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Large-scale plasma proteomics comparisons 
through genetics and disease associations

   
Grimur Hjorleifsson Eldjarn1,7, Egil Ferkingstad1,7, Sigrun H. Lund1,2, Hannes Helgason1,2, 
Olafur Th. Magnusson1, Kristbjorg Gunnarsdottir1, Thorunn A. Olafsdottir1, 
Bjarni V. Halldorsson1,3, Pall I. Olason1, Florian Zink1, Sigurjon A. Gudjonsson1, 
Gardar Sveinbjornsson1, Magnus I. Magnusson1, Agnar Helgason1,4, Asmundur Oddsson1, 
Gisli H. Halldorsson1, Magnus K. Magnusson1,5, Saedis Saevarsdottir1,5, 
Thjodbjorg Eiriksdottir1, Gisli Masson1, Hreinn Stefansson1, Ingileif Jonsdottir1,5, Hilma Holm1, 
Thorunn Rafnar1, Pall Melsted1,2, Jona Saemundsdottir1, Gudmundur L. Norddahl1, 
Gudmar Thorleifsson1, Magnus O. Ulfarsson1,6, Daniel F. Gudbjartsson1,2, 
Unnur Thorsteinsdottir1,5, Patrick Sulem1 ✉ & Kari Stefansson1,5 ✉

High-throughput proteomics platforms measuring thousands of proteins in plasma 
combined with genomic and phenotypic information have the power to bridge the 
gap between the genome and diseases. Here we performed association studies of 
Olink Explore 3072 data generated by the UK Biobank Pharma Proteomics Project1 on 
plasma samples from more than 50,000 UK Biobank participants with phenotypic 
and genotypic data, stratifying on British or Irish, African and South Asian ancestries. 
We compared the results with those of a SomaScan v4 study on plasma from 36,000 
Icelandic people2, for 1,514 of whom Olink data were also available. We found modest 
correlation between the two platforms. Although cis protein quantitative trait loci 
were detected for a similar absolute number of assays on the two platforms (2,101 on 
Olink versus 2,120 on SomaScan), the proportion of assays with such supporting 
evidence for assay performance was higher on the Olink platform (72% versus 43%).  
A considerable number of proteins had genomic associations that differed between 
the platforms. We provide examples where differences between platforms may 
influence conclusions drawn from the integration of protein levels with the study of 
diseases. We demonstrate how leveraging the diverse ancestries of participants in  
the UK Biobank helps to detect novel associations and refine genomic location. Our 
results show the value of the information provided by the two most commonly used 
high-throughput proteomics platforms and demonstrate the differences between 
them that at times provides useful complementarity.

The development of high-throughput proteomics platforms by Soma-
Logic and Olink and their integration with genomic data has increased 
the depth of our understanding of the relationships between sequence 
variants and diseases and other traits2–6. This has uncovered genomic 
sequence variants associated with plasma protein levels (protein 
quantitative trait loci (pQTLs)) and biomarkers of diseases and their 
progression. Associations between protein levels and diseases are 
rarely sufficient to separate cause from effect. However, associations 
of pQTLs with diseases can be used for causal inference7,8.

SomaLogic and Olink are affinity-based platforms that use binding 
to target proteins for measurement. Individual SomaScan assays use a 
single aptamer to measure the target protein. In our previous study of 
35,559 Icelanders, we quantified 4,719 proteins with 4,907 SomaScan 
assays and performed association analyses with rich health-related 
and genotype information2. Olink is based on immunoassays that 

require the binding of two distinct antibodies. Studies using Olink have 
either measured hundreds of proteins in tens of thousands of people3 
or thousands of proteins in about a thousand individuals7,9. Whether 
one platform or the other should be preferred in certain research set-
tings is not well understood.

Previous studies comparing various versions of the Olink and 
SomaScan platforms for the analysis of plasma samples have either 
been limited by sample size or the small number of proteins inves-
tigated7,10,11. This has resulted in limited power for genetic analysis. 
Efforts to replicate pQTLs between platforms have been moderately 
successful, with between 75% and 93% of cis pQTLs (the pQTL is close to 
the gene encoding the protein) and between 52% and 64% of trans pQTLs  
(not cis) replicated2,3,6,7.

Here we compare two affinity-based platforms, Olink Explore 3072 
using data from the UK Biobank (UKB) generated by the UKB Pharma 
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Proteomics Project (UKB-PPP) and SomaScan v4 generated in Iceland2 
(Extended Data Fig. 1). We analysed the UKB dataset stratified on ances-
try into 46,218 individuals with British or Irish ancestry (UKB-BI), 953 
individuals with South Asian ancestries (UKB-SA) and 1,513 individuals 
with African ancestries12 (UKB-AF). We analysed SomaScan v4 data for 
plasma samples from 35,892 Icelanders, where 1,514 of the samples were 
also measured using the Olink Explore 3072 platform. In addition to a 
direct comparison of measurements, we used the available UKB and 
Icelandic genotype and phenotype data to compare their associations 
with protein levels on the platforms. We demonstrate how the selection 
of the platform can substantially affect the results and the conclusions 
drawn in the context of the study of a disease.

Comparison of precision
We evaluated the repeatability of assays using the ratio of the coeffi-
cient of variation (CV) of repeated measurements of the same sample 
to the CV of the assay (CV ratio). The CV ratio is similar to the ratio of 
the s.d. of the repeated measurements to the s.d. of the assay. A CV 
ratio of zero means that repeated measurements of a sample always 
give the exact same result, whereas a CV ratio of one means that the 
repeated measurements of the same sample are no more similar than 
measurements of unrelated samples.

We calculated the CV ratio for the assays using duplicate measure-
ments of 1,474 samples in the UKB dataset (Olink Explore 3072) and 419 
samples in the Icelandic dataset (SomaScan v4) (Fig. 1, Supplementary 
Tables 1 and 2 and Supplementary Fig. 1). On the basis of all assays, the 
median CV ratio for Olink was lower than for SomaScan (0.35 and 0.50, 
respectively; Mann–Whitney P = 1.1 × 10−135) (Supplementary Table 3). 
Restricting to assays that target proteins targeted on both platforms, 
the median CV ratio remained smaller for Olink than SomaScan (0.33 
and 0.49, respectively; Mann–Whitney P = 4.7 × 10−93). Thus, the Olink 
assays are on average more precise than the SomaScan assays. This 
is in contrast to previous reports of SomaScan assays having lower 
CV on control samples than Olink assays10,11,13, indicating that the CV 
of assays on control samples does not necessarily reflect assay preci-
sion, most probably because direct comparison of CVs depends on 
accurate estimation of mean protein levels, whereas CV ratios do not 
(Supplementary Notes 1–3 and Supplementary Table 4).

Inter-platform correlation of levels
In most studies performed using SomaScan, the last step in the normali-
zation process adjusts the median protein levels for each individual to 

a reference (referred to as SMP normalization), as recommended by 
the manufacturer, whereas some studies omit this step2,7,10. The results 
presented in this Article are based on the median-adjusted data; the 
unadjusted results are presented and the effect of the adjustment are 
discussed in Supplementary Note 4.

In the Icelandic set of 1,514 individuals with data from both plat-
forms, the median Spearman correlation between plasma levels of 
1,848 proteins measured with matching Olink and SomaScan assays 
was 0.33 (Fig. 1, Supplementary Tables 5 and 6, Supplementary Note 5 
and Supplementary Fig. 2), consistent with previous reports based 
on up to around 900 proteins7,10,11. The distribution of the correlation 
coefficients has two modes, one just above 0 and the other just below 
0.6. Omitting the SMP normalization step on SomaScan, we observed 
a higher median correlation of 0.39 between platforms. The Olink 
Explore 3072 consists of two assay sets: an earlier version of the plat-
form labelled 1536, and an additional follow-up set of assays labelled 
Expansion. We note a substantially higher median correlation for assays 
in the 1536 set than in the Expansion set (0.36 and 0.27, respectively). 
For comparison, the median pairwise correlation between assays from 
the two platforms for all possible assay pairs was −0.01, and the median 
within-platform correlation between assays was 0.08 for the Olink 
platform and −0.01 for the SomaScan platform (0.42 if omitting SMP 
normalization). If either assay of a matching pair had a low variation 
in levels, the correlation between the levels of proteins measured with 
the matching assays tended to be low (Supplementary Notes 4–6 and 
Supplementary Fig. 3).

The overall variance of the levels of a protein was more concordant 
between matching assays on the two platforms where cis pQTLs were 
detected on both platforms (Spearman correlation 0.57 for pQTLs on 
both platforms, otherwise below 0.28) but did not show a clear trend 
for individual platforms depending on the presence or absence of cis 
pQTLs on that platform (Extended Data Fig. 2).

Dilution and subcellular location
Both Olink and SomaScan use dilution groups for their assays based 
on the protein abundance in plasma, with the most abundant proteins 
belonging to the highest dilution groups (Supplementary Table 7). For 
both platforms, the correlation between protein levels was lowest in the 
lowest dilution group (Supplementary Table 8). Correspondingly, for 
the matching assays, the median CV ratio was higher in the lowest dilu-
tion group than in the intermediate dilution groups, although on both 
platforms, the CV ratio was again higher in the highest dilution groups 
than the intermediate ones (Supplementary Table 9). A substantial 
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Fig. 1 | Protein levels measured by individual assays. Left, repeatability of 
measurements by platform. The CV for repeated measurements with each 
assay was divided by the CV of random measurements with the same assay, and 
the ratio between them (CV ratio) was used to evaluate the precision of the 
assay. The median CV ratio for the Olink Explore 3072 assays (blue) was lower 
than the median CV ratio for the SomaScan v4 assays (orange). The Olink 
Explore assays were evaluated on 1,474 duplicate measurements from the  

UKB 47K dataset, whereas the SomaScan v4 assays were evaluated on 419 
duplicate measurements from the Iceland 36K dataset. Right, correlation 
between measurements for protein levels measured using assays on the Olink 
Explore 3072 and SomaScan v4 platforms in the Iceland 1K dataset (Spearman 
correlation), evaluated by measuring plasma samples from 1,514 individuals 
using both platforms.
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number of Olink assays have levels below the limit of detection (LOD) for 
a large fraction of individuals, especially for proteins in the undiluted 
group—that is, with expected lowest abundance in plasma. The frac-
tion of values below LOD correlated positively with CV ratio (Spearman 
correlation 0.62, P = 1.9 × 10−318; Supplementary Fig. 4).

According to the Human Protein Atlas, 63% of the 19,187 human pro-
teins are intracellular, 28% are membrane proteins and the remaining 
9% are secreted14. SomaScan v4 and Olink Explore 3072 were simi-
larly depleted of intracellular proteins (49% and 48%, respectively) 
and enriched with secreted proteins (21% and 24%, respectively) 
(P < 5.7 × 10−158; Supplementary Table 10). The protein abundance as 
reflected by the dilution groups is lower on both platforms for assays 
targeting intracellular proteins.

The abundance of proteins as reflected by the dilution group is asso-
ciated with the precision of measurements (Supplementary Tables 9 
and 11 and Supplementary Fig. 5). Previous reports have described the 
effect of decreased matrix complexity on measurement, which along 
with the abundance may affect the precision15.

We noted a wide range of median correlation between levels when 
stratifying on tissue based on enriched expression (r between 0.05 and 
0.64). The tissue with the lowest median correlation was the pituitary 
gland, followed by testis, fallopian tube, retina, skin and brain (all with 
r ≤ 0.15). The tissue with the highest median correlation of levels was 
gallbladder, followed by smooth muscle, cervix, endometrium, pan-
creas and salivary gland (all with r > 0.45; Supplementary Table 12).

