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Clustering predicted structures at the scale 
of the known protein universe

Inigo Barrio-Hernandez1,8, Jingi Yeo2,8, Jürgen Jänes3, Milot Mirdita2, Cameron L. M. Gilchrist2, 
Tanita Wein4, Mihaly Varadi1, Sameer Velankar1, Pedro Beltrao3,5 ✉ & Martin Steinegger2,6,7 ✉

Proteins are key to all cellular processes and their structure is important in 
understanding their function and evolution. Sequence-based predictions of protein 
structures have increased in accuracy1, and over 214 million predicted structures are 
available in the AlphaFold database2. However, studying protein structures at this 
scale requires highly efficient methods. Here, we developed a structural-alignment- 
based clustering algorithm—Foldseek cluster—that can cluster hundreds of millions 
of structures. Using this method, we have clustered all of the structures in the 
AlphaFold database, identifying 2.30 million non-singleton structural clusters, of 
which 31% lack annotations representing probable previously undescribed structures. 
Clusters without annotation tend to have few representatives covering only 4%  
of all proteins in the AlphaFold database. Evolutionary analysis suggests that most 
clusters are ancient in origin but 4% seem to be species specific, representing lower- 
quality predictions or examples of de novo gene birth. We also show how structural 
comparisons can be used to predict domain families and their relationships, identifying 
examples of remote structural similarity. On the basis of these analyses, we identify 
several examples of human immune-related proteins with putative remote homology 
in prokaryotic species, illustrating the value of this resource for studying protein 
function and evolution across the tree of life.

Proteins are the major actors in all cellular processes, from the gen-
eration of energy to the division of the cell. Knowing their structure 
is relevant for studying their function, their evolution and potentially 
for the design of drugs. Although our knowledge of protein sequences 
has grown considerably over the past years, reaching over hundreds of 
millions of sequences, the knowledge of their 3D structures has lagged 
behind owing to the lack of highly scalable experimental methods. 
Improvements in methods for predicting structure from sequences1,3,4 
now enable the scalable prediction of protein structures for the known 
protein universe. The AlphaFold Protein Structure Database (AFDB) 
is a publicly available data repository of protein structures and their 
confidence metrics, predicted using the AlphaFold2 AI system1,2. The 
AlphaFold-predicted structures have been generally assessed to be of 
high quality when the predicted local distance difference test (pLDDT) 
confidence metrics are accounted for, despite remaining inferior to 
experimentally determined structures5. AlphaFold2 and its predicted 
structures have now been used for diverse applications, including stud-
ies of protein pockets6, prediction of structures of complexes7,8, studies 
of structural similarity9, novel fold predictions10 and even improvement 
of genomic annotation11.

The large increase in available predicted protein structures has 
spurred the development of more efficient computational approaches, 
including structural data file compressions12, methods for pocket pre-
dictions13,14 and comparison of protein structures through structural 

alignments. For the latter, Foldseek has been developed. Foldseek 
can increase the speed of comparisons of structures by four to five 
orders of magnitudes relative to previous approaches while maintain-
ing sensitivity15, making it possible to perform structural compari-
sons at a large scale. Clustering proteins by their structure is a crucial 
tool for analysing structural databases as it enables the grouping of 
remotely related proteins. Identifying distant relationships might 
provide valuable insights into protein structure evolution and func-
tion. For example, protein family analysis of the initial release of about 
365,000 structures10,16, covering the proteomes of humans and 20 
model organisms, suggested that 92% of predicted domains within 
this set match existing domain superfamilies. However, comparing all 
214 million structures against each other using current methods would 
take approximately 10 years on a 64-core machine. To speed up the 
process of clustering amino acid sequences, a linear time algorithm, 
Linclust17, has been proposed to reduce the computational time sig-
nificantly. However, such methods have yet to be applied to clustering 
by protein structural similarity.

Here, we analysed the AlphaFold Protein Structure Database, which 
contains predicted structures for 214 million proteins across the tree of 
life. To be able to explore this resource, we developed a highly scalable 
structure-based clustering algorithm based on Linclust17 (Methods and 
Extended Data Fig. 1) that structurally aligns and clusters 52 million 
structures in 5 days on 64 cores. We clustered the AlphaFold structural 
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database into 2.30 million clusters with 31% of clusters—representing 
4% of protein sequences—not matching previously known structural 
or domain family annotations. We found that 532,478 clusters have 
representatives present in all of the tree of life and we found several 
species-specific structural clusters that could contain examples of 
de novo gene birth events. Finally, we used structural comparisons to 
predict domain families and their relationships identifying putative 
remote homologies that expand the evolutionary coverage of previ-
ously known families.

Structure-based clustering of the AFDB
The AFDB covers over 214 million predicted protein structures and 
has grown in several stages (Fig. 1a). The initial release focused on 20 
key model organisms, while subsequent updates provided predic-
tions for the Swiss-Prot dataset of the Universal Protein Resource18 

(UniProt) and proteomes relevant to global health, taken from priority 
lists compiled by the World Health Organisation. The current update 
covers most of the TrEMBL dataset of UniProt. The AFDB parses and 
archives these data and makes them accessible through bulk download 
options, programmatic access end points and interactive web pages. 
The programmatic access, in particular, facilitated the integration 
of AlphaFold models into other biological data repositories, such as 
Protein Data Bank Europe (PDBe)19, UniProt18, Pfam20, InterPro21 and 
Ensembl22.

