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Spatial predictors of immunotherapy 
response in triple-negative breast cancer

Xiao Qian Wang1, Esther Danenberg1, Chiun-Sheng Huang2, Daniel Egle3, Maurizio Callari4, 
Begoña Bermejo5,6,7, Matteo Dugo8, Claudio Zamagni9, Marc Thill10, Anton Anton11, 
Stefania Zambelli8, Stefania Russo12, Eva Maria Ciruelos13, Richard Greil14,15,16, Balázs Győrffy17,18, 
Vladimir Semiglazov19, Marco Colleoni20, Catherine M. Kelly21, Gabriella Mariani22, 
Lucia Del Mastro23,24, Olivia Biasi20, Robert S. Seitz25, Pinuccia Valagussa4, Giuseppe Viale20,26, 
Luca Gianni4,28, Giampaolo Bianchini4,8,28 ✉ & H. Raza Ali1,27,28 ✉

Immune checkpoint blockade (ICB) benefits some patients with triple-negative  
breast cancer, but what distinguishes responders from non-responders is unclear1. 
Because ICB targets cell–cell interactions2, we investigated the impact of multicellular 
spatial organization on response, and explored how ICB remodels the tumour 
microenvironment. We show that cell phenotype, activation state and spatial location 
are intimately linked, influence ICB effect and differ in sensitive versus resistant 
tumours early on-treatment. We used imaging mass cytometry3 to profile the in  
situ expression of 43 proteins in tumours from patients in a randomized trial of 
neoadjuvant ICB, sampled at three timepoints (baseline, n = 243; early on-treatment, 
n = 207; post-treatment, n = 210). Multivariate modelling showed that the fractions  
of proliferating CD8+TCF1+T cells and MHCII+ cancer cells were dominant predictors  
of response, followed by cancer–immune interactions with B cells and granzyme  
B+ T cells. On-treatment, responsive tumours contained abundant granzyme B+ T cells, 
whereas resistant tumours were characterized by CD15+ cancer cells. Response was 
best predicted by combining tissue features before and on-treatment, pointing  
to a role for early biopsies in guiding adaptive therapy. Our findings show that 
multicellular spatial organization is a major determinant of ICB effect and suggest that 
its systematic enumeration in situ could help realize precision immuno-oncology.

Immunotherapy has transformed the treatment of solid tumours but 
its best use in breast cancer remains unclear4. Triple-negative breast 
cancer (TNBC), which lacks hormone receptor and human epider-
mal growth factor 2 (HER2) expression, is an aggressive subtype for 
which new therapies are needed5,6. In TNBC, trials of immune check-
point blockade (ICB) targeting the interaction between programmed 
death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) have 
shown that some patients benefit1,4,7, but we lack a reliable biomarker  
to identify responders1

Interactions between proximate specialized cells in distinct acti-
vation states underpin the effect of ICB2. In cancer, chronic T cell 
stimulation leads to dysfunction, owing to interactions between cells 
expressing immune checkpoint receptors and ligands. ICB prevents 

this to invigorate dysfunctional T cells2 and these invigorated T cells 
must then interact with target cancer cells to induce cell death8. The 
efficacy of ICB therefore depends on both the cellular composition 
and multicellular organization of tumours because they orchestrate 
these interactions. Breast tumours are heterocellular ecosystems of 
cancer and tumour microenvironment (TME) cells9–12 that self-organize 
as distinct, recurring multicellular structures13. Despite this, the rela-
tionship between phenotypic spatial organization of tumours and ICB 
response has been little explored.

Although multicellular organization pre-treatment may indicate 
whether the immune response can be augmented by ICB, how ICB 
remodels tissue structure to achieve this remains obscure. Serial 
tumour sampling before, during and after treatment could uncover 