Protein–phenotype associations
We accounted for multiple testing of protein–phenotype associations 
using Bonferroni adjustment for the number of assays on each platform 
(P < 1.0 × 10−5 for 4,907 assays on SomaScan and P < 1.7 × 10−5 for 2,941 
assays on Olink). Plasma protein levels have previously been shown to 
correlate with sample age16. Sample age—that is, time from blood draw 
to measurement—correlated significantly with levels of a considerable 
number of proteins on both platforms, although differences in the 
distribution of sample age between cohorts make direct comparison 
difficult (Supplementary Tables 13–15). The effects of sample age were 
generally small for both platforms and the correlation between effects 
was low (Spearman r = 0.08). The levels of 77% of SomaScan proteins 
were associated with participant age at sample collection, 64% were 
associated with sex and 69% were associated with body mass index 
(BMI). In UKB-BI, the levels of 60%, 68% and 78% of Olink proteins 
were associated with participant age at sample collection, sex and 
BMI, respectively, and the effects correlated well between ancestries 
in UKB (pairwise Spearman correlation greater than 0.70, 0.71 and 0.87 
for participant age, sex and BMI, respectively; Extended Data Fig. 3 
and Supplementary Tables 14 and 15). The Spearman correlation of 
participant age and sex effects between the 2,021 pairs of matching 
assays for proteins targeted by both Olink and SomaScan was 0.52 for 
participant age, 0.56 for sex and 0.43 for BMI.

We tested for associations between protein levels and 389 binary 
phenotypes and 208 quantitative traits in UKB, and 275 binary pheno-
types and 110 quantitative traits in Iceland. In UKB, we found 303,261, 
13,047 and 10,850 associations among individuals with British or Irish, 
South Asian and African ancestries, respectively (Supplementary 
Table 16). In Iceland, we found 218,503 associations (Supplementary  
Table 17).

As examples, we compared the associations between levels of pro-
teins measured using the two platforms with heart failure, Alzheimer’s 
disease and inflammatory bowel disease (IBD) (comprising Crohn’s 
disease and ulcerative colitis). For heart failure (n = 1,369 cases in  
Iceland and n = 676 cases in UKB), natriuretic peptide B (BNP) (encoded 
by NPPB) had the most significant association on both platforms 
(UKB-BI with Olink: odds ratio (OR) = 2.25 per s.d., P = 1.6 × 10−177;  
Iceland with SomaScan: OR = 1.90 per s.d., p = 2.0 × 10−163), consistent 

with the established correlation of circulating BNP levels with heart 
failure17, whereas for some proteins the results were discordant (Sup-
plementary Note 7).

In the case of Alzheimer’s disease (n = 389 cases in Iceland and n = 224 
cases in UKB-BI), neurofilament light (NFL) (encoded by NEFL) was 
targeted on both platforms and strongly associated with disease on 
both (rank 2 of all assays on Olink and rank 3 of all assays on SomaScan 
based on effect and significance), but with opposite direction (UKB-BI 
Olink: OR = 1.64 per s.d., P = 1.3 × 10−12; SomaScan OR = 0.53 per s.d., 
P = 9.7 × 10−52). The Spearman correlation between levels of NFL on the 
two platforms was low (r = 0.06) and cis pQTLs for the protein were 
not detected on either platform. Many proteoforms can be derived 
from a single gene, for example through differential splicing of tran-
scripts, proteolytic cleavage and post-translational modification18. 
NFL forms polymers19, and we do not have information about which 
proteoforms are measured on the two platforms. Consistent with the 
results for NFL on Olink, high NFL levels in cerebrospinal fluid and 
blood have been reported to associate with advanced Alzheimer’s 
disease20. Plasma levels of NFL measured using the Olink platform 
and an alternative affinity-based assay (Simoa) have been reported to 
be strongly correlated21,22 (r > 0.90 for both studies), whereas levels 
of NFL measured using the SomaScan platform did not correlate with 
Simoa measurements (n = 231 Icelanders, Spearman r = 0.00). Of note, 
NFL levels measured with both the Olink and SomaScan platforms cor-
relate strongly with Alzheimer’s disease, but with opposite directions 
of effect. Although Olink and Simoa appear to be measuring the same 
proteoform(s), it remains to be understood what protein or proteoform 
SomaScan is measuring.

For IBD (n = 618 cases in Iceland and n = 900 cases in UKB-BI), 
prostaglandin-H2 d-isomerase (encoded by PTGDS) was the most 
significantly associated protein with the disease on both Olink and 
SomaScan (Supplementary Table 18). On both platforms, IBD cases 
had higher plasma levels of prostaglandin-H2 d-isomerase than con-
trols (UKB-BI with Olink: OR = 1.67 per s.d., P = 4.7 × 10−40; Iceland 
with SomaScan: OR = 1.36 per s.d., P = 1.9 × 10−13), consistent with 
the reported role of the PGD2 metabolic pathway in IBD supported 
by animal models23,24. The correlation of levels between platforms 
was 0.51 and cis pQTLs were observed for PTGDS on both platforms. 
Whereas the level of several proteins as measured on both plat-
forms are significantly associated with IBD (for example, CXCL11 
and REG3A), some associations did not replicate between the two 
groups (for example, interleukin-6 (IL-6), MMP12 and CLPS) (Sup-
plementary Table 18). Of note, IBD was associated with CXCL9 levels 
as measured by the single Olink assay, but only one of two assays on 
SomaScan (Supplementary Table 18), again raising questions about 
what proteoform or protein is being targeted with the non-associating  
SomaScan assay.

Detection of pQTLs
We updated our previous pQTL analysis in Iceland to include more 
sequence variants and applied the manufacturer-recommended data 
normalization2 (Table 1, Extended Data Fig. 4, Supplementary Tables 19 
and 20 and Supplementary Note 4). We identified 2,120 and 22,616 
sentinel cis and trans pQTLs, respectively (Table 1).

Using the Olink-UKB data, we identified pQTLs stratified by ancestry, 
using the same approach as we previously applied to the Icelandic 
SomaScan data2 (P < 1.8 × 10−9; Table 1, Extended Data Fig. 4, Supple-
mentary Tables 21–23 and Supplementary Note 8). We identified 2,102, 
900 and 714 sentinel cis pQTLs for the UKB-BI, UKB-AF and UKB-SA 
ancestry groups, respectively, and 24,824, 1,332 and 190 sentinel trans 
associations. Of the UKB-BI sentinel cis pQTL associations, 1,246 were 
from the initial set (1536) and 856 were from the Expansion set, whereas 
of the trans pQTL associations, 16,551 were from the 1536 set and 8,273 
were from the Expansion set.
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Based on Olink, 52% of sentinel trans pQTL associations are with a 
variant associating with more than 10 proteins (non-specific pQTL), 
whereas based on SomaScan, 63% of trans pQTL associations are 
with such a variant. Consequently, 211 out of all 2,616 proteins with at 
least one pQTL on Olink (8%) have associations with only non-specific 
trans pQTLs and 1,282 out of 4,574 proteins with at least one pQTL on  
SomaScan (28%) had such associations only. When an assay has no cis 
pQTLs and has only non-specific trans pQTLs, it is possible that the 
targeting or measurement are not accurate. Non-specific pQTLs should 
be interpreted with caution.

In both the UKB-BI Olink data and Icelandic SomaScan data, more than 
98% of the cis pQTLs associate with only one protein in cis. However, 34 
pQTLs detected in the Olink data had multiple cis associations. Of these, 
32 associated with fewer than 25 proteins in cis or trans—mostly 2 or 3—
whereas 2 associated with more than 25 (768 and 388). On SomaScan, 
34 pQTLs had multiple cis associations. Of these, 29 associated with less 
than 25 proteins in cis or trans, whereas 5 associated with more than 25 
(ranging from 40 to 786) (Supplementary Tables 19–21). Co-regulation 
of expression in cis has been observed at RNA level and does not in itself 
detract from the cis pQTL as evidence for the performance of the assay25. 
However, the cis location of a highly pleiotropic variant could be a mat-
ter of chance and should therefore be considered in the same way as a  
trans pQTL.

The detection of cis pQTLs for a given protein associated positively 
with the fraction of assay measurements above the LOD (P = 8.3 × 10−164, 
median fraction above LOD 99.8%) as well as the fraction of assays where 
the median normalized protein expression (NPX) value was above the 
LOD (chi-squared P = 2.7 × 10−207), based on 24 healthy and 48 individ-
uals with disease (information supplied by Olink) (Supplementary 
Fig. 6 and Supplementary Tables 11 and 24). However, we detected 
pQTLs for some assays with a very small fraction of values above 

the LOD, indicating that measurements below the LOD may still be  
informative.

Neither subsampling nor accounting for the different number of 
variants tested in the datasets affected the conclusions of the com-
parison between the platforms. In both datasets, we estimated a false 
discovery rate of 1.2% (Supplementary Note 9). Replication of pQTLs in 
the Icelandic dataset also assessed by Olink was somewhat lower than 
predicted by power analysis and may represent the effect of differences 
in population and sample handling and processing (Supplementary 
Note 10 and Supplementary Tables 13 and 25)

Secondary cis pQTL associations were detected for 1,702 out of 2,102 
sentinel cis pQTLs on the Olink platform (81%) and for 1,594 out of 2,120 
on the SomaScan platform (75%). Secondary trans pQTL associations 
were detected for 3,340 out of 24,824 sentinel trans pQTL associations 
on the Olink platform (13%) and 4,065 out of 22,616 on the SomaScan 
platform (18%).

Whereas secondary signals help to understand how genetic varia-
tion affects protein expression, the mere existence of a cis pQTL for 
a protein on a particular platform provides evidence that the assay is 
binding to the correct protein, even though the pQTL may in fact be the 
result of an epitope effect (that is, the genetic variant directly affects 
binding of the antibody to its epitope) and not reflect actual variation in 
protein levels. On the Olink platform, the majority of proteins already 
have a cis pQTL. Furthermore, the significance of most cis pQTLs is 
well above the genome-wide threshold, suggesting that the number 
of cis pQTLs is unlikely to change drastically with increased sample 
size, although cis pQTLs still provide valuable insights into the genetic 
control of protein expression. However, as most trans pQTL associa-
tions have significance close to the genome-wide threshold, expand-
ing the sample size is likely to reveal more trans pQTLs (Extended  
Data Fig. 5).