To gain insights into the 214,684,311 structures of the AlphaFold 
UniProt v.3 database we developed a scalable clustering approach 
in two steps as depicted in Fig. 1b. The first step involved using 
MMseqs2 (ref. 23) to cluster the database on the basis of 50% sequence 
identity and a 90% sequence alignment overlap of both sequences, 
resulting in 52,327,413 clusters. For each cluster, the protein structure 
with the highest confidence (that is, the highest pLDDT score) was 
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Fig. 1 | The AFDB, structural clustering workflow and summary of the 
clusters. a, The AFDB started as a collaborative effort between EMBL-EBI and 
DeepMind in 2021. The database grew in multiple stages, with the latest version 
of 2022 containing over 214 million predicted protein structures and their 
confidence metrics. b, A two-step approach was used to cluster proteins in the 
database. First, MMseqs2 was used to cluster 214 million UniProtKB protein 
sequences (AFDB) on the basis of 50% sequence identity and 90% sequence 
overlap, resulting in a reduction of the database size to 52 million clusters 
(AFDB50). For each cluster, the protein with the highest pLDDT score was 
selected as the representative. Next, using Foldseek, the representative 
structures were clustered into 18.8 million clusters (Foldseek clusters) without 

a sequence identity threshold, but still enforcing a 90% sequence overlap and 
an E-value of less than 0.01 for each structural alignment. As the last step, we 
removed all sequences labelled as fragments from the clustering, ending up 
with 2.30 million clusters with at least two structures (AFDB clusters). c, AFDB 
cluster structural and Pfam consistency. Our clusters have a median LDDT of 
0.77 and a median TM score of 0.71 across all clusters and 66.5% of clusters with 
Pfam annotations are 100% consistent. d, Summary of sequences and clusters 
with and without annotation (left) and the relationship of cluster sizes to 
annotation (right). From left to right, each bin occupies AFDB clusters at rates 
of 12.24%, 10.59%, 9.20%, 10.07%, 10.46%, 10.05%, 9.04%, 9.20%, 9.19% and 9.96%.
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selected as the representative. Clustering proteins by structural simi-
larity remains computationally intensive and difficult to scale. For this 
reason, we developed a structure-based clustering algorithm based 
on Foldseek (Methods). In brief, we adapted Linclust and MMseqs2 
sequence clustering algorithms to the three-dimensional interaction 
(3Di) structural alphabet used in Foldseek to allow structural clusters in 
linear time complexity. Our structural clustering method resulted in the 
identification of 18,661,407 clusters, using an E-value of 0.01 and struc-
tural alignment overlap of 90% of both sequence criteria. It took 129 h 
on 64 cores to finish the clustering. As the final step, we removed every 
sequence labelled as a ‘fragment’ in UniProt. This identified 2,302,908 
non-singleton clusters that have on average 13.05 proteins per cluster 
with an average pLDDT of 71.64. The remaining 13,012,338 singleton 
clusters have an average pLDDT of 58.95.

Cluster purity analysis
We measured the quality of our AFDB clusters (Fig. 1c) by assessing 
their structural and Pfam consistency. By aligning each cluster member 
to a representative, we found that the clusters tend to be structurally 
homogeneous as judged by two structural similarity metrics (median 
LDDT of 0.77 and a median template modelling (TM) score of 0.71; 
Fig. 1c). Similarly, we found that members of the same clusters tend 
to have the same Pfam domain (Fig. 1c), with 66.4% having 100% con-
sistency. The relationship between cluster members and consistency 
score (Extended Data Fig. 2a) reveals that clusters even with thou-
sands of members have perfect consistency. We further examined the 

relationship between structural and functional similarity using Pfam 
(Extended Data Fig. 2b) and Enzyme Commission (EC) annotations 
(Extended Data Fig. 3). As anticipated, an increase in LDDT corresponds 
to an increase in functional similarity. With increasing LDDT from 0.5 
to 0.9, there is an increase in the percentage of perfectly consistent 
clusters—from 29.2% to 93.8% in Pfam, and from 40.3% to 81.3% for EC 
(level 4), respectively.

Structural similarity between two sequences can often be traced 
back to either shared evolutionary roots (homologues), or it can be a 
result of convergent evolution (analogues). We therefore investigated 
the evolutionary relationships within clusters produced by our method 
using the Evolutionary Classification of Protein Domains (ECOD)  
database24. This hierarchical domain database delineates the evolu-
tionary relationships between protein domains. This analysis showed 
that 97.4% of pairwise compared cluster members are conserved  
at the H-group (homology) level (Methods). This analysis suggests 
that our clusters are probably composed primarily by homologues, 
although specific examples will require further evolutionary analysis.

Clusters of unknown structure and function
The availability of predicted structures covering a large fraction of 
the known protein universe enables us to examine what fraction of 
this structural space is novel. We tried to uncover structurally and 
functionally unknown protein clusters in the AFDB dataset—defined 
as ‘dark clusters’. We first identified 1,135,118 (49% of AFDB clusters) 
clusters that were found to be at least partially similar to previously 
known structures in the PDB (Methods). The representative proteins 
of the remaining clusters were next annotated to the Pfam database 
by MMseqs2 search, resulting in 883,788 (38% of AFDB clusters) dark 
clusters (Methods). Finally, we identified clusters containing members 
with Pfam or TIGRFAM25 annotations in the UniProt/TrEMBL and Swiss-
Prot database. This resulted in the identification of 711,705 (30.9% of 
AFDB clusters) dark clusters, probably enriched for novel structures.

The distribution of the known and unknown clusters as a function of 
their size is shown in Fig. 1d. The sizes of clusters that lack annotations 
are smaller compared with the annotated clusters. For this reason, the 
dark clusters map to a proportionally smaller fraction of the protein 
universe. Although these clusters comprise approximately 30.9% of the 
AFDB clusters, they represent only 4.06% of the AFDB. This is consis-
tent with the expectation that structures with many representatives 
in the protein universe are better studied and that the vast majority of 
protein structures can be annotated with at least partial similarity to a 
known structure of domain family annotation.