https://doi.org/10.1038/s41586-023-06498-3

Received: 28 June 2022

Accepted: 28 July 2023

Published online: 6 September 2023

Open access

 Check for updates

1CRUK Cambridge Institute, University of Cambridge, Cambridge, UK. 2National Taiwan University Hospital, College of Medicine, National Taiwan University and Taiwan Breast Cancer 
Consortium, Taipei, Taiwan. 3Department of Gynecology, Brust Gesundheit Zentrum Tirol, Medical University Innsbruck, Innsbruck, Austria. 4Fondazione Michelangelo, Milan, Italy. 5Medical 
Oncology, Hospital Clínico Universitario de Valencia, Biomedical Research Institute INCLIVA, Valencia, Spain. 6Medicine Department, Universidad de Valencia, Valencia, Spain. 7Oncology 
Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain. 8San Raffaele Hospital, Milan, Italy. 9IRCCS Azienda Ospedaliero-universitaria di Bologna, Bologna, Italy. 10Department 
of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany. 11Hospital Universitario Miguel Servet, Zaragoza, Spain. 12Department of Oncology, 
Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy. 13Hospital Universitario 12 de Octubre, Madrid, Spain. 143rd Medical Department, Paracelsus Medical University Salzburg, Salzburg, 
Austria. 15Salzburg Cancer Research Institute-CCCIT, Salzburg, Austria. 16Cancer Cluster Salzburg, Salzburg, Austria. 17Department of Bioinformatics, Semmelweis University, Budapest, 
Hungary. 18Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary. 19NN Petrov Research Institute of Oncology, St. Petersburg, 
Russia. 20IEO, Istituto Europeo di Oncologia, IRCCS, Milan, Italy. 21Mater Private Hospital, Dublin and Cancer Trials Ireland Breast Group, Dublin, Ireland. 22Fondazione IRCSS - Istituto Nazionale 
Tumori, Milan, Italy. 23IRCCS Ospedale Policlinico San Martino, UO Clinica di Oncologia Medica, Genoa, Italy. 24Dipartimento di Medicina Interna e Specialità Mediche (Di.M.I.), Università di 
Genova, Genoa, Italy. 25Oncocyte Corporation, Irvine, CA, USA. 26University of Milan, Milan, Italy. 27Department of Histopathology, Addenbrookes Hospital, Cambridge, UK. 28These authors 
jointly supervised this work: Luca Gianni, Giampaolo Bianchini, H. Raza Ali. ✉e-mail: bianchini.giampaolo@hsr.it; raza.ali@cruk.cam.ac.uk

https://doi.org/10.1038/s41586-023-06498-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06498-3&domain=pdf
mailto:bianchini.giampaolo@hsr.it
mailto:raza.ali@cruk.cam.ac.uk


Nature | Vol 621 | 28 September 2023 | 869

treatment-induced remodelling but is challenging in routine clinical 
practice. This may explain why the relationship between tissue dynam-
ics during treatment and response is unknown.

To characterize the relationship between tissue structure, its dynam-
ics on therapy and immunotherapy response in TNBC, we used imaging 
mass cytometry3 (IMC) to precisely quantify the phenotype, activa-
tion state and spatial location of cells in tumours sampled at three 
timepoints from patients enrolled in a randomized trial of neoadju-
vant immunotherapy. We found that both the cellular composition 
and spatial organization of tumours pre-treatment were predictive 
of immunotherapy response, that sensitive tumours were distinct 
from resistant tumours early on-treatment and that response was best 
predicted by combining features from both timepoints.

Longitudinal multiplexed imaging of TNBC
We used IMC to profile the expression of 43 proteins at subcellular 
resolution in tumour samples of formalin-fixed paraffin-embedded 
(FFPE) tissue collected from patients with TNBC enrolled in the 
NeoTRIP randomized controlled trial14 (Fig. 1 and Extended Data Figs. 1 
and 2a). NeoTRIP was a trial of early TNBC that compared neoadjuvant 
chemotherapy (carboplatin and nab-paclitaxel) with chemotherapy 
plus anti-PD-L1 immunotherapy (carboplatin, nab-paclitaxel and 
atezolizumab) by 1:1 randomization14. We collected FFPE tissues at 
three timepoints for IMC (n = 279 patients): pre-treatment (baseline, 
n = 243), on the first day of the second treatment cycle (on-treatment, 
n = 207) and at surgical excision of the tumour bed following treatment 
(post-treatment, n = 210; Supplementary Tables 1–6). IMC uses laser 
ablation and time-of-flight mass spectrometry to detect antibodies 
conjugated to rare earth metal reporters to infer protein abundance at 
subcellular resolution3. We labelled tissues using a 43-plex IMC assay 
to precisely characterize the TME and key cancer cell phenotypes. In 
addition, we mapped carboplatin directly in situ by detecting platinum 
and found that levels in on-treatment and post-treatment samples were 
far greater than baseline, with much of the drug accumulating in mac-
rophages (Extended Data Fig. 3). Our approach successfully generated 
1,855 high-plex tissue images from both biopsies and excisions using 
FFPE samples collected prospectively as part of a randomized trial.