Table 1 | Summary of pQTLs detected on the Olink Explore 3072 and SomaScan v4 platforms

ALL TARGETS OVERLAPPING TARGETS

Dataset Iceland 36K 
non-normalized

Iceland 36K 
normalized

UKB-BI Iceland 36K 
non-normalized

Iceland 36K 
normalized

UKB-BI

Platform SomaScan v4 SomaScan v4 Olink Explore 
3072

SomaScan v4 SomaScan v4 Olink Explore 
3072

Number of assays 4,907 4,907 2,931 1,954a 1,954a 1,832a

Number of individuals 36,136 35,892 46,218 36,136 35,892 46,218

Population Iceland Iceland UKB Iceland Iceland UKB

No. of assays with cis pQTLs (%) 1,889 (38%) 2,120 (43%) 2,101 (72%) 1,068 (55%) 1,164 (60%) 1,467 (80%)

No. of assays with trans pQTLs (%) 4,437 (90%) 4,716 (96%) 2,528 (86%) 1,782 (91%) 1,889 (97%) 1,658 (91%)

No. of assays with pQTLs (%) 4,649 (95%) 4,809 (98%) 2,627 (90%) 1,869 (96%) 1,928 (99%) 1,715 (94%)

No. of sentinel pQTL associations 18,667 24,736 26,926 8,696 11,516 20,046

No. of sentinel cis pQTL associations 1,889 2,120 2,102 1,068 1,164 1,468

No. of sentinel trans pQTL associations 16,778 22,616 24,824 7,628 10,352 18,578

No. of secondary pQTL associations 10,564 14,786 14,232 6,005 7,889 11,172

No. of secondary cis pQTL associations 5,791 7,292 8,640 3,877 4,796 6,614

No. of secondary trans pQTL 
associations

4,773 7,494 5,592 2,128 3,093 4,558

No. of sentinel cis pQTL associations 
with PAV in high LD (r2 > 0.8) (%)

636 (34%) 710 (33%) 696 (33%) 371 (35%) 408 (35%) 476 (32%)

No. of sentinel cis pQTL associations 
with cis eQTL in high LD (r2 > 0.8) (%)

657 (35%) 735 (35%) 820 (39%) 380 (36%) 405 (35%) 563 (38%)

No. of sentinel pQTL associations with 
MAF <0.1%

478 (3%) 816 (3%) 617 (2%) 273 (3%) 433 (4%) 516 (3%)

No. of sentinel pQTL associations with 
0.1%< MAF <1%

1,857 (10%) 2,404 (10%) 1,212 (5%) 963 (11%) 1.069 (9%) 951 (5%)

a1,823 proteins are targeted by assays on both platforms. 
LD, linkage disequilibrium.
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pQTL analysis by ancestry group
Analyses of different ancestry groups enables the assessment of greater 
sequence diversity and variable patterns of LD to refine association 
signals to fewer variants12. Recently, Katz and colleagues used the 
Olink Explore 1536 platform to analyse the levels of 1,472 proteins 
in the plasma of 489 individuals with African ancestries10. Applying 
the same cut-off for significance (P < 1.8 × 10−9) to both datasets, for 
the same 1,472 proteins we detected cis pQTLs in the UKB-AF dataset 
(n = 1,513 individuals) for 628 proteins, whereas they detected only 307 
using a 3 times smaller sample size. We validated the existence of cis 
pQTLs for 301 of their 307 proteins. Furthermore, Zhang and colleagues 
have reported the analysis of plasma protein levels of 1,871 individuals 
with African ancestries using the SomaScan platform26 (4,437 targeted 
proteins analysed). Of these, 1,746 proteins are also targeted by Olink 
Explore 3072, which we used to analyse the UKB-AF group (n = 1,513). 
Applying the same cut-off for significance (P < 1.8 × 10−9) to both data-
sets and considering the 1,746 overlapping targets, we detect cis pQTLs 
for a similar number of proteins using Olink (667) as they did using 
SomaScan (671) in these two sets of similar population size. Of these, 
417 proteins have cis pQTLs in both studies.

We find that around 32% and 4% of the top cis pQTLs identified in the 
UKB-AF and UKB-SA ancestry groups, respectively, were variants absent 
from or extremely rare in the UKB-BI ancestry group (Supplementary 
Tables 26 and 27). For example, the predicted loss-of-function variant 
rs28362286 (p.Cys679Ter) in PCSK9, which has been associated with 
low levels of low-density lipoprotein cholesterol12,27 (−0.92 s.d. per 
copy), was carried by 1 in 50 participants with African ancestries but 
was almost absent from other participants and associated with 2.1 s.d. 
lower levels of PCSK9 (P = 6.1 × 10−33). The lower levels we observed 
are consistent with reports of the stop-gained variant rs28362286 
(p.Cys679Ter) preventing the secretion of PCSK9 (ref. 28). Also, the 
sickle cell anaemia variant Gly7Val in the HBB gene29 (which encodes 
the β-subunit of haemoglobin) was seen almost exclusively among par-
ticipants with African ancestries (minor allele frequency (MAF) =7.5%), 
where it associated in trans (P = 2.9 × 10−12) with 0.50 s.d. higher levels 
of HMOX1, which encodes haem oxygenase-1, an enzyme that degrades 
free hemin. Hemin is released intravascularly in sickle cell disease and 
is a known inducer of HMOX1 (ref. 30).

In the UKB-AF group, cis pQTLs are in high LD with fewer variants on 
average (12) than in the UKB-BI or UKB-SA groups (37 and 29, respec-
tively), consistent with greater sequence diversity and lower LD in popu-
lations with African ancestries than in other populations31. Out of 893 
proteins with cis pQTLs in both UKB-BI and UKB-AF, for 324 proteins 
(36%), the top cis pQTLs in the UKB-BI and UKB-AF populations are in 
high LD (r2 > 0.8 between the two variants) in UKB-BI. For 62 of these 
proteins, substantial refinement of the cis pQTL locus was achieved in 
UKB-AF, where the top cis pQTL in the UKB-AF group is in high LD with 5 or 
fewer variants but with 15 or more variants in the UKB-BI group (Fig. 2a). 
For example, rs6794768 is the top cis pQTL for SERPINI2 in UKB-BI and 
UKB-AF groups, but in UKB-AF, the signal is refined to markedly fewer 
variants than in the former (Fig. 2b). At the CD58 locus, the sentinel cis 
pQTLs in the UKB-BI and UKB-AF data were in high LD (r2 = 0.96 in UKB-BI). 
However, the number of highly correlated variants is much smaller in 
the UKB-AF group than in the UKB-BI group (3 versus 37 variants). Since 
the pQTL in UKB-BI associates with multiple sclerosis, the refinement 
allowed in UKB-AF of the pQTL signal indicates the potential gain from 
investigating disease correlation with the same variant in a population of 
African origin (Fig. 2c). This would require us to determine the associa-
tion with multiple sclerosis among individuals with African ancestries.

pQTL comparison between platforms
In both the Icelandic and UKB-BI cohorts, the sample size is sufficiently 
large that the number of proteins with a cis pQTL is not likely to change 

much by increasing it (Extended Data Fig. 5). Cis pQTLs were present 
for 2,101 (71%) Olink assays and 2,120 (43%) SomaScan assays (Table 1). 
Thus, whereas a very similar number of proteins had cis pQTLs on the 
two platforms (2,093 on Olink and 2,044 on SomaScan), a larger fraction 
of proteins on Olink than on SomaScan had cis pQTLs. On both plat-
forms, most assays had pQTLs: trans pQTLs were present for 2,528 (86%) 
and 4,716 (95%) Olink and SomaScan assays, respectively. There were 
more trans than cis sentinel pQTLs associations on both platforms, but 
a larger number of secondary associations in cis than in trans (Table 1 
and Supplementary Tables 21 and 19).

The fraction of assays with cis pQTLs varied depending on several 
factors including dilution group, subcellular location and CV ratio, in 
both the Icelandic and UKB-BI datasets (Extended Data Fig. 6 and Sup-
plementary Table 28). On both platforms, more abundant proteins—as 
reflected by the assays requiring greater dilution—were more likely to 
have a cis pQTL. On both platforms, assays targeting secreted proteins 
were more likely to have cis pQTLs than assays targeting intracellular 
proteins, with assays targeting membrane proteins falling in between. 
On both platforms, the fraction of assays with cis pQTLs went up with 
assay precision, as reflected by CV ratio.

When we restricted our analysis to matching assays for 1,848 unique 
proteins targeted on both platforms, the Olink assays were more likely 
to have a cis pQTL (80% of 1,864) than the SomaScan assays (58% of 
1,994) (Table 1). We note that correlation between assays targeting the 
same protein is substantially higher when we observe a cis pQTL on 
both Olink and SomaScan (r = 0.48) than when we observe a cis pQTL 
on neither (r = 0.17) or on one only (r = 0.11) (Supplementary Table 29).

The large number of whole-genome-sequenced individuals in the two 
study populations, followed by imputation, enabled us to detect asso-
ciations with rare sequence variants (Table 1). On Olink, 2,505 variants 
with a MAF below 0.1% (10% of 25,147 variants) associated with protein 
levels, and 1,596 variants (8% of 19,225 variants) did so on SomaScan.

Relationship of pQTLs between platforms
The fraction of sentinel cis pQTLs in high LD (r2 > 0.80) with protein- 
altering variants (PAVs) (33% for both Olink and SomaScan) or cis 
expression quantitative trait loci (eQTLs) (39% and 35% for Olink and 
SomaScan, respectively), for the gene encoding the targeted protein, 
was similar on the two platforms (Supplementary Tables 21 and 19). 
We previously concluded that the presence of a PAV and the absence 
of eQTL could be evidence of the association resulting from an epitope 
effect2 (Supplementary Note 11). We observe very similar results on 
both platforms. We conclude that the 23% of sentinel Olink cis pQTLs 
and 24% of sentinel SomaScan cis pQTLs that are in high LD with a 
moderate-effect PAV but not with a cis eQTL are likely to be caused by 
epitope effects and may not in fact reflect variation in protein levels 
(Fig. 3 and Extended Data Fig. 5). When attempting to replicate sentinel 
cis pQTLs between platforms, we observed that when cis pQTLs are 
in high LD with PAV, the correlations between effect estimates were 
lower in both directions of replication, suggesting that both Olink and 
SomaScan assays are similarly susceptible to epitope effects caused 
by PAVs (Extended Data Fig. 7, Supplementary Note 12, Supplementary 
Fig. 7 and Supplementary Tables 30–34).

Although replication of pQTLs between platforms was similar to 
previous reports in smaller studies2,3,6,7 (Supplementary Note 12), the 
presence of multiple independent signals at the same locus makes the 
comparison of pQTLs complicated, as the sentinel signal in one cohort 
may be a secondary signal in the other. To establish correspondence 
between pQTLs on the Olink and SomaScan platforms, we checked 
whether the sentinel variant detected on one platform was in high LD 
(r2 > 0.8) with any of the pQTLs (sentinel or secondary) at the same 
locus (within 5 Mb) on the other platform. In the UKB-BI Olink data, 
581 (40%) out of 1,468 sentinel cis pQTL signals had a corresponding 
pQTL in the Icelandic SomaScan data, and in 434 cases (30%) the pQTL 

https://www.ncbi.nlm.nih.gov/snp/?term=rs6794768
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was the sentinel signal at the locus. In the SomaScan data, 559 (48%) 
out of 1,164 sentinel cis pQTL signals had a corresponding pQTL in 
the UKB-BI Olink data, and in 449 cases (39%) the pQTL was the senti-
nel signal at the locus. Of the sentinel trans pQTL signals detected in 
the UKB-BI Olink data, 1,855 (10%) out of 18,578 had a corresponding 
pQTL in the Icelandic SomaScan data, and in most of the cases (1,777 
(10%)) the pQTL was the sentinel signal at the locus. Of the sentinel trans 
pQTL signals detected in the Icelandic SomaScan data, 1,918 (19%) out 
of 10,352 had a corresponding pQTL in the UKB-BI Olink data, and in 
most of the cases (1,828 (18%)) the pQTL was the sentinel signal at the 
locus. Proteins having a cis pQTL on both platforms were more likely 
to have corresponding sentinel trans pQTLs (Supplementary Table 35 

and Supplementary Note 13). Thus, even when pQTLs for a protein are 
detected on both platforms, they are not necessarily the same. When the 
sentinel cis pQTLs on the two platforms are in high LD, the correlation 
between levels is higher than when they are not (median correlation 0.55 
versus 0.49, Mann–Whitney P = 6.9 × 10−6) (Supplementary Table 29).

Pleiotropic pQTLs
Some pQTLs are pleiotropic (that is, associated with a large number of 
proteins). A total of 46 and 35 pQTLs were associated with more than 
50 proteins on Olink and SomaScan, respectively (Supplementary 
Table 36). Eight such pleiotropic Olink pQTLs did not associate with 
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protein levels. c, Locus plot of the association at the CD58 locus of the 
association with multiple sclerosis (MS) (top), and the sentinel cis pQTLs for 
CD58 in UKB-BI (middle) and UKB-AF (bottom). The locus refinement enabled 
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and not adjusted for multiple comparisons.
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any protein in the SomaScan data and an additional 11 associated with 
fewer than 10 proteins. Conversely, one of the SomaScan pQTLs did not 
associate with any Olink proteins and an additional ten associated with 
fewer than ten proteins (Supplementary Table 37). A number of the 
pQTLs that are pleiotropic on SomaScan but not on Olink are close to 
complement factor genes (for example, C3, CFD and CFH). This could 
be because the SomaScan sample processing or measurement may 
interact with complement proteins, as previously contemplated in 
the case of CFH32. Other pQTLs are pleiotropic on Olink but not on 
SomaScan, such as variants in PNPLA3 and FADS1—genes involved in 
the regulation of fat in liver.