Novel enzymes and small-molecule binders
From the 711,705 clusters without annotations (dark clusters), we sele-
cted 33,842 clusters with the highest average AlphaFold2 prediction  
confidence (that is, average pLDDT >90). For each, we picked the mem-
ber with the highest confidence for further investigation. To predict 
potential novel enzymes, we searched each structure for pockets 
and predicted Gene Ontology (GO) and EC number using DeepFRI, a 
structure-based function prediction method (Methods). In total, we 
identified 1,770 pockets in 1,707 structures and made 5,324 functional 
assignments within these proteins with predicted pockets. The pocket 
prediction led to the identification of high-confidence structure predic-
tions (pLDDT >90) that do not appear to be correct. From 1,770 pockets, 
579 (32.7%) encompass more than 40% of the total protein sequence, 
indicating that the predicted structure is not compact. Manual inspec-
tion of these structures (examples are shown in Extended Data Fig. 4) 
confirmed this lack of compactness and secondary structural elements. 
We hypothesize that several of these are probably incorrect predictions.

The top most often predicted molecular functions are shown in 
Fig. 2a with the top three including the term ‘transporter activity’.  
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Fig. 2 | Putative novel enzymes and small-molecule-binding proteins in 
structures lacking annotation. a, Counts of GO molecular function terms  
that are most often predicted by DeepFRI on the set of selected 1,707 structures 
with predicted pockets. b–d, Examples of structures (A0A849TG76 and 
A0A2D8BRH7 (b), A0A849ZK06 (c) and S0EUL8 (d)) with predicted pockets 
and functional annotations. Each example shows the UniProt ID (top), the 
highest-scoring DeepFRI function prediction (bottom) and the top-scoring 
pocket (pink surface). The structures are coloured by residue-level contributions 
to the DeepFRI function predictions, ranging from blue (no contribution) to 
yellow (strong contribution).
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Similarly, the most often predicted cellular component was ‘intrin-
sic component of membrane’ (379 annotations). This indicates that 
structures without annotations may be enriched for membrane-bound 
proteins that have been historically difficult to determine experimen-
tally. This is also the case when considering all 711,705 dark clusters 
predicted by DeepFRI (Extended Data Fig. 5). Two examples of putative 
transporters are shown in Fig. 2b, including the top predicted pocket 
and coloured by the residue importance given by DeepFRI for this 
predicted function. In addition to the putative transporters, there is 
a wide diversity of other predicted functions. For example, UniProt 
A0A849ZK06 (Fig. 2c) is predicted to be a ribonucleotide-binding 
protein with an overall structure having an organization that resem-
bles a protein kinase fold. The residues contributing the most to the 
DeepFRI prediction are directly in contact with the top scoring pocket 
(Fig. 2c), suggesting a potential nucleotide-binding function for this 
pocket. Finally, UniProt S0EUL8 (Fig. 2d) has a top prediction of EC 
5.6.2.-, which annotates enzymes that can alter nucleic acid conforma-
tions. The structure resembles members of the structural maintenance 
of chromosomes family but it is missing several characteristic ele-
ments. The preceding gene in the genome encodes a RecN homologue 
(a member of the structural maintenance of chromosomes family), 
giving additional evidence for a role of UniProt S0EUL8 in chromo-
some maintenance.

Taxonomic analysis of the clusters
To gain insights into the distribution of the identified structural clus-
ters, we examined their taxonomic composition to determine the extent 
of protein machinery shared across different super-kingdoms (Fig. 3a). 
For this, we mapped the members of the cluster in the tree of life and 
identified the most recent common ancestor for all members of the 
cluster (Methods). In this way, we mapped non-singleton structural 
clusters that appear to be conserved at the cellular organism (23%) 
(that is, universal to all life), bacterial (16.1%), Eukaryota (13.5%) and 
Archaea (0.5%) levels. Together, this suggests that the majority of the 
structural clusters are probably very ancient in origin.

Although the majority of protein clusters is mapped to the com-
mon ancestor of eukarya or older, we found a small fraction (3.91%) 
of species-specific structural clusters. Compared with other clusters, 
the species-specific clusters tend to have fewer members (that is, twice 
more likely to have just two members); they are more likely to be dark, 
with 56% having no annotation; and composed of smaller proteins, 
with a median length of around 40 amino acid fewer). However, the 
overall prediction confidence (pLDDT) of the species-specific clusters 
is comparable to that of the remaining clusters, with an average of 69.35 
compared to 71.73. The organisms with the largest species-specific 
clusters are Acidobacteria bacterium, Araneus ventricosus, Escherichia 
coli, Sepia pharaonis and Chloroflexi bacterium, which range from 1,884 
to 1,390 clusters.

Human-related cluster analysis
As an example application, we studied human protein-containing clus-
ters from an evolutionary conservation perspective. We mapped the 
clusters containing human proteins to the tree of life (Extended Data 
Fig. 6) and first looked for human-specific clusters (that is, containing 
only human proteins). Out of the 13 human-specific clusters identi-
fied, 9 are predicted non-confident with a pLDDT score of less than 70 
and did not contain structural proteins. The remaining four clusters 
contained a herpes virus U54 (UniProt: A0A126LB04) unit; annexin 
(UniProt: A0A4D5RA95) with limited human homologues in UniRef50; 
a U2 snRNP-specific A′ protein (UniProt: Q9UEN1) that appeared to be a 
fragment but is not labelled as one; and VPS53 (UniProt: A0A7P0T9Z7), 
a single long coil structure that was not clustered by Foldseek due to 
high random chances of observing such a structure. Our findings do 

not support the presence of newly emerging human-specific struc-
tural clusters within the set of human sequences annotated in UniProt.  
However, this does take into account singleton clusters.

