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Measurement-induced entanglement and 
teleportation on a noisy quantum processor

Google Quantum AI and Collaborators*

Measurement has a special role in quantum theory1: by collapsing the wavefunction,  
it can enable phenomena such as teleportation2 and thereby alter the ‘arrow of  
time’ that constrains unitary evolution. When integrated in many-body dynamics, 
measurements can lead to emergent patterns of quantum information in space–
time3–10 that go beyond the established paradigms for characterizing phases, either  
in or out of equilibrium11–13. For present-day noisy intermediate-scale quantum  
(NISQ) processors14, the experimental realization of such physics can be problematic 
because of hardware limitations and the stochastic nature of quantum measurement. 
Here we address these experimental challenges and study measurement-induced 
quantum information phases on up to 70 superconducting qubits. By leveraging the 
interchangeability of space and time, we use a duality mapping9,15–17 to avoid mid- 
circuit measurement and access different manifestations of the underlying phases, 
from entanglement scaling3,4 to measurement-induced teleportation18. We obtain 
finite-sized signatures of a phase transition with a decoding protocol that correlates 
the experimental measurement with classical simulation data. The phases display 
remarkably different sensitivity to noise, and we use this disparity to turn an inherent 
hardware limitation into a useful diagnostic. Our work demonstrates an approach to 
realizing measurement-induced physics at scales that are at the limits of current NISQ 
processors.

The stochastic, non-unitary nature of measurement is a foundational 
principle in quantum theory and stands in stark contrast to the deter-
ministic, unitary evolution prescribed by Schrödinger’s equation1. 
Because of these unique properties, measurement is key to some fun-
damental protocols in quantum information science, such as telepor-
tation2, error correction19 and measurement-based computation20. All 
these protocols use quantum measurements, and classical processing 
of their outcomes, to build particular structures of quantum infor-
mation in space–time. Remarkably, such structures may also emerge 
spontaneously from random sequences of unitary interactions and 
measurements. In particular, ‘monitored’ circuits, comprising both 
unitary gates and controlled projective measurements (Fig. 1a), were 
predicted to give rise to distinct non-equilibrium phases character-
ized by the structure of their entanglement3,4,21–23, either ‘volume law’24 
(extensive) or ‘area law’25 (limited), depending on the rate or strength 
of measurement.

In principle, quantum processors allow full control of both unitary 
evolution and projective measurements (Fig. 1a). However, despite 
their importance in quantum information science, the experimental 
study of measurement-induced entanglement phenomena26,27 has been 
limited to small system sizes or efficiently simulatable Clifford gates. 
The stochastic nature of measurement means that the detection of such 
phenomena requires either the exponentially costly post-selection of 
measurement outcomes or more sophisticated data-processing tech-
niques. This is because the phenomena are visible only in the properties 
of quantum trajectories; a naive averaging of experimental repetitions 

incoherently mixes trajectories with different measurement outcomes 
and fully washes out the non-trivial physics. Furthermore, imple-
menting the model in Fig. 1a requires mid-circuit measurements that  
are often problematic on superconducting processors because the 
time needed to perform a measurement is a much larger fraction of 
the typical coherence time than it is for two-qubit unitary operations. 
Here we use space–time duality mappings to avoid mid-circuit meas-
urements, and we develop a diagnostic of the phases on the basis of a 
hybrid quantum-classical order parameter (similar to the cross-entropy 
benchmark in ref. 28) to overcome the problem of post-selection. The 
stability of these quantum information phases to noise is a matter of 
practical importance. Although relatively little is known about the 
effect of noise on monitored systems29–31, noise is generally expected to 
destabilize measurement-induced non-equilibrium phases. Nonethe-
less, we show that noise serves as an independent probe of the phases 
at accessible system sizes. Leveraging these insights allows us to realize 
and diagnose measurement-induced phases of quantum information 
on system sizes of up to 70 qubits.

The space–time duality approach9,15–17 enables more-experimentally 
convenient implementations of monitored circuits by leveraging the 
absence of causality in such dynamics. When conditioning on measure-
ment outcomes, the arrow of time loses its unique role and becomes 
interchangeable with spatial dimensions, giving rise to a network of 
quantum information in space–time32 that can be analysed in multi-
ple ways. For example, we can map one-dimensional (1D) monitored  
circuits (Fig. 1a) to 2D shallow unitary circuits with measurements only 
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at the final step17 (Fig. 1b and Supplementary Information section 5), 
thereby addressing the experimental issue of mid-circuit measurement.

