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Kinetic magnetism in triangular moiré 
materials

L. Ciorciaro1,9, T. Smoleński1,9, I. Morera2,3,9, N. Kiper1, S. Hiestand1, M. Kroner1, Y. Zhang4,5, 
K. Watanabe6, T. Taniguchi7, E. Demler8 & A. İmamoğlu1 ✉

Magnetic properties of materials ranging from conventional ferromagnetic metals  
to strongly correlated materials such as cuprates originate from Coulomb exchange 
interactions. The existence of alternate mechanisms for magnetism that could 
naturally facilitate electrical control has been discussed theoretically1–7, but an 
experimental demonstration8 in an extended system has been missing. Here we 
investigate MoSe2/WS2 van der Waals heterostructures in the vicinity of Mott insulator 
states of electrons forming a frustrated triangular lattice and observe direct evidence 
of magnetic correlations originating from a kinetic mechanism. By directly measuring 
electronic magnetization through the strength of the polarization-selective attractive 
polaron resonance9,10, we find that when the Mott state is electron-doped, the system 
exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.

Moiré heterostructures of two-dimensional materials provide 
a platform for the investigation of the physics of strongly corre-
lated electrons. In contrast to well-studied quantum materials, 
these moiré materials provide a very high degree of tunability of 
the parameters relevant for controlling correlations, such as carrier 
density and the ratio of interaction energy to hopping strength. 
Moreover, unlike cold-atom quantum simulators, the physics and 
functionality of moiré materials can be varied using readily accessible 
external electric and magnetic fields, creating a platform in which 
different many-body phases compete. Since the first realization of 
a moiré material, a wealth of correlation physics ranging from cor-
related Mott–Wigner states to the quantum anomalous Hall effect to 
superconductivity has been observed both in magic-angle-twisted 
bilayer graphene and in bilayers of transition metal dichalcoge-
nides (TMDs)11–21. Except for orbital magnetism in twisted bilayer 
graphene15,22 as well as early spin susceptibility and scanning probe 
measurements in TMD bilayers17,23–26, quantum magnetism in moiré 
materials has until recently remained experimentally unexplored. 
Theoretical works have investigated the magnetic properties of the 
correlated Mott state in a moiré lattice with one electron per lat-
tice site27,28 and focused on the possibility of realizing quantum spin  
liquids29–31.

Here we investigate the magnetic properties of electrons in MoSe2/
WS2 heterobilayers using low-temperature confocal microscopy. We 
focus on magnetization as a function of temperature T and out-of-plane 
magnetic field Bz at dopings around one electron per moiré lattice 
site (ν = 1). For ν > 1, our experiments show that the itinerant electrons 
exhibit a positive Curie–Weiss constant θCW. The linear increase in spin 
susceptibility as a function of the density of doubly occupied sites at 
T ≈ 140 mK is indicative of kinetic ferromagnetic correlations linked 
to the Nagaoka mechanism1,2.

We study two R-type MoSe2/WS2 heterostructures encapsulated in 
h-BN. The lattice mismatch and twist angle between the TMD monolay-
ers create a moiré superlattice with a lattice constant of about 7.5 nm. 
The minima of the resulting electronic potential for the conduction 
band are located at high-symmetry points at which the metal atoms in 
the two layers are aligned (MM sites). The electrons that are injected 
occupy the triangular lattice of MM sites as shown in Fig. 1a. In sample I,  
the charge density and the electric field in the heterostructure can be 
tuned independently using top and bottom graphene gates, whereas 
sample II is only single-gated.

Doping-dependent spectrum of MoSe2/WS2

The reflection spectrum as a function of electron density in Fig. 1b 
shows several resonances close to the energy of the optical transitions 
in monolayer MoSe2, consistent with previous reports32,33. Intensity 
maxima and cusps in the resonance energies appear at equally spaced 
gate voltages (see Extended Data Fig. 2 for extended range). These volt-
ages correspond to commensurate filling of the moiré superlattice with 
one or two electrons per site (ν = 1 and 2, respectively), at which incom-
pressible states are formed. We focus here on the resonance at 1.58 eV, 
which can be identified as an attractive polaron resonance associated 
with collective excitation of bound electron–exciton pairs (trions) 
located at the moiré potential minima9,10,34. As shown in Fig. 1c, the 
area, or equivalently the oscillator strength, of the attractive polaron 
resonance increases linearly as a function of electron density up to 
filling factor ν = 1 and subsequently decreases again linearly between 
ν = 1 and 2.

This behaviour is consistent with the presence of an isolated Hub-
bard band in which all electrons occupy the same lattice sites, forming 
doubly occupied sites (doublons) for ν > 1 and empty sites (holons) for 
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ν < 1. As the attractive polaron resonance is associated with the bound 
trion of an exciton and a resident electron, it can be optically excited 
on only moiré lattice sites occupied by a single electron. Consequently, 
the densities ν = ε and ν = 2 − ε provide the same number of sites for 
attractive polaron formation and hence lead to an identical oscillator 
strength of the attractive polaron resonance.

The optical selection rules of monolayer MoSe2 are retained in the 
heterostructure, giving rise to circularly polarized resonances for 
Bz ≠ 0, corresponding to transitions in the K and K′ points of the MoSe2 
Brillouin zone. The linear dependence of the attractive polaron peak 
area on the electron density, together with the optical valley selection 
rules and strong spin–orbit coupling leading to spin–valley locking, 
enables us to use the polarization-resolved attractive polaron reso-
nance as a quantitative probe of the degree of spin polarization of the 
electrons. As the attractive polaron is formed by only excitons in the K 
valley and spin-down electrons in the K′ valley or vice versa9, the attrac-
tive polaron oscillator strength in σ+-polarization is proportional to the 
density n↓ of spin-down electrons and σ−-polarization is proportional 
to the density n↑ of spin-up electrons. The degree of spin polarization 
is then given by
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where Aσ ± is the area of the attractive polaron resonance in σ± polariza-
tion and ρAP denotes the degree of circular polarization of the attractive 
polaron resonance. The polarization-resolved spectrum in Fig. 1d, 
measured at Bz = 1 T, T = 4.2 K and ν = 1, highlights how the attractive 
polaron resonance becomes partially polarized in a moderate magnetic 
field. Note that the resonance at 1.635 eV is also sensitive to the spin 
polarization, mainly through a splitting with giant effective g-factor 
geff = 31, as previously reported for other moiré heterostructures17,24.