We next extracted all clusters containing a human protein and asso-
ciated each human cluster with its corresponding GO terms and low-
est common ancestor (LCA). When multiple human sequences were 
present in a cluster, the GO annotation of the human protein with the 
highest pLDDT score was selected. A small selection of GO annotations 
that highlight the evolutionary conservation of human structures is 
shown in Fig. 3b. Human proteins with similar structures across most 
of the tree of life are annotated with a diverse set of terms including 
several enzyme activities (for example, ligase activity, oxidoreduc-
tase activity, serine-type endopeptidase activity). Present in bacteria 
and eukarya, proteins linked with the microtubule-organizing centre 
and voltage-gated potassium channel activity are included. Mostly 
restricted to eukarya, terms such as nucleus, chromatin organization 
and microtubule motor activity are included. More recently evolved 
structures include annotations such as immune response and hormone 
activity.

Bacterial and human immunity protein links
Note that, even if some biological processes were primarily restricted 
to eukarya or more recently diverged clades, we could find cluster rep-
resentatives that were present in bacterial species. For example, most 
human proteins that are annotated to the nucleus (GO:0005634) are in 
clusters mapped to eukarya as their LCA. However, we found exceptions 
including, for example, a histone-related cluster (Fig. 3c) supporting 
the previously reported evolutionary link between eukaryotic and 
bacterial histones26. Similarly, we found several immunity-related pro-
teins with structural similar proteins present in bacteria. These include 
TNFRSF4 (UniProt: P43489) with similar structures in bacteria due to 
common cysteine-rich repeat regions that overlap with the TNFR/NGFR 
cysteine-rich region domain annotations in InterPro (IPR001368). We 
also found bacterial structures that are related to the human CD4 like 
protein B4E1T0 (Extended Data Fig. 7a), although these can also be 
annotated by sequence matching to the immunoglobulin-like domain 
family in InterPro (IPR013783).

The structural similarity between human and bacterial proteins 
may also inform on their function in bacteria. The human bactericidal 
permeability-increasing (BPI) protein (B4DKH6) is a key component 
of the innate immune system and is known to have a strong affinity 
for negatively charged lipopolysaccharides found in Gram-negative 
bacteria. In our analyses, this protein clusters with bacterial structures 
(Fig 3c), for example, the protein A0A2D5ZNG0, which aligns with 
the human protein at a TM-score of 0.81 normalized to the length of 
the human protein. Moreover, searching for partial hits by Foldseek 
identified that YceB from E. coli and other gram-negative bacteria has 
structural similarity to the C-terminal region of human BPI (Extended 
Data Fig. 7b). The E. coli YceB protein is a tubular putative lipid-binding 
protein without a well-characterized function. This structural simi-
larity may suggest a role of YceB homologues in regulating the outer 
membrane.

Our analysis identified a cluster containing the human protein AIM2 
(O14862), which recognizes pathogenic double-stranded DNA27 and 
leads to the formation of the AIM2 inflammasome. When search-
ing the NR database using NCBI BLAST28, we found no bacterial hits 
for the human AIM2 gene. However, three structures in ‘Candidatus 
Lokiarchaeota archaeon’ and one in the bacterium Clostridium sp. 
from an uncultured source (UniProt: A0A1C5UEQ5) were identified 
as similar to human AIM2 in our analysis. The bacterial protein (Uni-
Prot: A0A1C5UEQ5), encoded on a contig of length 138,559 (GenBank: 
FMFM01000010), is unlikely to be a contaminant due to its length29. 
UniProt A0A1C5UEQ5 is not unique, as many homologous sequences, 
mostly labelled as ‘hypothetical protein’, were found in the NR database 
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from mostly uncultured human gut bacterial sequences with higher 
than 90% sequence identity. We predicted the structure of one homolo-
gous protein that is 64% identical to UniProt A0A1C5UEQ5 (Extended 
Data Fig. 8)—which originates from a cultured Lachnospiraceae bacte-
rium that is part of the Culturable Genome Reference30 of the human 
gut—using ColabFold31 and confirmed that it has a similar structure 
DNA-binding domain structure (TM score of 0.97 and 0.56 in relation 
to UniProt A0A1C5UEQ5 and human AIM, respectively). These results 
suggest that the AIM2 inflammasome may have been repurposed from 
ancient DNA-sensing-related proteins. It is possible that the bacterial 
versions may also have a role in pathogen DNA sensing and response.

These results exemplify how the structural clusters can provide 
hypotheses as to the evolutionary origin of specific biological pro-
cesses and further illustrate the cross-kingdom similarities in immune 
systems.

Domain prediction by structure search
The clusters defined above group structurally similar proteins at full 
length. Proteins are sometimes composed of different regions or 
domains that can fold independently, with a growing collection of 
such domain families being catalogued in databases such as Pfam20 
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or InterPro21. Domain family prediction is performed primarily by 
sequence searches, exploring the fact that domain families have 
conserved sequence features. The vast increase in protein structures 
and fast algorithms to compare them opens the possibility of pre-
dicting domain families by structural similarity. Here we devised a 
procedure using structural similarity matches by Foldseek to predict 
putative domain regions and families (Fig. 4a and Methods). In brief, 
a representative structure from each of the Foldseek clusters defined 
above was used for an all-by-all structural similarity search using Fold-
seek. Although these representative structures should be structur-
ally non-redundant at the full protein level, they will still share many 
structurally similar domains. For each sequence/structure, we cluster 
the start and end positions of all Foldseek hits and use these to define 
probable domain boundaries. The predicted domain regions were 
then connected if they had structural similarity, and a network cluster-
ing method was used to cluster domain regions into putative domain  
families (Methods).