We began by focusing on a special class of 1D monitored circuits that 
can be mapped by space–time duality to 1D unitary circuits. These 

models are theoretically well understood15,16 and are convenient to 
implement experimentally. For families of operations that are dual to 
unitary gates (Supplementary Information), the standard model of 
monitored dynamics3,4 based on a brickwork circuit of unitary gates 
and measurements (Fig. 2a) can be equivalently implemented as a 
unitary circuit when the space and time directions are exchanged 
(Fig. 2b), leaving measurements only at the end. The desired output 
state |Ψm⟩ is prepared on a temporal subsystem (in a fixed position at 
different times)33. It can be accessed without mid-circuit measurements 
by using ancillary qubits initialized in Bell pairs (Q Q′… ′1 12  in Fig. 2c)  
and SWAP gates, which teleport |Ψm⟩ to the ancillary qubits at the end 
of the circuit (Fig.  2c). The resulting circuit still features post- 
selected measurements but their reduced number (relative to a  
generic model; Fig. 2a) makes it possible to obtain the entropy of  
larger systems, up to all 12 qubits (Q Q′… ′1 12 ), in individual quantum  
trajectories.

Previous studies15,16 predicted distinct entanglement phases for 
|Ψm⟩ as a function of the choice of unitary gates in the dual circuit: 
volume-law entanglement if the gates induce an ergodic evolution, 
and logarithmic entanglement if they induce a localized evolution. 
We implemented unitary circuits that are representative of the two 
regimes, built from two-qubit fermionic simulation (fSim) unitary 
gates34 with swap angle θ and phase angle ϕ = 2θ, followed by random 
single-qubit Z rotations. We chose angles θ = 2π/5 and θ = π/10 because 
these are dual to non-unitary operations with different measurement 
strengths (Fig. 2d and Supplementary Information).

To measure the second Renyi entropy for qubits composing |Ψm⟩, 
randomized measurements35,36 are performed on Q Q′… ′1 12. Figure 2e 
shows the entanglement entropy as a function of subsystem size. The 
first gate set gives rise to a Page-like curve24, with entanglement entropy 
growing linearly with subsystem size up to half the system and then 
ramping down. The second gate set, by contrast, shows a weak, sublin-
ear dependence of entanglement with subsystem size. These findings 
are consistent with the theoretical expectation of distinct entanglement 
phases (volume-law and logarithmic, respectively) in monitored circuits 
that are space–time dual to ergodic and localized unitary circuits15,16. 
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Fig. 1 | Monitored circuits and space–time duality mapping. a, A random 
(1 + 1)-dimensional monitored quantum circuit composed of both unitary gates 
and measurements. b, An equivalent dual (1 + 1)-dimensional shallow circuit of 
size Lx × Ly and depth T with all measurements at the final time formed from a 
space–time duality mapping of the circuit in a. Because of the non-unitarity 
nature of measurements, there is freedom as to which dimensions are viewed 
as ‘time’ and which as ‘space’. In this example, Ly is set by the (1 + 1)D circuit depth 
and Lx by its spatial size, and T is set by the measurement rate. c, Classical post- 
processing on a computer of the measurement record (quantum trajectory), 
and quantum-state readout of a monitored circuit can be used to diagnose the 
underlying information structures in the system.
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Fig. 2 | Implementation of space–time duality in 1D. a, A quantum circuit 
composed of non-unitary two-qubit operations in a brickwork pattern on a 
chain of 12 qubits with 7 time steps. Each two-qubit operation can be a 
combination of unitary operations and measurement. b, The space–time dual 
of the circuit shown in a with the roles of space and time interchanged. The 
12-qubit wavefunction |Ψm⟩ is temporally extended along Q7. c, In the experiment 
on a quantum processor, a set of 12 ancillary qubits Q Q′… ′1 12 and a network of 
SWAP gates are used to teleport |Ψm⟩ to the ancillary qubits. d, Illustration of 

the two-qubit gate composed of an fSim unitary and random Z rotations with 
its space–time dual, which is composed of a mixture of unitary and measurement 
operations. The power h of the Z rotation is random for every qubit and periodic 
with each cycle of the circuit. e, Second Renyi entropy as a function of the 
volume of a subsystem A from randomized measurements and post-selection 
on Q1…Q6. The data shown are noise mitigated by subtracting an entropy density 
matching the total system entropy. See the Supplementary Information for 
justification.
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A phase transition between the two can be achieved by tuning the (θ, ϕ) 
fSim gate angles.

