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Plasma proteomic associations with genetics 
and health in the UK Biobank
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The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium 
characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here 
we provide a detailed summary of this initiative, including technical and biological 
validations, insights into proteomic disease signatures, and prediction modelling for 
various demographic and health indicators. We present comprehensive protein 
quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary 
genetic associations, of which 81% are previously undescribed, alongside ancestry- 
specific pQTL mapping in non-European individuals. The study provides an updated 
characterization of the genetic architecture of the plasma proteome, contextualized 
with projected pQTL discovery rates as sample sizes and proteomic assay coverages 
increase over time. We offer extensive insights into trans pQTLs across multiple 
biological domains, highlight genetic influences on ligand–receptor interactions and 
pathway perturbations across a diverse collection of cytokines and complement 
networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 
secretor status on proteins with gastrointestinal tissue-enriched expression. We 
demonstrate the utility of these data for drug discovery by extending the genetic 
proxied effects of protein targets, such as PCSK9, on additional endpoints, and 
disentangle specific genes and proteins perturbed at loci associated with COVID-19 
susceptibility. This public–private partnership provides the scientific community 
with an open-access proteomics resource of considerable breadth and depth to help 
to elucidate the biological mechanisms underlying proteo-genomic discoveries and 
accelerate the development of biomarkers, predictive models and therapeutics1.

Genetic studies of human populations are increasingly used as research 
tools for drug discovery and development. These studies can facili-
tate the identification and validation of therapeutic targets2,3, help to 
predict long-term consequences of pharmacological intervention4, 
improve patient stratification for clinical trials5 and repurpose exist-
ing drugs6. Several precompetitive biopharmaceutical consortia have 
recently invested in population biobanks to accelerate genetics-guided 

drug discovery, enhancing massive-scale phenotype-to-genotype stud-
ies such as the UK Biobank (UKB)7,8 with comprehensive multi-omics 
profiling of biological samples9–11.

Ongoing private–public investments in biobank-based genetics 
are supported, in part, by a series of systematic analyses of historical 
drug development pipelines, all indicating that drugs developed with 
supporting evidence from human genetics are at least twice as likely  
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to be approved12,13. Nonetheless, human genetics remains an impre-
cise instrument for biopharmaceutical research and development, 
as genome-wide association studies (GWAS) frequently implicate 
genetic variants without clear causal genes mediating their impact(s)14 
or map to genes implicating putative drug targets with poorly under-
stood biology or unclear mechanisms of modulation2. Combining 
human genetics with high-throughput, population-scale proteomics 
could help to bridge the gap between the human genome and human  
diseases1. Circulating proteins could also provide insights into the 
current state of human health15 and partially capture the influences 
of lifestyle and environment on disease pathogenesis16.

To date, large-scale proteogenomic studies have identified upwards 
of 12,000 independent associations between genetic variants and 
plasma protein concentrations (pQTLs) using samples typically sourced 
from studies lacking participant-level access or linkage to deep pheno-
typing17–23. The open-access framework24, deep phenotypic characteri-
zation7 and long-term development9,10 of population studies like the 
UKB offer a unique opportunity to expand proteogenomics to a mas-
sive scale, broaden research use of high-throughput proteomic data, 
build more extensive pQTL databases, and accelerate the discovery of  
biomarkers, diagnostics and medicines. To fulfil these aims, we formed 
the UK Biobank Pharma Proteomics Project (UKB-PPP)—a precom-
petitive consortium of 13 biopharmaceutical companies funding the 
generation of multiplex, population-scale proteomic data. Here we 
describe the measurement, processing and downstream analysis of 
2,941 blood plasma analytes measured across 54,219 UKB participants 
using the antibody-based proximity extension assay (PEA)25.

Overview of UKB-PPP characteristics
We conducted proteomic profiling on blood plasma samples  
collected from 54,219 UKB participants using the antibody-based 

Olink Explore 3072 PEA, measuring 2,941 protein analytes and cap-
turing 2,923 unique proteins (Fig. 1a, Supplementary Information and 
Extended Data Fig. 1). This included a randomly selected subset of 
46,595 UKB participants at the baseline visit (randomly selected base-
line), 6,376 individuals at baseline selected by the UKB-PPP consortium 
members (consortium selected) and 1,268 individuals who partici-
pated in the COVID-19 repeat-imaging study at multiple visits (Fig. 1a  
and Methods).

The randomly selected baseline participants were highly representa-
tive of the overall UKB population for various demographic charac-
teristics, except for a slightly higher deprivation index (Townsend 
index, 0.51 higher, P = 1.4 × 10−5), different distribution of recruitment 
centres (P = 2.1 × 10−95) and a minimal difference in time since recruit-
ment (P = 0.00072) (Supplementary Table 1). Compared with the UKB 
participants overall, the consortium-selected participants were on 
average older (by 2.5 years, P = 5.0 × 10−117) and had a lower propor-
tion of women (by 3.2%, P = 4.1 × 10−7), a higher body mass index (BMI; 
0.6 kg m−2 higher, P = 1.3 × 10−16), a lower prevalence of never smokers 
(2.4% lower, P = 2.1 × 10−6) and different composition of self-reported 
ethnic background (UKB data field 21000) (P = 3.8 × 10−296), with a 
higher proportion (6.3% higher) of self-reported non-white participants 
(Fig. 1b and Supplementary Table 1). The COVID-19 imaging participants 
had a younger age distribution (by 6.3 years, P = 1.2 × 10−162), lower BMI 
(1.1 kg m−2 lower, P = 1.7 × 10−20) and lower smoking prevalence (7.7% 
lower, for individuals who have never smoked, P = 2.1 × 10−9), but were 
comparable to the overall UKB participants in sex, ethnic background 
and blood group (Supplementary Table 1). The consortium-selected 
and COVID-19 imaging participants showed widespread differences 
across medication use patterns, haematology measures and biochem-
istry markers, reflecting their non-random sampling, whereas the  
randomly selected baseline participants remained highly representa-
tive of the UKB overall (Supplementary Table 1).
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Fig. 1 | Overview of UKB-PPP. a, Sample set-up and protein measurements. The 
number of individuals comprising each cohort (random baseline, consortium 
selected, COVID-19 imaging, or a combination) is represented by the orange 
boxes. b, The age distribution between different subcohorts. c, Q–Q plot 
showing enrichment P values of the full UKB cohort compared against all of the 
UKB-PPP samples and UKB-PPP randomly selected baseline samples. Statistical 
analysis was performed using two-sided, unadjusted Fisher’s exact tests.  
d, Follicle-stimulating hormone beta subunit (FSHB) and glycodelin (PAEP) 
levels by age and sex. Linear regression coefficients and two-sided unadjusted 
P values for males are shown. aThe number is based on the October 2021 release 

of the UKB. bSamples from individuals who have withdrawn from the study  
are excluded except in the sample-processing schematic. cSamples (n = 13)  
and plates (n = 4) that were damaged/contaminated were not included in the 
summaries except for in the sample-processing schematic. dMultiple 
measurements include a combination of blind duplicate samples and bridging 
samples. eParticipants selected for COVID-19-positive status measured at 
baseline (n = 1,230), visit 2 (n = 1,209) and visit 3 (n = 1,261). Visit 2 and 3 
measurements were performed together in batch 7. f2,923 unique proteins;  
6 proteins were measured across 4 protein panels. NT-proBNP and BNP, IL-12A 
and IL-12 are treated as separate proteins. NPX, normalized protein expression.
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Compared with the full UKB cohort, UKB-PPP participants were 
enriched for 119 diseases, spanning multiple systems, at a Bonferroni- 
corrected threshold of P < 6.7 × 10−5 (0.05/746 diseases), with no  
significant depletion in the diseases tested after adjustment for multiple 
comparisons (Fig. 1c and Supplementary Table 2). This enrichment was 
largely driven by the inclusion of consortium-selected and COVID-19  
imaging participants (Methods) as the enrichments were mostly attenu-
ated when considering randomly selected baseline samples only (Fig. 1c 
and Supplementary Table 2).

Data processing and quality control
A total of 2,923 unique proteins was measured across eight protein 
panels (cardiometabolic, cardiometabolic II, inflammation, inflam-
mation II, neurology, neurology II, oncology and oncology II; Fig. 1a 
and Extended Data Fig. 1). Detailed descriptions of the antibody-based 
Olink Explore 3072 platform, study-wide protein measurement,  
processing and quality control are outlined in Fig. 1a, Supplementary 
Figs. 1–12, Supplementary Table 31 and Extended Data Fig. 1. Analyses 
and results are based on data after quality control; all of the exclusions 
are described in the Supplementary Information.