Diverse cell phenotypes in TNBC
To precisely characterize cell phenotypes in situ, we segmented single 
cells using deep learning15 and derived proteomic profiles. For cell 
phenotyping, we separated epithelial (cancer cells) and TME cells 
using several methods (Fig. 1e and Extended Data Fig. 4) and, taking 
cell morphology as the standard, selected the best performing. To 
discover salient cell phenotypes, we clustered single cells, limiting 
the proteins used for clustering to those relevant to epithelial or TME 
cells (Fig. 1f,g and Extended Data Fig. 5). Cell clustering resulted in 17 
epithelial and 20 TME phenotypes (Supplementary Fig. 1). Epithelial 
cells were distinguished by markers of lineage, activation state and 
immunoregulation. Among TME cells, cytotoxic and helper T cells 
separated according to expression of PD-1 and TCF1 (encoded by TCF7; 
Extended Data Fig. 5b) which identifies stem-like T cells implicated 
in ICB response16. We also identified regulatory T (Treg) cells defined 
by FOXP3 expression and activated cytotoxic T cells with high gran-
zyme B expression (CD8+GZMB+T). There were two cell phenotypes 
positive for PD-L1; these were both CD11c+ antigen presenting cells 
(APCs), of which one was IDO+. We also identified B cells, plasma cells, 
macrophages, dendritic cells, neutrophils, endothelial cells and three 
fibroblast phenotypes. We next correlated the cellular compositions of 
different images from the same tumour to estimate the extent of spatial 
heterogeneity (Extended Data Fig. 2b). Correlations between images 
from the same tumour varied between compartment and timepoint 
(from an average of 0.65 for TME cells at baseline, to 0.76 for TME cells 

post-treatment; Extended Data Fig. 2b). We also examined the variance 
per cell phenotype and found that it was generally low, with the highest 
being among basal epithelial cells (Extended Data Fig. 2c).

To determine the relevance of cell phenotypes to established tumour 
pathology, we investigated the relationship between cell phenotype 
proportions and relevant clinical features. In comparison with clinical 
PD-L1 status assessed by centralized pathology review, we confirmed 
that PD-L1 expression by IMC was greater in PD-L1-positive tumours 
(Extended Data Fig. 6a,b). Similarly, the cell phenotypes most enriched 
among PD-L1-positive tumours were characterized by the highest 
expression of PD-L1 (Extended Data Fig. 6c). All lymphoid cell phe-
notypes were also positively associated with PD-L1 status at baseline. 
Stromal infiltrating lymphocytes were also positively correlated with all 
lymphoid cells and PD-L1+ APCs (Extended Data Fig. 7a,b). We also inves-
tigated whether the abundance of cell phenotypes significantly differed 
between established transcriptomic subtypes of TNBC17 (Extended 
Data Fig. 7c). Both epithelial and TME cell phenotypes differed between 
tumour subtypes. The luminal androgen receptor subtype, for example, 
was characterized by the highest proportion of epithelial cells positive 
for androgen receptor (AR+LAR), and the mesenchymal tumour subtype 
contained the greatest proportion of all three stromal cell phenotypes. 
Together, these findings corroborated the quality of our multiplexed 
image data and cell phenotypes.

Cancer–immune interactions predict ICB response
We asked whether the tissue structure of treatment-naive tumours is 
a determinant of response to immunotherapy. An advantage of neo-
adjuvant trials such as NeoTRIP (in which primary treatment is given 
before surgical excision of the tumour) is that the surrogate end point 
of pathological complete response (pCR), defined as the absence of 
invasive cancer cells after treatment, can be used to identify responders 
before time-to-event follow-up has matured7,14,18. To evaluate the link 
between tissue structure and response, we fit logistic regression models 
to predict pCR separately by randomization arm and included a term for 
statistical interaction (Pinteraction) to test whether the association between 
a given feature and response significantly differed by treatment. To 
estimate the impact of multiple testing, we also computed the false 
discovery rate (FDR). We first asked whether the densities of different 
epithelial and TME cell phenotypes differed in their capacity to predict 
response (Fig. 2a,b and Extended Data Fig. 8a). Only PDL1+IDO+APC 
density predicted ICB (but not chemotherapy) response, although 
this was associated with an elevated FDR (Pinteraction = 0.01, FDR = 0.3; 
Fig. 2b–d and Supplementary Tables 7 and 8).