 
Temperature-dependent spin susceptibility
To gain insight into the interactions between spins of the electrons 
residing in the superlattice potential, we measure the attractive polaron 
degree of polarization ρAP as a function of Bz for filling factors satisfying 
0.5 < ν < 1.8. A laser tuned to the peak of the attractive polaron reso-
nance with an excitation power of 11.7 pW is used to avoid light-induced 
spin depolarization and thereby ensure that we probe magnetic proper-
ties of the electronic ground state35 (see sections ‘Experimental set-up’ 
and ‘Power dependence of spin polarization’). We perform a linear fit 
to extract the slope at Bz = 0, as shown in Fig. 2a, which is related to the 
magnetic susceptibility through
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where M(ν) is the magnetization, μ0 the vacuum permeability and 
M ν gµ n ν( ) = (1 − | − 1|)/2νs B = 1  the saturation magnetization for each 
density, with μB the Bohr magneton, g the MoSe2 conduction band 
g-factor and nν = 1 the electron density at ν = 1. The slope dρAP/dBz around 
Bz = 0 measured at different temperatures as a function of ν is shown 
in Fig. 2b. Each curve is multiplied by the temperature T at which it was 
measured, such that for paramagnetic behaviour the curves collapse 
onto one value. The slope is approximately constant for ν ≤ 1 and has 
a sharp linear increase just above ν = 1, the point at which the system 
transitions from a holon-doped to a doublon-doped Mott insulator.  
A similar sharp decrease occurs at ν = 3/2. The enhancement of dρAP/dBz  
at low T and deviation from 1/T behaviour in the range 1 < ν < 3/2 are 
evidence for the presence of ferromagnetic interactions. To quantify 
the effect, we fit the T-dependence of the inverse slope ρ B(d /d )zAP

−1  
with the Curie–Weiss law as shown in Fig.  2c. The resulting 
doping-dependent Curie–Weiss constant, plotted in Fig. 2d, shows 
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Fig. 1 | Optical response of the moiré bilayer. a, Moiré potential in the 
conduction band. Electrons occupy the potential minima at the MM sites.  
b, Gate-voltage-dependent normalized reflectance spectrum ΔR/R0 =  
(R − R0)/R0, where R is the reflection spectrum of MoSe2/WS2 and R0 is the 
background spectrum (see section ‘Background subtraction’). The gate 
voltage tunes the doping of the heterostructure. At integer fillings, intensity 
maxima and cusps in the resonance energies appear. c, Area of the attractive 

polaron (AP) resonance as function filling factor at Bz = 0. The linear increase 
and decrease confirm that electrons occupy a single minimum in the moiré unit 
cell, forming an isolated Hubbard band. d, Polarization-resolved reflection 
spectrum at ν = 1, Bz = 1 T and T = 4.2 K. The attractive polaron resonance at 
1.58 eV is sensitive to spin polarization of the electrons through its degree of 
circular polarization. The data in this figure were measured on sample II.
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paramagnetic behaviour for ν ≤ 1, ferromagnetic interactions for 
1 < ν < 3/2 and anti-ferromagnetic interactions for ν > 3/2. We focus 
here on the origin of the ferromagnetic correlations.

In general, exchange interactions are expected to play a key part in 
determining the magnetic order of the system. For a moiré structure 
with a lattice constant of 7.5 nm, the on-site repulsion is large, leading 
to small super-exchange interactions Jsup. By contrast, strong Coulomb 
interactions together with finite overlap of localized Wannier orbitals 
could ensure that the strength of direct exchange Jdir exceeds that of Jsup 
(ref. 28). Using first-principles calculations, we estimate Jdir = − 0.61 meV 
(see section ‘Model parameters’). The magnetic properties at ν = 1, for 
which the electrons form an incompressible Mott insulator and are 
localized on moiré lattice sites, should be exclusively determined by 
exchange interactions. Surprisingly, we do not find a significant devia-
tion from paramagnetic behaviour at ν = 1 (Fig. 2b,d). This suggests 
that predictions based on density functional theory calculations do 
not fully capture the physics of our system and exchange interactions 
do not play a notable part in determining the magnetic properties 
of electrons. A possible explanation for this is that the electrons are 
more strongly localized than predicted by theory because of a deeper 
moiré potential.

Although we cannot rule out a contribution from exchange interac-
tions, the asymmetric behaviour for ν = 1 ± δ cannot be accounted for 
by a purely exchange-based mechanism, as it would give rise to similar 
magnetic interactions for doublon and holon doping. Moreover, a 
Stoner instability or flat band ferromagnetism would probably lead 
to signatures peaking at the van Hove singularity located at ν = 3/2 

for a triangular lattice36. By contrast, the ferromagnetic correlations 
disappear for ν ≥ 3/2 in our experiments.

On the basis of these considerations and the fact that strong Coulomb 
interactions put the moiré structure in the strongly correlated regime of 
extended Hubbard model physics, we attribute the observed magnetic 
interactions to the Nagaoka mechanism: in a Hubbard band close to 
half filling (ν = 1), mobile charge carriers can reduce their kinetic energy 
by inducing magnetic order even in the limit of vanishing exchange 
interactions1,2,37. The linear increase in the Curie–Weiss constant at small 
doublon doping experimentally agrees with the theoretical prediction 
of this model5. Each injected doublon creates a small ferromagnetic 
region (magnetic polaron) that results in a linear dependence of fer-
romagnetic interactions with doping. The dip in the susceptibility and 
Curie–Weiss constant at ν = 4/3 (Fig. 2b,d, dashed line) further corrobo-
rates the kinetic nature of the magnetic interactions: at commensurate 
fractional fillings, the electrons form incompressible Mott–Wigner 
states18,25,32, suppressing the contribution of kinetic energy.