We used Pfam annotations to assess the quality of these predic-
tions (Fig. 4b–g). For each putative domain family with at least five 
representatives, we determined the frequency of the first and second 
most frequent Pfam annotations, with the majority having homoge-
neous annotations (Fig. 4b). Each Pfam annotation is predominantly 

found within a single domain family suggesting that these tend to be 
non-redundant. For domain families with at least 5 representatives, 
7,599 families match Pfam, 2,032 match Pfam domains of unknown 
function and 10,722 do not match Pfam and are probably enriched in 
novel families. The median length of the regions is similar for previ-
ously known or putative novel families (Fig. 4e). Given that we started 
with mostly non-redundant structures, we do not expect this approach 
to recover most domain families. We found 5,388 non-redundant 
Pfam annotations for predicted domain families with at least 5 rep-
resentatives, corresponding to around 29% of the 19,000 known  
Pfam families.

In summary, clustering of local Foldseek hits can accurately predict 
domain families leading to the prediction of many potential unexplored 
families. We provide a complete list of all predicted domain families 
online (https://cluster.foldseek.com/).

Structural similarity in distant domains
The network clustering procedure used above also enables the iden-
tification of pairs of predicted domain families that share some struc-
tural similarity. Among such pairs, we found around 500 connections 
between clusters enriched with a Pfam annotation and other domains 
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without clear annotations, providing examples of potential functional 
annotations. From these, we focused on connected domain families 
enriched in proteins from different kingdoms (Fig. 5). The Frag1-like 
domains exemplify the strength of structural-based similarity search-
ing (Fig. 5a). The Frag1/DRAM/Sfk1 Pfam domain (PF10277) annotates 
proteins with a six-α-helix bundle transmembrane region observed in 
eukaryotic species. In our analysis, a domain family enriched for this 
Pfam annotation was linked to two additional families enriched in bac-
terial and archeal sequences, one enriched for a domain of unknown 
function (DUF998; PF06197) and a second not annotated. The three 
families are structurally identical, typically forming a six-α-helix bun-
dle, despite the very low sequence similarity between the sequences 
forming these.

We also found a cluster enriched for the anthrax_toxA Pfam 
(PF03497; Fig. 5b), more specifically, the annotated domains contained 
structures similar to the oedema factor, a calmodulin-activated adeny-
lyl cyclase32. The oedema factor is one of the three components forming 
the bacterial anthrax toxin system. Our analysis identified a structur-
ally similar putative domain family enriched in eukaryotic proteins 
(Fig. 5b). Specifically, several algae proteins were found to have struc-
tures that had partial matches to the oedema-factor-domain-related 
structures. This raises the possibility that algae might be using similar 
toxin systems.

Identification of gasdermin domains
Our search resulted in the identification of two domain families with 
structural similarity to a cluster enriched for the gasdermin domain 
(Fig. 5c). In humans, gasdermin is the executor of inflammatory cell 
death called pyroptosis and is crucial for defence against pathogens. 
After sensing a pathogen, caspases are activated that cleave off the 
C-terminal repressor domain of gasdermin, releasing the N-terminal 
domain to assemble into large pores in the cell membrane33. The 
predicted gasdermin structures from all three groups exhibited the 
structural characteristic conservation of a twisted central antiparallel 
β-sheet and the shared placement of connecting helices and strands of 
gasdermin. The structures enriched in the gasdermin Pfam annotation 
adopted a similar conformation to that of the mammalian gasdermin N 
terminus, especially of gasdermin E, which is considered to be evolution-
ary ancient34. In the inactive structure of mammalian gasdermin (A, B, D 
and E), the N terminus forms interfaces with the repressor C-terminal 
domain mediating autoinhibition, one of these is the primary interface 
at the α1 helix35. Gasdermin is activated by proteolytic cleavage, which 
results in N-terminal activation through the lengthening of strands 
β3, β5, β7 and β8, and oligomerization36. Indeed, gasdermin domains 
from the Pfam annotated group had both the α1 helix as well as the 
corresponding β-sheets necessary for the active form of gasdermin. 
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Gasdermin was also recently found in bacteria and archaea, in which 
it is similarly activated by dedicated proteases and defends against 
phages by pore-mediated cell death37. Notably, the non-annotated 
group 1 of gasdermin domains displayed strong similarity to the bac-
terial gasdermin structure (Fig. 5c). The other non-annotated group 
(cluster 3) showed a large degree of diversity and exhibited features of 
both mammalian and bacterial gasdermin. In some cases, we observed 
that the N-terminal gasdermin domain was fused to other domains 
including proteases (Fig. 5c; UniProt: A0A2C5ZLK3). As gasdermin is 
activated by proteolytic cleavage, such protein fusion hints at a similar 
activation mechanism for the novel gasdermin domains.

Discussion
The orders-of-magnitude increase in available structural models raises 
challenges in data management and analysis of such large volumes. 
This difficulty is amplified by the fact that the repository of publicly 
available structures, consisting of the combined databases of AFDB 
and the ESMatlas38, is approaching a billion entries. For this reason, we 
developed a clustering procedure that can scale to billions of structures, 
identifying 2.30 million non-singleton clusters of which 31% do not have 
similarity to previously known structures or domain annotations. These 
clusters annotate only 4% of protein sequences, indicating that the 
vast majority of the protein structural space has been at least partially 
annotated. As the criteria used include partial hits to known structures 
or domain annotations, the degree of understudied structural space is 
probably underestimated. As we illustrate, our analysis can guide the 
prioritization of predicted novel protein families for future computa-
tional and experimental characterization.