Globally, we did not observe batch effects, plate effects or abnor-
malities in protein coefficients of variation (CVs) (Supplementary 
Information). 100% and 99.5% of proteins had variabilities of less 
than 10% attributable to batch and plate, respectively (Supplementary  
Information). Protein CVs, representing intraindividual variability 
across duplicate samples, ranged from 1.8% to 27.2%, with a median 
of 6.7% (Supplementary Table 3 and Supplementary Information).  
We observed that, on balance, CVs varied across the dilution factors. 
Proteins with lower expected concentrations (dilution factor 1:1)  
exhibited higher CVs, whereas proteins with the highest expected 
concentrations (dilution factor 1:100,000) exhibited lower CVs. 
Most (73.2%) protein analytes had <30% of samples below the limit 
of detection (LOD), and the majority (67.3%) had <10% below the LOD  
(Supplementary Information). The proportion of samples below the 
LOD exhibited a similar trend across dilution factors (Extended Data 
Fig. 1c and Supplementary Table 3).

We observed high correlations between the same protein targets 
assayed across multiple panels (Supplementary Information and 
Extended Data Fig. 2a). We also compared seven protein measures 
acquired using the antibody-based Olink assay with their correspond-
ing protein measurements obtained using independent assays in the 
UKB; further details are provided in the Supplementary Information 
and Supplementary Table 4.

Proteomic links with health and disease
We investigated proteomic associations with demographic factors  
(age, sex, BMI), health burden, prevalent diseases and markers of 
renal and liver function (Methods). The results, summarized in the  
Supplementary Information, Supplementary Tables 5–8 and Extended 
Data Fig. 3, validate several established proteomic associations, such 
as elevated N-terminal pro-brain natriuretic peptide (NT-proBNP) in 
ischaemic heart disease26. We also uncovered physiological age and sex 
interactions for proteins such as follitropin subunit beta and glycodelin 
(Fig. 1d) and demonstrated that plasma proteomic measures can infer 
age, sex, BMI, blood groups, and renal and liver function with high 
predictive accuracy (Extended Data Fig. 3c, Supplementary Table 8 
and Supplementary Information).

Discovery of pQTLs
The UKB demographic composition and its potential impact on 
research projects, especially those involving genetics, is well char-
acterized27. To enable appropriate breadth and robustness of pQTL 

discovery, we performed proteo-genomic analyses in independent  
discovery/replication subgroups and in non-European, ancestry- 
specific subgroups.

Discovery pQTL analyses were performed in participants of European 
ancestry from the randomly selected baseline cohort (n = 34,557), which 
was broadly representative of the full UKB cohort, with the remaining 
samples (n = 17,806) used as a replication cohort (Fig. 1b,c and Sup-
plementary Tables 1 and 2). We performed pQTL mapping of up to 
16.1 million imputed variants for 2,922 proteins after quality control. 
We identified 14,287 significant primary associations across 3,760 
independent genetic regions at a multiple testing-corrected threshold 
of P < 1.7 × 10−11 (Fig. 2a and Supplementary Table 9). At a less stringent, 
single-phenotype genome-wide significance threshold of P < 5 × 10−8, 
we found 14,731 additional associations across 2,519 proteins. The 
results are based on associations that remained significant after adjust-
ment for multiple testing, unless otherwise indicated.

Globally, 2,414 of the 2,922 proteins tested (82.6%) had at least one 
pQTL at P < 1.7 × 10−11, with 66.9% of proteins tested (1,954 of 2,922 
proteins) having a cis association (within 1 Mb from the gene encod-
ing the protein). When stratified by dilution levels, we found that the 
least-abundant dilution section (1:1) had significantly lower propor-
tions of proteins with ≥1 total pQTLs (74.5%) and cis pQTLs (55.3%) com-
pared with the more-abundant dilution sections (1:10 to 1:100,000, 
98.6% and 89.6% of proteins had ≥1 total and cis pQTLs, respectively) 
(Extended Data Fig. 4a). Concordantly, we found a significant nega-
tive relationship between the number of pQTLs and the proportion 
of samples that were below the LOD (Spearman’s ρ = −0.69, P < 10−300; 
Extended Data Fig. 4b), whereby 81.4% of proteins without a pQTL 
(compared with 10.0% of proteins with pQTLs) have more than 50% 
of samples below the LOD (Extended Data Fig. 4c). For proteins with 
cis pQTLs, we found significant enrichments (P < 0.01, correcting 
for five categories) in the proportions of proteins that are secreted 
(odds ratio (OR) = 1.52, P = 1.1 × 10−11), whereas we found depletions 
in cytoplasmic (OR = 0.76, P = 1.6 × 10−5) and nuclear (OR = 0.55, 
P = 2.2 × 10−12) proteins compared with the assay background. These 
enrichments and depletions were attenuated when considering pro-
teins with any pQTL, but enrichment for secreted proteins (OR = 1.22, 
P = 6.5 × 10−4) and depletion for nuclear proteins (OR = 0.80, P = 0.0032)  
remained.

We observed a median of 4 primary associations (5th−95th quantiles: 
1–17) per protein, with 62 proteins (2.6%) having at least 20 associations 
(Fig. 2b). Genomic inflation was well controlled, with median λGC = 1.02 
(s.d. = 0.019). The general inverse trend between effect-size magnitudes 
and minor allele frequency (MAF) remained for both cis and trans asso-
ciations, with trans associations showing smaller magnitudes of effect 
sizes compared with cis associations (Fig. 2c). Approximately 5.5% (783 
out of 14,287) and 1.6% (235 out of 14,287) of the primary associations 
had MAF < 1% and 0.5%, respectively.

A total of 1,955 of the 14,287 primary associations were in cis and 
12,332 were in trans (>1 Mb from the gene encoding the protein). In total, 
60%, 86% and 92% of the cis associations were within the gene, 50 kb and 
100 kb from the gene start site, respectively. We found no systematic 
enrichment of trans pQTLs occurring on the same chromosomes as 
the protein tested after adjusting for chromosome lengths (Fisher’s 
test, P = 0.56). Of the trans pQTLs located on the same chromosome 
as the gene encoding the protein, all but two were located more than 
2 Mb away from their corresponding gene (93% were further than 5 Mb 
away and 81% were further than 10 Mb away).

In total, 62% (2,326 out of 3,760) of the non-overlapping genetic 
regions were associated with a single protein, whereas 11% were asso-
ciated with at least 5 proteins (pleiotropic region), and 16 loci were 
extremely pleiotropic, associated with at least 100 proteins (Fig. 2a). 
These included well-established, previously identified17–20 pleiotropic 
loci such as MHC, ABO, ZFPM2, ARHGEF3, GCKR, SERPINA1, SH2B3 and 
ASGR1.
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Replication of pQTLs
A total of 95.6% (1,869 out of 1,955) of cis and 64.1% (7,906 out of 12,332) 
of trans associations remained significant (P < 1.3 × 10−5 after adjusting 
for the number of associated unique genomic regions) and direction-
ally concordant in the replication cohort (n = 17,806) (Supplementary 
Table 9), consistent with previous large-scale studies17–20. Effect sizes 
were well-aligned between the discovery and replication sets (r = 0.99, 
P < 10−300; Extended Data Fig. 5a). Moreover, we observed good con-
cordance of replicated (P < 0.05) genetic associations, where available, 
between proteins measured across multiple protein panels (CXCL8, 
interleukin 6 (IL-6), TNF, IDO1 and LMOD1; Extended Data Fig. 2b), 
reflecting their phenotypic correlations (Extended Data Fig. 2a).

To maximize power and variant coverage, we also performed pQTL 
mapping for the full UKB-PPP cohort (n = 52,363) of up to 23.8 million 
imputed variants, identifying 23,588 putative primary associations 
(P < 1.7 × 10−11; Supplementary Table 10).

Non-European pQTL mapping
We performed ancestry-specific pQTL analyses within five ancestry 
groups as defined by pan-UKBB: African (AFR, n = 931), Central/South 
Asian (CSA, n = 920), Middle Eastern (MID, n = 308), East Asian (EAS, 
n = 262) and admixed American (AMR, n = 97), with minor allele count 
(MAC) > 10 corresponding to a minimum MAF of 0.5% in AFR to 5% in 
AMR. At P < 1.7 × 10−11, we found 785 (AFR), 732 (CSA), 227 (MID) and 
179 (EAS) primary associations (Supplementary Table 11). Given the 
small sample size for AMR, we observed only 9 associations, all cis, at 
P < 5 × 10−8. The number of significant associations for each ancestry 
was consistent with those expected in similar, predominantly (95%) 
European ancestry sample sizes (Fig. 2e), suggesting that there is no 
major global enrichment of total pQTLs for any ancestry. Effect sizes 
were highly aligned (Extended Data Fig. 5b) between European and 
non-European ancestries.