Because ICB modulates interactions among immune and cancer 
cells, we explored whether different cell–cell interactions were associ-
ated with response to immunotherapy but not chemotherapy. Cells 
were deemed to be interacting if they were in direct contact (Fig. 2e). 
For all epithelial cells, we computed the number of interactions with 
each epithelial cell phenotype (homotypic interactions) and with 
each TME cell phenotype (heterotypic interactions), normalizing by 
the total number of cells present (Fig. 2e). This approach gave greater 
weight to cells with multiple interactions. The distribution of cancer–
TME interactions was a continuum across tumours (Extended Data 
Fig. 8b,c); hence, we modelled interactions as continuous predic-
tors. Among epithelial–epithelial interactions four cell phenotypes 
were associated with outcome, but none of the estimates differed 
significantly between treatment arms (Extended Data Fig. 8d and 
Supplementary Tables 9 and 10). In stark contrast, associations 
between eight epithelial–TME interactions and response significantly 
differed between treatments, with epithelial–CD20+B (Pinteraction =  
0.003, FDR = 0.06) and epithelial–CD8+GZMB+T (Pinteraction = 0.006, 
FDR = 0.06) cell interactions showing the greatest differential effect 
(Fig. 2f–h and Supplementary Tables 9 and 10). Repeating this analy-
sis for TME cells did not, however, uncover significant predictors of 
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differential response (Extended Data Fig. 8e,f and Supplementary 
Tables 9 and 10). Heterotypic epithelial interactions were only mod-
erately correlated with corresponding cell densities, suggesting 
they reflect distinct aspects of tumour organization (Extended Data 
Fig. 9). Because activated T cell–cancer cell interactions predicted ICB 
response, we investigated whether T cells in contact with cancer cells 
were functionally distinct from other T cells (Extended Data Fig. 10a). 
We found that contact with a cancer cell was associated with higher 

expression of key activation markers (TOX and PD-1 for cytotoxic 
T cells; TOX and OX40 for T helper cells; Extended Data Fig. 10b), and 
that T cells contacting cancer cells were much more likely to be pro-
liferating (Extended Data Fig. 10c). These findings corroborate the 
functional significance of cell–cell interactions.

In summary, cancer–immune interactions are functionally significant 
pre-existing markers of the potential for invigorating the intratumoural 
immune response by ICB.
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Fig. 1 | IMC workflow of the NeoTRIP immunotherapy trial. a, Flowchart of 
longitudinal tumour sampling from the NeoTRIP randomized clinical trial for 
high parameter imaging. b, Antibody panel targeting 43 protein markers 
expressed by epithelial (blue), TME (gold) or both (grey) cells. c, Schematic 
illustration of region of interest (ROI) selection for targeted multiplexed 
imaging by IMC, guided by an adjacent haematoxylin and eosin (H&E) section. 
d, Representative images of protein expression (cropped to fit; white scale bar, 

50 µm). e, Semi-supervised workflow for distinguishing epithelial and TME 
cells from multiplexed images. f, Heatmap of median expression values for 17 
epithelial cell phenotypes clustered using the proteins depicted on the x axis; 
right-sided grey bar chart depicts the number of cells per phenotype. g, As for  
f, for 20 TME cell phenotypes. C, chemotherapy; C&I, chemotherapy and 
immunotherapy; DC, dendritic cell; Mac, macrophage; NE, neuroendocrine; 
pCR, pathological complete response; TN, triple negative.
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Proliferative fractions predict ICB response
Because immunotherapy induces T cell proliferation16, the fraction 
proliferating before treatment could modify its effect. Our finding that 

