Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observing the primary steps of ion solvation in helium droplets

Abstract

Solvation is a ubiquitous phenomenon in the natural sciences. At the macroscopic level, it is well understood through thermodynamics and chemical reaction kinetics1,2. At the atomic level, the primary steps of solvation are the attraction and binding of individual molecules or atoms of a solvent to molecules or ions of a solute1. These steps have, however, never been observed in real time. Here we instantly create a single sodium ion at the surface of a liquid helium nanodroplet3,4, and measure the number of solvent atoms that successively attach to the ion as a function of time. We found that the binding dynamics of the first five helium atoms is well described by a Poissonian process with a binding rate of 2.0 atoms per picosecond. This rate is consistent with time-dependent density-functional-theory simulations of the solvation process. Furthermore, our measurements enable an estimate of the energy removed from the region around the sodium ion as a function of time, revealing that half of the total solvation energy is dissipated after four picoseconds. Our experimental method opens possibilities for benchmarking theoretical models of ion solvation and for time-resolved measurements of cation–molecule complex formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The principle of the experiment.
Fig. 2: Simulated solvation dynamics of Na+ in a He droplet.
Fig. 3: Time-dependent Na+Hen ion yields and peak times.
Fig. 4: Time-dependent Na+Hen distributions, and mean energy dissipated from the local region around the Na+ ion.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Should any raw data files be needed in another format, they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The computing code used for the TDDFT simulations (M. Pi et al. 4He-DFT BCN-TLS: A Computer Package for Simulating Structural Properties and Dynamics of Doped Liquid Helium-4 Systems) is freely available at https://github.com/bcntls2016/. The code for the molecular dynamics simulations can be obtained upon request.

References

  1. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry (Wiley, 2011).

  2. Marcus, Y. Ions in Solution and Their Solvation (John Wiley & Sons, 2015).

  3. Toennies, J. P. & Vilesov, A. F. Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. Int. Edn 43, 2622–2648 (2004).

    Article  CAS  Google Scholar 

  4. Choi, M. Y. et al. Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. Int. Rev. Phys. Chem. 25, 15–75 (2006).

    Article  CAS  Google Scholar 

  5. Jarzeba, W., Walker, G. C., Johnson, A. E., Kahlow, M. A. & Barbara, P. F. Femtosecond microscopic solvation dynamics of aqueous solutions. J. Phys. Chem. 92, 7039–7041 (1988).

    Article  CAS  Google Scholar 

  6. Jimenez, R., Fleming, G. R., Kumar, P. V. & Maroncelli, M. Femtosecond solvation dynamics of water. Nature 369, 471–473 (1994).

    Article  ADS  CAS  Google Scholar 

  7. de Boeij, W. P., Pshenichnikov, M. S. & Wiersma, D. A. Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies. Annu. Rev. Phys. Chem. 49, 99–123 (1998).

    Article  ADS  PubMed  Google Scholar 

  8. Chudoba, C., Nibbering, E. T. J. & Elsaesser, T. Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy. Phys. Rev. Lett. 81, 3010–3013 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Kropman, M. F. & Bakker, H. J. Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Kumpulainen, T., Lang, B., Rosspeintner, A. & Vauthey, E. Ultrafast elementary photochemical processes of organic molecules in liquid solution. Chem. Rev. 117, 10826–10939 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Biasin, E. et al. Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer. Nat. Chem. 13, 343–349 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Briant, M., Mestdagh, J.-M., Gaveau, M.-A. & Poisson, L. Reaction dynamics within a cluster environment. Phys. Chem. Chem. Phys. 24, 9807–9835 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Hwan Kim, K., Kim, J., Hyuk Lee, J. & Ihee, H. Molecular reaction and solvation visualized by time-resolved X-ray solution scattering: structure, dynamics, and their solvent dependence. Struct. Dyn. 1, 011301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yin, Z. et al. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature 619, 749–754 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, K. H. et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ancilotto, F., Cheng, E., Cole, M. W. & Toigo, F. The binding of alkali atoms to the surfaces of liquid helium and hydrogen. Z. Phys. B Condens. Matter 98, 323–329 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Barranco, M. et al. Helium nanodroplets: an overview. J. Low Temp. Phys. 142, 1–81 (2006).

    Article  ADS  CAS  Google Scholar 

  18. Giacomazzi, L., Toigo, F. & Ancilotto, F. Dynamics of liquid 4He in confined geometries from time-dependent density functional calculations. Phys. Rev. B 67, 104501 (2003).

    Article  ADS  Google Scholar 

  19. Lehtovaara, L., Kiljunen, T. & Eloranta, J. Efficient numerical method for simulating static and dynamic properties of superfluid helium. J. Comput. Phys. 194, 78–91 (2004).

    Article  ADS  CAS  MATH  Google Scholar 

  20. Ancilotto, F. et al. Density functional theory of doped superfluid liquid helium and nanodroplets. Int. Rev. Phys. Chem. 36, 621–707 (2017).