In total, 531 (AFR, 68%), 712 (CSA, 97%), 221 (MID, 97%) and 174 (EAS, 
97%) of the primary pQTLs were also significant in the European 
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ancestry group (EUR) at P < 1.7 × 10−11. Despite the similar sample sizes 
between AFR and CSA, the median MAF enrichment of the lead pri-
mary ancestry associations compared with EUR was much higher for 
AFR (median[MAFAFR/MAFEUR] = 2.00) than for CSA (median[MAFAFR/
MAFEUR] = 1.07). Thus, higher allelic enrichment in participants of AFR 
ancestry is an important driver of associations not detected in partici-
pants of EUR ancestry.

Of the primary associations found in non-European ancestries, 212 
out of 254 (AFR), 16 out of 20 (CSA), 5 out of 6 (MID) and 3 out of 4 (EAS) 
had MAF < 0.07% (corresponding to MAC < 50) in EUR. For example, the 
rare variant rs202092481, which leads to a premature stop codon in  
CD1C (Arg43Ter), is associated with strongly decreased CD1C levels 
in CSA (β = −2.23, P = 1.4 × 10−15). This variant is almost exclusively  
seen in CSA (MAFCSA = 0.7%) and is nearly absent in EUR and other ances-
tries28. The missense variant rs72938840 (Arg59Gln, MAFAFR = 7.9%) in 
the gene encoding rhomboid protease, RHBDL2, is mostly absent in 
EUR and other ancestries28 and is associated in trans with concentra-
tions of one of its cleavage substrates29, SPINT1 (P = 5.8 × 10−12). We 
annotated the consequences of other potential high-impact pQTLs, as 
summarized in the Supplementary Information and Supplementary  
Tables 12–14.

Notably, at the SERPINA12 locus, we found a cis primary association in 
all four non-European ancestries, in proxy with the intronic functional 
variant rs7706095030 (r2 = 1) where the minor T allele was associated 
with higher SERPINA12 (vaspin) levels (MAFAFR = 10.0%, PAFR = 5.8 × 10−83; 
MAFCSA = 6.2%, PCSA = 4.8 × 10−72; MAFMID = 7.8%, PMID = 3.2 × 10−17; 
MAFEAS = 3.8%, PEAS = 3.4 × 10−15) (Extended Data Fig. 5c). Liver expression 
of SERPINA12 was also higher in rs77060950-T carriers (P = 2.6 × 10−8)31. 
The rs77060950 variant is depleted in EUR (MAF = 1.2%) and did not 
reach genome-wide significance in EUR despite much larger sample 
sizes (P = 0.0047).

Comparisons with previous pQTL studies
We cross-referenced pQTLs identified in this study with previously 
published pQTL results (Methods and Supplementary Table 32), 
finding that 81% of primary associations from the discovery cohort 
(11,521 out of 14,287) had not been identified by previous pQTL studies  
(Supplementary Table 15). A larger percentage of trans pQTLs were 
previously undescribed (89%; 11,002 out of 12,332) compared with 
cis pQTLs (27%; 518 out of 1,954). When comparing with previously 
identified pQTL results from antibody-based studies, 84% (934 out 
of 1116) of the previous associations were replicated in our discovery 
study. For aptamer-based pQTL results, limiting to the set of proteins 
common to both platforms, 38% of previous associations repli-
cated in our discovery study (1,877 out of 4,978 associations, across  
1,982 proteins).

Identification and fine-mapping of independent 
signals
We identified 29,420 independent pQTL signals with SuSiE regres-
sion of individual-level protein levels on genotype dosages and  
confirmed statistical independence using multivariable linear 
regression models (Supplementary Table 16). This included 10,750 
and 18,670 signals that mapped to cis and trans regions, respectively. 
In total, 87% (1,717 out of 1,967) of cis regions contained more than 
one signal (mean, 5.5 signals per cis region) (Extended Data Fig. 6a). 
We also performed fine-mapping using SuSiE to narrow down 95% 
credible sets of causal variants for each pQTL signal (Supplementary 
Table 16). Credible sets contained an average of 20.5 variants (range, 
1–3,189) and were generally better resolved for cis signals than for trans 
signals (mean credible set size, 9.7 (cis) and 26.7 (trans)) (Extended 
Data Fig.  6b, Supplementary Information and Supplementary  
Tables 17 and 18).

SNP-based heritability of proteins
We estimated single-nucleotide polymorphism (SNP)-based herit-
ability as the sum of contributions from significant independent 
pQTLs identified by SuSiE (pQTL component) and the remaining 
SNPs across the genome (excluding the pQTL region), which assumes 
a polygenic model (polygenic component) using an approach that 
was described previously32 (Methods and Supplementary Table 19). 
The mean total SNP-based heritability was 0.16 (5–95th quantiles, 
0–0.50). On average, cis primary pQTLs accounted for 20.5% of the 
overall heritability, whereas trans pQTLs accounted for 10.4% (Fig. 2d 
and Extended Data Fig. 7a). We found a significant correlation between 
the lead pQTL component and the polygenic component (Spearman’s 
ρ = 0.68, P < 10−300; Extended Data Fig. 7b), with stronger correla-
tions between the polygenic component and trans pQTL component 
(ρ = 0.74, P < 10−300) compared with the cis pQTL component (ρ = 0.56,  
P = 1.7 × 10−243).

Protein interactions and pathways at trans loci
Trans associations may reflect interactions between the protein prod-
ucts of genes at the trans locus and the target protein (Fig. 3a). Moreo-
ver, genes at/near trans loci may operate within the same pathway as 
the target protein and modulate target protein levels. We used the 
Human Integrated Protein–Protein Interaction Reference (HIPPIE)33 to 
test whether trans pQTL loci contained at least one gene that encoded 
proteins interacting with the target protein tested. Overall, we found 
an interacting partner at trans loci for 861 proteins, which is enriched 
by 1.16 times compared with the permuted background (n = 100 times, 
empirical P < 0.01) (Methods and Supplementary Table 20). We found 
different gene products at the same pleiotropic trans loci interacting 
with different proteins with associations in those regions, potentially 
explaining certain pleiotropic effects. For 1,055 trans associations, we 
found a single, specific interacting protein candidate (Supplementary 
Table 20). We also found 27 cases of reciprocal interactions, where 
the protein tested interacted with a protein in one of its trans loci and 
vice versa, indicating strong coupled interactions (Supplementary 
Table 21). For pQTLs associated with multiple independent regions 
(≥5), gene set enrichment analysis revealed enriched biological func-
tions and pathways for 254 proteins, implicating pathways involved 
in cellular activation, survival and signalling relevant to immune cells 
(summarized in Supplementary Table 22 and the Supplementary  
Information).

Notably, in addition to the HSPB6 trans pQTL at the BAG3 locus 
(rs2234962; Cys151Arg), we found trans associations for MB, MYOM3, 
MYBPC1, MYL3, proBNP and NT-proBNP. BAG3 functions through 
BAG3–HSP70–HSPB complexes, which have an important role in 
heart failure and cardiomyopathies34, including the same BAG3 signal 
(rs2234962) identified in previous GWAS of cardiomyopathies35,36. 
ProBNP and NT-proBNP are established biomarkers of heart failure 
and cardiac damage26, whereas MB, MYOM3, MYBPC1 and MYL3 
are all myocyte (MB)/myofibrillar proteins. The rs2234962 pQTL is 
an independent secondary cis pQTL for BAG3 levels from the pri-
mary cis pQTL (rs35434411; Arg71Gln; Supplementary Table 16), for 
which we did not find significant evidence of association with the 
aforementioned proteins (P > 1.5 × 10−5). The rs2234962 missense 
variant sits in between two conserved IPV motifs, which are essen-
tial for HSPB6/8 binding37 and may modulate interactions with HSP/
HSBPs in vitro38. Taken together, these results provide evidence of 
different mechanisms of effect driven by different variants in BAG3 
(Extended Data Fig. 8), with the rs2234962 missense variant poten-
tially affecting both BAG3 levels and BAG3–HSPB6 complexing, 
leading to downstream perturbations in cardiac muscle proteins, 
downstream blood biomarkers of heart failure and, potentially, risk of  
cardiomyopathies.
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Insights into cytokine interactions
The increased detection of trans pQTLs facilitated by this study pro-
vided an opportunity to uncover causal biological networks. We found 
multiple instances of receptor–ligand interactions at trans loci for 
circulating cytokines and TNF-superfamily proteins/receptors (Supple-
mentary Table 23). In addition to trans pQTLs for IL-15 at genes encoding 
its receptor components (IL-15RA and IL-15RB), we also found trans 
pQTLs at both JAK1 and JAK3, which are proximal components of IL-15 
signalling (Fig. 3b and Supplementary Table 20); notably, the trans 
pQTL at JAK1 is a rare missense mutation (rs149968614, MAF = 0.2%, 
Val651Met). Furthermore, we found that the variant rs4985556-A, which 
causes a premature stop gain in IL34, is associated with lower levels of 
IL-34 in cis (β = −1.07, P = 4.5 × 10−1,787) and lower CD207—a protein marker 
expressed in Langerhans cells—levels in trans (β = −0.08, P = 2.7 × 10−15). 