Other such differences between studies and/or platforms due to 
variants associated with platelet counts have been noted and have 
been suggested to be at least partially owing to differences in sample 
handling and storage2,33 (Supplementary Note 14).

pQTLs and disease-associated variants
The establishment of a relationship between a variant associating with 
a disease and a cis pQTL makes it likely that the variant is at least in part 
mediating risk through the associated protein. We use three methods 
to establish such a relationship: high LD (r2 > 0.8) between a pQTL and 
a disease-associated variant, inclusion of a disease-associated variant 
in the subset of variants in the credible set in high LD with the pQTL, 
and for specific examples where the necessary statistics are available, 
statistical colocalization (posterior probability (PP)).

For the Olink-UKB-BI data, there were 2,409 pairs of genome-wide 
association study (GWAS) catalogue variants and cis pQTLs where the 
GWAS catalogue variant was in high LD with the pQTL and included in 
the 95% credible set for the pQTL, whereas for the Icelandic Soma Scan 

data there were 1,597 such pairs. In addition, there were 529,604 and 
196,836 such pairs for trans pQTLs detected in the Olink-UKB-BI 
data and the Icelandic SomaScan data, respectively (Supplementary 
Tables 38–40 and Supplementary Note 15).

On Olink and SomaScan, counting only the unique pQTLs yields 
403 and 359 cis pQTLs, respectively, and 2,830 and 1,782 trans pQTLs, 
respectively, where at least one disease or trait is related as described 
above to the levels of at least one protein.

For proteins targeted on both platforms, we demonstrate in the 
Olink-UKB-PPP data examples of independent replication of the rela-
tionship between cis pQTLs and disease-associating variants previously 
discovered using SomaScan2. These include a variant associating with 
lower SULT2A1 levels and less risk of gallstones and a variant associat-
ing with lower CHRDL2 levels and less risk of colorectal cancer (Sup-
plementary Note 16).

Several cis pQTLs that are in high LD with a disease-associating variant 
were observed only on one platform. At the IL10 locus, the minor allele 
(A) of rs3024493 (MAF = 15%) and its correlate rs3024505 (r2 = 1.00) 
associate with increased risk of IBD34. However, the variants have not 
been reported to be in high LD with coding variants, sentinel cis eQTL 
or cis pQTL, but IL10 has been considered the most likely candidate 
gene in the region on the basis of its anti-inflammatory function and 
the fact that IL-10-deficient mice develop chronic enterocolitis35. In 
the UKB data, the IBD risk allele of rs3024493 is the top cis pQTL for 
IL-10 and associates with lower plasma level of IL-10 (P = 1.4 × 10−52, 
effect = −0.14 s.d., PP = 0.98), but not with any other protein meas-
ured using Olink (Fig. 4). By contrast, no cis pQTL was detected for 
IL-10 using the Icelandic SomaScan data. Of note, the missense variant 
Ser159Gly (rs3135932-G; MAF = 17%) in IL10RA associates in trans with 
greater IL-10 levels measured on Olink (effect = 0.26 s.d.; P = 2.6 × 10−195). 
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Ser159Gly also associates in cis with higher IL10RA levels (effect = 0.18 
s.d.; P = 6.5 × 10−94; Extended Data Fig. 8). IL10RA is the most commonly 
reported gene for monogenic IBD36 and in a meta-analysis of 20,295 
IBD cases, we found Ser159Gly to associate with greater risk of IBD 
(OR = 1.05, P = 1.6 × 10−5). Additionally, we measured IL-10 levels with an 
enzyme-linked immunosorbent assay (ELISA) and observed a high cor-
relation with levels measured on Olink (r = 0.81), but not on SomaScan 
(r = 0.04) (Extended Data Fig. 9).

The sentinel cis pQTL for tumour necrosis factor ligand super-
family member 11 (TNFSF11) (also known as RANKL) using Olink  
(chr. 13:42478744; MAF = 47%, P = 10−75; effect = 0.12 s.d.) is in high LD 
(r2 = 0.99) with a variant associated with primary biliary cirrhosis37 (PBC) 
(rs9533122; P = 6.0 × 10−13). The minor allele associates with a reduction 
in PBC risk by 14% and higher TNFSF11 level, but is not in LD with a PAV 
or a cis eQTL. No cis pQTLs were detected for TNFSF11 using SomaScan, 
and the correlation of TNFSF11 levels between the two platforms is low 

(r = 0.02). TNFSF11 is involved in establishing self-tolerance and as such 
may have a role in autoimmune diseases such as PBC38.

The sentinel cis pQTL for ERBB4 on Olink associates with higher ERBB4 
levels (rs6735267; MAF = 27%, P = 10−198, effect = 0.22 s.d.) and a highly 
correlated variant (r2 = 0.99) associates with lower BMI39 (rs7599312; 
P = 2 × 10−23, effect = −0.01 s.d., PP = 1.00). No cis pQTLs were detected 
for ERBB4 on SomaScan, and the correlation between the levels of 
ERBB4 measured on the two platforms was low (r = −0.02). We did not 
observe any eQTL or PAV in high LD with these variants. ERBB4 encodes 
a receptor tyrosine kinase expressed in liver and pancreas, and ERBB4 
disruption has been linked to impaired glucose tolerance and reduced 
insulin response in mice, supporting its possible effect on obesity40.

At the locus of  GRP (encoding gastrin-releasing peptide and 
neuromedin-C), the minor alleles of variants in high LD—including 
rs7243357 and rs9957145 (MAF = 17%)—associate with a lower BMI39 
and less risk of type 2 diabetes41. However, the variants have not been 
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with disease-associated variants. Left, association at the IL10 locus between 
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reported to be in high LD with coding variants, sentinel cis eQTL or 
cis pQTL. In the UKB data, the minor allele of rs9961404 is the top cis 
pQTL for gastrin-releasing peptide (GRP) and associates with higher 
plasma level of GRP as measured on Olink (P = 2.1 × 10−568, effect = 0.46 
s.d.) and is highly correlated with rs7243357 and rs9957145 (r2 = 0.90 
and 0.99, PP = 0.96). The GRP levels based on Olink did not correlate 
with levels on SomaScan as measured by two aptamers (r = −0.01 and 
r = 0.00) and no cis pQTL was detected on SomaScan. Notably, the 
peptides encoded by GRP have multiple roles including the release of 
gastrin from the stomach and the control of food intake42. A similar 
correlation of variants with GRP levels on Olink and its association with 
a diabetes-associated variant has been previously noted9. Other such 
examples can be found in Supplementary Note 17.

At the IL2RB locus (encoding the beta subunit of the interleukin-2 
receptor), the minor allele (A) of rs228953 (MAF = 47%), associates 
with lower eosinophil count and less risk of asthma but the variant 
has not been reported to be in high LD with a coding variant43,44. In 
Iceland, the minor allele of rs228958 is the top cis pQTL for IL2RB, 
associating with higher plasma level as measured on SomaScan 
(P = 1.3 × 10−28, effect = 0.09 s.d.) as well as in a report and in high LD with 
rs228953 (ref. 32) (r2 = 0.93, PP = 0.78) (Fig. 4). The IL2RB levels based 
on Olink have a weak correlation with levels on SomaScan (r = 0.14) and 
no cis pQTL was detected on Olink, consistent with IL2RB being one of 
the assays on the Olink platform with the highest fraction of measure-
ments below the LOD (79%). IL2RB constitutes one of the receptor 
subunits for IL-2 and IL-15 and dysregulated signalling of both of these 
immunoregulatory cytokines has been linked to asthma and allergy45,46.

In some instances, we detected cis pQTLs for a given protein on both 
platforms, but they had little correlation and only one of them was in 
high LD with a disease-associated variant. For example, the minor allele 
of the sentinel cis pQTL for CD58 associated with lower protein levels 
on Olink and less risk of multiple sclerosis (PP = 0.98). Of interest, the 
CD58 pQTL can be substantially refined by cross-ancestry analysis. 
However, the sentinel cis pQTL on SomaScan was in low LD (r2 = 0.04) 
with the one on Olink and did not associate with multiple sclerosis 
(Fig. 2, Extended Data Fig. 8 and Supplementary Note 18).

In addition to our observation of cis pQTLs associating with diseases 
and other traits possibly shedding light on pathogenesis, we also noted 
such association for a large number of trans pQTLs. The correlation of a 
trans pQTL with a variant associating with a disease can be interpreted 
in three ways. First, the change in protein levels may be a consequence 
of the disease predisposed by the variant. Second, the variant may be 
affecting the disease risk through a protein encoded by the gene at the 
variant locus affecting another protein in the same pathway, reflected in 
plasma protein levels and the trans pQTL. Third, the variant may affect 
the protein levels and the disease risk independently of each other.

Similar to the logic underlying Mendelian randomization, when 
all variants associating significantly with the levels of a given protein 
also associate proportionally with the risk of a particular disease, we 
propose that the protein has a role in the pathogenesis of the disease47. 
When all variants associating significantly with a given disease also 
associate proportionally with the levels of a particular protein in plasma 
(trans pQTLs), and in the absence of the conditions described above, 
we propose that the change in protein levels is a consequence of the 
disease. We note that often, the trans pQTLs associate with a protein 
with enriched expression in the tissue affected by the disease.

The proteins affected by these trans pQTLs can point to potential 
biomarkers of diseases. Using SomaScan data, we have previously noted 
that variants associating with psoriasis also associate with levels of 
DEFB4A, a protein highly expressed in skin, pointing to a potential dis-
ease biomarker2. Of these variants, the variant most significantly asso-
ciated with disease and protein levels at the IL12B locus (rs12188300) 
was also detected as trans pQTL of DEFB4A in plasma based on Olink. 
The levels of DEFB4A are highly correlated between the two platforms 
(r = 0.81) and cis pQTLs are observed on both platforms.

Similarly, several trans pQTLs for PRSS2 at different loci are in high 
LD with diabetes-associating variants. PRSS2 encodes trypsinogen, a 
protein highly expressed in exocrine pancreas, and the trans pQTLs 
may reflect damage of the pancreas among individuals with diabetes48 
(Supplementary Tables 38 and 39). The levels of PRSS2 are highly cor-
related between the two platforms (r = 0.78) and cis pQTLs are observed 
on both platforms.

To assess which trans pQTLs associating with disease are likely to 
correspond to an interaction between proteins in the same pathway, 
we assessed whether each protein affected by a trans pQTL interacts 
with the protein encoded by the closest gene to the variant according 
to the STRING database49. For about 9% of the trans pQTLs in high LD 
with a disease- or trait-associated variant, the two proteins of interest 
are known to interact. For instance, we note that a variant in TLR3 asso-
ciates with autoimmune thyroid disease50 and levels of IFNL1 in trans, 
consistent with the fact that TLR3 is known to activate IFNL1 (ref. 51). 
The trans pQTL with IFNL1 strongly supports the role of TLR3 at the 
variant locus in the pathogenesis of autoimmune thyroid disease.

Examples of proteins targeted only by one of the platforms and 
related to disease-associated variants imclude ITGA11 on Olink and 
GREM1, ASIP and STAT3 on SomaScan (Supplementary Note  19  
and Supplementary Fig. 8).