We next moved beyond this specific class of circuits with operations 
restricted to be dual to unitary gates, and instead investigated quan-
tum information structures arising under more general conditions. 
Generic monitored circuits in 1D can be mapped onto shallow circuits 
in 2D, with final measurements on all but a 1D subsystem17. The effec-
tive measurement rate, p, is set by the depth of the shallow circuit, T, 
and the number of measured qubits, M. Heuristically, p = M/(M + L)T 
(the number of measurements per unitary gate), where L is the length 
of the chain of unmeasured qubits hosting the final state for which 
the entanglement structure is being investigated. Thus, for large M, 
a measurement-induced transition can be tuned by varying T. We ran 
2D random quantum circuits28 composed of iSWAP-like and random 
single-qubit rotation unitaries on a grid of 19 qubits (Fig. 3a), with T 
varying from 1 to 8. For each depth, we post-selected on measurement 
outcomes of M = 12 qubits and left behind a 1D chain of L = 7 qubits; the 
entanglement entropy was then measured for contiguous subsystems A 
by using randomized measurements. We observed two distinct behav-
iours over a range of T values (Fig. 3b). For T < 4, the entropy scaling 
is subextensive with the size of the subsystem, whereas for T ≥ 4, we 
observe an approximately linear scaling.

The spatial structure of quantum information can be further charac-
terized by its signatures in correlations between disjointed subsystems 
of qubits: in the area-law phase, entanglement decays rapidly with 
distance37, whereas in a volume-law phase, sufficiently large subsystems 
may be entangled arbitrarily far away. We studied the second Renyi 
mutual information

I S S S= + − , (1)AB A B AB
(2) (2) (2) (2)

between two subsystems A and B as a function of depth T, and the dis-
tance (the number of qubits) x between them (Fig. 3c). For maximally 
separated subsystems A and B of two qubits each, I AB

(2)  remains finite 
for T ≥ 4, but it decays to 0 for T ≤ 3 (Fig. 3d). We also plotted AB

(2)I  for 
subsystems A and B with different sizes (T = 3 and T = 6) as a function 
of x (Fig. 3e). For T = 3 we observed a rapid decay of I AB

(2)  with x, indicat-
ing that only nearby qubits share information. For T = 6, however, AB

(2)I  
does not decay with distance.

The observed structures of entanglement and mutual information 
provide strong evidence for the realization of measurement-induced 
area-law (‘disentangling’) and volume-law (‘entangling’) phases. 
Our results indicate that there is a phase transition at critical depth 
T ≃ 4, which is consistent with previous numerical studies of similar  
models17,18,38. The same analysis without post-selection on the M qubits 
(Supplementary Information) shows vanishingly small mutual infor-
mation, indicating that long-ranged correlations are induced by the 
measurements.

The approaches we have followed so far are difficult to scale for 
system sizes greater than 10–20 qubits27, owing to the exponentially 
increasing sampling complexity of post-selecting measurement out-
comes and obtaining entanglement entropy of extensive subsystems of 
the desired output states. More scalable approaches have been recently 
proposed39–42 and implemented in efficiently simulatable (Clifford) 
models26. The key idea is that diagnostics of the entanglement structure 
must make use of both the readout data from the quantum state |Ψm⟩ 
and the classical measurement record m in a classical post-processing 
step (Fig. 1c). Post-selection is the conceptually simplest instance of 
this idea: whether quantum readout data are accepted or rejected 
is conditional on m. However, because each instance of the experi-
ment returns a random quantum trajectory43 from 2M possibilities 
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Fig. 3 | 1D entanglement phases obtained from 2D shallow quantum 
circuits. a, Schematic of the 2D grid of qubits. At each cycle (blue boxes) of the 
circuit, random single-qubit and two-qubit iSWAP-like gates are applied to each 
qubit in the cycle sequence shown. The random single-qubit gate (SQ, grey) is 
chosen randomly from the set { }X Y W V, , ,±1 ±1 ±1 ±1 , where W X Y= ( + )/ 2  

and V X Y= ( − )/ 2 . At the end of the circuit, the lower M = 12 qubits are measured 
and post-selected on the most probable bitstring. b, Second Renyi entropy of 

contiguous subsystems A of the L = 7 edge qubits at various depths. The 
measurement is noise mitigated in the same way as in Fig. 2. c, Second Renyi 
mutual information I AB

(2)  between two-qubit subsystems A and B against depth  
T and distance x (the number of qubits between A and B). d, AB

(2)I  as a function  
of T for two-qubit subsystems A and B at maximum separation. e, AB

(2)I  versus x 
for T = 3 and T = 6 for different volumes of A and B.
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(where M is the number of measurements), this approach incurs an 
exponential sampling cost that limits it to small system sizes. Over-
coming this problem will ultimately require more-sample-efficient 
strategies that use classical simulation39,40,42, possibly followed by active  
feedback39.