    Article  CAS  Google Scholar 

  21. Paolini, S., Ancilotto, F. & Toigo, F. Ground-state path integral Monte Carlo simulations of positive ions in He4 clusters: bubbles or snowballs? J. Chem. Phys. 126, 124317 (2007).

    Article  ADS  PubMed  Google Scholar 

  22. Galli, D. E., Ceperley, D. M. & Reatto, L. Path integral Monte Carlo study of 4He clusters doped with alkali and alkali-earth ions. J. Phys. Chem. A 115, 7300–7309 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Coccia, E. et al. Bosonic helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations. J. Chem. Phys. 126, 124319 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Issaoui, N. et al. Theoretical investigation of the relative stability of Na+Hen (n = 2–24) clusters: many-body versus delocalization effects. J. Chem. Phys. 141, 174316 (2014).

    Article  ADS  PubMed  Google Scholar 

  25. Kardar, M. Statistical Physics of Particles (Cambridge Univ. Press, 2007).

  26. Cruzeiro, V. W. D. et al. Highly accurate many-body potentials for simulations of N2O5 in water: benchmarks, development, and validation. J. Chem. Theory Comput. 17, 3931–3945 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Hernando, A. et al. The structure and energetics of 3He and 4He nanodroplets doped with alkaline Earth atoms. J. Phys. Chem. A 111, 7303–7308 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Müller, S., Mudrich, M. & Stienkemeier, F. Alkali–helium snowball complexes formed on helium nanodroplets. J. Chem. Phys. 131, 044319 (2009).

    Article  ADS  PubMed  Google Scholar 

  29. Leal, A. et al. Picosecond solvation dynamics of alkali cations in superfluid 4He nanodroplets. Phys. Rev. B 90, 224518 (2014).

    Article  ADS  Google Scholar 

  30. Theisen, M., Lackner, F. & Ernst, W. E. Forming Rb+ snowballs in the center of He nanodroplets. Phys. Chem. Chem. Phys. 12, 14861–14863 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Mateo, D. et al. Nucleation of quantized vortex rings in 4He nanodroplets. J. Chem. Phys. 140, 131101 (2014).

    Article  ADS  PubMed  Google Scholar 

  32. Ma, J. C. & Dougherty, D. A. The cation−π interaction. Chem. Rev. 97, 1303–1324 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Schouder, C. A., Chatterley, A. S., Pickering, J. D. & Stapelfeldt, H. Laser-induced Coulomb explosion imaging of aligned molecules and molecular dimers. Annu. Rev. Phys. Chem. 73, 323–347 (2022).

    Article  ADS  PubMed  Google Scholar 

  34. Shepperson, B. et al. Strongly aligned molecules inside helium droplets in the near-adiabatic regime. J. Chem. Phys. 147, 013946 (2017).

    Article  ADS  PubMed  Google Scholar 

  35. Chandler, D. W. & Houston, P. L. Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987).

    Article  ADS  CAS  Google Scholar 

  36. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Nomerotski, A. Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras. Nucl. Instrum. Methods Phys. Res. Sect. A 937, 26–30 (2019).

    Article  ADS  CAS  Google Scholar 

  38. Zhao, A. et al. Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution. Rev. Sci. Instrum. 88, 113104 (2017).

    Article  ADS  PubMed  Google Scholar 

  39. Schouder, C. et al. Laser-induced Coulomb explosion imaging of (C6H5Br)2 and C6H5Br–I2 dimers in helium nanodroplets using a Tpx3Cam. J. Phys. B 54, 184001 (2021).

    Article  ADS  CAS  Google Scholar 

  40. Dick, B. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps. Phys. Chem. Chem. Phys. 16, 570–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Ancilotto, F., Barranco, M., Caupin, F., Mayol, R. & Pi, M. Freezing of 4He and its liquid–solid interface from density functional theory. Phys. Rev. B 72, 214522 (2005).

    Article  ADS  Google Scholar 

  42. Patil, S. H. Adiabatic potentials for alkali–inert gas systems in the ground state. J. Chem. Phys. 94, 8089–8095 (1991).

  43. Koutselos, A. D., Mason, E. A. & Viehland, L. A. Interaction universality and scaling laws for interaction potentials between closed‐shell atoms and ions. J. Chem. Phys. 93, 7125–7136 (1990).

  44. Rackers, J. A. et al. Tinker 8: software tools for molecular design. J. Chem. Theory Comput. 14, 5273–5289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ren, P., Wu, C. & Ponder, J. W. Polarizable atomic multipole-based molecular mechanics for organic molecules. J. Chem. Theory Comput. 7, 3143–3161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Graul, S. T. & Bowers, M. T. Vibrational excitation in products of nucleophilic substitution: the dissociation of metastable X(CH3Y) in the gas phase. J. Am. Chem. Soc. 116, 3875–3883 (1994).