We note that the disappearance of ferromagnetic correlations at 
ν = 3/2 could be associated with the emergence of a spatially ordered 
structure with a larger period, such as a stripe phase or paired electron 
crystal. However, treatment of the behaviour at this large doublon 
density is beyond the scope of our work.

Theoretical model and numerical analysis
In a single-band Fermi–Hubbard model on a triangular lattice in the 
strongly interacting regime, the ferromagnetic interactions for 
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Fig. 2 | Signatures of kinetic magnetism in single-frequency measurements 
on sample I at low temperatures. a, Degree of polarization ρAP of the attractive 
polaron resonance as a function of magnetic field Bz. Inset, linear fit around 
Bz = 0 yielding the susceptibility. b, Doping dependence of the slope dρAP/dBz 
around Bz = 0 and at different temperatures T, each multiplied by T. A sharp 
increase in spin susceptibility is observed beyond ν = 1, and the susceptibility 

diverges faster than 1/T for 1 < ν < 1.5. c, Inverse susceptibility as a function of 
temperature with linear fits yielding the Curie–Weiss constant θCW. d, Fitted 
Curie–Weiss constant as a function of ν. Vertical error bars correspond to  
the standard error of the fit (b–d) and horizontal error bars (c) indicate the 
uncertainty in the temperature measurement (see sections ‘Temperature 
calibration’ and ‘Curie–Weiss fit’).
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doublon doping induced by the kinetic mechanism are accompanied 
by anti-ferromagnetic interactions for holon doping5–7. To qualitatively 
understand the experimentally observed absence of anti-ferromagnetic 
correlations for ν < 1, we consider an extended model (see section 
‘Theoretical model’) taking into account Coulomb interactions V ̂ up 
to third neighbours, while setting exchange interactions Jdir and Jsup to 
zero, motivated by the paramagnetic response at ν = 1. The Coulomb 
interaction term modifies the hopping of electrons onto sites that  
are already occupied, which renormalizes the doublon hopping,  
while leaving the holon hopping t unchanged (Fig. 3a). The effective 
doublon hopping is given by t + A, with the assisted hopping term 
A w w V w w= − � , , �i i i j∣ ̂∣ , where wi and wj denote states localized on neigh-
bouring sites27,28. Owing to the asymmetry in hopping between holons 
and doublons, the kinetic magnetism is enhanced for ν > 1. Therefore, 
in an intermediate temperature range t ≪ kBT ≲ t + A, where kB is the 
Boltzmann constant, we expect a sizeable modification of the suscep-
tibility for ν > 1, but only negligible deviations from a paramagnetic 
response for ν ≤ 1. This asymmetry of the susceptibility around ν = 1 is 
captured by our finite-temperature tensor network simulations 
(Fig. 3b). Details on the theoretical model, parameter estimates and 
the simulations can be found in the Methods.

Furthermore, our calculations show that the overall energy gain 
from delocalization of holons or doublons is suppressed by the 
presence of long-range interactions and/or disorder, reducing the 
strength of kinetic magnetism, particularly for ν < 1. In Fig. 3c, we 
show simulated magnetization curves at ν = 0.89 and T = 0, compar-
ing the cases with and without long-range interactions or disorder. 
Introducing disorder or interactions leads to an increased slope at 
low fields, corresponding to an enhanced susceptibility or suppressed 
anti-ferromagnetic correlations. This limits the temperatures required 

to observe kinetic magnetism in the moiré structure to smaller val-
ues than would be expected from hopping strengths of the order 
1 meV predicted by density functional theory for our moiré structure  
(see section ‘First-principles simulation with DFT’).

Conclusion
We demonstrated that the spin susceptibility of electrons in moiré 
materials can be accurately determined through polarization-resolved 
attractive polaron oscillator strength measurements at pW power 
levels. We have used this method to study the filling-factor-dependent 
spin susceptibility and found a sudden appearance of ferromagnetic 
correlations for ν > 1. Our experimental findings, supported by ten-
sor network simulations, can be attributed to kinetic magnetism in 
an extended Fermi–Hubbard model on a triangular lattice. Although 
previous studies found good agreement with ab initio calculations, 
our observation of a paramagnetic response at ν = 1 suggests that 
direct exchange and super-exchange interactions are weak and the 
spin physics is dominated by effective kinetic interactions. The strong 
asymmetry between ν < 1 and ν > 1 indicates the presence of a large 
Coulomb-assisted hopping of doublons. Moreover, long-range Cou-
lomb interactions and disorder renormalize the effective hopping for 
holons and doublons, which in turn ensures that magnetic order in 
deep moiré potentials exhibiting topologically trivial bands may be 
observed for only very low temperatures below 100 mK.

During the preparation of this paper, we became aware of several 
parallel works exploring different aspects of magnetism in bilayer 
MoTe2 moiré structures38–40.
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Methods

Sample fabrication
Graphene, h-BN, MoSe2 and WS2 layers were exfoliated from bulk 
crystals onto Si/SiO2 (285 nm) substrates and assembled in het-
erostructures using a standard dry-transfer technique with a 
poly(bisphenol A carbonate) film on a polydimethylsiloxane (PDMS) 
stamp. Both samples were encapsulated between two h-BN flakes 
of 30–40 nm thickness. Optical lithography and electron beam 
metal deposition were used to fabricate electrodes for the electrical  
contacts.

