons and R. Garcia for assistance with 
fish husbandry and breedings; and C. Tischer and the Advanced Light Microscopy Facility at 
the EMBL Heidelberg for consultation on image analysis.

Author contributions L.M.S., S.S. and C.T. conceived the project. L.M.S., D.K., C.B.M., D.R. and 
C.T. designed experiments. L.M.S. and S.S. developed techniques and performed sci-RNA-seq3 
experiments. L.M.S. and D.K. performed all micro-injections. L.M.S., S.S. and M.W.D. did 
dissociation and nuclei collections. L.M.S. and S.S. performed computational analyses with 
M.D. and B.E. L.M.S., M.W.D., D.K., D.R. and C.B.M. annotated cell types in the developmental 
reference. D.K. performed the ISH. C.B.M., D.K., T.H.L. and L.M.S. performed imaging 
experiments. L.M.S. analysed imaging data. L.M.S., S.S. and C.T. wrote the manuscript with 
input from all co-authors. C.B.M., D.R., D.K. and J.S. contributed methods, supervision and 
edited the manuscript. C.T. supervised the project. This work was supported by a grant from 
the Paul G. Allen Frontiers Group (Allen Discovery Center for Cell Lineage Tracing to C.T. and J.S.) 
and the National Institutes of Health (UM1HG011586 to C.T. and J.S.; 1R01HG010632 to C.T. and 
J.S.; R01RR15402 to T. Thisse and B. Thisse for ZFIN-deposited images). J.S. is an investigator of 
the Howard Hughes Medical Institute.

Competing interests C.T. is a scientific advisory board member, consultant and/or co-founder 
of Algen Biotechnologies, Altius Therapeutics and Scale Biosciences. J.S. is a scientific advisory 
board member, consultant and/or co-founder of Cajal Neuroscience, Guardant Health, Maze 
Therapeutics, Camp4 Therapeutics, Phase Genomics, Adaptive Biotechnologies and Scale 
Biosciences. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-023-06720-2.
Correspondence and requests for materials should be addressed to David Kimelman or  
Cole Trapnell.
Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1007/978-1-4939-2818-7
https://doi.org/10.1101/060012
https://zfin.org/ZDB-PUB-010810-1
https://doi.org/10.1038/s41586-023-06720-2
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Experimental and QC metrics for the reference  
sci-RNA-seq data. a, Enrichment ratio distribution – the ratio between the 
counts for a cell’s top hash oligo and the second most abundant hash oligo after 
subtracting background hash molecules. Cells displaying a 5 fold enrichment 
(red line) of a single hash oligo were deemed uniquely labeled. b, Percentage  
of uniquely labeled cells (Y – uniquely labeled, N – not uniquely labeled).  
c-e, Reference dataset summary statistics displaying the number of (c) cells per 
embryo, (d) embryos and (e) UMIs recovered from each experiment. Plots are 
colored by the timepoint of embryo collection and timepoints are displayed as 
hours post-fertilization (hpf). f, Heatmap depicting the tissues to which cells 
from each experiment map. The count matrix was row and column normalized 
before visualization. g, UMAP embedding in 3-dimensions of the wildtype 
reference dataset colored by experiment of origin and plotting order 

randomized. Heatmap (right) shows which timepoints were contained  
within each experiment. Inset (below) displays 36 hpf timepoint, faceted  
by experiment. h, Heatmap depicting the percentage of each cell type in the 
Farnsworth9 dataset with nearest neighbors in this study at 24 hpf. Columns are 
annotations from Farnsworth et al. (2018), rows are annotations from this study 
and each column sums to 100%. Transcriptomes from the two datasets were 
restricted to a shared set of genes, and downsampled before alignment with 
Seurat. i, Cell-count mean/variance relationships for all cell types per individual 
embryo, collapsed by timepoint and ranked by means. Mean–variance 
relationships are computed via beta-binomial modeling of the variance, 
followed by significance testing on the variance observed over the variance 
expected based on mean cell abundance. Colors denote different cell types.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Hierarchical cell type annotations and lineage 
relationships. a, Sub-UMAP embeddings of the reference data, colored by 
timepoint. b, Sub-UMAP embeddings of each partition colored by cell type 
annotation with select cell types labeled. The number of broad cell types for that 
partition are listed. c, Select, tissue-specific regions of sub-UMAP embeddings 
with labels for all clusters corresponding to sub-cell type annotations. The 
number of sub-cell type annotations totals to 159, and the number for each 
group are as follows: periderm, kidney, pigment, blood = 43; mesenchyme,  
fin, endoderm = 27; nervous system = 53; muscle and pharyngeal arch = 43.  