Here we have developed a decoding protocol that correlates 
quantum readout and the measurement record to build a hybrid 
quantum–classical order parameter for the phases that is applica-
ble to generic circuits and does not require active feedback on the 
quantum processor. A key idea is that the entanglement of a single 
‘probe’ qubit, conditioned on measurement outcomes, can serve as  
a proxy for the entanglement phase of the entire system39. This 
immediately eliminates one of the scalability problems: measur-
ing the entropy of extensive subsystems. The other problem—
post-selection—is removed by a classical simulation step that allows 
us to make use of all the experimental shots and is therefore sample  
efficient.

This protocol is illustrated in Fig. 4a. Each run of the circuit terminates 
with measurements that return binary outcomes ±1 for the probe qubit, 
zp, and the surrounding M qubits, m. The probe qubit is on the same 
footing as all the others and is chosen at the post-processing stage. For 
each run, we classically compute the Bloch vector of the probe qubit, 
conditional on the measurement record m, am (Supplementary Infor-
mation). We then define τ zaa= sign( · ˆ)m m , which is +1 if am points above 
the equator of the Bloch sphere, and −1 otherwise. The cross-correlator 
between zp and τm, averaged over many runs of the experiment such 

that the direction of am is randomized, yields an estimate of the length 
of the Bloch vector, ζ m≃ a , which can in turn be used to define a proxy 
for the probe’s entropy:

ζ z τ S ζ= 2 , = − log [(1 + )/2], (2)mp proxy 2
2

where the overline denotes averaging over all the experimental shots 
and random circuit instances. A maximally entangled probe corre-
sponds to ζ = 0.

In the standard teleportation protocol2, a correcting operation con-
ditional on the measurement outcome must be applied to retrieve 
the teleported state. In our decoding protocol, τm has the role of 
the correcting operation, restricted to a classical bit-flip, and the 
cross-correlator describes the teleportation fidelity. In the circuits 
relevant to our experiment (depth T = 5 on N ≤ 70 qubits), the classical 
simulation for decoding is tractable. For arbitrarily large circuits, how-
ever, the existence of efficient decoders remains an open problem39,41,44. 
Approximate decoders that work efficiently in only part of the phase 
diagram, or for special models, also exist39, and we have implemented 
one such example  based on matrix product states (Supplementary  
Information).

We applied this decoding method to 2D shallow circuits that act on 
various subsets of a 70-qubit processor, consisting of N = 12, 24, 40, 
58 and 70 qubits in approximately square geometries (Supplemen-
tary Information). We chose a qubit near the middle of one side as the 
probe and computed the order parameter ζ by decoding measurement 
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and ρ = 1 (circles). In the disentangling phase, Sproxy
∼

 decays rapidly to 0, 
independent of the system size. In the entangling phase, Sproxy

∼
 remains large 

and finite up to rmax − 1. e, 
∼
Sproxy at N = 40 as a function of r for different ρ, 

revealing a crossover between the entangling and disentangling phases for 
intermediate ρ. f, 

∼
Sproxy at r = rmax − 1 as a function of ρ for N = 12, 24, 40 and  

58 qubits. The curves for different sizes approximately cross at ρc ≈ 0.9. Inset, 
schematic showing the decoding geometry for the experiment. The pink and 
grey lines encompass the past light cones (at depth T = 5) of the probe qubit and 
traced-out qubits at r = rmax − 1, respectively. Data were collected from 2,000 
random circuit instances and 1,000 shots each for every value of N and ρ.
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outcomes up to r lattice steps away from that side while tracing out 
all the others (Fig. 4a). We refer to r as the decoding radius. Because 
of the measurements, the probe may remain entangled even when 
r extends past its unitary light cone, corresponding to an emergent 
form of teleportation18.