Experimental set-up
Experiments on sample I were done in a dilution refrigerator (base 
temperature ≈ 20 mK) with free-space optical access, with windows at 
the still, 4 K and room-temperature stages. Sample II was in turn investi-
gated in a liquid helium bath cryostat (also featuring free-space optical 
access) and in a second dilution refrigerator unit with a single-mode 
fibre-based optical access (see ref. 41 for a detailed description of this 
set-up). For free-beam set-ups, the samples were mounted on three 
piezoelectric nanopositioners. A fibre-coupled confocal microscope 
was used for optical measurements, with either a single aspheric lens 
or an objective (numerical aperture = 0.7 for both) focusing the light 
onto a diffraction-limited spot. A schematic of the optical set-up is 
shown in Extended Data Fig. 1.

Reflection spectra were measured using a supercontinuum laser 
with a variable filter as a light source and a spectrometer with a 
liquid-nitrogen- or Peltier-cooled CCD camera as the detector. For 
mK-temperature measurements of the magnetic circular dichroism 
(MCD), we used either a tunable continuous wave single-frequency 
titanium sapphire laser or a few-nm-wide white light with a central 
wavelength around the attractive polaron resonance. The reflected 
light was measured using Geiger-mode avalanche photodiodes (APDs) 
that enable the detection of low-power signals. To reduce the sensitivity 
of the MCD measurement to slow drifts in the experiments on sample 
I, the incident light-polarization was switched between σ+ and σ− at 
kilohertz rates using an electro-optic modulator. By contrast, sample 
II was illuminated with linearly polarized light. On reflection from the 
device, the σ+- and σ−-polarized components were separated with a 
polarizing beamsplitter and detected in parallel using two separate 
APDs. All measurements were power-stabilized with feedback from a 
photodiode to an acousto-optic modulator or a fibre-coupled variable 
optical attenuator.

Background subtraction
Differential reflectance presented in the plots is defined as ΔR/R0 =  
(R − R0)/R0, where R is the measured reflection spectrum of the hetero-
structure and R0 is the background reflection spectrum on the h-BN 
flakes away from the TMD flakes. For the MCD measurements, the 
background reflectance Rσ

0
±
 at the laser frequency is measured in both 

polarizations at charge neutrality or high electron density (ν > 2) for 
which there is no attractive polaron resonance. The degree of circular 
polarization is then given by

ρ
R R R R

R R R R
=

( − ) − ( − )

( − ) + ( − )
. (3)

σ σ σ σ

σ σ σ σAP
0 0

0 0

+ −

+ −

+ −

+ −

Filling factor calibration
We convert the axis of applied gate voltage to the filling factor axis 
by finding the maxima of the optical resonances for different voltage 
ranges, which are equally spaced in voltage and peaked at the integer 
fillings of the moiré lattice (Extended Data Fig. 2). By extracting the 
positions of the maxima using linear fits (compare Fig. 1c), we estimate 
the absolute error in the filling factor to be ≤ 0.005.

Power dependence of spin polarization
To access the true magnetic ground-state properties of the system, it is 
essential to ensure that the intensity of the probe light is sufficiently low 
so as not to perturb the system. Similar to monolayer MoSe2 (ref. 42), 
light illumination leads to depolarization of the spin population in 
the moiré heterostructure. As the strength of the depolarizing effect 
depends on both temperature and charge density, it can give rise to 
misleading artefacts in the measured electronic magnetism. This is 
directly shown by our filling-factor-dependent measurements of the 
Curie–Weiss constant carried out at high temperatures T > 4 K in the 
bath cryostat on sample II. In these experiments, the sample was illumi-
nated with a white light of tunable power. The magnetic susceptibility 
of the electron system was extracted based on the degree of circular 
polarization of the attractive polaron resonance that was, in turn, 
determined by fitting its spectral profile with a dispersive Lorentzian 
lineshape41. On this basis, we were able to analyse the temperature 
dependence of the inverse magnetic susceptibility for various filling 
factors and excitation powers. As seen in Extended Data Fig. 3a (for 
ν = 0.75), although the powers used remain in the sub-μW range, they 
still markedly affect the magnetic response. More specifically, the 
Curie–Weiss constant is lower for larger excitation powers. This effect 
is most prominent for low filling factors and becomes indiscernible at 
ν ≳ 1 (Extended Data Fig. 3b).

This power dependence originates primarily from the changes in 
spin-valley relaxation dynamics of the electron system. As demon-
strated in previous studies of TMD monolayers43, the spin relaxation 
time becomes shorter for larger electron densities and higher tem-
peratures. As a result, if a certain number of electrons undergo a spin 
flip because of the interaction with optically injected excitons, it takes 
longer for them to relax back to their ground state when ν and T are low. 
For this reason, the magnetic susceptibility determined on exciton 
injection into the system is lower compared with its unperturbed value. 
Moreover, the deviation between these two quantities becomes larger 
for higher excitation powers and lower ν and T (Extended Data Fig. 3c), 
which explains the striking power dependence of the Curie–Weiss 
constant at ν < 1 in Extended Data Fig. 3b. In particular, the data in this 
figure directly show that for the excitons to constitute a nondestruc-
tive probe of the electron spin system at T > 4 K and 0.5 ≲ ν ≲ 1.5, the 
excitation power needs to be around a few nW.