d, True lineal relationships between trunk muscle cell types between 18 and  
96 hpf. Adaxial cells and linkage to slow committed muscle shown as a dotted 
line to signify presence before 18 hpf (earliest collection). e, Transcriptional 
relationships between cells annotated as trunk muscle types in a UMAP 
dimensionality reduction plot (3D) and a graph made using the PAGA algorithm74. 
Arrows indicate connections that exist between transcriptional states.  
They do not necessarily represent true cell-lineage relationships. f, A graphical 
representation of cell types in our reference dataset harmonized with 
documented lineal relationships in ZFIN75.
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Extended Data Fig. 3 | Proof-of-concept experiments, mutagenesis and 
phenotype validations. a, Cell count mean/variance relationships for all cell 
types per individual embryo, collapsed by time point and ranked by means. 
Mean-variance relationships are computed via beta-binomial modeling of the 
variance, followed by significance testing on the variance observed over the 
variance expected based on mean cell abundance. Colors denote different cell 
types. b, UMAP embedding of the mesodermal trajectory from whole-organism  
sci-RNA-seq (n = 5,929 cells; total n = 27,186 cells). Plots are faceted and colored 
by their perturbation (control-injected, n = 12 embryos; tbx16 mutants, n = 4; 
tbx16-crispant (cr), n = 8; and tbx16 -/-;msgn1 morpholino (MO), n = 4). Major cell 
types are labeled in the first facet. c, Box plots of the size factor-normalized 
counts of each cell type recovered from individual embryos split out by 
perturbation. Cell types displayed are those predicted to have differential 
abundances in response to tbx16 or tbx16;msgn1 loss of function except periderm, 
which is unchanged. d, Percentage of frame shifted amplicons amplified from 
CRISPR-Cas9 edited zebrafish assessed via multiplex PCR. Extra guides were 
added for Foxd3 (red points) due to a low editing rate and the absence of the 

expected phenotype. e, Frequency of the cut sites detected within amplicons 
for Tbx16 and Msgn1. Black lines flanking the targeted region denote primers 
used for amplification of the amplicon. Protospacer adjacent motif displayed 
as a red box above the sequence. Mapping, analyses and plots deployed the 
ampliCan software package in R (v1.22.1)64. f, In addition to mutagenesis 
efficiency, gRNA sets were selected for their ability to generate phenotypes in 
F0 animals that resembled published null phenotypes. Representative images 
are labeled by their approximate developmental time and perturbation. g, For 
embryos where phenotypes were not apparent via whole mount, brightfield 
views, we evaluated the perturbation using appropriate transgenic lines or ISH. 
ISH target genes, perturbations, approximate timepoints, and anatomical 
landmarks are labeled (MV, trigeminal motor neurons; MVII, facial motor 
neurons; white dotted circle, ear; black arrow, posterior pharyngeal arches; 
PA#, pharyngeal arch number; ND, nodose ganglion). Scale bars, 100 µm. For all 
box plots, thick horizontal lines, medians; upper and lower box edges, first and 
third quartiles, respectively; whiskers, ±1.5× interquartile range; open circles, 
outliers.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Analysis of transcriptional and compositional data 
across perturbations. a, Number of cells recovered per mutant embryo. Each 
gray point is an individual embryo that is summarized by the box plot. Previous 
estimates suggest that a 24 hpf embryo has ~25,000 cells76; based on this,  
we estimate a 5–10% recovery per embryo. Thick horizontal lines, medians; 
upper and lower box edges, first and third quartiles, respectively; whiskers, 
±1.5× interquartile range. b, Heatmap displaying the number of embryos 
collected per perturbation × timepoint combination. c, Heatmap of the 
number of cells collected from each perturbation × timepoint combination.  
d, Hash-enrichment ratios for cells in the mutant dataset. Enrichment ratio was 
calculated as the ratio of top-ranked hash molecules observed in a cell divided 
by the second most abundant hash molecule after background subtraction.  
e, To test the accuracy of data projection, manually annotated wildtype reference 
cells were split 80:20. The 80 percent split was used as input for PCA, followed 
by UMAP. The 20 percent split was projected using the same transformations 
and labels were transferred in PCA space or UMAP space. Annotation labels 
were then transferred in either PCA space (red) or UMAP space (blue). Labels 
were deemed concordant if manual annotation matched the projected transfer 
annotation. f, Concordance of labels transferred in either PCA space (red) or 
UMAP space (blue) separated by broad cell type annotation. g, A UMAP plot 