Although IL-34 and CD207 do not directly interact, this result is highly 
consistent with the crucial role of IL-34 in the development and survival 
of Langerhans cells39.

We uncovered proof-of-concept evidence for bidirectional trans 
pQTL pairs; that is, where a locus is both a cis pQTL for protein A and a 
trans pQTL for protein B, and a second locus is a cis pQTL for protein B 
and a trans pQTL for protein A. B-cell-activating factor (BAFF) and the 
BAFF receptor present such a pair (Fig. 3c). The variant rs374039502 
on chromosome 13, near the gene encoding BAFF (TNFSF13B), is both 
a cis pQTL for the cytokine BAFF and trans pQTL for its receptor. The 
variant rs763882049 on chromosome 22 is both a cis pQTL for the BAFF 
receptor (encoded by TNFRSF13C) and trans pQTL for its ligand, BAFF 
(Fig. 3c). This locus on chromosome 13 is well-known for its associa-
tion with blood cell traits and autoimmune diseases40–42. BAFF has a 
well-established role in B cell survival and function and is the drug target 
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Fig. 3 | Examples of pathway networks highlighted by trans pQTLs.  
a, Schematic of how trans pQTLs function as part of the same protein–protein 
interaction or pathway as the protein tested (protein X). Top left, proteins 
involved may be directly interacting or indirectly involved as part of the same 
pathway. Bottom, trans pQTLs found for corresponding genes in trans  
(in addition to potentially other signals and cis associations regulating protein X). 
Top right, some of the mechanisms by which the trans pQTLs may regulate the 
target protein (protein X), including: (1) regulating the levels of the binding 
partners (Y, Z), which in turn affects protein X levels; (2) altering the interaction 
between Y/Z with X; (3) modulating components of the pathway in which Y/Z 
may be upstream/downstream of protein X. The figure was created using 
BioRender, including adaptations from ‘The principle of a genome-wide 
association study’. b, The IL-15-signalling pathway. The asterisks indicate  

genes with trans pQTLs for IL-15 (the primary association SNP is shown  
in red). The figure was created using BioRender, including adaptations from 
‘Thrombopoietin receptor signaling’. NK, natural killer. c, Example of a 
bidirectional trans pQTL pair. P values were derived from REGENIE regression 
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pQTLs for TNFSF13B and TNFRSF13C; gradient lines represent trans effects  
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TNFRSF13C variants on TNFSF13B levels. d, The complement pathway. Trans 
pQTLs and the associated proteins are shown in red. The figure was created 
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below the third and first quartiles (upper and lower whiskers). n = 52,363 
independent samples.
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for belimumab, a monoclonal antibody approved for the treatment of 
systemic lupus erythematosus43. These results demonstrate that bidi-
rectional trans pQTL pairs can help to identify and characterize biologi-
cal networks relevant to health traits, disease biology and drug targets.

Complement cascade trans pQTL networks
In the complement pathway, we found multiple trans pQTLs in genes 
for various constituents within the same complement pathway as the 
protein tested (Fig. 3d). Notably, for the protein MASP1, we found that 
6 out of the 13 trans associations lie in genes encoding other compo-
nents of the complement pathway (including the lectin-pathway genes 
MASP2, MBL2, FCN3, COLEC11, SERPING1 (encoding C1-inhibitor, also 
known as C1-INH) and VTN), all of which, except for VTN, showed direct 
interactions with MASP1 (Fig. 3d). Furthermore, the MASP1 trans pQTL 
rs6118 is a missense variant in the gene encoding protein C inhibitor 
(SERPINA5, Ala55Val), which has a key regulatory role in the coagu-
lation pathway closely linked to complement. We also found that a 
variant in MASP1 (rs698084) is associated in trans with factor D levels. 
Notably, the trans pQTL at FCN3 is a low-frequency frameshift variant 
(rs532781899, MAF = 1.4%) leading to FCN3 deficiency44–46 and, here, 
to reduced MASP1 levels (β = −1.16, P = 3.8 × 10−312). Similarly, we found 
a low-frequency missense variant in MASP2 (rs72550870, Asp120Gly, 
MAF = 3.0%), previously linked to MASP2 deficiency47–49, associated in 
trans with higher MASP1 levels (β = 0.17, P = 2.5 × 10−15; independent to 
the primary association), reduced FCN2 levels (β = −0.22, P = 2.6 × 10−32), 
higher FCN1 levels (β = 0.17, P = 1.4 × 10−17) and lower C1QTNF9 levels 
(β = −0.12, P = 6.6 × 10−14). We also found that C2 and C1-INH levels are 
associated with trans pQTLs at C1R/C1S; C1S and C1RL levels with trans 
pQTLs at SERPING1; C1QL2 levels in trans with a missense C4BPA variant 
(rs4844573, Ile300Thr); properdin (CFP) levels in trans with a missense 
factor B (CFB) variant (rs4151667, Leu9His); factor B and CFP levels 
with trans pQTLs at CFI and also C3; FCN1 levels with a trans pQTL at 
COLEC11; and C3, factor B, CFP and CD59 levels with trans pQTLs at 
the CFH-CFHR1-5 locus (Fig. 3d). Most trans genetic effects occurred 
upstream of the proteins forming the membrane attack complex 
(C5b–C9). All proteins with trans pQTLs described here also have cis 
associations locally, demonstrating a complex, intricate network of 
local and long-range genetic perturbations on various proteins within 
a pathway system.

Scaling of pQTL associations
Previous studies have performed pQTL mapping across different sam-
ple sizes and varying numbers of proteins. Here, through subsampling 
of participants and proteins, we investigated how the number of asso-
ciations scaled with sample size and number of proteins assayed. We 
provide a detailed summary in Fig. 2e–g and in the Supplementary 
Information. In brief, the rate of increase in cis pQTL detection with 
increasing sample size plateaued after 5,000 samples, whereas trans 
pQTLs continued to increase (Fig. 2e). We observed corresponding 
trends for the mean variances explained by pQTLs (Fig. 2f). Account-
ing for the lowering abundance in proteins assayed, we began to see 
reducing yields of pQTL findings with additional proteins measured 
(Fig. 2g). We also investigated the detectability of pleiotropic and trans 
loci harbouring protein interactions (summarized in the Supplemen-
tary Information and Extended Data Fig. 9).

Sensitivity analyses of pQTLs
We examined the impact of blood cell composition, BMI, season and 
fasting time before blood collection on pQTL effects and protein 
variances; overall, we found a limited impact of these variables on the 
majority of pQTLs (Supplementary Figs. 13 and 14 and Supplementary 
Tables 24, 25 and 33).

Co-localization with expression QTLs
We performed colocalization analyses using coloc with the SuSiE frame-
work to identify shared genetic associations between circulating pro-
tein QTLs and tissue-level expression QTLs from the GTEx consortium 
(v8)31. Of genes with a significant eQTL in at least one tissue, 65% (1,220 
out of 1,889) shared casual variants with direct effects on both gene 
and protein expression levels, including 41% (503 out of 1,220) that had 
multiple colocalized signals (Supplementary Table 26, Supplementary 
Information and Extended Data Fig. 10).

Drug targets and disease biology applications
Through a series of exemplar deep-dives, details of which are provided 
in the Supplementary Information, we showcase how this proteomic 
dataset can be used to provide insights into protein and pathway pertur-
bations in health and disease and inform therapeutic target discovery 
and development. In particular, we show how (1) functional genetic 
interactions between ABO blood group and FUT2 secretor status affect 
proteins enriched for gastrointestinal tissue expression across humans 
and mice, which may be perturbed in gastrointestinal diseases (Fig. 4 
and Supplementary Table 27); (2) multi-trait colocalization can be 
applied to COVID-19-associated loci to disentangle shared and distinct 
protein pathways (Extended Data Fig. 11 and Supplementary Table 28); 
(3) common genetic variation has a subtle, but significant, role in 
inflammasome-mediated innate immune responses (Supplementary 
Table 29); and (4) large-scale proteogenomics studies can increase 
the power and availability of genetic instruments for Mendelian ran-
domization, mimicking drug target effects observed in clinical trials 
(Extended Data Fig. 12 and Supplementary Table 30).

Interactive web portal
To facilitate interactive queries, visualizations and bulk downloads 
of summary statistics for pQTL results, we created an interactive web 
portal, which is accessible at http://ukb-ppp.gwas.eu.

Discussion
High-throughput proteomic profiling of population biobanks holds 
the potential to accelerate our understanding of human biology and 
disease. Here we present findings from one of the largest proteomic 
studies conducted to date—constructing an updated genetic atlas of 
the plasma proteome, revealing biological insights into prevalent ill-
nesses and providing the scientific community with an open-access, 
population-scale proteomics resource.