Owing to the aforementioned temperature dependence of the 
spin-valley relaxation time, accessing the true magnetic ground-state 
properties of the electron system at mK temperatures requires us to 
further reduce the excitation power. As shown in Extended Data Fig. 3d, 
nW excitation power is sufficient to significantly depolarize the spins 
at mK temperatures, even in a magnetic field of Bz = 9 T. By measuring 
magnetization curves at different levels of excitation power (Extended 
Data Fig. 4), we find that the requisite power for nondestructive prob-
ing, for which the power dependence disappears, is of the order of 
10 pW. Taking this into account, we used a resonant laser with 11.7 pW 
incident power on the sample in our mK measurements. Note that this 
level of power is about six orders of magnitude below the level at which 
the laser measurably heats the cold finger in the cryostat. Because the 
line shape and energy of the attractive polaron do not vary appreciably 
with gate voltage and magnetic field (density-dependent g-factor 
gAP < 10), measuring the reflectance at a single frequency is equivalent 
to measuring the area of the peak. At constant linewidth, the reflectance 
at a single frequency is proportional to the area of the whole peak.  
Line shifts smaller than the linewidth can be tolerated, because  
they affect only the absolute reflectance, but not the degree of polari-
zation ρ R R R R= ( − )/( + )σ σ σ σ

AP

+ − + −
, which is normalized by the total 

reflectance. We confirm the frequency independence by measurement 
with a broadband source filtered spectrally to cover the attractive 
polaron resonance in the whole doping range. The comparison to the 
single-frequency measurement is shown in Extended Data Fig. 5.



Effect of optical spin pumping
Excitation with circularly polarized light can lead to an optical 
spin-pumping effect. Previous studies have shown that this effect is 
small for MoSe2 (ref. 44). To exclude that a strong optical spin-pumping 
effect is present in our system, we measure the magnetic field depend-
ence of the attractive polaron reflectance under the same experimental 
conditions as in the ρAP measurement, but with fixed circular polari-
zation. We repeat the measurement for both σ+ and σ− polarization. 
The curves are normalized to the range [−1, 1] and plotted together in 
Extended Data Fig. 6a. The effect of polarization-dependent optical 
spin pumping is a vertical displacement of the intersection of the two 
curves away from 0. We find the intersection is displaced to a nega-
tive value, indicating that the polarized laser slightly pumps the spins 
to the valley it probes, thereby reducing the strength of the probed 
attractive polaron resonance. In Extended Data Fig. 6b, the same data 
are plotted with the σ+ data mirrored on the horizontal axis to better 
visualize the displacement.

The spin-pumping effect is small, and the measurement of the degree 
of polarization ρAP is also insensitive to it. As shown in Extended Data 
Fig. 6, the spin pumping always leads to a slight reduction in the reflec-
tance, regardless of which circular polarization the laser has. Therefore, 
the effect factors out in the definition of the degree of polarization, 
ρ R R R R= ( − )/( + )σ σ σ σ

AP

− + − +
.

Detailed magnetization curves
Additional plots of ρAP(Bz) measured at fixed doping in a wider mag-
netic field range and with smaller step size are shown in Extended Data 
Fig. 7. The magnetization evolves smoothly with the applied external 
magnetic field and reaches its saturation value without any discontinui-
ties. No further increase in ρAP is expected at higher magnetic fields, as 
the curves for all filling factors overlap with that at ν = 1.2, for which the 
ferromagnetic interactions ensure full spin polarization at low fields. 
The deviation of the saturation value from ±1 arises from difficulties 
in proper background subtraction for this particular measurement, 
for which the magnetic field was varied at a fixed filling factor. In the 
measurements presented in the main text, in which the filling factor 
was varied at a fixed magnetic field, this problem does not occur and 
ρAP reaches ±1 at saturation.

Temperature calibration
Owing to the heat load on our sample through the electrical wiring and 
finite thermal conductivity at mK temperatures, the real electron tem-
perature of the sample is expected to be higher than the value obtained 
from the built-in temperature read-out of the dilution refrigerator 
based on a resistance measurement, especially close to the base tem-
perature. As the electron temperature of the sample is a crucial quantity 
for our Curie–Weiss analysis, we use the following model to calibrate 
it and estimate the associated systematic error: The heat transport 
responsible for cooling the sample is governed by the steady-state 
heat equation

∇∇ ∇∇κ T Q( ) = , (4)in

where κ is the thermal conductivity and T is the temperature, and we 
assume a constant heat load Qin on the sample. At mK temperatures, 
the heat is transported by electrons through the electrical contacts 
and wire bonds, so we consider the gradient along only one dimen-
sion (along the wire). The electrical conductivity is limited by impurity 
scattering and therefore independent of temperature, which results 
in a thermal conductivity proportional to the temperature accord-
ing to the Wiedemann–Franz law. Setting κ(T) = αT, the equation  
becomes

α T x αT x T x Q( ′( )) + ( ) ″( ) = . (5)2
in

By integrating twice, we arrive at the solution

T x
Q

α
x T T x T( ) = + 2 (0) ′(0) + (0) . (6)in 2 2

Using the boundary conditions T(0) = Tcryo (cold-finger temperature 
according to thermometer read-out) and T ′(0) = 0  (cold finger is 
well-thermalized), we find the relation

T T T= + , (7)sample min
2

cryo
2

where Tmin corresponds to the minimum achievable sample temperature 
and depends on the heat load and thermal conductivity. A previous 
independent measurement using a quantum dot in the same cryostat 45 
found that the sample temperature saturated at T = 130 mK. Although 
the sample and electrical contacts are different, it is reasonable to 
assume a similar minimum temperature that can be reached in the 
current measurements. We therefore set Tmin = 130 mK and use equa-
tion (7) to convert the temperature read-out to the sample temperature 
for the Curie–Weiss fit. In Extended Data Fig. 8, we plot the result of 
the Curie–Weiss fit when different values of Tmin in a plausible range 
are used, showing the effect of a systematic error in the temperature 
calibration.

Given that at θCW = 0 at ν = 1 within our measurement accuracy, we 
assume a paramagnetic behaviour at ν = 1 to calibrate the sample tem-
perature in the measurements on sample II at T > 4 K. For a paramag-
net with J = 1/2, we have dρAP(T)/dBz = gμB/(2kBT), where μB is the  
Bohr magneton, kB the Boltzmann constant and g the electronic 
g-factor. The assumption of paramagnetic behaviour at ν = 1 is  
further confirmed by measured magnetization curves that follow 
ρ B gµ B k T( ) = tanh( /(2 ))z zAP B B . The value g = 4.5 of the g-factor can be 
fixed from this relation using the measured magnetization slope at a 
known temperature, for example, 4.2 K in a helium bath cryostat. We 
then use the same relation to extract the temperature from the meas-
ured slope at ν = 1 when heating the sample.