Discussion
The amount of data generated using Olink Explore 3072 in the UKB and 
SomaScan v4 in Iceland allows the identification of a large number of 
pQTLs as well as associations between phenotypes and protein levels 
in plasma, enabling the comparison of the platforms. In these two data-
sets of similar sample sizes, we observe differences in the detection of 
pQTLs. We directly compared measurements on the two platforms for 
twice the number of proteins considered in previous studies and show 
a modest correlation, consistent with recent reports7,10,11. Finally, we 
demonstrated how these differences can affect the conclusions drawn 
from the integration of proteomics and genetics in the study of diseases.

The large number of measurements on the Olink platform (50,000 
individuals) enables the detection of pQTLs for more than 2 times the 
number of proteins reported in previous studies using smaller sam-
ple sizes7,9. On both platforms, a substantial fraction of proteins with 
a cis pQTL is targeted by that platform only. On the Olink platform, 
the majority of proteins already have a cis pQTL, suggesting that the 
increased sample size may yield diminishing returns in terms of the 
number of new cis pQTLs detected. Overall, we detected cis pQTLs in 
plasma for 3,129 unique proteins out of the 5,814 proteins targeted by 
at least 1 platform. Although not all proteins are expected to have a cis 
pQTL in plasma, the large fraction of proteins with no cis pQTLs (around 
half) suggests that not all proteins can be easily measured in plasma. 
Consistently, a number of proteins have a large fraction of measure-
ments below the LOD as estimated on the Olink platform, particularly 
proteins with low expected abundance in plasma, as reflected by the 
dilution group. In addition, proteins in lower dilution groups, cor-
responding to lower expected abundance, showed lower correlation 
between platforms and a lower fraction of cis pQTLs, suggesting less 
reliable measurements.

Using the presence of cis pQTLs on the two platforms and the cor-
relation in protein levels between them, the proteins targeted by the 
platforms can be organized into tiers by confidence (Extended Data 
Fig. 10 and Supplementary Table 29). Of all proteins targeted by either 
platform, about 500 had cis pQTLs on both platforms and strong cor-
relation between protein levels as measured by the 2 platforms. These 
can be said to be measured with high confidence on the two platforms 
(tier 1). About 2,600 had a cis pQTL on at least 1 of the platforms but 
either lacked a cis pQTL on one platform, were not highly correlated 
between platforms, or both (tier 2). Finally, about a further 3,000 did 
not have a cis pQTL on either platform (tier 3). We believe that this 
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classification of proteins can be useful for prioritizing the orthogonal 
validation of the assays—for example, by mass spectrometry.

Whereas we observed a similar total number of proteins having a cis 
pQTL on the 2 platforms, when considering the 1,848 proteins targeted 
by both platforms, we observe a greater number of cis pQTLs using 
Olink in UKB than using SomaScan in Iceland (80% versus 60%). Given 
the enrichment of secreted and abundant proteins in the collection of 
proteins currently targeted on the platforms compared with the Human 
Protein Atlas, we expect proteins currently targeted by neither of the 
two platforms to be even more challenging to measure in plasma14 
(Supplementary Note 20).

Even where cis pQTLs provide evidence that both platforms are 
measuring the targeted protein, in more than half of the cases, the top 
associated variants were in low LD. Although cis pQTLs provide strong 
evidence that the protein being measured is in fact encoded by the 
gene of interest, they do not indicate which proteoform is being meas-
ured. The difference in pQTLs between the two platforms is consistent 
with proteoforms being differentially targeted by the platforms, as 
suggested by previous work on smaller sample sizes, both in terms 
of individuals and proteins7. Proteoforms encoded by the same gene 
may participate in different biological processes and therefore have 
different associations with diseases and other traits. Furthermore, 
some cis pQTLs may correspond to epitope effects rather than protein 
levels, particularly when the cis pQTL correlates with a coding vari-
ant and in the absence of a correlated eQTL2,7. The differences that 
we note in plasma protein levels or in the pQTLs between platforms 
influence the results from integrating protein levels and genetics in 
the study of diseases.

Around a third of the trans pQTLs associating with many proteins on 
one platform are not pleiotropic in the other. This may be caused by 
sequence variants interacting with pre-analytical variables, including 
sample handling and processing, or with the measurements themselves. 
Such differences in pleiotropic trans pQTLs have previously been noted 
between studies using the same platform but different protocols32.

Large-scale proteomics studies have been performed predominantly 
in populations with European ancestry and more recently in some 
non-European populations10,26,52,53. Leveraging the diverse ancestry 
composition of the UK Biobank cohort measured on Olink, we detected 
associations between protein levels and ancestry-specific variants. 
In addition, variants associated with protein levels are, on average, 
in high LD with three times fewer variants in the African ancestries 
group (UKB-AF) than in the British or Irish ancestry group (UKB-BI). 
The lower average LD in UKB-AF enables substantial locus refinement 
of association signals in a large number of cases. Similar observations 
of locus refinement were made in 2022 using SomaScan in groups with 
European and African ancestries26. We have shown that performing 
cross-ancestry signal refinement on pQTLs may also assist in refining 
associated disease signals, even if the diseases are studied in only one 
of the ancestry groups.

Limitations
Although both the Olink and SomaScan platforms are affinity-based, 
they differ in nature, as one is based on antibodies and the other on 
aptamers. This may affect how proteins are quantified in complex 
samples such as plasma. The biochemical properties of orthogonal 
assays used for validation may need to be considered in the context 
of the properties of the two platforms.

Protein concentration varies between tissues and sample types14. The 
current work is limited to plasma and some of the results and conclu-
sions may be specific to this sample type. The analysis of other sample 
types using these platforms requires separate assessment; such assess-
ment has begun for some sample types, such as cerebrospinal fluid54,55. 
Analysis of pQTLs in different sample types in large datasets is likely 
to be highly informative.

Although the current study attempts to assess the proteome of indi-
viduals with non-European ancestry, the sample size is still limited. 
The differences in genetic association with protein levels between 
the ancestries are of high interest and our results suggest that larger 
sample sizes in the cohorts with non-European ancestries will further 
our understanding of these differences.

Our study suggests that some of the differences between platforms 
may lie in their sensitivity to different proteoforms, but the contribu-
tion of the various proteoforms remains to be studied.

The SMP normalization of the SomaScan data has a considerable 
effect on downstream analysis, as reflected by lower correlation with 
Olink measurements, higher fraction of assays with cis pQTLs, and dif-
ferences in associations (Supplementary Note 4). The full extent of the 
effects of the SMP normalization warrants further study.

The platforms may be differently affected by epitope effects. We 
have not systematically performed assays such as ELISA or used 
other methods for each of the proteins or proteoforms studied, as 
such validation is currently difficult to perform at scale. Where the 
results from the platforms are discordant, further studies are required 
to determine which platform to believe, although evidence such 
as orthogonal validation or the existence of cis pQTLs can provide  
some insight.

Conclusion
Both platforms are expanding the number of targeted proteins, and it 
can be predicted that proteins with evidence of cis pQTLs in plasma on 
one platform can guide the selection of proteins on the other platforms 
towards those that have the highest chance of successful measurement 
in that medium. Thus, each of the two platforms could select 1,000 
additional proteins with cis pQTLs documented on the other platform. 
In addition, there are reasons to believe that the two platforms may 
measure different proteoforms for up to 500 proteins. We foresee that 
future versions of proteomics assays will target specific proteoforms 
encoded by a given gene instead of being referred to as targeting a 
single version of a protein.
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Methods

Study populations
Plasma samples collected from 54,265 UKB participants at their baseline 
visit were measured using Olink Explore 3072 as a part of UKB-PPP (UK 
Biobank application number 65851). All participants provided informed 
consent. A large majority of the samples were randomly selected across 
the UK Biobank, and only those were used for the analysis presented 
here. Many GWASs using the UKB data56 have been based on a prescribed 
European ancestry subset of 409,559 participants who self-identified 
as ‘white British’57. To better leverage the value of a wider range of UKB 
participants, we defined three cohorts encompassing 450,690 individu-
als, based on genetic clustering of microarray genotypes informed by 
self-described ethnicity and supervised ancestry inference12: 431,805 
individuals with British or Irish ancestry (UKB-BI, 46,218 with Olink 
data), 9,633 individuals with African ancestries (UKB-AF, 1,513 with 
Olink data) and 9,252 individuals with South Asian ancestries (UKB-SA, 
953 with Olink data).

Samples likely to be incorrectly labelled were identified based on 
individual predictions of sex by protein levels, and of protein levels 
by genotypes. Whole plates or individual rows or columns of samples, 
identified as being majority likely incorrectly labelled, were excluded 
from the UKB-PPP data. From the Expansion set of assays, this resulted 
in the exclusion of 13 whole plates and five rows or columns of samples, 
in total 1,179 samples. From the 1536 set of assays, this resulted in the 
exclusion of four whole plates and seven rows or columns of samples, 
in total 404 samples. Furthermore, in the 1536 set of assays, a single 
panel was excluded for two plates, affecting 174 samples.

We measured the plasma protein levels of 35,892 Icelanders using 
SomaScan v4 (ref. 2). All participants who donated samples gave 
informed consent, and the National Bioethics Committee of Iceland 
approved the study, which was conducted in agreement with condi-
tions issued by the Data Protection Authority of Iceland (VSN_14-015). 
Personal identities for the participants’ data and biological samples 
were encrypted by a third-party system (Identity Protection System), 
approved and monitored by the Data Protection Authority. In addition, 
we measured 1,514 of these Icelanders with the Olink Explore 3072 
platform using the same plasma sample.

We used 1,474 and 419 additional duplicate measurements of sam-
ples to evaluate assay precision for the Olink Explore (UKB sets) and 
SomaScan (Iceland 36K) platforms, respectively. For samples that were 
measured more than twice, two of the measurements were chosen at 
random.

External data sources
URLs for external data used are as follows: the GWAS catalogue (https://
www.ebi.ac.uk/gwas/), the GTEx project (https://gtexportal.org/
home/), the Human Protein Atlas (https://www.proteinatlas.org/), 
STRING database (https://string-db.org/; file name: 9606.protein.
actions.v11.txt.gz) and UniProt (https://www.uniprot.org/).

Software and data processing pipelines
We used the following publicly available software in conjunction 
with the algorithms described above. BamQC (v1.0.0, https://github.
com/DecodeGenetics/BamQC), GraphTyper (v2.7.1, v1.4, v2.7.2, 
https://github.com/DecodeGenetics/graphtyper), GATK resource 
bundle (v4.0.12, gs://genomics-public-data/resources/broad/hg38/
v0), Svimmer (v0.1, https://github.com/DecodeGenetics/svim-
mer), popSTR (v2.0, https://github.com/DecodeGenetics/popSTR), 
Admixture (v1.3.0, https://dalexander.github.io/admixture), Dipcall 
(v0.1, https://github.com/lh3/dipcall), RTG Tools (v3.8.4, https://
github.com/RealTimeGenomics/rtg-tools), bcl2fastq (v2.20.0.422, 
https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html), Samtools (v1.9, v1.3, https://
github.com/samtools/samtools), samblaster (v0.1.24, https://github.

com/GregoryFaust/samblaster), BWA (v0.7.10 mem, https://github.
com/lh3/bwa), GenomeAnalysisTKLite (v2.3.9, https://github.com/
broadgsa/gatk), Picard tools (v1.117, https://broadinstitute.github.io/
picard), Bedtools (v2.25.0-76-g5e7c696z, https://github.com/arq5x/
bedtools2), Variant Effect Predictor (release 100, https://github.com/
Ensembl/ensembl-vep), BOLT-LMM (v2.1, https://data.broadinstitute.
org/alkesgroup/BOLT-LMM/downloads), IMPUTE2 (v2.3.1, https://
mathgen.stats.ox.ac.uk/impute/impute_v2.html), dbSNP (v140, https://
www.ncbi.nlm.nih.gov/SNP), BiNGO (v3.0.3, https://www.psb.ugent.
be/cbd/papers/BiNGO/Download.html), Cytoscape (v3.7.1, https://
cytoscape.org/download.html), COLOC (v5.1.0.1, https://github.com/
chr1swallace/coloc). The genomics and pQTL processing pipelines have 
been extensively described previously2,12. To process data generated on 
the Olink platform, we used Olink Explore (v1.9.0, https://www.olink.
com/products-services/data-analysis-products/npx-explore/). Data 
were analysed and figures generated using Python (version 3.9.1), along 
with packages numpy (version 1.20.3), scipy (version 1.7.1), matplotlib 
(version 3.4.3), and pandas (version 1.3.0), and R (version 3.6.0).

Proteomic platforms
The Olink Explore 3072 proximity extension assay (PEA) platform is 
based upon an in-solution binding of two polyclonal antibody pools 
to a target protein and subsequent hybridization and enrichment of 
two unique single-stranded DNA probes to create a double stranded 
barcode unique for the antigen58. The platform consists of 2,941 
immunoassays targeting 2,925 proteins. Each assay is based on a pair 
of polyclonal antibodies. The antibodies bind to different sites on the 
target protein and are labelled with single-stranded complementary 
oligonucleotides. If matching pairs of antibodies bind to the protein, 
the attached oligonucleotides hybridize, and are then measured using 
next-generation sequencing59,60. Olink Explore 3072 consists of 8 panels 
of 384 assays analysed by next-generation sequencing. Four of those 
panels make up a previous iteration of the platform, Olink Explore 
1536, which can be considered a subset of the Olink Explore 3072, 
along with the Expansion set. The Olink measurements were based 
on the NPX values recommended by the manufacturer, which include  
normalization58.

The UKB plasma samples were measured at Olink’s facilities in 
Uppsala Sweden. All samples were randomized and plated by the UK 
Biobank laboratory team prior to delivery. Samples were processed 
across three NovaSeq 6000 Sequencing Systems. Extensive quality 
control measures and normalization of protein concentration was 
performed at Olink’s facilities, producing NPX values for each protein 
per participant. NPX is Olink’s relative protein quantification unit on 
a log2 scale.

The Olink measurements of the Icelandic plasma samples were 
performed at deCODE’s facility in accordance with the Olink Explore 
manual61. Quality control measures were the same as used by Olink for 
the UK Biobank samples.

The SomaScan platform utilizes a surface bound enrichment 
of proteins alongside a universal polyanionic competitor to pre-
vent transient non-specific interactions62. SomaScan v4 consists 
of 4,907 aptamer-based assays targeting 4,719 proteins. Aptamers 
are short, single-stranded oligonucleotides that bind to protein tar-
gets. The bound aptamers are then quantified using DNA microarray  
technology62,63. In most studies performed using SomaScan, the last 
step in the normalization process adjusts the median protein levels for 
each individual to a reference5,64. As this can affect the correlation of 
protein levels to other factors, some studies omit this step2. We refer 
to the former data as normalized and the latter as non-normalized. In 
addition to using non-normalized SomaScan protein measurements as 
we had done before2, we also applied SomaLogic’s SMP normalization64 
and performed all analyses using both non-normalized and normalized 
data. Comparison of the two normalization methods can be found in 
Supplementary Note 4.
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We refer to the outcome of a particular assay as the level of the pro-

tein, noting that the assay may not in fact measure the targeted protein.
Both Olink and SomaScan use dilutions of plasma samples to com-

pensate for different concentrations of proteins in plasma13,59,62. For 
the set of proteins targeted by both platforms, the two platforms are 
generally in agreement on the placement of proteins into low, inter-
mediate or high dilution groups (Supplementary Tables 1, 2 and 7).

Genotyping and imputation
The whole genomes of 150,119 UKB participants were sequenced 
to a median of 32.5× using Illumina technology12. Sequence variant  
calling was performed using GraphTyper65. In addition, all UKB par-
ticipants were single-nucleotide polymorphism (SNP) genotyped with 
Affymetrix SNP chips66,67. After filtering, the sequence variants along 
with the phased SNP chip data by Bycroft et al.57 were used to create 
a haplotype reference panel. Sequence variants were then imputed 
into the chip-genotyped samples using tools and methods described 
previously68,69. The genotyping and imputation of the UKB dataset 
have previously been described in greater detail12. We restricted our 
analysis to variants with MAF >0.01% and imputation information >0.9, 
resulting in 57.7 million variants in the UKB-BI, 36.5 million variants in 
the UKB-SA and 68.6 million variants in the UKB-AF datasets.

The whole genomes of 63,118 Icelanders were sequenced to a median 
of 32× using Illumina technology68. Sequence variants were called 
using GraphTyper65. In addition, the samples were SNP genotyped with 
Illumina SNP chips and long-range phased, and the data was used to 
impute genotypes. In total, 173,025 Icelanders were SNP genotyped, 
long-range phased and imputed based on the sequenced datasets. 
Where genotypes for an individual were missing for association stud-
ies, they were inferred using genealogic information if possible. The 
imputation learning set was based on whole-genome sequencing of 
15% of Icelanders, which allowed rare variant imputation. The geno-
typing and imputation on the Icelandic dataset have been previously 
described in greater detail50. We restricted our analysis to variants 
with MAF >0.01% and imputation information >0.9, resulting in 33.5 
million variants. Other software tools used for various tasks in the 
genotyping pipeline were BamQC, GATK resource bundle, Svimmer, 
popSTR, Admixture, Dipcall, RTG Tools, bcl2fastq, Samtools, sam-
blaster, BWA, GenomeAnalysisTKLite, Picard tools, Bedtools, Variant 
Effect Predictor, IMPUTE2, dbSNP, BiNGO and Cytoscape.

Phenotypes
In UKB we used health care records to identify the diagnosis of a disease 
or disease category, both prior and post plasma collection, based on the 
first three letters of the corresponding ICD10 code. When the number 
of individuals diagnosed exceeded 50, we estimated the association of 
protein levels with disease diagnosis. This resulted in 324, 29 and 20 
case–control phenotypes for UKB-BI, UKB-AF and UKB-SA, respectively. 
In addition, we had measurements of 208, 56, and 60 quantitative traits 
in UKB-BI, UKB-AF and UKB-SA respectively with at least 50 individuals 
measured for each trait. The quantitative traits were measured at the 
same time as the plasma was collected, when available.

In Iceland we used health care records to construct lists of disease 
diagnoses, both prior and post plasma collection. This resulted in 275 
case–control phenotypes. We furthermore had measurements of 110 
quantitative traits from various sources, in general not measured at 
the same time as the plasma was collected.

Protein–phenotype associations
We estimated the association of proteins levels with quantitative traits 
using linear regression. We estimated the association of protein levels 
with a prior or past disease in UKB and Iceland using logistic regression. 
All analyses were adjusted for the sex and age of the individual at the 
time of plasma collection, and in addition, quantitative measures were 
inverse normal transformed.

Annotation of assay targets
We assigned genomic coordinates to assay targets using UniProt 
IDs70 for each assay provided by the manufacturer. Out of 4,963 valid 
assays on the SomaScan platform (excluding non-human proteins and 
assays marked as defective by the manufacturer), this resulted in 4,961 
assays getting assigned the genomic coordinates of their intended 
targets. Out of 2,941 valid assays on the Olink Explore platform, this 
resulted in 2,923 assays getting assigned the genomic coordinates 
of their intended targets.

We identified assays targeting the same protein using their UniProt 
IDs. This resulted in 2,023 pairs of assays targeting 1,848 UniProt IDs; 
1,864 Olink assays and 1,994 SomaScan assays (Supplementary Table 4).

Assay accuracy
Accuracy refers to how similar repeated measurements will be while 
CV is the s.d. of measurements divided by their mean. As such, CV is 
not in all cases a good measure of accuracy. Indeed, if a platform were 
to produce random values in a tight range it would have a low CV but 
no accuracy.

To be able to use the CV of repeated samples to compare the two plat-
forms, we suggest considering the CV of repeated measurements rela-
tive to the expected CV of the assay if the repeated measurements were 
not of the same sample, but of samples selected at random from the 
population (Supplementary Fig. 1). This metric should range between 
0 and 1 and is approximately equal to the ratio of the s.d. of repeated 
measurements to the s.d. of all measurements. A CV ratio of 0 requires 
the s.d. of repeated measurements to be 0, indicating that they are 
fully correlated and therefore that the precision is 100%. A CV ratio of 
1 requires the s.d. of repeated measurements to be the same as the s.d. 
of random measurements, indicating that they are not correlated and 
therefore that the precision is 0%. We evaluated the platforms in terms 
of CV ratio, defined as the ratio of the observed CV to the expected CV 
if the measurements were independent.

Following Olink58, we assumed a log-normal distribution of protein 
levels. On the logarithm scale, denoting the mean protein level with  
µ and variance with σ 2, the mean and variance of protein levels  
will be e µ σ+ /22

 and e e( − 1)σ µ σ2 +2 2
. The CV is defined as the s.d. divided 

by the mean and therefore equals e − 1σ 2
 assuming a log-normal  

distribution.
To evaluate the precision of the assays, we estimated the CV for the 

available duplicate measurements and compared it to the expectation of 
the CV under the assumption that the two duplicates were independent 
of each other (CVrand). We used the robust median absolute deviation esti-
mator to estimate the s.d. of the repeated measurements on the log-scale 
and inserted this estimate into the formula for the CV above, obtaining 
CVrep. Note that CVrand is the same as the CV of all protein levels and that 
the ratio CVrep/CVrand corresponds to the ratio of the s.d. of the repeated 
measurements to the s.d. of all protein levels, and will be expected to be 
0 if the repeats are always the same and 1 if they are independent of each 
other (Fig. 1, Supplementary Fig. 1 and Supplementary Tables 1 and 2).

Relative evaluation of batch effects between platforms
Both Olink and SomaScan use repeated measurements of control 
samples, specific to the platform, for quality control. When using two 
measurements of the same control sample on the same plate to evalu-
ate the CV, the evaluation does not include the inter-plate variation, 
while the CV estimated assuming that the samples are not measured 
on the same plate but chosen at random from the set of all samples 
does include inter-plate variation. Comparing the CV ratio computed 
from the repeated control samples between the two platforms can 
therefore help comparison in terms of batch effects, with values closer 
to one suggesting that the platform is less susceptible to batch effects 
and closer to zero that the platform is more so (Supplementary Note 2, 
Supplementary Fig. 9).



Correlation of assays across platforms
We calculated correlations between protein levels measured in the 
same samples using Spearman correlation.

pQTL analysis
We carried out pQTL analysis in the same way as we have previously 
described2. The following three sections briefly describe this process.

Genome-wide association study
We rank-inverse normal transformed the measurements for each assay 
and adjusted them for age, sex and sample age. We standardized the 
residuals using rank-inverse normal transformation and used the stand-
ardized values as phenotypes for genome-wide association testing 
using a linear mixed model (BOLT-LMM71). We used LD score regression 
to account for inflation in test statistics due to cryptic relatedness and 
stratification72.

We computed P values using a likelihood ratio test and adjusted for 
multiple testing by using the same significance threshold (1.8 × 10−9) 
as in our previous study on the Icelandic dataset2.

We defined a pQTL association to be cis if the pQTL was located within 
1 Mb of the transcription start site for the gene that encodes the target 
protein, as reported by UniProt, and trans otherwise.

Of the 2,941 assays on the Olink Explore 3072 platform, data from 
UKB for 2,931 assays were used for GWAS analysis.

The number of variants we test in Iceland (33.5 million) is about 40% 
lower than in UKB (57.7 million). The difference is largely due to very 
rare variants. However, the difference between them would result in 
a multiple testing correction threshold in UKB of 8.7 × 10−10 instead 
of 1.8 × 10−9. A total of 153 (1%) of the cis pQTLs are between those two 
thresholds and 1,608 (5%) of the trans pQTLs.

For replication between platforms, the P value threshold is 0.05, 
with the requirement that initial and replication associations are in 
the same direction.

Conditional analysis
We performed recursive conditional analysis separately for each assay 
and each chromosome based on individual-level genotypes. For com-
putational efficiency, we restricted this analysis to the candidate set 
of sequence variants associating with the assay with a P <5 × 10−6. If the 
variant, v1, with the lowest P value had P <1.8 × 10−9, we removed v1 from 
the candidate set and the association of all other variants in the candidate 
set was recomputed, conditional on v1. If any variant in the candidate set 
had P < 1.8 × 10−9, we assigned the label v2 to the variant with the lowest  
P value, removed v2 from the candidate set, and calculated the condi-
tional association of the variants remaining in the candidate set given 
v1 and v2. We repeated this process until no variant in the candidate set 
had P < 1.8 × 10−9. Conditional analysis for two assays did not finish for 
all secondary signals but did return values for sentinel pQTLs.

We observe that 92% and 97% of secondary variants have an r2 below 
0.2 and 0.5, respectively, to the primary variant on Olink (based on r2 
calculated in the UK Biobank British and Irish set).

In addition, we estimated significance and effect based on a joint 
model of all variants at the locus to the phenotype for the variants 
selected in the stepwise model. When jointly estimating the effect 
on a protein at a locus, and examining pQTL associations at loci that 
contain more than 1 variant associated to a protein, 96% and 92% of 
the associations detected using SomaScan and Olink, respectively, 
remained significant when using the same genome-wide significance 
threshold as in the stepwise model (that is, 1.8 × 10−9).

Merging pQTLs
We considered sequence variants from the conditional analysis to 
belong to the same region if they were within 2 Mb of each other. Fur-
thermore, we considered the major histocompatibility complex (MHC) 

region (build 38 chr. 6:25.5-34.0MB) as a single region. We refer to the 
most significant variant in each region as the sentinel variant for the 
assay in the region, and other variants as secondary variants.

We used the ‘LD-based clumping approach’ proposed by Sun et al.6 
to identify pQTLs associating with multiple assays: we considered vari-
ants associating with a different assay to belong to the same pQTL if 
they are in high LD (r2 > 0.8).

pQTL replication
For replication between platforms, the P value threshold was 0.05, 
with the requirement that initial and replication associations were in 
the same direction.

Power calculation
For a given P value threshold P, sample size N, effect size β, and  
MAF f, the probability of rejecting the null hypothesis of no association 
is given by 1 − F(X − 1(1 − P), 2Nβ2f(1 − f )), where X –1(·) denotes the inverse 
cumulative distribution function (inverse CDF) of the chi-squared  
distribution with one degree of freedom, while F(a, b) denotes the CDF 
of the non-central chi-squared distribution with one degree of freedom 
for quantile a and non-centrality parameter73 b.

PAV annotation of pQTL variants
For each pQTL, we tested whether the variant itself and variants in high 
LD (r2 > 0.8) could affect the coding sequence of genes or their splicing, 
as described previously2.

Based on SomaScan, 40% of variants with cis pQTL and 28% of vari-
ants with trans pQTL are in high LD with a PAV (r2 > 0.80), and 44% of 
variants with cis pQTL and 38% of variants with trans pQTL are in high 
LD with cis eQTL (r2 > 0.8).

Based on Olink, 39% of variants with cis pQTL and 23% of variants 
with trans pQTL are in high LD with a PAV (r2 > 0.80), and 47% of vari-
ants with cis pQTL and 41% of variants with trans pQTL are in high LD 
with cis eQTL (r2 > 0.8).

Thus, when considering the neighbouring genes within ±1 Mb, we 
note that cis pQTLs are more likely to be in high LD with a PAV or cis eQTL 
on both platforms compared to trans. Similar results were observed 
on both platforms and when restricting to assays measuring proteins 
targeted by both platforms.

In addition, for cis pQTLs we also report if the PAV or cis eQTL is for the 
gene encoding the targeted protein (Supplementary Tables 21 and 19).

Cis eQTL and cis pQTL
For each cis pQTL, we tested whether the variant itself and variants in 
high LD (r2 > 0.8) corresponded to one or more top cis eQTLs based on 
73 tissues and 17 sources including the GTEx project, using the same 
methods and data as described previously2.

Integration of pQTL and disease associations
We calculated r2 values (based on the Icelandic population for 
SomaScan-Iceland and the UKB-BI population for Olink-UKB) between 
all sentinel pQTL variants and top (most significantly associated)  
variants per Mb bin and per experimental factor ontology (EFO) term 
reported in the NHGRI-EBI GWAS catalogue74 (downloaded 7 April 
2022), using the same methods as described previously2.

Relationship between pQTLs and disease-associated variants
We identified all variants reported in the NHGRI-EBI catalogue of human 
GWAS74 (excluding proteomics studies) in high LD (r2 > 0.8) with sentinel 
pQTLs based on Olink-UKB-BI data and Icelandic SomaScan data (Supple-
mentary Tables 38 and 39). For each sentinel pQTL association, we also 
identified a 95% credible set of variants (variants that most parsimoni-
ously explain regional association75) likely to include the causal variant76. 
We then checked whether GWAS catalogue variants in high LD with the 
pQTL variant (with r2 > 0.8 with the pQTL) were included in the credible 
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set. In addition to high LD between the disease-associated variant and 
both the pQTL and a variant in the credible set, for the highlighted exam-
ples, we estimated the posterior probability of statistical colocalization 
for the variants associating with disease and protein levels when they 
were not identical and when we had access to the necessary statistics77.

Disease and pQTL colocalization
To test for colocalization of the pQTL signals with signals in other 
traits we used the COLOC software package implemented in R77. Using 
summary statistics for the pQTL A and the trait B—that is, effects and 
P values—we calculated Bayes factors for each of the variants in the 
associated region for the two traits and used COLOC to calculate the 
posterior probability for two hypotheses: (1) that the association with 
the pQTL A and the trait B are independent signals (PP3) and (2) that the 
association with the pQTL A and the trait B are due to a shared signal 
(PP4). Prior probabilities for COLOC were left at default.

Protein subcellular locations
Protein subcellular locations were determined using annotations from 
the Human Protein Atlas14, using the same approach as in Sun et al.6 
where proteins annotated as ‘membrane’ by the Human Protein Atlas 
were considered to be membrane proteins, proteins annotated in the 
Human Protein Atlas as ‘secreted’ (but not ‘membrane’) considered 
to be secreted proteins, while other proteins were considered to be 
intracellular.

IL-10 ELISA
Blood was collected in EDTA tubes that were inverted 4–5 times and 
then centrifuged for 10 min at 3,000g at 4 °C. Plasma samples were 
frozen in aliquots at −80 °C. Plasma aliquots were allowed to thaw on 
ice and kept away from light during defrosting. Before measurement, 
the aliquots were mixed by inverting the tubes a couple of times and 
then centrifuged for 10 min at 3,220g at 4 °C.

IL-10 in plasma was measured by using MSD V-PLEX Human IL-10 
(cat: K151QUD) according to the manufacturer’s protocol (Meso Scale 
Diagnostics).

NFL ELISA
Plasma samples were measured in duplicates with commercially avail-
able Simoa NF-light Advantage (SR-X) kit (Quanterix, cat. 103400). 
Samples were diluted 4:1 and incubated with 25 µl anti-NF-light 
immunocapture beads and 20 µl biotinylated detector antibody at 
30 °C and 800 rpm for 30 min. Following the incubation, the bead- 
immunocomplexes were washed and resuspended before being  
incubated with 100 µl streptavidin-labelled β-galactosidase at 30 °C 
and 800 rpm for 10 min. After a second washing step, the bead- 
immunocomplexes and resorufin β-d-galactopyranoside were loaded 
onto an SR-X instrument (Quanterix) for processing and analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Whole-genome sequencing data, genotype data and phased and 
imputed data for the UK Biobank dataset, as well as the proteomics 
data, can be accessed via the UKB research analysis platform (RAP) 
(https://ukbiobank.dnanexus.com/landing). The UK Biobank Resource 
was used under application number 65851. The Icelandic genomic data 
and proteomics data have been described previously2. Although these 
individual-level data cannot be shared as dictated by the Icelandic 
law, we are open to collaborations on these topics, as we have been 
in the past. GWAS summary statistics for all 2,931 Olink assays and 
all 4,907 SomaScan assays are available at https://www.decode.com/

summarydata/. Other data presented in this study are included in this 
publication and its Supplementary Information.

Code availability
The code central to power analysis and calculation of CV ratio can be 
found at https://github.com/DecodeGenetics/proteomics_comparison.
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Extended Data Fig. 1 | Properties of the data sets used in the proteomics 
analysis. Proteomics measurements on the UKB data set were performed on 
the Olink Explore 3072 platform, while measurements on the Iceland 36K data 
set were performed on the SomaScan v4 platform. The Iceland 1K data set is a 

subset of the Iceland 36K data set, on which the same samples were measured 
using the Olink Explore 3072 platform in addition to the SomaScan v4 platform. 
Measurements of duplicated samples were used to evaluate precision of the 
assays. *Not all samples could be assigned to an ancestry group.
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Extended Data Fig. 2 | Variance of assays targeting the same protein. The variance of matching SomaScan and Olink assays stratified by the presence of cis 
pQTLs and colored by the correlation of levels.



Extended Data Fig. 3 | Correlation of sex, participant age and BMI effects. 
Left: The correlation of sex, participant age and BMI effects on protein levels 
between different cohorts in the UKB data set. Right: The correlation of sex, 

participant age and BMI effects on protein levels between the Olink and 
SomaScan platforms.
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Extended Data Fig. 4 | Genomic map of pQTLs. Genomic locations of all 
sentinel pQTLs (cis, red; trans, blue) on the Olink platform (UKB-BI, top) and the 
SomaScan platform (Iceland 36K, bottom). The x-axis indicates the position of 

the pQTLs, and the y-axis indicates the gene encoding the protein with the 
associated levels.



Extended Data Fig. 5 | Significance of pQTLs and effect of alternative allele. 
Top: significance of detected pQTLs in the UKB-BI and Iceland 36K data sets. 
For all platforms and populations, at the population size, a relatively much 
higher number of trans pQTLs than cis pQTLs have significance close to the 
threshold. p-values were based on two-sided significance tests and not 
corrected for multiple comparsions. Bottom: Effect of alternative allele broken 

down by presence or absence of PAV or cis eQTL in high LD. PAV-M: moderate 
impact PAV, PAV-H: high impact PAV, n_O: number of cis pQTLs detected with 
Olink, n_S: number of cis pQTLs detected with SomaScan. Box plots show  
the median and lower and upper quartiles; whiskers extend to 1.5 times the 
interquartile range; points beyond whiskers are plotted individually.



Article

Extended Data Fig. 6 | Proportion of protein assays that have a cis pQTL  
for subgroups of proteins defined by protein dilution, protein cellular 
location and overlap between platforms. The plot show point estimates with 
95% confidence interval. Centre points show proportion of cis pQTLs in each 
group. Top left panel based on 1964, 526, 257, 127 and 72 proteins with dilutions 
1:1, 1:10, 1:100, 1:1000, and 1:1000 dilution, respectively. Top right panel based 
on 3981, 778 and 148 proteins with dilutions 1:5, 1:200 and 1:20000, respectively. 

Bottom left panel based on 1409 intracellular, 839 membrane and 698 secreted 
Olink proteins (red points); and 2419 intracellular, 1434 membrane and 1054 
secreted SomaScan proteins (blue points). Bottom right panel based on 1100 
Olink proteins non-overlapping and 1846 Olink proteins overlapping with 
SomaScan (red points); and 2951 SomaScan proteins non-overlapping and 1956 
SomaScan proteins overlapping with Olink (blue points).



Extended Data Fig. 7 | Replication of pQTLs between platforms.  
a, b: Replication of sentinel cis (a) and trans (b) pQTLs detected using Olink 
Explore (UK biobank) in normalized SomaScan v4 (Iceland) data. For each 
pQTL, the plot shows the effect (in units of SD) in SomaScan v4 (y-axis) vs the 
effect in Olink Explore (x-axis). The assays were matched on the UniProt ID of 
their targeted protein. Each point is colored based on the Spearman correlation 
between measured protein levels using normalized SomaScan v4 and Olink 
Explore. The green lines show values where the effect is equal based on 
SomaScan v4 and Olink Explore, while the blue lines show a linear regression 
estimate with shaded 95% pointwise confidence intervals. c: Replication of 
sentinel cis pQTLs detected using Olink Explore (UK Biobank) in normalized 
SomaScan v4 (Iceland) data, stratified on whether the cis pQTL is in high LD 
with PAV (red) or not (blue). For each pQTL, the plot shows the effect (in units  
of SD) in SomaScan v4 (y-axis)) vs the effect in Olink Explore (x-axis). Each point 
is colored based on whether or not the associated variant has a protein-altering 
variant in high LD (r2 > 0.80). The green line shows values where the effect is 
equal based on SomaScan v4 and Olink Explore, while the blue and red lines 
show linear regression estimates with shaded 95% pointwise confidence 

intervals for each group (PAV in high LD; No PAV in high LD). d, e: Replication  
of sentinel cis (d) and trans (e) pQTL associations detected using normalized 
SomaScan v4 (Iceland) in Olink Explore (UK biobank) data. For each pQTL 
association, the plot shows the effect (in units of SD) in SomaScan v4 (x-axis) vs 
the effect in Olink Explore (y-axis). Each point is colored based on the Spearman 
correlation between measured protein levels using SomaScan v4 and Olink 
Explore. The green lines show values where the effect is equal based on 
SomaScan v4 and Olink Explore, while the blue lines show a linear regression 
estimate with shaded 95% pointwise confidence intervals. f: Replication of 
sentinel cis pQTL associations detected using normalized SomaScan v4 (Iceland) 
in Olink Explore (UK biobank) data, stratified on whether the cis pQTL is in high 
LD with PAV (blue) or not (red). For each pQTL association, the plot shows the 
effect (in units of SD) in SomaScan v4 (x-axis) vs the effect in Olink Explore 
(y-axis). Each point is colored based on whether or not the associated variant 
has a protein-altering variant in high LD (r2 > 0.80). The green line shows values 
where the effect is equal based on SomaScan v4 and Olink Explore, while the 
blue and red lines show linear regression estimates with shaded 95% pointwise 
confidence intervals for each group (PAV in high LD; No PAV in high LD).
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Extended Data Fig. 8 | Association with protein levels and disease risk.  
Left: Association at IL10RA locus between variants and protein levels of IL10RA 
and IL10 measured using Olink Explore and IBD risk. All r2 are shown to the same 
variant. Right: Association at CD58 locus between variants and CD58 levels 

measured using Olink Explore, CD58 levels measured using SomaScan v4 and 
multiple sclerosis risk. All r2 are shown to the same variant. p-values were based 
on a two-sided likelihood ratio test and not adjusted for multiple comparisons.



Extended Data Fig. 9 | Comparison of IL10 measurements. Protein levels of 
IL10 as measured by ELISA compared with measurements from Olink Explore 
3072, SomaScan v4 non-normalized (SOMA_PC0) and normalized (SOMA_SMP). 
‘***’ represents p < 0.001, based on a two-sided t-test, not corrected for multiple 

comparisons. The exact p-values were 1.5 × 10-75 for the correlation between 
OLINK and ELISA data and 1.1×10-85 for the correlation between SOMA_PC0 
and SOMA_SMP data.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Using complementarity to assess the performance 
of assays. The complementarity of the two platforms, along with the correlation 
of genomic information, can be used to assess the evidence for the targeting of 
the assays. A) The platforms target around 6,000 proteins in total, with about 
2,000 proteins targeted by both platforms. B) Cis pQTLs provide evidence  
that about 2,000 proteins on each platform, with about 1,000 unique to each 
platform. C) For about 500 proteins that have a cis pQTL on both platforms,  
the correlation between levels measured using the two platforms is low. 
Supplementary Table 29 contains columns indicating presence or absence of 

cis pQTLs as well as the correlation between matching assays on the two 
platforms, making useful information to evaluate the performance of the 
assays easily accessible. Numbers in the figure refer to unique proteins, while 
the rows of the table correspond to pairs of assays. *As multiple assays 
targeting the same protein can differ in performance, the same protein may 
belong to more than one subset. D) Expected abundance (as reflected by 
dilution groups), subcellular locations, and tissue of enriched expression for 
the Tier 1 proteins (top) and all proteins targeted by both platforms (bottom).
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Data collection We used the following publicly available software for data collection in the sequence processing pipeline: 
BamQC (v1.0.0, https://github.com/DecodeGenetics/BamQC),  
RTG Tools (v3.8.4, https://github.com/RealTimeGenomics/rtg-tools),  
bcl2fastq (v2.20.0.422, https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html),  
 
 
To process data generated on the Olink platform:  
Olink Explore (v1.9.0, https://www.olink.com/products-services/data-analysis-products/npx-explore/) 

Data analysis We used the following publicly available software in conjunction with the algorithms described above.  
 
GraphTyper (v2.7.1, v1.4, v2.7.2, https://github.com/DecodeGenetics/graphtyper),  
GATK resource bundle (v4.0.12, gs://genomics-public-data/resources/broad/hg38/v0),  
Svimmer (v0.1, https://github.com/DecodeGenetics/svimmer),  
popSTR (v2.0, https://github.com/DecodeGenetics/popSTR),  
Admixture (v1.3.0, https://dalexander.github.io/admixture),  
Dipcall (v0.1, https://github.com/lh3/dipcall),  
Samtools (v1.9, v1.3, https://github.com/samtools/samtools),  
samblaster (v0.1.24, https://github.com/GregoryFaust/samblaster),  
BWA (v0.7.10 mem, https://github.com/lh3/bwa),  
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GenomeAnalysisTKLite (v2.3.9, https://github.com/broadgsa/gatk),  
Picard tools (v1.117, https://broadinstitute.github.io/picard),  
Bedtools (v2.25.0-76-g5e7c696z, https://github.com/arq5x/bedtools2),  
Variant Effect Predictor (release 100, https://github.com/Ensembl/ensembl-vep),  
BOLT-LMM (v2.1, https://data.broadinstitute.org/alkesgroup/BOLT-LMM/downloads),  
IMPUTE2 (v2.3.1, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html),  
dbSNP (v140, https://www.ncbi.nlm.nih.gov/SNP),  
BiNGO (v3.0.3, https://www.psb.ugent.be/cbd/papers/BiNGO/Download.html),  
Cytoscape (v3.7.1, https://cytoscape.org/download.html), 
COLOC (v5.1.0.1, https://github.com/chr1swallace/coloc).  
 
Data was analyzed and figures generated using Python (version 3.9.1), along with packages numpy (version 1.20.3), scipy (version 1.7.1), 
matplotlib (version 3.4.3), and pandas (version 1.3.0), and R (version 3.6.0).  
 
The code central to power analysis and calculation of CV ratio can be found at https://github.com/DecodeGenetics/proteomics_comparison  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
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WGS, genotype data, phased and imputed data for the UK Biobank data set, as well as the proteomics data, can be accessed via the UKB research analysis platform 
(RAP), https://ukbiobank.dnanexus.com/landing. The UK Biobank Resource was used under application number 65851.  
The Icelandic genomic data and proteomics data have been described in our previous publication2.  While these individual-level data cannot be shared as dictated 
by the Icelandic law, we are open to collaborations on these topics, as we have been in the past.   
 
GWAS summary statistics for all 2,931 Olink assays and all 4,907 SomaScan assays are available at https://www.decode.com/summarydata/.  
 
Other data presented in this study are included in this publication (and its Supplementary Information).  
 
URLs for other external data used are as follows:  
the GWAS Catalog (https://www.ebi.ac.uk/gwas/),  
the GTEx project (https://gtexportal.org/home/),  
the Human Protein Atlas (https://www.proteinatlas.org/),  
STRING database (https://string-db.org/, file name: 9606.protein.actions.v11.txt.gz),  
UniProt (https://www.uniprot.org/). 
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Reporting on sex and gender Self-reported sex of subjects was recorded at enrollment. Statistical analyses are adjusted for sex based on self-reported sex. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The UK Biobank data set is stratified by ancestry into subjects of British and Irish, South-Asian, and African ancestry, based on 
genomic information as described in Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature 
607, 732–740 (2022).

Population characteristics The population characteristics of the Icelandic data set have been described in Ferkingstad, E. et al. Large-scale integration of 
the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021). 
The population characteristics of the UK Biobank have been described in Sudlow, C. et al. UK Biobank: An Open Access 
Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLOS Med. 12, e1001779  
(2015). 

Recruitment See 'Population characteristics'.

Ethics oversight All participants who donated samples to the Icelandic proteomics data set gave informed consent. The study was approved 
by the National Bioethics Committee of Iceland and conducted in agreement with conditions issued by the Data Protection 
Authority of Iceland (VSN_14-015). Personal identities of the participants were encrypted by a third-party system (Identity 
Protection System) approved and monitored by the Data Protection Authority. 
The scientific protocol and operational procedures of the UK Biobank were reviewed and approved by the North West 
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Research Ethics Committee (REC Reference Number: 06/MRE08/65). Data for this study were obtained and research 
conducted under UKB application license numbers 24898, 68574 and 65851

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size In Iceland, all individuals with available plasma samples have been analyzed by Somascan proteomics platform. The sample size in Iceland is 
comparable to the one used in the UK with Olink, where there majority of assays have cis pQTL association. Samples for measurement using 
the Olink platform in the Icelandic data set were chosen pseudo-randomly from those previously measured using the SomaScan platform. No 
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Data exclusions We had two preestablished exclusion criteria. First, Non-human proteins were excluded because the aim of this study is to assess human 
biology. Second, deprecated assays  according to the  manufacturers of the Olink and SomaScan assays were excluded from the analysis. 
These assays are excluded from the beginning and are not taken into account in the counts. Assays mapping to multiple genes were excluded 
from the Somascan platform since when multiple proteins can be measured at the same time, it is difficult to classify associations as cis or 
trans. Individuals with evidence of incorrect labelling based on the comparison of their protein levels with genotypes and phenotypes were 
excluded from all the analyses. 

Replication We attempted replication in two different ways: a) between Olink and Somascan platforms and b) within Olink platform. We attempted to 
replicate pQTLs detected in the British and Irish subset of the UK Biobank data set using the Olink platform in Icelandic data set using the 
SomaScan platform and vice versa. We attempted to replicate the associations detected in UK Biobank using Olink on a subset of individuals 
with available plasma proteomics in Iceland also using Olink. 

Randomization We performed an observational study where we test association between protein level  and sequence variants or phenotypes using two 
platforms and compare the results. There is no intervention in this study. The protein levels, genotypes and phenotypes are solely observed 
but never assigned as would be the case in an interventional study (e.g. clinical trial). Thus, randomization is not applicable to this study.

Blinding The protein levels, genotypes and phenotypes were  measured or assessed completely independently of each other. 
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