where each point represents the cell type abundance composition (i.e. counts) 
for a single embryo, colored by collected timepoint. Rows of the input matrix 
constitute the union of all broad cell types, while columns are individual 
embryos. Perturbed embryos lack borders, and points with a black border is a 
control-injected or null wildtype sibling embryo. h, Low dimensional embryo 
embedding where embryos are colored by collection and the embedded text 
reflects the genotype. The plot is faceted by embryo age (hpf). **The location 
of the tbx16 (mut or cr) embryos from separate collections but phenocopy  
one another in cell composition. Insets are the same embeddings colored by 
genotype and point size scaled to the number of DACTs for each genotype + 
timepoint. i, Heatmap depicting aggregated cell counts for select timepoint/cell 
type/mutant combination. Each box shows the number of cells (color) for a 
given timepoint (column) and broad cell type (row) combination. 30 cell types 
were sampled at random for display and three genotypes are shown control 
(left), noto-cr (middle), and smo-cr (right). j, Statistical assessment of variance 
in cell compositions with multinomial models, accounting for collection, 
genotype and age. In this case, embryo age and genotype explain the largest 
amount of variance with collection accounting for a small fraction. This may 
result from small shifts in stage or relative differences in fraction of cells lost 
during dissociation and fixation steps.
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Extended Data Fig. 5 | Differentially abundant cell types across all 
perturbations and timepoints. a, Heatmaps representing the log2 fold change 
in abundance of each perturbation relative to control-injected or wild type cells, 

for each broad cell type. Boxes indicate significant changes as determined 
using a beta-binomial regression modeling approach with multiple testing 
correction (q-value < 0.01, fold change > 1.5).



Extended Data Fig. 6 | Differential cell type abundance across T-box groups 
in the mesoderm and spinal cord neurons. a, A subset of trunk muscle and 
spinal cord neuron cell types for each of four perturbations relative to control 
embryos at matched timepoints: tbx16, tbx16; msgn1, tbx16; tbx16l, and tbx16−/−. 
Black boxes indicate significance (q value < 0.01, beta-binomial regression with 
multiple testing correction; n.d. - no cells of this type detected at these stages). 
The mean percent of each cell type per whole embryo is represented by an 

additional color bar. b, A prediction of our ability to assign significance to cell 
type abundance changes across effect sizes and cell type proportions. The model 
is using the reference data as input and a Dirichlet multinomial distribution; 
p-values are assigned using our beta-binomial regression approach. Here, 
significant cell types are those with a p value < 0.05 (beta-binomial regression), 
points that fall below the threshold are black.