T cells in contact with cancer cells were more often Ki67+ also implicated 
proliferation in ICB response. We therefore computed the proportion of 
Ki67+ cells per phenotype (proliferative fraction) and tested for associa-
tions with pCR (Fig. 3a–c, Supplementary Table 11 and Supplementary 
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Fig. 2 | Spatial predictors of immunotherapy response at baseline. 
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and pCR. For b and f, Odds ratios are derived from univariate logistic regression:  

circles represent point estimates and whiskers indicate 95% confidence 
intervals. Depicted P values are derived from a term for interaction between 
the predictor and treatment in logistic regression models (including separate 
terms for the predictor and treatment). Asterisks indicate associations with an 
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Fig. 2). Strikingly, the proliferative fraction of just one cell phenotype 
was associated with response in the chemotherapy arm (CKloGATA3+ 
epithelial cells), but when patients were treated with immunotherapy, 
12 epithelial and 16 TME cell phenotypes predicted response (Fig. 3b,c 
and Supplementary Table 11). The proliferative fraction of MHCI&IIhi 
cells was the strongest predictor of immunotherapy response among 
epithelial (cancer) cells (Pinteraction = 0.004, FDR = 0.04), whereas the 
proliferative fraction of CD8+TCF1+T cells was the strongest immuno-
therapy response predic tor overall (Pinteraction = 8 × 10−5, FDR = 0.003). 
These features (proliferative frac tions of MHCI&IIhi cancer cells and 
CD8+TCF1+T cells) were, however, only moderately correlated (ρ = 0.46; 
Fig. 3e). Notably, CD8+TCF1+T cells are a stem-like population that under-
lies the proliferative burst induced by ICB16. Despite the proliferative 
fraction of CD8+TCF1+T cells being the strongest predictor, neither their 
overall density nor their interactions with TME cells were associated 

with response, underscoring that proliferative fractions enrich for 
cells in distinct activation states (Fig. 2f and Extended Data Fig. 8f). 
Indeed, proliferating CD8+TCF1+T cells showed significantly higher 
levels of all key activation markers (TOX, PD-1, GZMB, ICOS, Helios; 
Extended Data Fig. 10d) and were more often in contact with cancer cells 
(Extended Data Fig. 10e,f) and with MHCII+ cells, in keeping with past 
reports that these stem-like T cells reside in MHCII+ niches19 (Extended 
Data Fig. 10g). Pre-treatment proliferative fractions therefore enrich for 
cells in distinct activation states and identify phenotypes that predict 
ICB response.

On-treatment ICB response predictors
Cell state and context before therapy reflect pre-existing intercellular 
dynamics, but how they are modified early on-treatment may also reveal 
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epithelial (b) and TME (c) cell phenotypes. Odds ratios are derived from 
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whether, should a treatment course be completed, a tumour will ulti-
mately respond. Using biopsies taken early on-treatment (first day of 
second treatment cycle), we investigated the link between on-treatment 
cell densities, cell–cell interactions and immunotherapy response 
(Fig. 4a–d, Extended Data Fig. 11a–d and Supplementary Tables 7–11). 
The correlation structure of cell densities and their corresponding 
cell–cell interaction metrics echoed that pre-treatment: heterotypic 
epithelial (cancer–TME) interactions were moderately correlated 
with cell densities whereas other cell–cell interaction metrics were 
highly correlated (Extended Data Fig. 9). Among heterotypic epithe-
lial interactions, only epithelia interactions with CD79a+Plasma cells 
were significantly enriched in tumours resistant to immunotherapy 
but not chemotherapy (Pinteraction = 0.004, FDR = 0.09); the density 
of CD79a+Plasma cells was not, however, associated with response 
(Fig. 4a and Extended Data Fig. 11a). Among other TME cell densities, 
only CD8+GZMB+T cells showed significant differential immunotherapy 
response prediction (Pinteraction = 0.04, FDR = 0.5) and, consistent with 
their strong correlation, this also held for homotypic CD8+GZMB+T 
interactions (Pinteraction = 0.02, FDR = 0.3) (Fig. 4a,b,e and Extended 
Data Fig. 11d), but with elevated FDRs. The CD15+ epithelial (cancer) 
cell phenotype was distinct because it was associated with resistance 
to immunotherapy (but not chemotherapy) when quantified as a 
density (Pinteraction = 0.004, FDR = 0.08) or cell–cell interaction metric 
(heterotypic Pinteraction = 0.003, FDR = 0.05; homotypic Pinteraction = 0.04, 
FDR = 0.8; Fig. 4c,d and Extended Data Fig. 11b). In some ICB-resistant 

cases, expression of CD15 by cancer cells was characterized by a strik-
ing mosaic expression pattern for which clear CD15+CKlo cells were 
admixed with CD15−CKhi cells, suggestive of discrete phenotypic state 
transitions (Fig. 4f). We also observed foci of CD15+ cancer cells sur-
rounded by CD15+ leukocytes, implicating heterotypic interactions as 
possible drivers of state transition (Fig. 4g).