The temperature values obtained using this method were further 
verified by analysis of the temperature-induced redshift of the exci-
ton resonance in a MoSe2 monolayer region of sample II. As shown 
in Extended Data Fig. 9, the measured energy EX(T) of this resonance 
decreases quadratically with temperature, following the Varshni for-
mula EX(T) = E0 − γT2 (ref. 46). The corresponding γ = 1.6 μeV K−2 agrees 
well with the values reported in previous studies of MoSe2 monolay-
ers carried out in wider temperature ranges47. This finding provides 
a strong confirmation of the validity of our temperature calibration  
procedure.

Curie–Weiss fit
In our measurements, the slope dρAP/dBz can be measured with very 
high precision, whereas the sample temperature has a relatively large 
systematic uncertainty, as described above. To take this into account 
in the fit, we use the uncertainties in temperature rather than those  
in susceptibility as weights for the data points. This means that  
in the linear regression of a ρ B T θ(d /d ) = −zAP

−1 , the temperature is  
treated as the dependent variable and the inverse susceptibility as  
the independent variable — that is, we fit T a ρ B θ= (d /d ) +zAP

−1  with  
1/σT as weights. For the uncertainty σT of the temperature, we take 
σ σ T T= + ( − )T

2
readout
2

sample cryo
2, where σreadout

2  is the variance of the tem-
perature read-out and the second term quantifies the systematic uncer-
tainty of the temperature as described in the section ‘Temperature 
calibration’.

Reproducibility of the low-temperature results on a second 
device
The signatures of kinetic magnetism were also observed on two dif-
ferent spots for sample II. For each spot, we measured the degree of 
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circular polarization ρAP of the attractive polaron transition as a function 
of both electron density and external magnetic field in a second dilution 
refrigerator unit featuring a base temperature of around 80 mK. On this 
basis, we determined the filling factor dependence of the slope dρAP/
dBz around Bz = 0. Extended Data Figure 10a shows the results obtained 
for one of the investigated spots together with data from two spots on 
sample I. In all three cases, the slope is almost constant at ν < 1, starts 
to increase at ν > 1 and finally decreases around ν = 1.5. Both of these 
variations in sample II are markedly less abrupt compared with those 
seen in sample I. We attribute this difference to a larger disorder of the 
moiré lattice constant in sample II, caused by an unintentional twist 
angle of 1.3° in sample II, in contrast to the 0° alignment of sample I.  
Both twist angles were determined from a calibration of the electron 
density corresponding to ν = 1 based on the Landau-level spacing 
in monolayer MoSe2 regions at high magnetic fields48. Owing to the 
finite twist angle, the moiré lattice constant in sample II is sensitive 
to variations in the local twist angle, whereas sample I is insensitive to  
first order. The inhomogeneity of the moiré lattice is responsible 
for fluctuations of the local filling factor within the examined laser 
spot. This, in turn, broadens the increase in dρAP/dBz at ν > 1, as the 
enhancement of magnetic susceptibility due to kinetic magnetism 
is sensitively dependent on ν. The presence of excessive filling factor 
disorder is independently confirmed by the lack of a robust decrease in  
dρAP/dBz around ν = 4/3 for sample II, which is due to the formation of 
a generalized Wigner crystal.

We want to underline that the slightly lower value of dρAP/dBz at ν < 1 in 
the case of sample II is related to the larger base temperature (≈80 mK) 
of the second dilution refrigerator unit used for the measurements of 
this device. This limits the lowest achievable electron temperature, 
which yields about 210 mK instead of 140 mK for the dilution refrigera-
tor used in the measurements of sample I.

In Extended Data Fig. 10b, we show the same data from sample II 
together with a measurement at 4.2 K performed in a helium bath cry-
ostat. Similar to Fig. 2b, each curve is multiplied by the temperature of 
the measurement, highlighting the enhancement of the spin suscep-
tibility for 1 < ν < 1.5 at low temperatures with a larger increase than 
paramagnetic 1/T behaviour.

Theoretical model
To explain the experimental results, we consider a single-band extended 
t–J model,
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where ci σ,  is the annihilation operator for an electron with spin σ on 
site i,   n n c c= ∑ = ∑i σ i σ σ i σ i σ, ,

†
,  is the electron number operator on site i, 

and Si
⃗  is the electron spin operator on site i. The subscripts σ  and σ̄  

denote opposite electron spins within a sum. The parameter t is the 
hopping strength, J is the spin–spin interaction, A is the assisted hop-
ping, V is the strength of Coulomb interaction projected into the low-
est Wannier orbital, h is the external magnetic field in units of gμB, Δi is 
the on-site potential energy and ̂P is a projector that projects out dou-
blons in the holon-doped regime and holons in the doublon-doped 
regime. We consider a null spin–spin interaction J = 0 motivated by the 
experimental results pointing to a paramagnetic response at ν = 1. 
Moreover, to implement the long-range coupling proportional to V, 
we cut the range of the interaction at third neighbours. The on-site 

potential energy Δi takes into account spatial variations of the moiré 
potential. We consider a uniformly distributed disorder Δi ∈ [−Δ/2, Δ/2) 
of width Δ with a corresponding root-mean-square parameter ∆/ 12 .

Model parameters
To estimate the relevant parameters of the Hamiltonian used in the 
tensor network simulations, we start from the finite discrete Fourier 
expansion of the moiré potential,

∑V V( ) = e , (9)
n

n
=1

6
i ⋅nr G r

where V V φ= − exp[i(−1) ]n
n

0
−1 , and we introduce the reciprocal lattice 
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where am is the moiré lattice constant. The parameters V0 = 6.3 meV 
and φ = 0 are obtained from first-principles calculations.