Article

Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Transcriptional responses to genetic perturbations 
across targets and cell types. a, A heatmap displaying the number of 
differentially expressed genes (DEGs) (q < 0.05) for each broad cell type, across 
all perturbations. Numbers are displayed in log10(x + 1). b, A scatter plot 
comparing the mean number of DEGs (q < 0.05) for each cell type across 
perturbations to the mean number of cells per embryo (pearson R = 0.62).  
c, A heatmap displaying the normalized estimates from DEG testing in periderm 
cells across all perturbations (q < 0.05, n = 3206 genes). “Gene”-mut refers to 
null mutants (or -/-) rather than crispants. d, UMAP plots in which all neural 
progenitor cells are grey, and blue cells are control cells that are determined 
with the Getis–Ord test to have neighbors depleted for the perturbed cell type, 
termed “cold spots” for a selected set of perturbations known to affect 
hindbrain development. e, A heatmap displaying the normalized enrichment 
scores (NES) from a Gene Set Enrichment Analysis (GSEA)72,77 with the hallmark 

gene set on averaged, ranked estimates from differential expression testing 
across cell types for each perturbation. Only pathways with at least one 
significant enrichment are displayed (p-adj < 0.05, number of random gene 
sets with the same or larger value divided by the total number of generated 
sets, followed by multiple testing correction), and the color corresponds to the 
magnitude and direction of each significant enrichment; non-significant are 
white. Perturbations are annotated by whether they are null mutants (mutant) 
or F0 CRISPR/Cas9-injected (crispant). f, Scatter plots displaying the number 
of significant, differentially expressed genes between perturbed cells and 
control cells (y-axis), versus the absolute fold change in cell type abundance 
between perturbed and control (x-axis). Each point represents a unique cell 
type, perturbation pair, and plots are faceted by timepoint. Cell type specific, 
differentially expressed genes resultant to perturbation pairs are not 
associated with changes in cell type abundance.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Subtype-specific gene expression and fate mapping 
in the cranial sensory ganglia. a, A UMAP plot where each cell is colored by its 
mean, normalized expression of neuronal or cranial ganglia markers: ntrk2a, 
p2rx3b. The legend scale bars reflect the expression bounds of each gene.  
b, A UMAP plot where each cell is colored by its mean, normalized expression  
of phox2a, foxi1, elavl4, or etv1. c, Cranial ganglia sensory neurons and their cell 
abundances (log2, size factor normalized) relative to control embryos at two 
timepoints for phox2a and foxi1 crispants. Black squares indicate significance 
(q < 0.01, beta-binomial regression with multiple testing correction). d, Whole 
mount ISH at 72 hpf for syt9b, hs6st3a, and kcnq2b. The box represents the focus 
area imaged in order to resolve cranial ganglia expression. Scale bars, 1 mm.  
e, Representative whole mount ISH at 72 hpf in tfap2a;foxd3 crispants. Eyes are 
dark since these embryos were not treated with the melanin-suppressing drug 
as in other in situs. Lack of staining compared to controls is noted. Scale bars, 
100 µm. f, UMAP expression plots and corresponding ISH with a lateral head 
view and cranial ganglia labeled. Eye is marked by a green dotted line, ear is 
marked by an orange dotted line. (LL, lateral line ganglia; PLL, posterior lateral 