To date, most large-scale, broad-capture proteogenomics studies 
have used high-throughput, aptamer-based assays (comprehensively 
listed in the Supplementary Information). Antibody-based genetic 
studies have focused on narrower collections of proteins at large scale22 
or broad collections of proteins at smaller scale23. Certain comparative 
evaluations have suggested that aptamer-based assays offer broader 
biological coverage and higher precision, whereas antibody-based 
assays offer greater protein target specificity and stronger correla-
tions with certain diseases and immunoassays50. Other studies have 
indicated that antibody- and aptamer-based assays are affected by 
different sources of biological, technical and genetic variation, cap-
turing distinct features of protein chemistry; thus, both technolo-
gies may be used as complementary tools for biological discovery51. 
We formed UKB-PPP to complement the existing, extensive library of 
DNA sequence variants affecting aptamer levels in blood plasma with 
a comparably sized library of variants influencing antibody-based  
measurements.

Our analysis identified approximately twentyfold more associa-
tions than all previous antibody-based studies. This reflects both 

http://ukb-ppp.gwas.eu
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the increased sample size of the present study as well as the recently 
expanded coverage of antibody-based assays. Most previously 
identified antibody-based pQTLs were replicated in our analysis 
(84%). When we compared our findings to aptamer-based studies, 
limiting to the set of common proteins between the two platforms, 
a much smaller percentage of proteins replicated (38%). This mod-
est overlap is unsurprising, given that correlations between pro-
teins measured by both platforms are highly variable52,53, and shared 
genetic signals can be masked by extreme, assay-specific binding  
affinities51.

The size and breadth of this study enabled us to estimate how pQTL 
discoveries may scale with increasing sample size and proteome cover-
age. We found that the discovery of cis pQTLs is saturated to the number 
of proteins tested after around 10,000 samples. Although trans pQTL 
discoveries continued to increase, the variance explained by trans loci 
increased at a slower rate beyond 10,000 samples. We anticipate that 
most gains from larger-scale studies will be driven by the detection of 
trans associations with smaller polygenic effects, rare associations, 
associations with proteins not previously tested, and associations in 
tissues or sample matrices beyond blood.

The predominantly white European ancestral composition of UKB 
does not capture the full genetic and phenotypic diversity of the human 
population. However, in a small, underpowered group of non-European 
UKB participants, we highlighted how ancestry-specific allelic enrich-
ments can enhance the detection of certain pQTLs that may be absent 
or very rare in Europeans. These findings further underline the value 
of prioritizing under-represented and genetically diverse popula-
tions for future pQTL mapping studies54,55. Future studies should also 
prioritize resampling initiatives and longitudinal analyses, facilitat-
ing more systematic evaluations of assay analytical performance(s), 
consistencies of personal health signatures, and the effects of 

disease incidence, prevalence and severity on marker stability and  
pQTL detection.

Our results expand the catalogue of genetic instruments for down-
stream Mendelian randomization and associated genomic loci for 
multi-trait colocalization, facilitating more systematic causal inference 
and therapeutic target discovery studies, which were beyond the scope 
of this pre-competitive industry collaboration. As population-scale 
proteogenomic investigations expand, orthogonal comparisons of 
different proteomics assays applied across the same samples will help 
to decipher complementarities and differences between antibody, 
aptamer and emerging, high-throughput mass-spectrometry-based 
techniques50,51. Further technological advances will enable more com-
prehensive population-scale investigations incorporating protein 
isoforms, proteoforms generated by post-translational modifications 
and single-cell proteomic resolution.

Following on from the successful exome sequencing and the ongoing 
whole-genome sequencing of the UKB, the Pharma Proteomics Project 
builds on the precompetitive industry collaboration framework in 
generating high-dimensional, population-scale data for the advance-
ment of science and medicine. The wider research community will be 
able to leverage this open-access resource to test hypotheses that are 
crucial to the development of improved diagnostics and therapeutics 
for human disease.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06592-6.
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Methods

UKB participants
The UKB is a population-based cohort of approximately 500,000  
participants aged 40–69 years recruited between 2006 and 2010.  
Participant data include genome-wide genotyping, exome sequencing, 
whole-body magnetic resonance imaging, electronic health record 
linkage, blood and urine biomarkers, and physical and anthropometric 
measurements. Further details are available online (https://biobank.
ndph.ox.ac.uk/showcase/). All of the participants provided informed 
consent.

UKB-PPP sample selection and processing
Details of UKB participant selection and sample handling are provided 
in the Supplementary Information.

Proteomic measurement, processing and quality control
Details of the Olink proteomics assay, data processing and quality 
control are provided in the Supplementary Information. One protein 
(GLIPR1) had >80% of data failing quality control (99.4% failing qual-
ity control; Supplementary Table 3) and was excluded from analyses. 
We did not perform further NPX processing after the quality-control 
procedures described in the Supplementary Information. Each protein 
level was inverse-rank normalized, including NPX data below the LOD, 
before analyses and association testing.

Non-genetic associations
For associations between age, sex and BMI, we used multiple linear 
regression with all three variables fitted in the same model along 
with technical factors: batch, UKB centres, UKB array type, UKB-PPP  
subcohort (randomly selected baseline/consortium/COVID-19 imaging 
participants), and 20 genetic principal components, along with the 
time between blood sampling and protein measurement. Interactions 
between age, sex and BMI were tested as scaled interaction terms with 
the same covariate adjustments.

For the association between protein levels and liver function enzymes 
log[ALT] (field 30620); log[AST] (field 30650); estimated glomerular 
filtration rate (eGFR) calculated using the combined creatinine-cystatin 
C equation from the CKD-EPI study56, with relevant parameters obtained 
from fields 30700 (creatinine), 30720 (cystatin C), 21000 (ethnicity) 
in addition to age and sex; smoking status (field 20116); the top 20 
most prevalent diseases (by 2 digit ICD10 code fields); and number of 
medications (field 137), regression models were individually fitted with 
age, sex and BMI along with technical factors as covariates.

Proteomic prediction models
Proteomic prediction models were trained using 80% of the UKB-PPP 
data randomly subsetted as training. Least absolute shrinkage and 
selection operator (LASSO) models were trained for age, sex, BMI, 
AST, ALT, eGFR and ABO blood groups (genetic ascertainment of blood 
groups is described in the ‘ABO blood group and FUT2 secretor status 
analysis’ section) separately using glmnet (R package v.4.1-4)57 to tune 
the lambda.1se parameter with tenfold cross validation for 100 lambdas 
between 10−5 and 1,000. For AST and eGFR models, we excluded AST 
and cystatin C, respectively, as the same proteins are either measured 
(AST) or used in deriving eGFR (cystatin C). Performance was evaluated 
in the held out 20% test data. Proteins with more than 20% missingness 
due to quality control were excluded in the predictor models, with the 
remainder of missing measurements mean-imputed.

Genomic data processing
UKB genotyping and imputation (and quality control) were performed 
as described previously7. In addition to checking for sex mismatch, sex 
chromosome aneuploidy and heterozygosity checks, imputed genetic 
variants were filtered for INFO > 0.7 and chromosome positions were 

lifted to the hg38 build using LiftOver58. Participant ancestries were 
defined using the pan-UKBB definitions of genetic ancestry in the UKB 
return dataset 2442 (for example, “pop = EUR”).

Genetic association analyses
GWAS analyses were performed using REGENIE v.2.2.1 through a two-step 
procedure to account for population structure detailed previously59. In 
brief, the first step fits a whole-genome regression model for individual 
trait predictions based on genetic data using the leave one chromo-
some out (LOCO) scheme. We used a set of high-quality genotyped 
variants: MAF > 1%, MAC > 100, genotyping rate > 99%, Hardy–Weinberg 
equilibrium test P > 10−15, <10% missingness and linkage-disequilibrium 
(LD) pruning (1,000 variant windows, 100 sliding windows and r2 < 0.8). 
The LOCO phenotypic predictions were used as offsets in step 2, which 
performs variant association analyses using standard linear regression.

We limited genetic association analyses to variants with INFO > 0.7 
and MAC > 50 to minimize spurious associations. For ancestry-specific 
analyses, we limited variants to INFO > 0.7 and MAC > 10 to maintain 
comparable MAF with the EUR-only analysis in view of the smaller 
sample sizes.

In the discovery cohort (n = 34,557), we included participants of 
European ancestry from batches 0–6, excluding the plates that were 
normalized separately, and batch 7 (COVID-19 imaging longitudinal 
samples and baseline samples showing increased variability and mixed 
with COVID-19 imaging samples). Participants who were not included 
in the discovery cohort were included in the replication cohort, which 
consisted of individuals of European (n = 10,840), African (n = 931), 
Central/South Asian (n = 920), Middle Eastern (n = 308) East Asian 
(n = 262) and admixed American (n = 97) ancestries.