Structural clustering is a powerful tool for identifying structurally 
similar proteins that can inform on evolutionary relationships, but its 
accuracy can be affected by certain limitations. Here we set a 90% align-
ment overlap as the requirement for assigning a structure to a cluster, 
which may exclude similar structures with significant insertions or 
unique repeat arrangements. Moreover, our strict E-value threshold 
of 0.01 may result in missed similarities. Another limitation is that the 
current AFDB does not contain the full extent of protein sequences 
from metagenomics studies or viral proteins, limiting the potential 
to detect retroviral proteins.

In addition to the full-length protein clustering, we used Foldseek’s  
local hit matches to predict and cluster protein regions into puta-
tive domain families. The protein region clusters tend to overlap 
well with previous definitions of domain families as annotated 
in the Pfam database and led to the identification of over 10,000  
unassigned domain-level clusters that should be enriched in putative 
novel domain families. We did not perform exhaustive searches with 
other sequence-based domain family annotations that could annotate 
additional clusters with previous knowledge. Note that we consid-
ered only the representatives of Foldseek clusters when performing 
the domain prediction. As the domain prediction requires multiple 
observations on the same structural region, additional domains are 
expected to be detected if each structure was searched against a larger 
set of structures.

As protein structure is conserved for longer periods of evolution-
ary time than protein sequences, we expect that AFDB will empower 
the identification of remote homology. Although some advanced 
sequence-based methods can already assist in this task39–41, the avail-
ability of predicted structures may help identify meaningful evolu-
tionary relationships. From an analysis of curated protein families, 
we find that our clusters are enriched preferentially in homologous 
over analogous relationships (Methods). Nevertheless, one should 
still be cautious when interpreting structural similarity as evolutionary 
homology. Our analysis here provides several examples of structural 
similarity across kingdoms that is indicative of remote homology.  
In particular, we focused on several examples relating human immunity 

to bacterial structures, emphasizing how some ancient systems have 
been co-opted for use in the mammalian immune response system. We 
expect that many more examples can be derived from the clustering 
results provided here.
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Methods

Structural clustering algorithm
The clustering procedure is similar to MMseqs2’s clustering but, instead 
of using sequences, Foldseek’s 3Di alphabet (Extended Data Fig. 1) was 
used to represent the structures as one-dimensional sequences. The clus-
tering algorithm combines Linclust17 and cascaded MMseqs2 (ref. 42) 
clustering. The pipeline applies this strategy to allow for efficient clus-
tering of millions of structures. First, protein structures are converted 
to 3Di sequences and processed according to the Linclust workflow. 
This includes extracting m k-mers (default m = 300, k = 10) from each 
sequence and grouping them on the basis of their hash value. The k-mer 
groups are then used to assign each structure to the longest sequence 
(representative) within the group. The shared diagonal on which the 
k-mer is found is also stored for further use in the alignment step.

The pipeline then proceeds with an ungapped alignment algorithm 
that rescores the structures on the basis of the shared diagonal between 
members and representatives using 3Di and amino acid information. 
The sequences that meet the defined alignment criteria, such as E-value, 
alignment coverage, sequence identity, alignment LDDT43 or TM score44,  
are clustered using the MMseqs2 clustering module (default using 
the set-cover algorithm). After this step, the structures that have 
been assigned already are removed from the set and the remaining 
representative member hits are aligned using Foldseek’s structural 
Gotoh–Smith–Waterman algorithm15, and all passing hits are clustered 
as well. The remaining cluster representatives are successively clustered 
by three cascaded steps of prefiltering, structural Smith–Waterman 
alignment and clustering.

Distinguishing homologues from analogues
Structural similarity between two sequences can be attributed to either 
common evolutionary ancestry (homologues) or convergent evolution 
(analogues). We investigated the association between cluster members, 
computed by our pipeline on the basis of structural similarity, and 
homology relationships using the ECOD database24. ECOD is a hierar-
chical domain database that describes the evolutionary relationships 
between pairs of protein domains. Its hierarchical levels from root to 
leaf are classified as: A-group (same architecture), X-group (possible 
homology), H-group (homology), T-group (topology) and F-group 
(sequence similarity). Analogues are expected to occur between mem-
bers of different X-groups, whereas homologues should be found within 
the H-group.

For our benchmark, we downloaded the ECOD (F99 v.20230309) 
PDB database and applied the same MMseqs2 and Foldseek clustering 
procedure used for the AFDB. We conducted an ECOD cluster purity 
analysis on all non-singleton clusters by measuring the pairwise cluster 
member consistency at different hierarchy levels. The analysis revealed 
high average consistency rates of 99.6%, 98.6%, 97.4%, 96.8% and 72.8% 
for ECOD’s A-group, X-group, H-group, T-group and F-group, respec-
tively. This indicates an effective clustering of homologous proteins, 
demonstrating a nearly exclusive distinction between homologues 
and analogues. The high level of consistency in our clustering is mainly 
attributed to the stringent E-value of 10−2; when raising it to 10, the 
consistencies decrease to 69.7%, 55.7%, 53.3%, 51.9% and 36.6%, respec-
tively. A similar result was observed using the MALISAM database45, a 
single-domain database of analogous protein domains. When clus-
tering the 260 protein structures within the MALISAM database with 
Foldseek’s default parameters, no clustering of analogues occurs. How-
ever, if we increase the E-value threshold, we begin to form clusters 
containing analogues.