line ganglion; ALL, anterior lateral line ganglion; Tg, trigeminal ganglion;  
Epi, epibranchial ganglia; Sa; statoacoustic ganglion). Whole mount images  
of separate representative 72 hpf embryos are displayed below each higher 
magnification image. Scale bars, as marked. g, Single slices from a representative 
control animal at 72 hpf, displaying the statoacoustic (SA) ganglion, trigeminal/
anterior lateral line (Tg/aLL), epibranchial (Epi), and posterior lateral line (pLL) 
ganglia. Anti-Hu and sox10:nlsEos are shown as single channels and merged. 
Sox10:nlsEos labels neural crest derivatives57,78. Co-labelled neurons are marked 
by white arrows. Scale bars, 50 µm; z-int, internal z slice; z-ext, external z slice. 
h, Single slices of a representative image from tfap2a;foxd3-cr embryo at 72 hpf. 
Neurons co-labeled with anti-Hu and sox10:nlsEos are indicated with white 
arrows. Scale bars, 50 µM. (***, p-value = 3.42e-8; two-sided Student’s t-test).  
i, Quantification of all Hu/sox10:nlsEos+ nuclei counts from from control (n = 12) 
at tfap2a;foxd3-cr (n = 8) animals at 72 hpf. j, Quantification of the HuC+ area in 
mm2 from Z-projected images from control (n = 12) at tfap2a;foxd3-cr (n = 8) 
animals at 72 hpf. (***, p-value = 2.55e-5 (Tg) or 1.4e-4 (Epi); **, p-value = 1.5e-3; 
two-sided Student’s t-test).
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Notochord, parachordal and jaw cartilage 
transcriptome comparisons. a, A volcano plot representing the differentially 
expressed genes between tbxta-cr NLCs and control notochord sheath cells at 
36 hpf. Genes enriched in tbxta cells are red and genes enriched in control cells 
are blue. Genes with a q-value > 0.01 (GLM with multiple testing correction) are 
black. The top five differentially expressed genes are labelled. b, epyc in-situ 
hybridization (36 hpf; dorsal, anterior view) in wildtype (or tbxta heterozygotes), 
and tbxta null mutants. c, tgm2l ISH at 48 hpf in wildtype (or tbxta heterozygotes) 
and tbxta mutants. Parachordal cartilage expression is indicated by a black 
arrowhead. d, Expression of tgm2l via in situ hybridization in parachordal  
in a wildtype embryo at 36 hpf (black arrowhead). A UMAP plot colored by the 
expression of tgm2l in the notochord of control and tbxta. tgm2l is enriched 
both in tbxta cells (q = 4.5e-61) relative to controls at 36 hpf and in the region  
of the UMAP predicted to be enriched for parachordal cartilage cells.  
e-g, Published in-situ hybridization stainings in prim 15 - prim 25 wildtype 
animals for chondromodulin (cnmd), major vault protein (mvp), and matrilin 4 

(matn4)73 and UMAP plots from our study, from 36 hpf parachordal cartilage 
and notochord cells, colored by the expression of genes corresponding to the 
ISH and faceted by control and tbxta-cr cells (controls are downsampled to 
reflect the cell number in tbxta-cr samples). All scale bars, 0.5 mm. Scale bars 
are not available for ZFIN images73. h, A UMAP plot of the reference dataset, with 
the separate locations of jaw chondrocytes and parachordal cartilage/notochord 
sheath cells highlighted. i, A volcano plot displaying the differentially expressed 
genes between jaw chondrocyte and parachordal cartilage/notochord sheath 
cells (all post 36 hpf). Genes enriched in jaw chondrocytes are blue and genes 
enriched in parachordal cartilage/sheath are red (total n = 2132, q > 0.01). The 
top DEGs are labeled by name. x axis, normalized effect from the differential 
gene expression test; y axis, -log10-transformed q-value from differential gene 
expression test. j, The top 15 significant functional enrichment terms for the DEGs 
in jaw chondrocytes and parachordal cartilage/sheath. Gene ratio = intersection 
genes/genes in term; q < 0.01.
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Extended Data Fig. 10 | Anterior cartilage development and roles for foxa2 
and foxa3 during notochord development. a, Anterior dorsal views of alcian 
blue-stained zebrafish embryos from 36 hpf to 72 hpf. b, Dorsal images of alcian 
blue-stained notochords at 36 and 48 hpf. c, Representative images of foxa2, 
foxa3, or foxa2;foxa3 crispants at ~48 hpf. d, Trunk sections for col2a1a in situ 
hybridizations. No notochord cells are present in double foxa2;foxa3 crispants. 
Scale bars, 100 µm. e, An updated model of the independent genetic 

requirements for PC and notochord development. Both structures derive from 
an early population of axial mesodermal progenitor cells. Cells that eventually 
become the notochord require foxa2, foxa3, noto, and tbxta, whereas tbxta is 
not required for the specification differentiation of axial mesodermal cells into 
the PC. (notochord is depicted in green and PC is depicted in purple at 3 dpf 
when PC is maturing).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection in this study. 