The single-electron problem is described by the low-energy  
Hamiltonian,

r̂ ̂H
ħ
m

V∇∇= −
2 *

+ ( ), (11)
2

2

where we introduce the effective mass m* = 0.7me of the MoSe2 conduc-
tion band electrons, where me is the bare electron mass. As the moiré 
potential has a periodic structure, we can use Bloch’s theorem to write 
the wavefunctions as

ψ u( ) = ( )e , (12)n n( ) ( ) i ⋅r rk k
k r

where n is the band index, k is restricted to the first moiré Brillouin 
zone (BZ) and u n( )

k  are the Bloch functions. As the Bloch functions have 
the same periodicity as the moiré potential, u u( ) = ( + )n n

i
( ) ( )r r Rk k , we can 

expand them by performing a discrete Fourier transform

∑u c( ) = e , (13)
n n( )

∈
,
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G
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where G  is the set of all reciprocal lattice vectors. Therefore, the  
Hamiltonian can be written on the basis of reciprocal lattice  
vectors as
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with δi, j the Kronecker delta, which can be diagonalized for each 
quasi-momentum k by using a large set of reciprocal lattice vectors. 
The ground-state solution corresponds to the lowest band n = 0. The 
associated Wannier wavefunction wi(r) localized at site Ri is obtained 
by performing the change of basis

∑w ψ( ) =
1

( )e , (15)i
∈BZ

i ⋅ ir r
k

k
k R

N

where we drop the band index and introduce the normalization  
factor N .

The interaction potential between charges in the TMDs is given by 
the Rytova–Keldysh potential49,50
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where H0 is the Struve function, Y0 the Bessel function of the second 
kind, r0 = 3.5 nm the screening length for MoSe2, ϵr = 4.5 the relative 
permittivity of h-BN as the surrounding medium51 and ϵ0 is the vacuum 
permittivity. The matrix elements
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are evaluated numerically, where w w, �i j∣  denotes a state in which two 
electrons occupy the neighbouring Wannier orbitals.

Tensor network simulations
Our finite-temperature tensor network simulations are based on a 
purification scheme performed in the canonical ensemble. We imple-
ment the U(1) symmetry associated with the conservation of the total 
number of electrons, but we do not fix the net magnetization of the  
system. The finite-temperature density matrix is represented as a matrix 
product state (MPS) in a doubled Hilbert space. The MPS maximum 
bond dimension is set to χ = 768. The cooling process is performed as  
indicated in ref. 5. We progressively apply an infinitesimal (δβ = 0.1)  
Boltzmann factor e−δβ/2 by using the WII technique52. The finite- 
temperature calculations are performed in a triangular cylinder of size  
L = Lx × Ly = 15 × 3.

To obtain the ground state of the system, we use the density-matrix 
renormalization group algorithm. We perform simulations in a trian-
gular cylinder of size L = Lx × Ly = 15 × 6, and we fix the maximum bond 
dimension of our MPS to χ = 1,024. To capture the effects of a disordered 
on-site potential, we have performed calculations in three different 
disorder realizations and taken the average. The tensor network cal-
culations have been performed using TeNPy (ref. 53).

First-principles simulation with DFT
We study TMD heterobilayers with a small twist angle starting from 
R-stacking, in which every metal (M) or chalcogen (X) atom on the top 
layer is aligned with the same type of atom on the bottom layer. In a 
local region of a twisted bilayer, the atom configuration is identical 
to that of an untwisted bilayer, in which one layer is laterally shifted 
relative to the other layer by a corresponding displacement vector d0. 
Therefore, the moiré band structures of twisted TMD heterobilayers 
can be well described by the continuum model.

In particular, d a a a a= 0, − ( + )/3, ( + )/30 1 2 1 2 , where a1,2 is the primi-
tive lattice vector of untwisted bilayers, corresponding to three 
high-symmetry stacking configurations of untwisted TMD bilayers, 
which we refer to as MM, XM and MX. In MM stacking, the M atom on 
the top layer is locally aligned with the M atom on the bottom layer, 
whereas in MX stacking, the M atom on the top layer is locally aligned 
with the X atom on the bottom layer, likewise for XM. The bilayer struc-
ture in these stacking configurations is invariant under three-fold rota-
tion around the z-axis.

The density functional theory (DFT) calculations are performed 
using the generalized gradient approximation with SCAN density func-
tional54 with dDsC dispersion correction method, as implemented in 
the Vienna Ab initio Simulation Package. We note that SCAN + dDsC 
captures the intermediate-range van der Waals interaction through 
its semi-local exchange term. Pseudo-potentials are used to describe 
the electron–ion interactions. We first construct the rigid structure 
of an R-stacked MoSe2/WS2 heterobilayer with vacuum spacing larger 
than 20 Å to avoid artificial interaction between the periodic images 
along the z-direction. The lattice constants 3.32 Å and 3.19 Å are taken 
from bulk structures for MoSe2 and WS2, respectively. The structure 
relaxation is performed with force on each atom less than 0.01 eV Å−1. 

We use 1 × 1 × 1 for structure relaxation and self-consistent calculation 
because of the expensive computational cost.

For R-stacked MoSe2/WS2, we find that lattice relaxation is signifi-
cant, which is the main source for the moiré potential. Our DFT cal-
culations at θ = 2.7° with 1,545 atoms per unit cell show a significant 
variation of the layer distance d in different regions on the moiré 
superlattice (Extended Data Fig. 11a). The smallest distance d = 6.42 Å 
is in MX and XM stacking regions, in which a metal atom on the top 
layer is aligned with a chalcogen atom on the bottom layer and vice 
versa, whereas the largest distance d = 6.78 Å is in MM region, in which 
metal atoms of both layers are aligned. With the fully relaxed struc-
ture, the low-energy moiré conduction bands of R-stacked MoSe2/
WS2 are found to come from the ±K valley of MoSe2 after apply-
ing a gating field E = 0.5 V nm−1, to be consistent with experimental  
observations.