Cluster purity analysis
To assess cluster purity, we followed a two-step approach. First, we 
calculated the average LDDT and TM score per cluster to assess the 
structural similarity. For this, we aligned the representative to the 

cluster members using the structurealign -e INF -a module in Foldseek 
and reported the alignment LDDT and TM score using --format-output 
lddt,alntmscore. For each cluster we computed the mean illustrated 
in Fig. 1c.

Second, we evaluated the Pfam consistency of each cluster by using 
Pfam labels obtained from UniProtKB. We took into account only the 
clusters that have at least two sequences with Pfam annotations and we 
calculated the fraction of correctly covered Pfam domains for all Pfam 
sequence pairs ignoring self-comparison. We define true positives as 
a pair of Pfam domains belonging to the same clan. For each pair, we 
computed the consistency scores by true-positive count divided by 
the count of Pfams in the reference sequence. Finally, we computed 
the mean overall pair scores. This approach enabled us to determine 
the proportion of sequences within a given cluster that shared the 
same Pfam annotation.

Finally, we also calculated the EC number consistency of each cluster. 
EC numbers were extracted from UniProtKB. The EC consistency was 
evaluated similarly to the Pfam consistency but was done four times 
according to the four classes of the EC number. We considered only the 
clusters with at least two sequences that have EC annotations. At each 
class of the EC number, the annotation without any code at the class was 
ignored. For each pair as the Pfam consistency, the consistency scores 
were computed by the true-positive count divided by the number of 
ECs in the sequences in the pair avoiding self-comparison. The scores 
were finally computed to the mean overall pair scores.

Dark clusters and LCA
To eliminate clusters similar to previously known experimental  
structures, we conducted a search using Foldseek against the PDB 
(v.2022-10-14) for each cluster representative, with an E-value thresh-
old of 0.1. We then excluded clusters annotated with Pfam domains  
by searching the cluster representatives using MMseqs2 with para-
meters -s 7.5 --max-seqs 100000 -e 0.001 against the Pfam database. 
Finally, we removed clusters with members annotated with Pfam or  
TIGRFAM20 annotations in the UniProt/TrEMBL and SwissProt data-
base. To determine the LCA of each cluster, we used the lca module 
in MMseqs2 (ref. 46) ignoring the two taxa (1) 12,908 unclassified 
sequences and (2) 28,384 other sequences. We visualized the LCA 
results using a Sankey plot generated by Pavian47.

Prediction of functions and pockets
We predicted small-molecule-binding sites for representative dark clus-
ter members by adapting a previously described approach9. We used 
AutoSite to predict pockets48, and selected pockets with an AutoSite 
empirical composite score of >60 and mean pocket residue pLDDT of 
>90 for additional analyses. To assign putative function and predict 
catalytic residues, we used DeepFRI49 to predict enriched GO/EC terms 
and residue-level saliency weights across available GO/EC categories 
(BP, CC, EC, MF). Pocket and functional predictions were then visually 
examined using a web app (Data Availability).

Domain prediction from local alignments
First, we filtered out low-scoring Foldseek hits using an E-value of 10−3 
as the threshold. We defined potential domain boundary positions 
for each protein sequence by clustering start–stop positions (hier-
archical clustering, height parameter of 250 to establish clusters). 
Predicted domains were then linked to others on the basis of structural 
similarities, retaining the highest scores when duplicates were found. 
The resulting network was then trimmed excluding connections with 
E-value higher than 10−5, predicted domains with more than 350 amino 
acids and connected components with less than 5 nodes. We applied 
graph-based clustering (walktrap, 6 steps), keeping communities 
with at least 5 members. Each predicted domain inside the selected 
communities was annotated using Pfam-A regions mapped to UniProt 
identifiers (v.35.0), more than 75% of the Pfam domain has to overlap 



with the predicted domain. We calculated inside each community the 
frequency of Pfam annotations and defined them on the basis of the 
highest one. Owing to its size, we decided to keep out of the follow-
ing analysis one community with 152,959 structures (group ID 1;1, see 
supplementary files at https://cluster.foldseek.com/). We connected 
the remaining communities on the basis of the structure similarities, 
allowing connections with a P < 10−3.

Web server
We developed a web server to allow for user-friendly exploration of 
clusters, their members and related similar clusters. The server was 
implemented using a REST-based client-server architecture, with a 
VueJS front-end and a NodeJS back-end. The clustering-related informa-
tion is accessed through an SQLite database and information related to 
individual structures through Foldseek compatible databases through 
a C++-based NodeJS-extension for fast read-in and search. Similar to 
the Foldseek webserver, we used NGL50 to visualize structures and 
WebAssembly-based versions of PULCHRA51 to restore full protein 
structures from our stored C-alpha traces and TM-align for pairwise 
structure alignments of cluster members to their representatives. To 
visualize the taxonomic distribution, we implemented Sankey diagrams 
inspired by Pavian. Clusters can be found through member UniProt 
accessions, through a Foldseek search to similar clusters or by searching  
for GO terms. Individual cluster members can be further explored with 
links to UniProt, the Foldseek webserver and the UniProt3D Atlas52.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Clustering data are freely and publicly available (CC-BY) online 
(https://cluster.foldseek.com/). All data generated and used for the 
analyses can be downloaded online (https://afdb-cluster.steineg-
gerlab.workers.dev). AlphaFold database v.3 (https://alphafold.ebi.
ac.uk/) was used for the analysis and is currently available at gs://
public-datasets-deepmind-alphafold. For the analysis, we used Pfam 
v.34.0 (https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0), 
PDB (14 October 2022; https://www.rcsb.org), UniProt TrEMBL 2022_03 
(https://ftp.ebi.ac.uk/pub/databases/uniprot/), SwissProt 2022_03 
(https://ftp.ebi.ac.uk/pub/databases/uniprot/), ECOD 20230309 
(http://prodata.swmed.edu/ecod/) and the MALISAM (http://prodata.
swmed.edu/malisam/) database.