Individual protein levels (NPX) were inverse-rank normalized before 
analysis including NPX data below the LOD. For the discovery cohort, 
association models included the following covariates: age, age2, 
sex, age × sex, age2 × sex, batch, UKB centre, UKB genetic array, time 
between blood sampling and measurement and the first 20 genetic 
principal components. The covariates in the replication and full cohort 
along with genetic ancestry-specific analyses also included whether 
the participant was preselected, either by the UKB-PPP consortium 
members or as part of the COVID-19 repeat-imaging study.

To ensure reproducibility of the analysis protocol, the same pro-
teomic quality-control and analysis protocols were independently 
validated across two additional sites using the same initial input data 
on three proteins measured across multiple protein panels (CXCL8, 
IL-6, TNF, IDO1, LMOD1, SCRIB).

Definition and refinement of significant loci
We used a conservative multiple-comparison-corrected threshold 
of P < 1.7 × 10−11 (5 × 10−8 adjusted for 2,923 unique proteins) to define 
significance. We defined primary associations through clumping ±1 Mb 
around the significant variants using PLINK60, excluding the HLA region 
(chromosome 6: 25.5–34.0 Mb), which is treated as one locus owing to 
complex and extensive LD patterns. Overlapping regions were merged 
into one, deeming the variant with the lowest P value as the sentinel pri-
mary associated variant. To determine regions associated with multiple 
proteins, we iteratively, starting from the most significant association, 
grouped together regions associated with proteins containing the 
primary associations that overlapped with the significant marginal 
associations for all proteins (P < 1.7 × 10−11). In cases in which the primary 
associations contained marginal associations that overlapped across 
multiple groups, we grouped together these regions iteratively until 
convergence.

Variant annotation
Annotation was performed using Ensembl Variant Effect Predictor 
(VEP), WGS Annotator (WGSA) and UCSC Genome Browser’s vari-
ant annotation integrator (http://genome.ucsc.edu/cgi-bin/hgVai). 

https://biobank.ndph.ox.ac.uk/showcase/
https://biobank.ndph.ox.ac.uk/showcase/
http://genome.ucsc.edu/cgi-bin/hgVai
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The gene/protein consequence was based on RefSeq and Ensembl. 
We reported exon and intron numbers that a variant falls in as in the 
canonical transcripts. For synonymous mutations, we estimated the 
rank of genic intolerance and consequent susceptibility to disease 
based on the ratio of loss of function. For coding variants, SIFT and 
PolyPhen scores for changes to protein sequence were estimated. For 
non-coding variants, transcription-factor-binding sites, promoters, 
enhancers and open chromatin regions were mapped to histone marks 
chip-seq, ATAC-seq and DNase-seq data from The Encyclopedia of DNA 
Elements Project (ENCODE, https://www.encodeproject.org) and the 
ROADMAP Epigenomics Mapping Consortium (https://www.ncbi.
nlm.nih.gov/geo/roadmap/epigenomics/). For intergenic variants, 
we mapped the 5′ and 3′ nearby protein-coding genes and provided 
distance (from the 5′ transcription start site of a protein-coding gene) 
to the variant. The combined annotation dependent depletion score 
(https://cadd.gs.washington.edu) was estimated for non-coding vari-
ants. An enrichment analysis hypergeometric test was performed to 
estimate enrichment of the associated pQTL variants in specific con-
sequence or regulatory genomic regions.

Cross-referencing with previously identified pQTLs
To evaluate whether the pQTLs in the discovery set were previously 
undescribed, we used a list of published pQTL studies (http://www.
metabolomix.com/a-table-of-all-published-gwas-with-proteomics/) 
and the GWAS Catalog to build a comprehensive list of previously pub-
lished pQTL studies. A total of 34 studies was included (Supplementary 
Information). Using a P-value threshold of 1.7 × 10−11, we identified the 
sentinel variants and associated protein(s) in the previously published 
studies and queried those against our discovery pQTLs. If a previously 
associated sentinel variant–protein pair fell within a 1 Mb window of 
the discovery set pQTL sentinel variant for the same protein and had 
an r2 ≥ 0.8 with any significant SNPs in the region, it was considered a 
replication.

Identification and fine mapping of independent signals
We used sum of single-effects regression (SuSiE, v.0.12.6)61 to identify 
and fine-map independent signals using individual-level genotypes 
and protein-level measurements from discovery-set participants. Our 
inputs for SuSiE were mean-centred and unit variance genotype and 
phenotype residuals accounting for the same covariates as for the 
marginal association analysis. We subtracted REGENIE LOCOs from 
the phenotype residuals to account for polygenic effects and sample 
relatedness.

To create dynamic test regions that accounted for potential 
long-range LD, we performed a two-step clumping procedure using 
PLINK with the parameters (1) --clump-r2 0.1 --clump-kb 10000 
--clump-p1 1.7x10−11 --clump-p2 0.05 on the marginal association sum-
mary statistics and (2) --clump-kb 500 on the results of the first clump-
ing step. For each clump, we extended the coordinates of the left- and 
right-most variants to a minimum size of 1 Mb, merged overlapping 
clumps and defined these as the test regions.

For each test region, we applied SuSiE regression using the initial 
parameters min_abs_corr=0.1, L = 10, max_iter=1000. For test regions 
in which SuSiE found the maximum number of independent credible 
sets, which was initially set at L = 10, we incremented L by 1 until no 
additional credible sets were detected. We applied a post hoc filter to 
remove credible sets in high LD with another credible set in the same 
region (lead variants r2 > 0.8). For regions with multiple credible sets, 
we assessed statistical independence by performing multiple linear 
regression with the most probable variants for each credible set and 
the same genotype and phenotype residuals.

Heritability analysis
We estimated the SNP-based heritability as a sum of variance explained 
from the independent pQTLs through the SuSiE analyses for each 

protein at each loci (pQTL component) and the polygenic compo-
nent using the genome-wide SNPs excluding the pQTL regions of each  
protein. The polygenic component, which mostly likely satisfies the 
polygenic model of small genetic contributions across the genome, was 
estimated using LD-score regression62. We used the discovery-cohort 
associations to maintain consistent LD used in SuSiE and LD-score 
regression based on EUR.

Pathway enrichment and protein interactions
For pleiotropic pQTL loci and multiple associated trans pQTL proteins, 
gene-set enrichment analyses were performed by ingenuity pathway 
analysis to identify enrichment of biological functions relevant to 
cell-to-cell signalling, cellular development, development and pro-
cess. Gene pathways and networks annotated based on STRING-db 
and KEGG pathway databases were also used for enrichment analyses. 
Hypergeometric tests were performed to estimate statistical signifi-
cance and hierarchical clustering trees and networks summarizing 
overlapping terms/pathways were generated. To correct for multiple 
testing, the false discovery rate (FDR) was estimated. FDR < 0.01 was 
considered to be statistically significant.

To test if trans pQTL loci contained at least one gene (within 1 Mb 
of the trans pQTL) that encoded proteins interacting with the tested 
protein, we used the curated protein interaction database: Human 
Integrated Protein-Protein Interaction Reference (HIPPIE)33 release 
v.2.3 (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.
php). To get an estimate of background protein interactions by chance, 
we permuted the proteins against the sentinel pQTLs (n = 100 times) 
and tested for protein interactions in HIPPIE.

Subsampling analysis
To estimate how the number of associations scaled with sample size, 
we took random samples without replacement of [100, 250, 500, 1,000, 
5,000, 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 
45,000 and 50,000] from the full cohort, then performed the asso-
ciation testing and examined the proteomic variance explained in the 
exact same manner as for the main analyses described above. We also 
examined how associations scaled with the number of proteins meas-
ured, accounting for the likelihood that additional proteins measured 
would be of decreasing abundance in plasma. We performed random 
subsampling of [100, 250, 500, 1,000, 1,500, 2,000, 2,500, 2,800] 
proteins starting preferentially from the most expected abundant 
dilution, a priori, (1:100,000) to the least abundant dilution (1:1). We 
also performed multiple samples (n = 10) to check consistency and 
stability of subsampling results across runs.

Sensitivity analyses
The variables for sensitivity analyses were chosen a priori to avoid 
post hoc biases.