Data analysis For single cell RNA-seq data processing and count matrix generation, we used open source pipelines (https://github.com/bbi-lab/bbi-dmux; 
https://github.com/bbi-lab/bbi-sci). Analyses of the single cell transcriptome data were performed using Monocle3; a general tutorial can be 
found at http://cole-trapnell-lab.github.io/monocle-release/monocle3. Analysis was performed in R, and custom scripts can be found on 
Github at https://github.com/cole-trapnell-lab/sdg-zfish. The following R package versions were used for analyses: monocle3 v1.3.1, VGAM 
v1.1-7, spdep v1.2-8, RcppAnnoy v0.0.20, gProfiler2 v0.2.1, amplican v1.22.1, fgsea v1.26.0, msigdbR v7.5.1.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The datasets generated and analyzed during the current study are available in the NCBI Gene Expression Omnibus (GEO) repository under accession number 
GSE202639. The data have also been made available via their own website to facilitate their ongoing annotation by the research community at https://cole-trapnell-
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lab.github.io/zscape/. The published datasets that were analyzed for this study were accessed via either GEO repository GSE112294 or http://zebrafish-
dev.cells.ucsc.edu, and reprocessed together. Published in situ hybridization images were downloaded from the ZFIN database.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes of individual embryos sampled for single cell RNA-seq were chosen based on pilot experiments in which we calculated our ability 
to detect statistically significant changes in the abundances of cell types across a range of mean abundances and effect sizes via a beta 
binomial regression model. We sampled an average of 8 individuals per condition based on these calculations, because they predicted that we 
could identify 25% effect size changes in rare cell populations given a empirically determined distribution. Sample sizes for imaging-based cell 
count studies were targeted at the same number, and statistics were performed only after all images were analyzed. 

Data exclusions Excluded data are cells that did not pass filtering metrics for single cell RNA-seq analysis. We established these cutoffs empirically for low and 
high UMI counts as well as mitochondrial read fraction. Excluded cells were filtered out prior to all published analyses and conclusions. 

Replication We included between 8-48 biological replicates for each embryo collected in the single cell experiments. For other experiments, such as 
analyzing gene expression via ISH, we included at least 10 replicate embryos and took all of the data into account when making conclusions 
and selecting representative images. All attempts at replication were successful. 

Randomization For each scRNA-seq experiment outlined in the manuscript, groups of embryos were dissociated in parallel, nuclei fixed and then all samples 
were pooled (i.e. randomly combined). This approach offers a substantial advantage over most droplet based scRNA-seq approaches, as all 
individually labeled embryos are exposed to the same library preparation procedure. Because of sci-plex hashing, sample labels can be 
resolved computationally after sequencing. All directly-compared samples were from the same single cell RNA-sequencing experiment, which 
reduces the effect of technical batch effects (i.e. overall cell recovery per embryo) for statistics measuring differences in cell abundance or 
perturbation-dependent gene expression differences. We looked for possible batch effects across experiments in our wildtype atlass (note 
that samples have some timepoint overlap but are not pure replicates), and we did not see experiment-specific effects on transcriptomes. 
These results are described in the Extended data.

Blinding Blinding was done for cell counts and area measurements of cranial ganglia confocal images. No other measurements were done manually.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used a mouse mAb anti-HuC/D (aka. elavl) primary antibody (16A11, Thermo Fisher, 1:750) with Goat anti-Mouse IgG Alexa Fluor 647 

(Thermo Fisher, A21236, 1:400). 

Validation This antibody has been used extensively by our co-authors and is used in multiple publications in zebrafish, including PMID: 
16364284, PMID: 28708822, PMID: 22738203.
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Danio rerio; strains used were were: wild-type AB, noto-n1, tbx16-b104, Tg(isl1:gfp)-rw, Tg(p2rx3:gfp)-sl1, mafba-b337, hgfa-fh528, 
met-fh533; ages ranged from 12 to 96 hours post fertilization. For imaging analyses, Tg(sox10:nlsEos)-w18 was used, and animals 
were sacrificed at 72 hpf.

Wild animals No wild animals were used in this study. 

Field-collected samples No field-collected samples were used in this study. 

Ethics oversight All procedures involving live animals followed federal, state and local guidelines for humane treatment and protocols approved by 
Institutional Animal Care and Use Committees of the University of Washington and the Fred Hutchinson Cancer Research Center.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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