Code availability
The structural clustering method is available at https://foldseek.com/, 
is implemented in Foldseek v.4.645b789 and is available as free and 
open-source software (GPLv3). MMseqs2/Linclust v.14.7e284 is avail-
able online (https://mmseqs.com/). The cluster analysis was performed 

using goatools v.1.2.4 (https://github.com/tanghaibao/goatools), Deep-
FRI v.0.0.1 for GO predictions (https://github.com/flatironinstitute/
DeepFRI) and ColabFold v.1.5.2 for structure prediction (https://colab-
fold.com). For plotting, Python v.3.10.6 (https://www.python.org/), 
Matplotlib v.3.6.2 (https://matplotlib.org/), seaborn v.0.12.2 (https://
github.com/mwaskom/seaborn), ChimeraX v.1.5 (https://www.cgl.
ucsf.edu/chimerax/), Pavian commit: cd2f21 (https://fbreitwieser.shin-
yapps.io/pavian/) and pandas v.1.5.2 (https://github.com/pandas-dev/
pandas) were used.
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Extended Data Fig. 1 | The five-step clustering pipeline for efficiently 
clustering millions of protein structures using Foldseek’s 3Di alphabet.  
(1) Protein structures are converted to 3Di sequences and processed through 
the Linclust workflow. (2) For each sequence, 300 min-hasing k-mers are 
extracted and sorted. (3) The longest structure is assigned to be the centre of 
each k-mer cluster. (4) Structural alignment is performed in two stages: first an 
ungapped alignment based on shared diagonal information is performed, hits 

are pre-clustered and second the remaining sequences are aligned using 
Foldseek’s structural Smith-Waterman. (5) The remaining structures meeting 
alignment criteria are clustered using MMseqs2’s clustering module. After the 
Linclust step the centroids are successively clustered by three cascaded steps 
of prefiltering, structural Smith-Waterman alignment and clustering using 
Foldseek’s search.



Extended Data Fig. 2 | Relationship of mean pairwise Pfam consistency to 
cluster features. These graphs are plotted with 1,004,422 clusters with at 
least two Pfam annotated sequences. (a) We analysed Pfam consistency  
of clusters binned by their member counter. These bins represent Pfam 

annotated non-singleton clusters at rates of 19.2%, 13.5%, 9.5%, 12.6%, 11.0%, 
12.4%, 11.8% and 10.0% from left to right, respectively. (b) We analysed Pfam 
consistency of clusters binned by their LDDT of each cluster. These bins 
represent Pfam annotated non-singleton clusters equally.
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Extended Data Fig. 3 | Relationship of mean pairwise EC number 
consistency to LDDT of cluster. These graphs are plotted with 113,287 
clusters with at least two Enzyme Commission number annotated sequences. 

Each panel describes EC consistency compared at 1 to 4 classes. Each bin in a 
panel represents EC annotated non-singleton clusters equally.



Extended Data Fig. 4 | Examples of non-compact AlphaFold2 predicted structures. Examples of representative structures of clusters without annotations 
having pLDDT>90 and a predicted pocket covering over 80% of the residues of the structure.
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Extended Data Fig. 5 | Top predicted molecular functions in all 712k dark 
clusters with DeepFRI scores greater than 0.5. The graph displays the most 
frequent molecular functions predicted by DeepFRI with prediction scores 

above 0.5 across all 712k dark clusters, highlighting the prevalence of the 
keyword “transmembrane”. Only 98,882 (13.9%) out of the 712K have a 
prediction score greater than 0.5.



Extended Data Fig. 6 | LCA plot of the clusters that contain Homo Sapiens proteins. Lowest common ancestor Sankey plot generated by Pavian for all clusters 
containing human proteins.
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Extended Data Fig. 7 | Additional examples of human related proteins in 
structural clusters with representatives or partial matches in bacterial 
species. (a) We found bacterial structures related to the human CD4 like 
protein B4E1T0. The human protein (B4E1T0) has 3 Pfams - PF05790, PF09191, 
PF12104. Those Pfams are specific to Eukaryotes only. In contrast, the bacterial 

protein (A0A1F4ZDN5) has no Pfam annotation. (b) The human protein 
(B4DKH6) is a bactericidal permeability-increasing protein found in humans. 
The E. coli protein (P0AB26) has a similar structure to the human protein, 
contains a Pfam domain of unknown function (DUF) and its structure is also 
experimentally determined (PDB: 3l6i B).

https://www.uniprot.org/uniprot/B4E1T0
https://www.uniprot.org/uniprot/B4E1T0
https://www.uniprot.org/uniprot/B4DKH6
https://www.uniprot.org/uniprot/P0AB26
https://doi.org/10.2210/pdb3l6i/pdb


Extended Data Fig. 8 | Comparison of predicted structures of homologous 
proteins: Lachnospiraceae bacterium to Clostridium. (a) pLDDT and 
multiple-sequence-alignment coverage output produced by ColabFold for the 
prediction of the protein sequence of Lachnospiraceae. (b) The predicted 

structure of RJW57900.1. (C) Superposition of the Clostridium protein 
structure with Lachnospiraceae with the DNA binding domain being well 
superposable.
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