As seen in Fig. 3, the entanglement transition occurs as a function of 
depth T, with a critical depth 3 < Tc < 4. Because T is a discrete parameter, 
it cannot be tuned to finely resolve the transition. To do this, we fix T = 5 
and instead tune the density of the gates, so each iSWAP-like gate acts 
with probability ρ and is skipped otherwise, setting an ‘effective depth’ 
Teff = ρT; this can be tuned continuously across the transition. Results 
for ζ(r) at ρ = 1 (Fig. 4b) reveal a decay with system size N of ζ(rmax), where 
r  = rmax corresponds to measuring all the qubits apart from the probe. 
This decay is purely due to noise in the system.

Remarkably, sensitivity to noise can itself serve as an order parameter 
for the phase. In the disentangling phase, the probe is affected by noise 
only within a finite correlation length, whereas in the entangling phase 
it becomes sensitive to noise anywhere in the system. In Fig. 4c, ζ(rmax) is 
shown as a function of ρ for several N values, indicating a transition at a 
critical gate density ρc of around 0.6–0.8. At ρ = 0.3, which is well below 
the transition, ζ(rmax) remains constant as N increases (inset in Fig. 4c). 
By contrast, at ρ = 1 we fit ζ(rmax) at around 0.97N, indicating an error rate 
of around 3% per qubit for the entire sequence. This is approximately 
consistent with our expectations for a depth T = 5 circuit based on 
individual gate and measurement error rates (Supplementary Infor-
mation). This response to noise is analogous to the susceptibility of 
magnetic phases to a symmetry-breaking field7,30,31,45 and therefore 
sharply distinguishes the phases only in the limit of infinitesimal noise. 
For finite noise, we expect the N dependence to be cut off at a finite 
correlation length. We do not see the effects of this cut-off at system 
sizes accessible to our experiment.

As a complementary approach, the underlying behaviour in the 
absence of noise may be estimated by noise mitigation. To do this, we 
define the normalized order parameter ζ r ζ r ζ r( ) = ( )/ ( )max

∼
 and proxy 

entropy S r ζ r( ) = − log [(1 + ( ) )/2]proxy 2
2∼∼ . The persistence of entangle-

ment with increasing r, corresponding to measurement-induced  
teleportation18, indicates the entangling phase. Figure 4d shows the 
noise-mitigated entropy for ρ = 0.3 and ρ = 1, revealing a rapid, 
N-independent decay in the former and a plateau up to r = rmax − 1 in the 
latter. At fixed N = 40, ∼S r( )proxy  displays a crossover between the two 
behaviours for intermediate ρ (Fig. 4e).

To resolve this crossover more clearly, we show ∼S r( − 1)proxy max  as a 
function of ρ for N = 12–58 (Fig. 4e). The accessible system sizes approx-
imately cross at ρc ≈ 0.9. There is an upward drift of the crossing points 
with increasing N, confirming the expected instability of the phases to 
noise in the infinite-system limit. Nonetheless, the signatures of the 
ideal finite-size crossing (estimated to be ρc ≃ 0.72 from the noiseless 
classical simulation; Supplementary Information) remain recogniz-
able at the sizes and noise rates accessible in our experiment, although 
they are moved to larger ρc. A stable finite-size crossing would mean 
that the probe qubit remains robustly entangled with qubits on the 
opposite side of the system, even when N increases. This is a hallmark 
of the teleporting phase18, in which quantum information (aided by 
classical communication) travels faster than the limits imposed by the 
locality and causality of unitary dynamics. Indeed, without measure-
ments, the probe qubit and the remaining unmeasured qubits are caus-
ally disconnected, with non-overlapping past light cones46 (pink and 
grey lines in the inset in Fig. 4f).

Our work focuses on the essence of measurement-induced phases: 
the emergence of distinct quantum information structures in space–
time. We used space–time duality mappings to circumvent mid-circuit 
measurements, devised scalable decoding schemes based on a local 
probe of entanglement, and used hardware noise to study these phases 
on up to 70 superconducting qubits. Our findings highlight the prac-
tical limitations of NISQ processors imposed by finite coherence. 

By identifying exponential suppression of the decoded signal in 
the number of qubits, our results indicate that increasing the size 
of qubit arrays may not be beneficial without corresponding reduc-
tions in noise rates. At current error rates, extrapolation of our results  
(at ρ = 1, T = 5) to an N-qubit fidelity of less than 1% indicates that arrays 
of more than around 150 qubits would become too entangled with their 
environment for any signatures of the ideal (closed system) entangle-
ment structure to be detectable in experiments. This indicates that 
there is an upper limit on qubit array sizes of about 12 × 12 for this 
type of experiment, beyond which improvements in system coher-
ence are needed.
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