From the fitting of moiré conduction bands, we obtain the continuum 
model parameters of the lowest bands as V0 = 6.3 meV, φ = 0°, with 
the bulk lattice constant a0 = 3.32 Å. Therefore, the effective model 
for the moiré conduction band is an ideal triangular lattice Hubbard 
model, with the MM region as the single potential minimum (Extended 
Data Fig. 11d) for the wavefunction plot. To demonstrate the accu-
racy of the continuum model method, we compare the conduction 
band structures computed by large-scale DFT directly at θ = 2.7° and 
by the continuum model (Extended Data Fig. 11c). We note that the 
DFT-calculated spin–orbit splitting of the conduction bands is 22 meV, 
whereas the bandwidth of the lowest moiré band extracted from con-
tinuum model is 10 meV for a twist angle of 0°. As for the moiré valence 
band, the continuum model parameters can be fitted as V0 = 1.9 meV 
and φ = 59∘, with nearly identical moiré potential at the MM and MX  
regions.
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Extended Data Fig. 1 | Experimental setup. Schematic of the optical setup 
used in our experiments.
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Extended Data Fig. 2 | Optical response of the moiré bilayer in an extended voltage range. Normalized reflectance spectrum measured as a function of the 
applied gate voltage on sample I in an extended voltage range.



Extended Data Fig. 3 | High-temperature measurements of electron spin 
polarization on sample II. a, Inverse slope dρAP/dBz measured at ν = 0.75 as 
function of temperature for different excitation powers. For each power, the 
data are precisely reproduced by the Curie–Weiss formula with the Curie–
Weiss constant getting sizably lower for larger powers due to light-induced 
electron spin depolarization. b, Fitted CurieWeiss constant as function of 
electron filling factor for three different excitation powers. For ν < 1, the 
light-induced spin depolarization leads to apparent negative Curie–Weiss 
constants. Error bars correspond to the standard error of the fit. c, Ratio of the 

slope dρAP/dBz measured at two different powers, plotted as function of 
temperature and filling factor. The power dependence changes with both 
temperature and filling factor and is most prominent at small ν and low 
temperatures. The grey dashed lines mark contours of fixed susceptibility 
ratios (as indicated). d, Degree of polarization measured at fixed magnetic 
field of Bz = 9 T with different excitation powers and base temperature of the 
dilution refrigerator. Even at high magnetic field, an excitation power of 19 nW 
is sufficient at mK temperatures to strongly depolarize the spins and reduce ρAP 
from 1.0 to 0.7.
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Extended Data Fig. 4 | Influence of optical excitation power on low- 
temperature electron spin polarization. Magnetization curves measured 
with different excitation powers at T ≈ 140 mK in sample I. At nW power  
levels the magnetization curve is strongly power dependent, indicating that 
light-induced depolarization is still relevant. The curves measured at pW 
powers differing by a factor of 4 overlap, demonstrating that the excitation 
power is sufficiently low to not perturb the system.



Extended Data Fig. 5 | Magnetization measurements using light with 
different spectral bandwidth. Comparison of the slope dρAP/dBz measured  
at base temperature using a single-frequency laser and a broadband source 

filtered to cover the whole AP resonance. Error bars correspond to the standard 
error of the fit.
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Extended Data Fig. 6 | Measurement of the optical spin-pumping effect. 
a, Reflection of a laser (11.7 pW) resonant with the attractive polaron as function 
of magnetic field measured in both circular polarizations, normalized to lie in 
the range [ − 1, 1]. The crossing of the two curves occurs at a negative value on 

the vertical axis, indicating that the magnetization is slightly affected by the 
laser polarization. b, Same data as in a but with the σ+ points mirrored on the 
horizontal axis. The loop formed by the two curves indicates a small optical 
spin-pumping effect.



Extended Data Fig. 7 | Detailed low-temperature magnetization curves for 
different electron densities. Degree of polarization ρAP measured as a 
function of the magnetic field for several filling factors of the moiré lattice.
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Extended Data Fig. 8 | Curie–Weiss temperature determined using a 
different temperature calibration. Curie–Weiss constant as function of 
filling factor for different Tmin used in the temperature calibration. Changing 

the minimum temperature shifts the curve vertically without affecting it 
qualitatively. Error bars correspond to the standard error of the fit.



Extended Data Fig. 9 | Exciton energy in MoSe2 monolayer as a function of 
temperature. The energy of exciton optical transition measured at charge- 
neutrality for MoSe2 monolayer at different temperatures. The solid line marks 
the quadratic fit to the data EX(T) = E0 − γT2 with E0 = 1.6352 eV and γ = 1.57 μeV/K2.
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Extended Data Fig. 10 | Reproducibility of magnetization data on different 
spots/samples. a, Comparison of the filling factor dependence of dρAP/dBz 
measured on two different spots on sample I as well as one spot on sample II at 
mK temperatures. b, Slope dρAP/dBz measured at base temperature and at 4.2 K 
on sample II. Similar to Fig. 2b, each curve is multiplied by the temperature T, 
highlighting the enhancement of the magnetic susceptibility at low temperature 
for 1 < ν < 1.5. Error bars correspond to the standard error of the fit.



Extended Data Fig. 11 | DFT simulations of the electronic band structure. 
a, The interlayer distance of the 2 × 2 R-stacked MoSe2/WS2 obtained from DFT 
is shown, demonstrating a large variation between the MM and XM/MX regions. 
b, Projected moiré valence band structures from large scale DFT calculations at 
twist angle θ = 2.7°. c, The continuum model band structure (blue and red lines 

for K and K′ valley) is plotted in comparison with large scale DFT calculations 
(black dots) at twist angle θ = 2.7°, showing excellent agreement. d, γ momentum 
wavefunction plot for lowest moiré conduction band, localizing at MM regions 
in the MoSe2 layer.
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