Effects of blood cell counts
We investigated the effect of blood cell composition on the genetic 
association with plasma proteins through sensitivity analyses of 
pQTLs from the discovery analyses. The top hits from the discovery 
analyses were reanalysed adjusting for the following blood cell covari-
ates: monocyte count; basophil count; lymphocyte count; neutrophil 
count; eosinophil count; leukocyte count; platelet count; haemato-
crit percentage; and haemoglobin concentration. These blood cell 
covariates were selected to represent blood cell composition due to 
their common clinical use. Before the analyses, we followed the previ-
ously described methods63 to exclude blood cell measures from indi-
viduals with extreme values or relevant medical conditions. Relevant 
medical conditions for exclusion included pregnancy at the time the 
complete blood count was performed, congenital or hereditary anae-
mia, HIV, end-stage kidney disease, cirrhosis, blood cancer, bone mar-
row transplant and splenectomy. Extreme measures were defined as 
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leukocyte count, >200 × 109 per l or >100 × 109 per l with 5% immature 
reticulocytes; haemoglobin concentration, >20 g dl−1; haematocrit, 
>60%; and platelet count, >1,000 × 109 per l. Following these exclusions 
and quality control, genetic analyses of the sentinel variant–protein  
associations adjusted for blood cell covariates were performed using 
the same approach as described for the main analysis.

We further tested whether blood cell composition is partially or 
fully mediating variant–protein associations (genotype → blood cell 
measure → protein) for genetic associations that were significant 
within the discovery (P < 1.7 × 10−11) and not in the sensitivity analyses 
(P > 1.7 × 10−11). For each variant–protein association, we first iden-
tified the blood cell phenotypes that were associated with protein 
levels at P < 1.7 × 10−11 within a multivariable linear regression model 
including blood cell phenotypes as the predictors, protein as the out-
come and adjusted for all other covariates included in the discovery 
analysis. We then confirmed whether there was an association between 
the genetic variant (dosage) and each of the blood cell phenotypes 
(genotype → blood cell) and between blood cell phenotype and the 
protein (blood cell → protein) before testing for mediation. In the final 
test, we compared the strength of associations, genotype → protein, 
to that of the genotype → protein in a multivariable model (protein ~  
dosage + blood cell phenotype + discovery covariates) to establish 
whether the variant–protein association is either fully (P > 0.01) or 
partially (P < 1.7 × 10−11) mediated by the blood cell phenotype.

Effects of BMI
We investigated the effect of BMI on the genetic association with plasma 
proteins through sensitivity analyses of pQTLs from the discovery 
analyses. The primary associations from the discovery analyses were 
reanalysed using the same approach as described for the main analysis 
including BMI (field: 21001) as an additional covariate.

Effects of season and amount of time fasted at blood collection
To assess the effects of season and amount of time fasted at blood  
collection on variant associations with protein levels, we reanalysed 
all sentinel pQTLs identified in the main discovery analyses including 
season and fasting time as two additional covariates. Blood collection 
season (summer/autumn ( June to November) versus winter/spring 
(December to May)) was defined on the basis of the blood collection 
date and time (field: 3166). Participant-reported fasting time was 
derived from field 74 and was standardized (Z-score transformation)  
before analysis.

Co-localization analyses
We investigated evidence of shared genetic associations between 
variants directly affecting circulating protein expression levels and 
tissue-level gene expression using the coloc with SuSiE framework61. 
For genes with significant results in the marginal eQTL associations, 
we applied SuSiE regression using individual-level genotype and phe-
notype data for 49 tissues from GTEx31 v.8 to define independent eQTL 
signals, using the same samples, variants, covariates, ±1 Mb window 
around TSS and normalized gene expression matrices as the GTEx 
consortium flagship paper. We then conducted pairwise colocaliza-
tion analyses between independent cis pQTL and eQTL signals using 
default priors and considered a posterior probability of colocalization 
(PP.H4) ≥ 0.8 as shared genetic associations. For pairs of colocalized 
pQTL–eQTL signals, we used the top variants of each pQTL signal to 
compare the directionality of conditional effect estimates on protein 
and gene expression.

For colocalization with COVID-19 loci, the top loci reported by the 
COVID-19 Host Genetics consortium (https://app.covid19hg.org/
variants) were updated with estimates from the R7 summary results 
(https://www.covid19hg.org/results/r7/) for hospitalized cases of 
COVID-19 and reported COVID-19 infections compared with population 
controls. We used HyprColoc64 with a region association threshold of 

0.8 to perform multi-trait colocalization across all significant proteins 
with each disease loci.

ABO blood group and FUT2 secretor status analysis
ABO blood group was imputed through the genetic data using three 
SNPs in the ABO gene (rs505922, rs8176719 and rs8176746) according to 
the blood-type imputation method in the UKB (https://biobank.ndph.
ox.ac.uk/ukb/field.cgi?id=23165), developed previously65–68. FUT2 
secretor status was determined by the inactivating mutation (rs601338), 
with genotypes GG or GA as secretors and AA as non-secretors. Interac-
tion term between blood group (O as the reference group) and secretor 
status was tested adjusting for the same covariates as in the main pQTL 
analyses for each protein separately. A multiple-testing threshold of 
P < 1.7 × 10−5 (0.05/2,923 proteins) for the interaction terms was used 
to define statistically significant interaction effects.

Enrichment for gene expression in tissues
Tissue enrichment of associated proteins was tested using the Tissue
Enrich R package (v.1.6.0)69, using the genes encoding proteins on the 
Olink panel as the background. For enrichment in human genes, we used 
the RNA dataset from the Human Protein Atlas70 using all genes that 
were found to be expressed within each tissue, whereas, for orthologous 
mouse genes, we used data from a previous study71. The enrichment 
P-value thresholds were corrected for multiple comparisons based on 
the number of tissues tested where applicable (n = 35 in human and 
n = 17 in mouse tissues).

PCSK9 Mendelian randomization
Instrument selection and outcomes. Instruments to proxy for  
altered PCSK9 abundance were generated using variants associated 
in cis (within 1 Mb of the PCSK9 gene-coding region) at genome-wide 
significance (P < 5 × 10−8) to minimize pleiotropic effects. We performed 
LD clumping to ensure that SNPs were independent (r2 < 0.01) by using 
in-sample UKB participants. We removed SNPs with a F-statistic of less 
than 10 to avoid weak instrument bias.

Outcomes of interest were measurements of cholesterol, including 
low-density lipoprotein cholesterol, high-density lipoprotein choles-
terol, triglycerides and total cholesterol; coronary heart disease and 
myocardial infarction; ischaemic stroke large artery atherosclerosis 
and small-vessel subtypes. Data for these outcomes were extracted 
from the OpenGWAS project72,73. PCSK9 pQTL effects were harmonized 
to be on the same effect allele. If the variant was not present in the 
outcome dataset, we searched for a proxy SNP (r2 > 0.8) as a replace-
ment, if available.

Mendelian randomization analysis. We performed two-sample Men-
delian randomization on the harmonized effects to estimate the effect 
of genetically proxied PCSK9 abundance on genetic liability to the 
outcomes of interest. We estimated the effects for each individual vari-
ant using the two-term Taylor series expansion of the Wald ratio and 
the weighted delta inverse-variance weighted method to meta-analyse 
the individual SNP effects to estimate the combined effect of the Wald 
ratios. Results from the Mendelian randomization analyses were ana-
lysed using standard sensitivity analyses. We used Steiger filtering to 
provide evidence of whether the estimated effect was correctly orien-
tated from PCSK9 abundance to the outcome and not due to reverse  
causation.

Inclusion and ethics statement
The inclusion and ethics standards have been reviewed where appli-
cable.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
Proteo-genomic results and summary association data are available 
through an interactive portal (http://ukb-ppp.gwas.eu). Underlying 
NPX measures are available through the UK Biobank Research Analysis 
Portal (https://www.ukbiobank.ac.uk/enable-your-research). UKB has 
catalogued the dataset in Category 1839, under ‘Field 30900’, described 
in greater detail online (https://biobank.ndph.ox.ac.uk/showcase/
label.cgi?id=1839).
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Extended Data Fig. 1 | Summary of the Olink Explore proteomics assay.  
(a) Summary of the Olink proteomic assay workflow. (i) Assays are run in a 
96-well format, each plate consists of 88 UKB samples and 8 external control 
samples in column 12: sample controls (yellow) are used to determine precision 
within and between plates, triplicate negative controls samples (red) set the 
limit of detection (LOD) and triplicate plate controls (green) are used to 
standardize protein levels within a plate. The Explore 3072 product consists of 
eight 384-plex panels; Cardiometabolic (CAR) I and II, Inflammation (INF) I and 
II, Neurology (NEU) I and II and Oncology (ONC) I and II, and each panel consists 
of 4 abundance blocks, with plasma sample run 1:1 or diluted 1:1 (least expected 
abundance), 1:10, 1:100, 1;1000 and 1:100,000. (ii) Extension and amplification 
step: only matched PEA probes bind to their respective target and via PCR (PCR1) 

generate dsDNA amplicons, containing assay information. (iii) Indexing: all 
amplicons for a given sample in a single panel are pooled and unique index 
primers are added and are integrated into the amplicon via PCR (PCR2).  
(iv) All amplicons for all samples within a panel are combined to generate four 
sequencing libraries; the libraries are purified and quality controlled before  
(v) detection and being sequenced on an Illumina Novaseq 6000 instrument 
generating ~280,000 data points per sample plate (b) Cell compartment 
distribution of measured proteins by protein panel. (c) Boxplot of coefficients 
of variation (CVs) and % of samples with measurements below LOD by dilutions. 
Each box plot presents the median, first and third quartiles, with upper and 
lower whiskers representing 1.5x inter-quartile range above and below the third 
and first quartiles respectively; n = 2,941 independent protein analytes.
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Extended Data Fig. 2 | (a) Phenotypic correlation (Pearson’s r) between the same protein targets (CXCL8, IL6, TNF, IDO1, LMOD1, SCRIB) measured across 
protein panels. (b) Correlation (Pearson’s r) of significant genetic associations (p < 1.7 × 10−11) between the same protein targets.