    Article  CAS  Google Scholar 

  47. Rastogi, M. et al. Lithium ions solvated in helium. Phys. Chem. Chem. Phys. 20, 25569–25576 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Stienkemeier, N. Halberstadt, F. Jensen, H. Birkedal, P. R. Ogilby and K. Mølmer for discussions and comments, and J. Thøgersen for help in the laboratory. H.S. acknowledges, in particular, S. Keiding, who sadly passed away earlier this year, for his constructive criticism of, advice on and genuine support of this work. H.S. acknowledges support from the Independent Research Fund Denmark (project number 8021-00232B) and from V. Fonden through a Villum Investigator Grant number 25886. M.B. and M.P. have been supported by grant number PID2020-114626GB-I00 from the MICIN/AEI/10.13039/501100011033. The molecular dynamics simulations were obtained at the Centre for Scientific Computing, Aarhus (https://phys.au.dk/forskning/faciliteter/cscaa/).

Author information

Authors and Affiliations

Authors

Contributions

S.H.A., C.A.S., J.K.C. and A.V.M. designed and built the experimental set-ups, maintained the experimental apparatus and carried out the experiments. S.H.A., C.A.S., J.K.C., A.V.M. and H.S. analysed the experimental data. C.E.P. and J.K.C. designed, wrote the code for and carried out the molecular dynamics simulations. M.P. and M.B performed the numerical TDDFT simulations. All authors discussed and interpreted the data. H.S. wrote the paper with input from all authors.

Corresponding author

Correspondence to Henrik Stapelfeldt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tomas Gonzalez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic of the experimental setup.

The key elements described in Methods are shown including the formation of the He droplets by expansion of high-purity 4He gas, the two doping cells, the pump and probe laser pulses, the velocity map imaging spectrometer consisting of three electrodes (repeller, R; extractor, E; and ground, G), and the imaging detector backed by the TPX3CAM. The figure is for illustration purposes only and is not drawn to scale.

Extended Data Fig. 2 Overview of the data analysis: from raw data to the Na+Hen ion yields.

a, Mass spectrum in the m/q range from 20 to 65 u/e, obtained when the pump and probe pulses interact with the doped He droplets. The peaks corresponding to the masses of Na+Hen ions are highlighted by red bars. The origin of the other peaks are discussed in Methods. b1b6, 2D velocity images corresponding to some of the Na+Hen ions highlighted in the mass spectrum, integrated over all measured pump-probe delays. c1c4, 2D velocity images of Na+He3 ions at four selected delays, t = 0.2, 1.0, 2.0, 3.0 ps, d, The speed distribution of Na+He3 ions for delays between 0 and 20 ps, found by Abel inversion of the 2D velocity images. The dashed lines indicate the radial range used for the determination of the ion yield plotted in panel e. e, The time-dependent yield of the Na+He3 ions obtained by integrating the speed distributions in panel d.

Extended Data Fig. 3 Helium density profile and Na+-He pair potential.

Top: helium density profile of Na+-4He2000 at equilibrium (black solid line) and of pure 4He2000 (red dashed line). Bottom: Na+-He pair potential used in this work.

Extended Data Fig. 4 MD simulation of the post-ejection dissociation process.

a, Schematic showing the simulation method for a Na+HeN complex. The minimized complex is heated, and then it gradually dissipates its internal energy by shedding He atoms through dissociation. b, MD simulation results for Na+He6 showing the number of helium atoms, averaging over 1000 simulations, <N>, attached to the complex as a function of time, for three average total kinetic energies. c, The same as b, but for Na+He14.

Source Data

Extended Data Fig. 5 Time-dependent Na+Hen ion yields and sum of all ion yields.

a0–a25, Black dots: time-dependent Na+Hen ion yield, Yn(t) for n = 0 to 25. The blue curves represent the Poisson probability, Pn(t), that n He atoms have bound to the ion in the interval [0,t], scaled such that the peak of P2(t) matches the peak of the Na+(He2). b, Black dots: the sum of the ions yields shown in a0–a25, that is, \({{\rm{S}}{\rm{U}}{\rm{M}}}_{{\rm{i}}{\rm{o}}{\rm{n}}{\rm{s}}}(t\,)={\sum }_{n=0}^{25}{Y}_{n}(t\,)\).

Source Data

Extended Data Table 1 Dissociation energies, D0(N), of Na+HeN ions

Supplementary information

Supplementary Video 1

TDDFT simulation of the Na+ ion solvation process. Left video: time evolution of the He density in a symmetry plane. The red dot represents the Na+ ion. Right video: the solid black line shows the spherically averaged droplet density profile around the ion (left vertical axis). The dashed red line shows the number of He atoms as a function of the distance to the ion (right vertical axis).

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albrechtsen, S.H., Schouder, C.A., Viñas Muñoz, A. et al. Observing the primary steps of ion solvation in helium droplets. Nature 623, 319–323 (2023). https://doi.org/10.1038/s41586-023-06593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06593-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing