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Cingulate dynamics track depression 
recovery with deep brain stimulation

Sankaraleengam Alagapan1, Ki Sueng Choi2,3,4,14, Stephen Heisig2,14, Patricio Riva-Posse5, 
Andrea Crowell5, Vineet Tiruvadi6,7, Mosadoluwa Obatusin2, Ashan Veerakumar8, 
Allison C. Waters2,9,10, Robert E. Gross6,11,12, Sinead Quinn5, Lydia Denison7, 
Matthew O’Shaughnessy1, Marissa Connor1, Gregory Canal1, Jungho Cha2, 
Rachel Hershenberg5, Tanya Nauvel2, Faical Isbaine11, Muhammad Furqan Afzal2, 
Martijn Figee2,9,10, Brian H. Kopell2,4,9,10,13, Robert Butera1,6, Helen S. Mayberg2,4,9,10,13,15 ✉ & 
Christopher J. Rozell1,15 ✉

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide 
long-term symptom relief for treatment-resistant depression (TRD)1. However, 
achieving stable recovery is unpredictable2, typically requiring trial-and-error 
stimulation adjustments due to individual recovery trajectories and subjective 
symptom reporting3. We currently lack objective brain-based biomarkers to guide 
clinical decisions by distinguishing natural transient mood fluctuations from 
situations requiring intervention. To address this gap, we used a new device  
enabling electrophysiology recording to deliver SCC DBS to ten TRD participants 
(ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90%  
of participants demonstrated robust clinical response, and 70% achieved remission. 
Using SCC local field potentials available from six participants, we deployed an 
explainable artificial intelligence approach to identify SCC local field potential 
changes indicating the patient’s current clinical state. This biomarker is distinct from 
transient stimulation effects, sensitive to therapeutic adjustments and accurate at 
capturing individual recovery states. Variable recovery trajectories are predicted  
by the degree of preoperative damage to the structural integrity and functional 
connectivity within the targeted white matter treatment network, and are matched  
by objective facial expression changes detected using data-driven video analysis.  
Our results demonstrate the utility of objective biomarkers in the management of 
personalized SCC DBS and provide new insight into the relationship between 
multifaceted (functional, anatomical and behavioural) features of TRD pathology, 
motivating further research into causes of variability in depression treatment.

Patients with treatment-resistant depression (TRD) experience a wide 
variety of debilitating symptoms, including persistent negative mood, 
anhedonia, psychomotor retardation and suicidal thoughts. While 
many patients with TRD who receive experimental subcallosal cingulate 
(SCC) deep brain stimulation (DBS) have responded to continuous 
stimulation with durable symptom relief4–8, the clinical management of 
these patients is often complex due to a number of interacting factors. 
In particular, the progress of antidepressant response is nonlinear and 
different for each individual1,2, often involving periods of mood fluctua-
tion for which there is no absolute unanimous clinical interpretation. 

Without objective markers of depression severity, psychiatrists rely 
on clinical intuition to decide whether to change stimulation param-
eters or apply a watchful waiting approach. Currently, clinical teams 
use interviews and symptom surveys such as the Hamilton Depres-
sion Rating Scale (HDRS) to quantify depression severity, but these 
gold-standard rater-dependent measures are often obscured by various 
non-specific factors such as subjective recall biases9,10 and reactions 
to environmental circumstances. For example, while depression diag-
nostic criteria are based on negative mood and anhedonia that are 
sustained over a period of weeks, patients may experience normal 
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transient short-term mood fluctuations due to a variety of factors (for 
example, stressful life events, interrupted sleep or transitory anxiety)  
that are reflected in the HDRS and confound the measurement of core 
depression symptom changes. Therefore, objective markers of brain 
changes underlying DBS-mediated recovery are necessary to standard-
ize treatment approaches and aid in scaling SCC DBS to an approved 
therapy for TRD.

We address this gap by leveraging several simultaneous advances 
to derive a data-driven brain-based biomarker of stable depression 
recovery that can be used to differentiate clinically acute scenarios 
from periods of normal transient distress (illustrated in Fig. 1e). First, 
the high response rate combined with the heterogeneous trajecto-
ries to recovery achieved with this clinical cohort provides a unique 
opportunity to explore intersubject differences in the path to achieving 
antidepressant response. Second, while most of the current under-
standing of SCC electrophysiology dynamics in DBS arises from acute 
measurements (for example, intraoperative/perioperative local field 
potentials (LFPs)), new neurotechnology platforms allowing long-term 
electrophysiology monitoring provided an unprecedented opportu-
nity to study longitudinal changes with DBS over a 24-week treatment 
period as patients achieved stable recovery. Third, recent explainable 
artificial intelligence (XAI) developments have introduced approaches 
to explaining ‘black box’ machine learning models, providing a power-
ful framework for the data-driven discovery of effective biomarkers.

This Article demonstrates a biomarker that accurately identifies 
depressive and recovered states, tracks individual recovery trajec-
tories and predicts relapses, provides evidence of differential acute 
and sustained neuronal network adaptations and is concordant with 
objective changes in facial expression over the course of recovery. 

Furthermore, a multimodal analysis based on this brain signal shows 
that specific structural and functional deficits in the targeted white 
matter network reflect baseline disease severity (number of lifetime 
depressive episodes) and time to respond to DBS, demonstrating indi-
vidual differences that account for variable recovery trajectories with 
SCC DBS. Taken together, these results advance the existing practice 
of SCC DBS by providing actionable objective information to sup-
port personalized clinical management, provide new insight into the 
complex relationship between functional, structural and behavioural 
factors involved in patient-specific recovery, and motivate further 
research in using multimodal measurements to advance the treatment 
of depressive disorders.

Clinical outcomes of cohort
The study cohort consisted of ten consecutively recruited participants 
who were implanted with an experimental DBS implanted pulse genera-
tor (IPG) that served both stimulation and recording functions. DBS 
leads were inserted at the intersection of four major white matter path-
ways (Fig. 1a,b) identified from earlier studies11,12. All participants met 
study inclusion criteria before implantation with a minimum depres-
sion severity HDRS-17 score equal to or higher than 20 (Extended Data 
Table 1). Stimulation was turned on following a 4-week postsurgery 
recovery phase, and the primary endpoint of the study was defined as 
the HDRS-17 score at 24 weeks of chronic SCC DBS. At a cohort level, 
participants experienced a significant reduction in HDRS-17 score 
from the presurgery baseline with a mean HDRS-17 of 22.3 (s.d. 1.64), 
to the end of the 24-week observation phase with a mean HDRS-17 of 7.3  
(s.d. 3.62). At an individual level, nine out of ten participants were 
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Fig. 1 | Overview of study procedures. a, Coronal view of the DBS lead 
targeting bilateral SCC in an example patient. The red sphere indicates the 
volume of tissue activated (VTA) with the final stimulation parameters. The 
black circles indicate the volume of tissue recorded (VTR) from each electrode 
contact, showing coverage of grey matter that are the likely sources of the 
recorded LFP. b, Common activation pathway patterns from chronic stimulation 
VTA seed of the six participants at 6 months. c, Trajectory of HDRS-17 scores 
over 24 weeks for five participants (of six total) who were typical responders. 
Grey lines indicate individuals and the black line indicates the mean. Error bars 
indicate standard deviation (n = 5 participants). Clinical consensus was that all 
five were ‘sick’ during weeks 1–4 and in ‘stable response’ during weeks 20–24.  
d, Schematic of deriving the SDC from LFP features. A neural network classifier 
is first trained with data from the ‘sick’ and ‘stable response’ states of all typical 

responders. Next, separate neural networks are trained to compress the data 
from the spectral feature space to a low-dimensional latent space and then 
reconstruct the data from that compressed version. Using recent advances in 
XAI techniques, one of these latent dimensions is a discriminative component 
constrained to represent the simultaneous data changes (the SDC) used by  
the classifier to distinguish ‘sick’ from ‘stable response’. e, Illustration of the 
utility of an objective biomarker. When patients experience instability in 
symptom scores, decisions about treatment (for example, stimulation voltage 
adjustment) must be made by inferring whether the instability is due to transient 
distress (scenario 1) or depression relapse (scenario 2). A biomarker that reflects 
progress of the brain towards ‘stable response’ will enable more effective clinical 
decision-making about interventions. CB, cingulum bundle; UF, uncinate 
fasciculus; FM, forceps minor; F-ST, frontostriatal fibres.
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deemed to be responders (greater than 50% decrease in HDRS-17) and  
7 out of 10 were deemed to be in remission (HDRS-17 less than 8). Despite 
the consistent clinical outcomes at the 24-week endpoint, individual 
patients showed variable recovery trajectories, with some achieving 
clinical response much earlier than others (Fig. 1c).

Chronic electrophysiological data for analyses were available for 
six of the ten participants. Of these participants, five of the six dem-
onstrated a typical response trajectory (‘typical responders’). The five 
participants entered the 24-week observation phase with a mean HDRS-
17 of 18.80 (s.d. 1.72) reflecting a mean decrease of 4.4 (s.d. 2.15) follow-
ing surgery and intraoperative stimulation. After 4 weeks of chronic 
stimulation, these ‘typical responders’ experienced a further decrease 
with a mean HDRS-17 of 15.20 (s.d. 0.83) (mean decrease 3.6, paired 
one-sided Wilcoxon signed-rank test, P = 0.031), and in weeks 21 to 24 
their mean HDRS-17 was 6.92 (s.d. 2.39) (Extended Data Fig. 1a). The 
difference in HDRS-17 between the first 4 weeks and the last 4 weeks 
was statistically significant (mean decrease 8.3, paired one-sided  
Wilcoxon signed-rank test, P = 0.031). At the end of 24 weeks, these five 
participants reached clinical responder status, and four out of the five 
participants achieved remission. Based on the weekly HDRS-17 scores, 
all participants were considered to be in a ‘sick’ state during the first 
4 weeks and in a ‘stable response’ state during the last 4 weeks of this 
period. A similar trend was observed in scores from another standard 
depression rating scale, the Montgomery-Åsberg Depression Rating 
Scale (MADRS, Extended Data Fig. 1b). The recovery trajectories of 
participants whose electrophysiological data were not available were 
qualitatively similar to those of participants included in this study 
(Extended Data Fig. 1c).

SCC dynamics delineate the depression state
We extracted spectral features from LFP recorded with stimulation 
turned off for the classification of ‘sick’ versus ‘stable response’ (that 
is, the first 4 weeks and the last 4 weeks of the 24-week observation 
period) in the typical responders. A neural network classifier (with 
leave-one-participant-out cross-validation) was able to distinguish the 
‘sick’ and ‘stable response’ states (area under the receiver operating 
characteristic (ROC; AUROC): 0.87 ± 0.09; Fig. 2a) in the five typical 
responders, suggesting recovery from depression is reflected in similar 
electrophysiological changes across participants. The parameters of 
the neural network classifier are provided in Extended Data Table 2. 
We then trained a generative causal explainer (GCE)13 to identify the 
spectral discriminative component (SDC), which is a low-dimensional 
latent representation of the spectral features that collectively capture 
the difference between the ‘sick’ and ‘stable response’ states as deter-
mined by the neural network classifier. Thus, the SDC serves as an LFP 
marker reflecting the status relative to binary depressive/recovered 
states, with higher values indicating the ‘sick’ state and lower values 
indicating the ‘stable response’ state. The procedure for validating the 
GCE model is detailed in Methods and Extended Data Fig. 2. In addition, 
details of the training and testing data used for training the classifier 
and GCE models are provided in Extended Data Table 3.

Beta band is differentially modulated
We used the slope of the joint changes in LFP features when the SDC was 
varied to identify the concurrent spectral features that exhibited the 
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30–40 Hz band, as described in the text. c, Change in left-low beta and left-high 
beta power from the beginning to the end of the observation phase (relative to 
last week of postsurgical period without stimulation). *P = 0.031 (one-sided 
Wilcoxon signed-rank test). d, Trajectory of the SDC over 24 weeks. Grey lines 

indicate individual participants and the black line indicates the average  
of the five typical responders. Error bars indicate standard deviation (n = 5 
participants). e, Illustration of identifying state change from ‘sick’ to ‘stable 
response’. Transition to ‘stable response’ is defined as the week when the 
measure falls below the transition threshold for two consecutive weeks and 
(during the observation period) never returns above threshold for two or more 
weeks. f, State change from ‘sick’ to ‘stable response’ in an exemplar participant 
(P002). The blue line indicates the state inferred from HDRS-17 scores and the 
red line indicates the state inferred from the SDC. g, ROC curves of the SDC 
state predicting the HDRS state. Grey lines indicate the ROC curve for individual 
participants and the black line indicates the mean ROC curve.
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most changes when patients transitioned from ‘sick’ to ‘stable response’ 
(Fig. 2b). A positive slope indicates an increase in the feature’s magnitude 
when the SDC changes from the ‘sick’ state to the ‘stable response’ state, 
while a negative slope indicates a decrease in the feature’s magnitude. 
Changes in the SDC resulted in changes in many spectral features simul-
taneously, with the largest changes observed in left alpha (8−13 Hz), 
left-low beta (13−20 Hz), left-high beta (20−30 Hz), right-high beta and 
right-gamma band power (30−40 Hz). All these features exhibited an 
increase, suggesting the difference between ‘sick’ and ‘stable response’ 
states is driven by a bilateral increase in beta/gamma power in SCC. As a 
secondary confirmation, a similar subset of features was identified to 
be important for classification using a clustering-based permutation 
feature importance method (Extended Data Fig. 3).

While the identified features (especially beta band power) have been 
previously reported to respond to stimulation in acute stimulation 
experiments, the current longitudinal analysis reports the opposite 
change pattern. Specifically, acute intraoperative SCC stimulation has 
been shown to decrease beta band power poststimulation offset14,15, 
whereas chronic stimulation here promotes sustained increases in 
beta band power. To directly compare findings here with these previ-
ous studies, we computed the beta band power across the 24-week 
observation phase relative to the last week of the 4-week postsurgery 
recovery phase (when stimulation remained off). Relative to the post-
surgery off baseline, left-low beta band power (13–20 Hz) was lower in 
the early phase of active treatment (week 1–4 stimulation on) (one-sided 
Wilcoxon signed-rank test, P = 0.031) and higher in the late phase (week 
21–24 stimulation on) (one-sided Wilcoxon signed-rank test, P = 0.031) 
in all five typical responders (Fig. 2c). The difference between the early 

changes and the late changes was also statistically significant (paired 
one-sided Wilcoxon signed-rank test, P = 0.031). A similar difference 
between the early and late changes was observed in left-high beta 
band power (P = 0.031), although the early treatment decrease and 
late treatment increase were not statistically significant (P = 0.062). 
This indicates that while the early effect of stimulation is consistent with 
the acute effects observed in previous studies, the long-term effect is 
distinct and in the opposite direction. While other bands with signifi-
cant longitudinal changes (captured by the SDC) exhibit an increase 
from weeks 1–4 to weeks 21–24, only the low beta band activity exhibits 
the differential response of acute decrease followed by an increase with 
chronic stimulation (Extended Data Fig. 4).

SDC tracks progress to stable response
We computed the SDC for the intermediate period (weeks 5−20) to 
estimate the trajectory of LFP changes from the ‘sick’ state to the ‘stable 
response’ state in all patients (Fig. 2d; Extended Data Fig. 5a). To verify 
whether the SDC indeed tracked depressive symptoms, we compared 
the depressive state estimated from the SDC against the state derived 
from HDRS-17. We further define ‘stable response’ as the occurrence 
of two or more consecutive weeks of therapeutic response, followed 
by the absence of a subsequent loss of response (Fig. 2e). The time of 
stable response is taken (in retrospective analysis) to be the first week 
a patient reached this ‘stable response’ state. Thus, the participants 
are considered to be in the ‘sick’ state in the weeks preceding this time 
point and in the ‘stable response’ state in the weeks following this time 
point. Using analogous criteria on the SDC, we examined the ability of 
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the electrophysiology marker to detect this sick/stable response state 
on a weekly basis, as shown in (Fig. 2f) with a ROC. When evaluated using 
the area under the curve (AUC) for each participant (Fig. 2g), we found 
this approach yields high accuracy; in weekly estimates, the SDC state 
matched the HDRS state over 90% of the time (AUC 0.94 ± 0.036), indi-
cating that SDC significantly and reliably captures clinically meaningful 
depression states of the participants. Extended Data Figure 5b shows 
how well the state derived from SDC using a threshold of 0.5 tracks the 
state derived from HDRS-17.

Stimulation voltage changes alter SDC
While all participants start at the same dose (a stimulation voltage of 
3.5 V) at the beginning of the 24-week treatment protocol (except P001, 
who started at 3 V), the dose may be changed as deemed necessary by 
the study psychiatrist in increments of 0.5 V (Extended Data Table 1). 
The weeks in which these changes were made varied across participants 
(range 4–22 weeks after the beginning of therapeutic stimulation). 
This provides an opportunity to examine whether the SDC is affected 
by DBS dose adjustments. We found that increases in stimulation 
voltage resulted in a decrease in the SDC (that is, the LFP indicated 
progress towards the ‘well’ state) in the subsequent week (Fig. 3a left; 
−0.177 ± 0.111, one sample Wilcoxon signed-rank sum test P = 0.039), 
suggesting that the LFP features that capture stable depression recov-
ery are affected by stimulation voltage change. By contrast, the changes 
in voltage did not result in a consistent or significant change in HDRS-
17 scores in the subsequent week (Fig. 3a right, one sample Wilcoxon 
signed-rank test P = 0.151). We also found that the changes observed 
1 week after the stimulation voltage change were statistically different 
from those observed 1 week after a random week when no stimulation 
voltage change was made (P = 0.034) using a shuffle-based procedure.

SDC tracks relapse in held-out patient
To demonstrate the potential utility of the SDC in a clinical setting, we 
retrospectively analysed LFP data from one participant (P001) whose 

data were not included in training the classifier or the GCE. Thus, this 
participant served as an out-of-sample validation data point for the SDC 
as a depression state biomarker. P001 experienced a clinical relapse 
after 4 months in remission. P001 started the active stimulation phase 
with low HDRS-17 scores (less than 8) and had a sudden and sustained 
worsening of symptoms such that they were deemed a non-responder 
by week 16 (Fig. 3b blue line). Using the SDC trained on the five typical 
responders (but not trained on P001), the SDC correctly captures this 
trend in P001 by indicating a response state followed by a sick state 
(Fig. 3b red line). Interestingly, the SDC indicated a relapse from the 
brain signal (Fig. 3b red arrow) over 1 month before the clinical relapse 
measured by the HDRS-17 (Fig. 3b blue arrow), demonstrating that the 
brain biomarker could have predicted an impending instability and 
the need for earlier intervention before it was clinically apparent. In 
addition, dose increases (Fig. 3b purple arrows) resulted in decreases 
in SDC, but the effect did not persist until changes were made three 
times. Notably, the final stable dose in this patient (4.5 V) after the 
6-month study period was comparable with the average dose in the 
typical responders.

To demonstrate the similarity between HDRS-17 and the SDC in this 
out-of-sample participant, we compared the states indicated by HDRS-
17 and the SDC. As the therapeutic response was at the beginning of 
the observation phase, it is not possible to use the criteria described 
above for ‘stable response’. Yet, if we consider the two states as ‘sick’ 
and ‘response’ denoting a change in HDRS-17 of less than 50% decrease 
and greater than 50% decrease (respectively), we find that the SDC state 
accurately predicts the HDRS state 75% of the time over the 24-week 
treatment course (P = 0.029, shuffle-based procedure).

White matter abnormality correlates of transition
Previous studies have shown that incomplete white matter path-
way activation affects therapeutic outcomes in SCC DBS11,16. We 
hypothesized here that functional and structural abnormalities in 
these prespecified targeted white matter bundles may also influence  
the recovery trajectory, as inferred from the SDC. Using preoperative 
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Fig. 4 | Structural and functional imaging correlates of transition to stable 
response. a, Regions showing correlation (Spearman’s rho) between the 
transition week and the white matter microstructure damage (P < 0.05), 
measured by both FA and radial diffusivity or FA and axial diffusivity, in vmF  
(i), aHC (ii), Ins (iii) and dACC and PCC (iv). b, Significant correlations 
(Spearman’s rho) were observed between the transition to ‘stable response’ 
week and FA (P = 0.042) and radial diffusivity (P = 0.028) in dACC (top) and FA 
(P = 0.025) and axial diffusivity (P = 0.012) in vmF (bottom). c, A significant 
correlation of dACC FA and functional connectivity between SCC and MCC with 
the number of episodes in a lifetime using all nine participants (excluding one 

participant because of artefact, Spearman’s rho P < 0.05) indicated by an 
orange dot in the coronal section (top). These regions are directly connected 
from the stimulation target via the cingulum bundle (bottom, yellow lines) 
which also contains the FA and radial diffusivity abnormality described in a.  
d, Post hoc correlation between FA and functional connectivity indicates a 
significant relationship between FA in the dACC and functional connectivity of 
the SCC and MCC (Spearman’s rho P = 0.002). e, Correlation (Spearman’s rho) 
between the number of episodes in a lifetime and functional connectivity of 
SCC and MCC (P = 0.001) and FA (P = 0.002).
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imaging, we found significant negative correlations between the 
weeks of transition to ‘stable response’ as identified from the SDC 
and white matter integrity, as indexed by both fractional anisotropy 
(FA) and radial diffusivity or FA and axial diffusivity. Regions hav-
ing particularly significant correlations between structural integrity 
and time to recovery within the target network include the forceps 
minor, uncinate fasciculus, frontal–subcortical and cingulum bundles 
connecting the DBS target site to the ventromedial frontal cortex 
(vmF), anterior hippocampus (aHc), insular (Ins) and dorsal ante-
rior and posterior cingulate cortex (dACC and PCC), respectively 
(Fig. 4a,b). These findings suggest that white matter microstructure 
alterations within the underlying targeted brain network results in 
longer DBS treatment times to achieve a stable response. Specifically, 
the radial diffusivity correlation with time to recovery provides evi-
dence of baseline demyelination being a primary contributor to the 
white matter deficits that account for the variable time to recovery in  
patients.

In addition to a relationship between the stable SDC response time 
and white matter damage, we found a significant correlation of white 
matter abnormalities in the dACC to functional connectivity between 
the SCC and the midcingulate cortex (MCC) (P < 0.05) (Fig. 4c,d). 
This correspondence indicates a relationship between functional 
properties within the target network and structural properties that 
account for a prospective notion of disease severity as indexed by 
time to recovery. Furthermore, when considering the whole cohort, 
we found a significant negative correlation of both dACC FA and  
SCC–MCC functional connectivity with the number of lifetime 

depressive episodes experienced by each individual prior to SCC DBS 
(n = 9 participants; one excluded because of image artefact) (P < 0.05) 
(Fig. 4e). This concordance suggests that structural and functional 
deficits in the target network are also related to a retrospective notion 
of disease severity as indexed by the individual patient’s history of 
chronic depression.

SDC tracks changes in facial expressions
In addition to standardized clinical rating scales, we quantified behav-
ioural improvement using changes in facial expression extracted from 
videos of weekly clinical interviews. The features comprised summary 
measures of facial movements, including facial action units, eye gaze 
and head pose (Fig. 5a). Importantly, the features were not designed 
to explicitly relate to specific emotion constructs (for example, sad-
ness). Similar to the LFP analyses (but entirely independent of the LFP 
data), we aimed to identify differences between the ‘sick’ and ‘stable 
response’ states using facial features. As there are considerable inter-
individual differences in facial expressions independent of depression, 
we used an individualized classifier for each patient to distinguish 
‘sick’ and ‘stable response’ periods (in contrast to the single LFP clas-
sifier derived for the whole cohort). Random forest classifiers of facial 
expression features were able to classify ‘sick’ and ‘stable response’ 
states in each individual participant separately (AUROC 0.95 ± 0.05), 
suggesting that there are individualized yet consistent differences 
between the ‘sick’ and ‘stable response’ states (Fig. 5b). While we found 
a common set of distinct features (action units 1 and 7 and pose) across 
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Fig. 5 | Facial expression correlates of SDC and transition times. a, Overview 
of facial expression classifier analysis. Facial landmarks are extracted from 
each frame of videos of clinical interviews and facial representation features 
(action units, gaze and pose) are estimated for each frame. Separate logistic 
regression classifiers are trained for each individual participant’s features to 
classify ‘sick’ and ‘stable response’ states. The features from the intermediate 
period (weeks 5−20) for each participant are then projected through the 
corresponding trained classifiers to get a prediction probability that serves as 
a measure of behavioural state. b, ROC curves of face classifier in classifying 
‘sick’ and ‘stable response’ states within individual participants. Grey lines 
indicate the mean ROC curve of individual participants. Black lines indicate the 

mean ROC curve across participants. c, Muscle heat map output from Py-Feat 
showing consensus changes in action unit intensities between the ‘sick’ and 
‘stable response’ states across all participants. Red colour indicates increases, 
while green colour indicates decreases. d, Trajectories of face classifier output 
for five typical responders. Grey lines indicate individuals and the black line 
indicates the average. Error bars indicate standard deviation (n = 5 participants). 
e, SDC versus face classifier output from weeks 5 to 20 for the five typical 
responders. Dots indicate weeks for individual participants, and the line 
indicates least-square fit regression. f, Correlation (Kendall’s tau) between 
transition weeks inferred from the SDC and face classifier output. Dots indicate 
individual participants. *P = 0.037.
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all participants in the consensus map (Fig. 5c), there were also many fea-
tures that distinguished ‘sick’ and ‘stable response’ states unique to each  
participant.

We then used these individual facial expression features extracted 
in the intermediate period (weeks 5−20) to obtain the classifier’s pre-
diction of the disease state, which we termed face classifier output. 
As a secondary confirmation of the SDC biomarker, we compared 
the face classifier output with the SDC for each individual patient.  
We observed that the face classifier output’s trajectory is both qualita-
tively similar to the corresponding participant’s SDC trajectory (Fig. 5d; 
Extended Data Fig. 6), and quantitatively we found a significant rela-
tionship between the face classifier output and the SDC (Fig. 5e; linear 
mixed model, F(1.00, 51.74) = 6.54, P = 0.01). Next, we tested whether 
the face classifier output captures the changes from ‘sick’ to ‘stable 
response’ observed in the SDC. The face classifier output and the SDC 
have the same normalized scale (unlike HDRS-17), meaning they are 
directly comparable. Using a strict threshold (0.35) to binarize these 
measures for direct comparison, we found that the transition weeks 
from the ‘sick’ state to the ‘stable response’ state inferred from the 
SDC and the face classifier output were concordant (Fig. 5f; Kendall’s  
tau = 0.89, P = 0.037). Taken together, these results suggest that the 
SDC also accurately tracks changes in facial expressions accompanying 
recovery from depression.

Discussion
In this study investigating long-term multimodal changes with SCC 
DBS, we derived the SDC as a common objective biomarker that accu-
rately captured clinically defined ‘sick’ and ‘stable response’ states in 
all patients, as well as responding to changes in DBS stimulation. In 
addition, the transition to reach the ‘stable response’ state identified 
from the SDC was correlated with structural and functional irregulari-
ties in the targeted white matter tracts and was further concordant with 
a data-driven analysis of complex facial expressions. While this cohort 
experienced typical moment-to-moment mood variations as well as 
short-lived (experiential and LFP) effects with initial DBS exposure15,17,18, 
the SDC behaviour newly described here uniquely matches the clinical 
observation that sustained stable recovery requires weeks of ongoing 
chronic stimulation19.

Notably, the post hoc analysis of the relapsed responder demon-
strates the potential value of the SDC in a clinical setting. Specifically, 
the SDC predicted the relapse approximately 5 weeks before structured 
interviews indicated the pending clinical change. Conversely, we also 
observed a different participant (P003) where the SDC indicated a 
transition to stable recovery well before the HDRS-17. Further analysis 
of the individual HDRS-17 items revealed that the apparent mismatch 
of the HDRS-17 and SDC was because of increasing anxiety symptoms 
without changes in core depression symptoms, a dissociation con-
firmed by clinical notes made by the study psychiatrist (Extended Data 
Fig. 7). Thus, our observations suggest that the derived SDC can aid in 
distinguishing the two scenarios laid out in Fig. 1e, adding critical infor-
mation to inform rational clinical management decisions. To facilitate 
scalability, we also note that this biomarker is common across partici-
pants and does not require the individualization recently proposed in 
other strategies20,21. Replication in an independent cohort will provide 
additional specificity and sensitivity necessary for implementing a 
‘clinician-in-the-loop’ DBS approach.

Multiple previous studies have also identified prominent (but 
not exclusive) beta band changes in acute SCC LFP dynamics 
with short-term stimulation exposure14,15 or with resting-state or 
emotional-challenge experiments without stimulation22–25. For exam-
ple, previous studies demonstrate decreases in beta band power after 
brief bilateral intraoperative SCC stimulation14,15, consistent with 
the decreases in beta band power observed within the first month of 
chronic stimulation in the current cohort. The eventual transition to 

an increase in beta band power after chronic stimulation suggests that 
sustained, antidepressant responses are distinct from transient behav-
ioural stimulation effects and thus are probably mediated by different 
mechanisms, including stimulation-induced plasticity26,27. Our find-
ings support the broader hypothesis that beta band activity signals the 
establishment and maintenance of a status quo cognitive state28. In this 
context, we posit that the early desynchronization of beta band activity 
may correspond to release from the depressive maladaptive state ena-
bling more flexible behaviour (reflected by increased HDRS variabil-
ity), followed by an increase in beta band activity signalling the return 
of a new homeostatic set point after adaptation to chronic DBS (corre-
sponding to stable recovery)28. Beyond the SCC, beta band activity has 
emerged as an important marker of dysfunction across many studies 
investigating mood disorders, including intracranial recordings in 
humans29,30, non-invasive electroencephalogram31 and rodent mod-
els32. Of note, the different regions investigated in these studies con-
stitute the targets of our treatment network33, suggesting that the beta 
band changes we observed may reflect network-wide changes across  
multiple regions.

The long-term effects observed here with chronic DBS resemble 
the effects of slower-acting antidepressants, particularly selec-
tive serotonin reuptake inhibitors (SSRIs). The effect of SSRIs on 
5-hydroxytryptamine neural activity in the dorsal raphe nucleus (DRN, 
one of the downstream targets of SCC DBS) has been shown to change 
over time, with acute suppression followed by restoration over 2 weeks 
(ref. 34). Interestingly, chronic DBS has been shown to act on DRN neu-
rones, restoring serotonergic pathways from DRN to limbic regions 
that include the vmF35.

While all patients were implanted to affect the same four white mat-
ter bundles, the degree of increased radial diffusivity and decreased 
FA (typically suggesting demyelination) within this target network 
was correlated with longer recovery times. Further supporting the 
role of region-specific white matter integrity in depression patho-
physiology is complementary postmortem findings in TRD suicides, 
which identify local myelin and oligodendroglia abnormalities in and 
around the SCC region and its projections36–38. Furthermore, dACC 
FA is significantly associated with functional connectivity deficits 
between the stimulation target and MCC, which are directly con-
nected via the cingulum bundle33,39. Importantly, our finding of a 
negative correlation between white matter deficits and the number 
of lifetime depressive episodes is consistent with a large depression 
cohort study that reported lower FA and higher radial diffusivity with 
recurrent patients compared with single-episode patients, as well as 
previous studies relating the cumulative effects of depressive epi-
sodes on brain microstructure40. Network reorganization may be a 
potential mechanism of the transition from acute to chronic response 
with SCC DBS, consistent with animal studies suggesting that chronic 
stimulation may lead to neuroplastic changes, resulting in remyeli-
nation of targeted tracts26,41 or engagement of homeostatic plastic-
ity mechanisms to produce long-term changes42. The availability of 
new magnetic resonance imaging (MRI)-compatible DBS IPGs will 
enable direct measurements of structural and functional connec-
tivity changes within the stimulated network over time to test these  
hypotheses.

A patient’s appearance is a core component of a physician’s clinical 
assessment during diagnosis and recovery, and our personalized facial 
expression analysis of depression states provides a robust independent 
readout of these clinical impressions that concords with the SDC. While 
there was a clear overlap of the face action units (AUs) that changed 
across participants, the inability to derive a single sick/well classifier 
(either due to inherent variability or small sample size limitations) 
meant that the model could only be used as a descriptive tool instead 
of a prospective estimate of the current depression state. The com-
mon changes across participants do involve AUs previously linked 
to classic constructs of both sadness and happiness43, as well as the 
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electromyography patterns of pain and despair defined by Duchenne 
and Darwin in the 1860s44,45. Importantly, stimulation of the cingulum 
bundle directly affects dACC projections to the facial nuclei that inner-
vate the eyes and upper face (for example, orbicularis oculi muscle 
and frontalis/corrugator muscular complex)46 that dominate the AU 
changes seen across participants46. Deficits in this pattern of facial 
movement (loss of mimetic facial expression with preservation of voli-
tional movement) are well described with cingulum bundle lesions47, 
and the dACC white matter lesion reported above is adjacent to the cin-
gulate face region48,49. While the upper face does not work in isolation, 
the symmetric, bilateral change pattern across patients is consistent 
with the normalization of emotional rather than volitional facial move-
ment (moderated by M1 projections from the lateral cortex, which is a 
region not impacted directly by SCC DBS).

The current study has several limitations. First, the LFP analysis 
here is limited to six of ten participants due to prototype device 
challenges (that is, data artefacts and protocol changes after pilot 
implantations). Nonetheless, the derived SDC biomarker was reliable 
across all participants, including the held-out participant. Second, the 
results presented are from LFP collected with therapeutic stimulation 
temporarily turned OFF to eliminate significant stimulation-related 
artefacts50. However, while there is practical convenience to estimat-
ing a biomarker without interrupting therapeutic stimulation, the 
lack of negative clinical effects associated with relatively short SCC 
DBS discontinuation makes it feasible to calculate this biomarker 
during transient periods without the technical confound. Third, we 
have not explicitly modelled acute moment-to-moment distress20,30, 
which would validate the specificity and potentially enhance the 
behavioural interpretability of our chronic biomarker. Future stud-
ies with increased data collection frequency will allow the modelling 
of potential LFP signatures of transient mood or anxiety symptoms. 
Finally, the analysis here is retrospective, leaving open questions about 
the exact use of the SDC in determining the precise timing of optimal 
stimulation adjustments or the introduction of adjunct rehabilitative 
interventions such as cognitive behavioural therapy or mindfulness  
training.
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Methods

Participants and clinical assessments
Ten participants with treatment-resistant major depressive disorder 
were consecutively enrolled in a single-site clinical trial with a single 
active DBS interventional arm using a prototype DBS device that 
allowed the collection of local field potentials from the stimulation 
site (ClinicalTrials.gov identifier NCT01984710). Participant charac-
teristics are provided in Extended Data Table 1. All patients provided 
written informed consent to participate in the study. The protocol 
was in accordance with the Declaration of Helsinki. The protocol was 
approved by the Institutional Review Boards at Emory University, 
Georgia Institute of Technology and the Icahn School of Medicine, 
and the US Food and Drug Administration under a physician-sponsored 
Investigational Device Exemption (IDE G130107) and was monitored 
by the Emory University Department of Psychiatry and Behavioral 
Sciences Data and Safety Monitoring Board. Clinical symptom severity 
was assessed by an independent rater using the 17-item HDRS, MADRS 
and self-reported Beck Depression Inventory during weekly visits to 
the laboratory, among other behavioural scales. Patients met weekly 
with the study psychiatrist, who could make stimulation adjustments 
(increasing voltage by 0.5 V bilaterally) using a combination of HDRS-17 
changes relative to the previous week and their clinical judgement. Fol-
lowing established criteria, a decrease in HDRS-17 scores greater than 
50% of the presurgical average was set as the threshold for ‘response’. 
Remission was defined as HDRS-17 < 8 and MADRS < 10. Relative HDRS-
17 and relative MADRS were computed as proportions of the presurgical 
average of HDRS-17 and MADRS, respectively.

We report the analysis of LFPs from six participants listed in Extended 
Data Table 1 during a period of 6 months from the initiation of DBS ther-
apy. Two participants were excluded from the analysis, as they had LFP 
data distorted by an amplifier clipping artefact (one participant) or heart-
beat artefacts (one participant). Both these participants were responders 
(more than 50% decrease in HDRS-17 from presurgical baseline), and 
one of them achieved remission (HDRS-17 < 8). The weekly trajectories 
of the excluded participants were not qualitatively different from the 
participants included in the study, as shown in Extended Data Fig. 2c.

SCC DBS and dose adjustment
Bilateral electrode array leads (3387, Medtronic) were implanted in 
each participant, one in each SCC (Fig. 1a) as determined from tractog-
raphy previously described in Riva-Posse et al.12 A connectome-based 
targeting approach was used to identify targets that intersect four 
white matter pathways: forceps minor, cingulum bundle, uncinate 
fasciculus, and frontostriatal fibres (Fig. 1b). Stimulation was delivered 
using a voltage-controlled pulse generator Activa PC + S which also 
served as the local field potential acquisition system (Medtronic). DBS 
therapy started at least 30 days after the implantation surgery to allow 
for recovery from surgery. Therapy consisted of bilateral monopolar 
stimulation on a single contact per hemisphere at 130 Hz with 90 µs 
pulse width. Stimulation amplitude was initially set at 3.5 V for all par-
ticipants except P001. The initial amplitude for P001 was set at 3.0 V, 
as the participant’s symptoms were below the remission threshold at 
the beginning of the observation phase. During the observation phase, 
location, pulse width, and stimulation frequency remained unchanged. 
Dose was increased in steps of 0.5 V at unspecified intervals based on 
the study clinician’s (P.R.-P./A.C.) assessment of patient progress as 
described above. The initial stimulation voltage, stimulation voltage at 
the end of the 6-month study period and number of times stimulation 
voltage was changed in each participant are listed in Extended Data 
Table 1. None of the participants needed a stimulation dose decrease.

LFP recordings and feature extraction
Local field potentials were acquired at a sampling rate of 422 Hz 
using the Medtronic Activa PC + S system51 (Medtronic Activa PC + S 

8180 Sensing Software) performing a differential recording from 
electrode contacts on either side of the stimulation contact to allow 
for common-mode rejection of noise, as well as stimulation-related 
artefacts. LFPs were acquired weekly during the observation phase in 
a single 15-min session in the laboratory. Each session consisted of two 
segments of approximately 7.5 min each: one with stimulation turned 
on, and the other with stimulation turned off. Only the segments with 
stimulation turned off were included in the analysis, as the presence of 
stimulation-related artefacts precluded functional connectivity and 
cross-frequency coupling analyses. The first 10 s of the stimulation-off 
period was discarded due to the presence of stimulation offset artefact 
(a slowly decaying signal reaching baseline). In addition, periods during 
which amplifier switching artefacts (presence of spike-like artefacts) 
were present were discarded. Finally, device-related frequency-drift 
artefacts were observed in the beta and gamma bands in a subset of 
the recordings of some participants. A robust principal component 
analysis approach separated the device-related artefact into sparse 
components, while the low-rank component contained the neural 
signals and was used in further analysis.

All LFP analyses were performed using custom-written scripts in 
Python (v.3.6) and Matlab (R2018b). LFP recorded within a session was 
divided into 10-second segments from which spectral power, coherence 
and phase-amplitude coupling (PAC) were estimated. Spectral power 
and magnitude-squared coherence were estimated using the Python 
library Nitime’s52 (v.0.9) multi-taper fast Fourier transform approach 
with an adaptive procedure for setting the weights of tapers. Spectral 
power and coherence in canonical frequency bands (delta: 1–4 Hz; 
theta: 4–8 Hz; alpha: 8–13 Hz; low beta: 13–20 Hz; high beta: 20–30 Hz; 
gamma: 30–40 Hz) were then extracted as features for classification. 
The upper limit of the gamma band was restricted to 40 Hz instead of 
50 Hz because of the presence of device-related artefacts in the range 
of 40–50 Hz.

PAC was estimated using the PACtools (v.0.3.1) python library53. The 
algorithm described in work by Tort et al.54 was used to compute the 
coupling between low frequency (1–15 Hz) phase and high-frequency 
(15–45 Hz) amplitude. Comodulograms were visually inspected to 
identify PAC regions of interest, and PAC values between the delta band 
(1.5–3.0 Hz) and the high beta/gamma band (20–35 Hz) were extracted 
as features. This procedure was followed to restrict the dimensionality 
of the features for the classifier, as including all the possible interactions 
would have considerably increased the feature set size. Thus, the overall 
dimensionality of the feature set was 20 (six spectral features per hemi-
sphere, six coherence features and one PAC feature per hemisphere).

LFP classification and inferring SDC
Neural network models were used to classify LFP features using 
PyTorch55 (v.1.11.0). The parameters for the neural network models 
are listed in Extended Data Table 2. LFP spectral features were indi-
vidually scaled between 0 and 1 as a preprocessing step. A fivefold 
leave-one-out cross-validation was performed at the participant level 
to ensure generalizability. Models were fitted using LFP features from 
four out of five participants, while the features from the fifth participant 
served as the test set. This procedure was repeated five times such that 
features from all five participants served as a test case.

We use the GCE framework13 to identify interpretable features in 
the data determinative of the classifier’s output. Conceptually, GCE 
can be thought of as a form of dimensionality reduction in which only 
a subset of the low-dimensional representation has a causal effect on 
the classifier output (Fig. 1d). This partitioning of the low-dimensional 
representation into classifier-relevant and classifier-irrelevant dimen-
sions is accomplished by augmenting the objective of an auto-encoder 
with a mutual information term that encourages a portion of the 
low-dimensional representation to influence the classifier output13. 
We call the subset of dimensions in the low-dimensional representa-
tion relevant to the classifier’s output the ‘discriminative components’ 
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and the subset of the dimensions that contribute to representing the 
data but do not affect the classifier’s output the ‘non-discriminative 
components’.

In the present work, the GCE was implemented using two separate 
networks: a feature compression network that maps the data from 
the feature space to the low-dimensional latent space and a feature 
reconstruction network that reconstructs the feature space data 
from the latent components (Fig. 1d). The low-dimensional latent 
components were termed the SDCs in one dimension and spectral 
non-discriminative components (SNDCs) in the remaining dimensions, 
based on the choice of parameters of GCE. The networks were trained 
to maximize the similarity of the reconstructed data and the true data 
using a loss function commonly used in variational auto-encoders56, 
as well as the information flow from the SDC to classifier output using 
a loss function developed in ref. 13. The GCE was trained with features 
extracted from LFP collected during the first month and last month 
of therapy in all participants and a classifier trained on the same data. 
Information flow from discriminative components to classifier output 
was higher than that of non-discriminative components, indicating 
that the SDC captures the features that determine the classifier output 
(Extended Data Fig. 2a). Leave-one-out cross-validation was performed 
to make sure the model did not overfit. In brief, GCE was trained on 
four out of the five participants and used to reconstruct the data of 
the fifth participant, which was then used to evaluate the classifier’s 
performance. This procedure was repeated five times, leaving a unique 
participant’s data out in each fold. The classifier’s performance was 
comparable with the original data (Extended Data Fig. 2b). In addi-
tion, to verify whether only the discriminative component affected 
the classifier prediction, one of the components was randomized, with 
other components unaffected, and the classifier performance on the 
reconstructed data was evaluated. The entire procedure was performed 
in a leave-one-out fashion, as described before. The performance of 
the classifier was affected when the discriminative component was 
randomized but not when the non-discriminative components were 
randomized, verifying our design requirements. The reconstruction 
performance was evaluated by (1) verifying that the classification per-
formance of a neural network classifier trained on the reconstructed 
data matched the performance of the classifier trained on the original 
data and (2) training a separate neural network classifier with original 
data and testing on the reconstructed data. In both cases, the perfor-
mance of the classifiers was comparable with the original classifier 
(case (i) AUC = 0.8; case (ii) AUC = 0.89 ± 0.03; Extended Data Fig. 2c) 
suggesting the reconstruction captured the salient features of the 
original data. The parameters of the networks are listed in Extended 
Data Table 2. A summary of the training and testing datasets used for 
different models is listed in Extended Data Table 3.

The trained feature compression network was used to infer discrimi-
native components of the LFP collected during months 2–5. LFP spectral 
features, computed in 10-second segments, were minimum–maximum 
scaled to the training set (LFP features from months 1 and 6) and pro-
jected through the feature compression network to infer discriminative 
and non-discriminative components. The SDC was transformed to 
the probability of belonging to the ‘sick’ state which was determined 
as the ratio of the number of SDC values greater than or equal to SDC 
from the ‘sick’ state weeks to the total number of SDC values (equation 
below). This allowed the SDC to be compared directly against the face 
classifier output. The SDC was then averaged across the 10-second 
segments within a week:

P n n n= (SDC ≥ SDC )/( (SDC ) + (SDC ))sdc sick sick stable response

To map what features correspond to the SDC and SNDCs, the com-
ponent values were varied in the latent space and passed through the 
feature reconstruction network. The resulting changes in the features 
were fit with second-order polynomials, and the magnitude of the 

coefficients served as an indicator of feature change between weeks 
1–4 and weeks 21–24. As the slope term captured most of the change, 
it was used as a measure of the features underlying the SDC.

Transition to stable response
Patients receiving chronic therapeutic SCC DBS have been observed 
to show a characteristic response trajectory marked by a transient 
period of increased behavioural reactivity and instability followed by 
an improvement in symptoms that is sustained and stable3. We inferred 
the week at which each participant reached this ‘stable response’ state 
based on weekly changes in HDRS-17, the SDC or the face classifier out-
put (Fig. 2e). The transition was defined as the first of two consecutive 
weeks when the participant’s measure fell below a defined threshold 
and did not increase beyond the threshold for two or more weeks.

In the case of HDRS-17, the relative score, which is the ratio of the 
aggregate score to the average of the presurgical baseline scores, was 
used to define the states. A threshold of 0.5, indicating a decrease 
of 50% from the presurgical baseline, was used to follow the widely 
accepted definition of clinical response. In the case of the SDC and 
the face classifier output, it is not clear what the exact thresholds that 
correspond to clinical response should be. Therefore we used the ROC 
curve, which focuses on sensitivity and selectivity of discriminability 
instead of hard thresholds, to compare against HDRS-17. However, when 
compared against each other, it is possible to use the same thresholds, 
as the values indicate the probability of being in the ‘sick’ state. We 
used a more conservative threshold of 0.35 to identify the transition 
to ‘stable response’.

The concordance between the weeks of transition was evaluated 
using Kendall’s tau metric, which is a rank-based correlation measure. 
Kendall’s tau reflects the similarity in the ranks of the transition weeks, 
that is, do the participants who exhibit a transition in SDC early also 
exhibit a transition in the face early and vice versa?

Image acquisition and processing
High-resolution structural T1-weighted (T1w), resting-state functional 
MRI (fMRI), and diffusion-weighted images (DWIs) were acquired 
on a 3 T Siemens Tim Trio and Prisma MRI scanner (Siemens Medi-
cal Solutions). T1w images were collected using a three-dimensional 
magnetization-prepared rapid gradient–echo (MPRAGE) sequence 
with the following parameters: sagittal slice orientation; resolu-
tion = 1.0 mm × 1.0 mm × 1.0 mm; repetition time (TR) = 2,600 ms; 
inversion time (TI) = 900 ms; echo time (TE) = 3.02 ms; flip angle = 8°. 
Resting-state fMRI was performed with patients’ eyes open for 7.4 min 
using two different scanners: (1) Tim Trio (n = 6), a Z-SAGA sequence, to 
recover areas affected by susceptibility artefacts; 150 volumes; 30 axial 
slices; voxel size = 3.4 × 3.4 × 4 mm3; matrix = 64 × 64; TR = 2,950 ms; 
TE = 30 ms and (2) Prisma (n = 4), 460 volumes; 56 axial slices; voxel 
size = 2 × 2 × 2 mm3; matrix = 110 × 110; TR = 1,000 ms; TE = 30 ms. 
DWIs were acquired using single-shot spin-echo echo-planar imaging 
sequence with the following parameters: 64 non-collinear directions 
with five non-DWIs (b0), b value = 1,000 s mm−2; number of slices = 64; 
field of view = 256 × 256 mm2; voxel size = 2 × 2 × 2 mm3; TR = 11300 ms; 
TE = 90 ms. Additional full DWI dataset with opposite phase encod-
ing was also collected to compensate for the susceptibility-induced 
distortion.

All images were preprocessed using the FMRIB Software Library 
(FSL; http://www.fmrib.ox.ac.uk/fsl/)57 (v.6.0) and Analysis of Func-
tional NeuroImages (AFNI, http://afni.niml.nih.gov/afni/) software 
(v.23.1.06). The T1w image was skull stripped and normalized to the 
MNI152 template using the fsl_anat toolbox. The standard preprocess-
ing pipeline, including de-spiked and corrected for slice time acquisi-
tion differences and head motion, implemented in the AFNI was used 
for resting-state fMRI preprocessing. The remaining effect of noise sig-
nals, including head motion inferences, signals from the CSF, and local 
white matter, were removed. Subsequently, the data were band-pass 

http://www.fmrib.ox.ac.uk/fsl/
http://afni.niml.nih.gov/afni/


filtered (0.01 < f < 0.1 Hz) and spatially smoothed up to 8 mm full-width 
at half-maximum (FWHM) using 3dBlurToFWHM in AFNI. The pre-
processed fMRI data were normalized to the MNI152 template using 
previously generated T1w normalization warp fields. The mean time 
series of the bilateral SCC seed (±6, +24, −11)58 was correlated voxel-wise 
with the rest of the brain. The voxel-wise correlation coefficient maps 
were then converted to Z scores by Fisher’s r-to-z transformation. The Z 
score determined the level of functional connectivity of the SCC seed. 
DWI data underwent distortion and motion collection using the Eddy 
toolbox and a local tensor fitting to calculate the FA map. Tract-Based 
Spatial Statistics processing was performed for group analysis59. In 
brief, individual FA images were aligned to the standard FMRIB58 FA 
template using a nonlinear registration, and the normalized FA images 
were then averaged to create a mean FA image. The mean FA image 
was thinned to create a FA skeleton representing white matter tracts 
common to all patients. A threshold value of 0.2 was used to exclude 
adjacent grey matter or cerebrospinal fluid voxels. A similar process 
was performed for radial diffusivity and axial diffusivity.

A VTA was generated using the StimVison toolbox60 with patients’ 
specific chronic stimulation settings (that is, 130 Hz, 3.5 V, 90 µs). White 
matter tracts passing through VTA were extracted in each participant 
using the Xtract toolbox in FSL61 and then averaged to generate a white 
matter tract mask that represents the common activation pathways 
of all five participants. Three white matter masks, including forceps 
minor, cingulum bundle and uncinate fasciculus, were used for the 
statistical analysis. Within the specific tracks of the FA skeleton, Spear-
man’s rank correlation between white matter integrity measures (FA, 
radial diffusivity and axial diffusivity) and the inferred transition times 
were performed to evaluate whether white matter microstructure at 
baseline could predict the inferred transitions in states.

To further explore the relationship between altered white matter 
microstructures/abnormal brain activity and DBS recovery trajectory, 
post hoc correlation analyses were conducted in the identified brain 
regions from the correlation analysis of transition times with imaging 
using all nine responders. In brief, Spearman’s rank correlation analysis 
(age and sex controlled) was performed between baseline white matter 
integrity (FA) and depression clinical features, including depression 
severity (HDRS-17), duration of current episode, the number of episodes 
in a lifetime and length of illness (duration between onset and surgery). 
In addition, the same analyses were performed for the resting-state 
functional connectivity using the bilateral SCC seeds.

Facial expression analysis
In addition to clinical assessments, behavioural changes were estimated 
from facial expressions extracted from weekly videos of participants 
collected during the weekly psychiatric clinical interviews where LFPs 
were recorded, and DBS management, including dose changes, was 
determined. Videos were recorded using a static, tripod-mounted 
video camera recording at 30 frames per second. The sessions lasted 
approximately 30 min.

Videos were partitioned into 5-min windows for feature genera-
tion, with the remainder discarded. Each window was processed with 
the OpenFace facial behaviour analysis toolkit v.2.0 (ref. 62). This 
open-source software produces presence, intensity and confidence 
estimations for 18 facial action units, eye gaze and head pose vectors, 
as well as 68 facial landmark positions for each frame. The 30 Hz frame 
rate was sufficiently granular to yield a temporal resolution to capture 
microexpressions (less than 0.5 second duration) as well as macroex-
pressions (0.5–4.0 s). Data from frames with less than 93% confidence 
were discarded. The most common reason for discarding frames was 
the obstruction of the participants’ faces by their hands. From these 
first-order features, we generated second-order features consisting 
of envelope metrics (mean, median, quantiles, skew, kurtosis, vari-
ance) and covariance between features. From gaze and pose vectors, 
we generated velocity, acceleration, jerk and their envelope metrics. 

This processing was implemented in Python resulting in 1,073 features 
overall.

Using the same rationale as for the LFP classification, the facial 
expression features most differentially expressed between the ‘sick’ 
(weeks 1–4) and ‘stable response’ (weeks 21−24) states were identi-
fied using a paired two-sided t-test and used as input to train binary 
classifiers for each participant. For unbalanced sample sets due to 
sparse recordings, SMOTE63 was used to oversample the minority class. 
A random forest classifier with tenfold cross-validation was imple-
mented in the Python sklearn (v.1.1.1) library64 to discriminate the ‘sick’ 
from the ‘stable response’ state for each participant. Following this, 
the trained classifiers were evaluated on the samples from the inter-
mediate period to get the probability of being in the ‘sick’ state. The 
classifier predictions were termed ‘face classifier outputs’ and served 
as another behavioural marker to track response during ongoing DBS. 
We used Py-Feat toolbox65 to visualize the changes in facial expression 
features between the sick and stable response states. Custom scripts 
incorporating Py-Feat functions were used to generate muscle heat 
maps of the changes in AU intensities.

Statistical analysis
Hypothesis testing of changes in HDRS-17, SDC and individual fea-
tures was performed using a one-sided Wilcoxon signed-rank test. The 
non-parametric test was chosen to account for the small sample size 
and inability to test for normality. The small sample size of the current 
study does not have sufficient power to test statistical significance at 
0.05 in a two-sided test, even when the direction of changes is readily 
apparent. Therefore, we used a one-sided test with a threshold of 0.05 
and also confirmed statistical significance in a two-sided test with a 
relaxed threshold of 0.1. Linear mixed models were used to test the 
association between the SDC and clinical assessment scores and the 
SDC and face classifier output (with the SDC as the fixed factor and 
participants as the random factor). Models were fitted using the ‘lmert-
est’ package66 (v.3.1.3), which uses a Sattherwaite approximation for 
degrees of freedom for ANOVA. The threshold was set at uncorrected 
P < 0.05 for all correlation analyses between imaging and the SDC.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available 
via the Data Archive for The Brain Initiative (DABI) at https://dabi.loni.
usc.edu/dsi/1UH3NS103550/UXUF7822Z3JL.

Code availability
Custom code used in this work is available at https://dabi.loni.usc.edu/
dsi/1UH3NS103550/UXUF7822Z3JL.
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Extended Data Fig. 1 | Clinical assessment scores across different phases.  
a, HDRS-17 scores across different phases. Dashed lines indicate the score at 
which the participant is considered to be a responder (based on 50% decrease 
in HDRS-17). Dotted line indicates a HDRS-17 score of 8 below which participants 
are considered to be in remission. b, MADRS scores across different phases. 

Dashed lines indicate the score at which the participant is considered to be a 
responder (based on 50% decrease in MADRS). Dotted line indicates a MADRS 
score of 10 below which participants are considered to be in remission. c, HDRS-17 
Trajectories of participants excluded from analysis.
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Extended Data Fig. 2 | Validation of Generative Causal Explainer (GCE).  
a, Information flow from low-dimensional latent space components to classifier 
prediction indicates that classifier prediction is affected by the discriminative 
component and not by the non discriminative components. b, Classifier 
performance in leave-one-participant-out cross-validation for different 
datasets. Reconstructed data refers to data reconstructed from GCE using  
all components. Performance of the classifier in datasets reconstructed by 
randomizing discriminative and non-discriminative components is shown in 

magenta and cyan bars. Randomizing the discriminative component of the 
held-out dataset affected the classifier performance significantly, indicating 
that the association between data and classifier prediction is impaired, which 
in turn confirmed that the GCE did not overfit to the training dataset. Grey stars 
denote AUROC for each fold of the cross-validation. Error bars indicate standard 
deviation (n = 5 cross-validation fold). c, Receiver operating characteristic curve 
for neural network classifier trained on the reconstructed data to distinguish 
‘sick’ versus ‘stable response’ state.



Extended Data Fig. 3 | Permutation feature importance. Permutation  
feature importance is a shuffle-based technique to determine the contribution 
of features to classification performance67. Since the features were correlated, 
a dendrogram-based clustering was used to identify clusters of features 
(distance threshold = 1). Features within a cluster were permuted jointly to 
generate shuffled datasets (n = 100) which were then evaluated using the 

classifier trained on the original dataset. The decrease in performance of the 
shuffled datasets provides a measure of the feature’s contribution to classifier 
performance. a, Adjacency matrix based on Spearman correlation between 
spectral features. Hotter colors indicate a positive correlation. b, Dendrogram- 
based clustering of features. c, Difference in Area under ROC curve between 
classifier trained on original dataset and shuffled datasets (n = 100).
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Extended Data Fig. 4 | Difference between early and late changes in other relevant features. Change in power relative to the last week of post-surgical period 
without stimulation from the beginning of the observation phase to the end of the observation phase.



Extended Data Fig. 5 | Trajectories of HDRS-17 and the SDC. a, Trajectory  
of relative HDRS-17 and spectral discriminative component for individual 
participants. P001 is the relapsed responder. The vertical dashed line indicates 
the week when the stimulation voltage was increased. b, Illustration of how well 

the SDC sick/stable response designation matches the HDRS-defined sick/
stable response state in typical responders. The blue line denotes the HDRS 
state while the red line denotes the SDC state using a threshold of 0.5.
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Extended Data Fig. 6 | Trajectories of the SDC and face classifier output. Trajectory of face classifier output and spectral discriminative component for 
individual participants. P001 is the relapsed responder. The vertical dotted line indicates the week when the stimulation voltage was increased.



Extended Data Fig. 7 | Case study of SDC indicating response while HDRS-17 
indicates non-response. a, We observed in participant P002 SDC (red line) 
indicated stable response, defined using the criteria in Fig. 2e, at Week 13  
while HDRS-17 (blue line) indicated ‘stable response’ at week 20. Stimulation 
voltage change (purple arrows) did not decrease HDRS-17 but decreased SDC. 
b, Psychic anxiety item (orange) of HDRS-17 increased contribution to total 

HDRS-17 while depressed mood (blue) remained constant suggesting the 
elevated HDRS-17 beyond week 13 (when SDC indicated stable response) may 
have been sustained by an increase in anxiety. Clinical notes support this 
hypothesis: “Biggest treatment issue is an internal resistance to the loss of 
depression and fears about what that means for her, including confronting 
feelings of loneliness and emptiness”.
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Extended Data Table 1 | Overview of study participants’ demographics

Participant 
ID

Age at 
time of 
surgery 
(years)

Sex HDRS-17 Stimulation 
voltage (V)

Number of 
stimulation 
amplitude 
changes

Duration 
of current 
episode
(months)

Age at first 
depressive 
episode 
(years)

Number of 
Depressive 
Episodes

Reason for 
exclusion

Pre-
surgery

Study 
End

Study 
Start

Study 
End

P001 67 F 23.25 15 3.0 4.5 3 36 36 4 N/A

P002 58 F 23.5 7 3.5 4.0 1 36 16 4 N/A

P003 56 F 23.25 10 3.5 5.0 3 120 25 5 N/A

P004 38 M 22.75 4 3.5 4.5 2 60 32 3 N/A

P005 44 F 24.75 4 3.5 3.5 0 13 16 4 N/A

P006 28 M 21.75 6 3.5 4.5 2 21 17 2 N/A

EP001 45 F 23.5 3 3.5 4.0 1 24 18 4 Weekly LFP not 
collected

EP002 43 F 20.5 8 3.5 4.0 1 7 31 2 Weekly LFP not 
collected

EP003 60 M 19.25 6 3.5 4.0 1 132 48 2 LFP contaminated with 
heartbeat artifact

EP004 53 M 20.5 10 3.5 4.0 1 24 27 3 LFP affected by 
amplifier clipping 
artifact

Mean (SD) 49.4 
(11.2)

- 22.3 
(1.64)

7.3 
(3.62)

3.45 
(0.16)

4.2 
(0.42)

1.5 
(0.97)

47.3
(44.04)

26.6 
(10.48)

3.3 
(1.06)

-

Median 49 - 23 6.5 3.5 4 1 30 26 3.5 -



Extended Data Table 2 | ML models parameters

Parameters of the neural network classifier and GCE models.
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Extended Data Table 3 | Summary of training and validation procedure for ML models

*Computed over four participants since the transition in HDRS for P006 was at week 5 and hence only one class was present in weeks 5–20. Since it is not possible to construct ROC curve 
without two classes, P006 was excluded.
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