Extended Data Fig. 3 | (a) Volcano plot of associations with age, sex and 
BMI. Top 10 proteins with the largest positive and negative associations are 
labelled. P-values (two-sided, unadjusted) derived from multivariable linear 
regression. (b) Comparison of effect sizes between UKB-PPP and published 
multiplex proteomic studies for protein associations with age, sex and BMI.  

(c) Performance of trained proteomic predictor models against true values in a 
held-out test data set. (b) and (c), p-values (unadjusted) for Pearson’s correlation 
test (two-sided). r: Pearson’s correlation coefficient. MAE: mean absolute error, 
eGFR: estimated glomerular filtration rate. ALT: alanine aminotransferase. AST: 
aspartate aminotransferase.
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Extended Data Fig. 4 | (a) Proportion of proteins with pQTLs across different 
dilution sections. (b) Comparison of the number of pQTLs vs the proportion 
of samples with measurements below LOD for each protein. P-values 
(unadjusted) for Spearman’s correlation test (two-sided). (c) Density plot of 

the proportion of samples with measurements below LOD for proteins with  
no significant pQTLs (p < 1.7 × 10−11). LOD: limit of detection. ρ: Spearman’s 
correlation coefficient.



Extended Data Fig. 5 | (a) Comparison of effect sizes between discovery  
and replication cohorts. (b) Comparison of effect sizes between significant 
non-EUR ancestry specific pQTLs and EUR derived pQTLs. Error bars indicate 
99% confidence intervals around the beta estimates. P-values (unadjusted) 

derived from Pearson’s correlation test (two-sided) on |beta| over n = 785 (AFR), 
732 (CSA), 179 (EAS), 227 (MID) pQTL associations. (c) Regional association plot 
of the SERPINA12 cis association locus across ancestries. P-values derived from 
REGENIE regression GWAS (two-sided, unadjusted).
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Extended Data Fig. 6 | Number of independent signals per region (a) and size of 95% credible set per signal (b). Results are categorized by cis (red) and trans 
(blue) associations.



Extended Data Fig. 7 | (a) Density plot of proportion of total heritability 
explained by primary cis and trans associations. (b) Scatterplot with  
overlaid regression line of the pQTL component (variance explained by 

sentinel primary pQTLs) vs the polygenic component (genome-wide SNP 
heritability excluding pQTL regions). P-values (unadjusted) for Spearman’s 
correlation test (two-sided). ρ: Spearman’s correlation coefficient.
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Extended Data Fig. 8 | Schematic of a potential pathway linking a BAG3 cardiomyopathy associated missense variant (rs2234962, Cys151Arg) to BAG3-HSBP 
complexing and downstream effects in cardiac muscle. Figure created with BioRender.com.



Extended Data Fig. 9 | (a) Number of proteins associated per genomic 
region at different sample sizes. (b) Number of proteins with at least one 
interaction partner locus (gene product at the trans locus that interacts with 

the protein tested) in at least one of the associated trans loci. (c) Proportion of 
trans associations containing at least one interaction partner with the protein 
tested.
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Extended Data Fig. 10 | Directional concordance of colocalized eQTL signals. 
(a) Percentage of directionally concordant eQTL signals among those 
colocalized with a pQTL signal, for each GTEx tissue. (b) Conditional effect size 

estimates (centre point) and 95% confidence intervals (error bars) for top 
variants of ADAM23 pQTL signals and colocalized eQTL signals (rs33998651 
was used as a proxy for rs139001108, which was not tested in GTEx).



Extended Data Fig. 11 | Stacked regional association plots between COVID 
loci and pQTLs. (a) Regional association between COVID-19 locus at MUC5B 
and SFTPD, LAMP3 trans pQTLs (b) Regional association between COVID-19 
locus at TYK2 and colocalized IL12RB1 trans pQTL, in addition to the cis pQTLs 

of ICAM-1,3,4 and 5 in close proximity. (a) and (b) P-values derived from 
REGENIE regression GWAS (two-sided, unadjusted). (c) The IL12R-TYK2 
inflammatory response signalling schematic with red asterisk indicating the 
trans pQTL for IL12RB1 in TYK2. Figure created with BioRender.com.
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Extended Data Fig. 12 | Mendelian randomization estimates of effect of 
increasing levels of PCSK9 on lipids, cardiovascular diseases and stroke 
risk. (a) Effect of PCSK9 plasma protein level on lipids, cardiovascular diseases 
and stroke risk. (b) Comparison of PCSK9 plasma protein effect estimates 

based on genetic instruments from four different pQTL studies. Error bars 
indicate 95% confidence intervals around the effect size estimates. Sample 
sizes for studies from which summary statistics were derived are detailed in 
Supplementary Table 30.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection R (v3.6.1)

Data analysis R (v3.6.1) 
REGENIE v2.2.1 
PLINK v1.9 and v2.0 
VEP v105 
ANNOVAR v20211019 
Ingenuity Pathway Analysis (QIAGEN IPA) 
WGSA v0.95 
SuSIE v0.12.6 
HyPrColoc R package v1.0 
TissueEnrich R package v1.6.0 
LiftOver R package 1.20 
TwoSampleMR R package v0.5.6 
mrpipeline R package v0.1 
ieugwasr R package v0.1.5 
biomaRt R package v2.52.0 
gwasvcf R package v0.1.0 
coloc R package v5.1.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

his is included in the Main Text. An interactive portal for the proteo-genomic results and summary association data are available at https://ukb-
ppp.azurewebsites.net/. Underlying proteomics data is available through the UK Biobank Research Access Portal. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 54,219 participants; sample size was not predetermined as lower bound of genetic and non-genetic is unknown.

Data exclusions Exclusions as part of QC have been detailed in Supplementary Information and Methods

Replication Internal replication cohort (reported in results) and external replication in independent studies as detailed in the Results and Supplementary 
Information

Randomization NA - non-interventional

Blinding NA - non-interventional

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used A full list of proteins measured using the antibody-based Olink Explore 3072 is provided on the Olink website: https://olink.com/

products-services/explore/ All assays in Olink's panels use antigen affinity-purified polyclonal or monoclonal antibodies (or 
combinations of both), with the majority being commercially available. 

Validation Validation data for the Explore 3072 assay are available on the Olink website: https://olink.com/products-services/explore/ 
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Human research participants
Policy information about studies involving human research participants

Population characteristics UK Biobank comprises up to 502,650 participants aged between 40 to 69 years at baseline recruited across 22 assessment 
centres in England, Scotland and Wales. The average age at baseline was 56.52 years (standard deviation, SD 8.09). Of the 
502,650 volunteers, 273,468 were women (54.41%), who were on average younger than the men (56.35 years, SD 8.00). 
Additional details are provided in Hewitt et al. (BMJ Open, 2016).   
 
A comparison of the UK Biobank with individuals in the general population, conducted by Fry et al. (American Journal of 
Epidemiology, 2017) found that UKB participants were, "more likely to be older, to be female, and to live in less 
socioeconomically deprived areas than nonparticipants", suggesting evidence of a selection bias towards healthy volunteers.

Recruitment The recruitment strategy for UK Biobank is described in detail by Bycroft et al (Nature, 2018). Briefly, participants aged  40 to 
69 years were recruited across the United Kingdom between the years 2006 and 2010 from the National Health Service 
(NHS) patient registers. Approximately 9.2 million people living 25 miles (40 km) from one of 22 assessment centers across 
England, Wales and Scotland were invited to participate, with 5.5% participating in the baseline studies. All participants 
completed self-report questionnaires detailing their demographic, socioeconomic and health-related characteristics. 
Participants also underwent several physical assessments (e.g., repeated blood pressure measurements, weight and height). 
Participants also provided blood, urine and saliva samples, which were then stored in a central storage facility in Stockport, 
United Kingdom. 

Ethics oversight Ethics approval for the UK Biobank study was obtained from the North West Centre for Research Ethics Committee (11/
NW/0382). Proteomic profiling of the UK Biobank was approved by the Access Subcommittee of UK Biobank, under Access 
Management System Application No. 65851. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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