Given the predictive value of proliferation in treatment-naive 
tumours, we asked whether it would perform similarly on-treatment. 
We found that although the functional significance of proliferation was 
largely preserved on-treatment, proliferation itself was reduced and 
proliferating cell fractions were not predictive of response (Extended 
Data Figs. 10h,i and 11e,f).

In conclusion, markers of outcome on-treatment were distinct from 
those in treatment-naive tumours. Response to immunotherapy was 
characterized by accumulation of CD8+GZMB+T cells, whereas hetero-
typic CD79a+Plasma cell interactions and CD15+ cancer cells marked 
resistant tumours.

ICB-induced cellular dynamics
Finding distinct drivers of immunotherapy response on-treatment 
compared with baseline led us to investigate the cellular dynamics of 
neoadjuvant immunotherapy. For an overall survey of tissue composi-
tion, we aggregated cell phenotypes into three main categories (epithe-
lial: all cancer cells; stromal: fibroblasts, PDPN+Stromal, endothelial; 
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and immune: all remaining TME phenotypes), and this revealed con-
served dynamics across subgroups. Immune cells increased dramati-
cally on-treatment and decreased after treatment, accompanied by 
a reduction in epithelial (cancer) cells and increase in stromal cells 
(Fig. 5a). This pattern was repeated across all groups, but the degree 
of change differed: the early increase in immune cell fraction was 
greater among responders, and greatest among responders treated 
with immunotherapy. We explored the dynamics of key leukocytes 
(T cells, B cells and APCs, namely macrophages and dendritic cells) 
relative to all TME cells to understand which drove the on-treatment 
immune response (Fig. 5b). T cells were the most abundant cell type and 
showed a characteristic increase on-treatment followed by a fall after 
treatment. APCs composed a lesser proportion of the TME, but their 
dynamics mirrored that of T cells. The on-treatment increase in T cells 

and APCs was also most pronounced among responders treated with 
immunotherapy. B cells, by contrast, occupied a similar proportion of 
the TME at all timepoints with only a modest decrease in responders.

To identify intratumoural changes characteristic of ICB, we com-
pared the mean proportions of all cell phenotypes over time (Fig. 5c). 
Response to ICB was characterized by greater infiltration on-treatment 
of CD8+GZMB+T and CD8+PD1+TEx cells (Fig. 5d,e and Extended Data 
Fig. 12a). Among non-responders, tumours from patients treated with 
immunotherapy were characterized by increasing levels of CD15+ cancer 
cells (Fig. 5f and Extended Data Fig. 12b). Together, our findings show 
that the temporal trajectory of treatment effect is characterized by early 
infiltration of leukocytes, a reduction in cancer cells and a proportion-
ate increase in stromal cells, but that this conserved pattern differs 
in degree according to response and treatment. We conclude that, 
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despite a conserved pattern of treatment-induced cellular dynamics, 
immunotherapy distinctively remodels tumour structure.

Dominant ICB response predictors
In total, we derived 148 tissue features (densities of 37 cell phenotypes; 
37 heterotypic, and 37 homotypic cell–cell interactions; 37 proliferative 
fractions) and found more were predictive of immunotherapy than 
chemotherapy response (112 versus 26), and more of these were found at 
baseline than on-treatment (70 versus 42). We therefore asked whether 
their combined predictive performance would also differ by treatment 
and timepoint. For each treatment arm, we fit three regularized multi-
variate logistic regression models: using baseline data, on-treatment 
data and data from both timepoints (Fig. 6a). Predictive performance 
was always better among immunotherapy-treated patients, implying 
that immunotherapy was more dependent on TME activation state 
and tumour structure (Fig. 6b). Despite finding many more predictors 
of immunotherapy response in treatment-naive baseline samples, 
predictive performance was similar for baseline and on-treatment mul-
tivariate models (mean receiver-operating characteristic area under 
the curve (AUC) 0.77 for both). Combining baseline and on-treatment 
features, however, materially improved predictive performance (mean 
AUC 0.82), showing that the features measured at each timepoint reflect 
distinct facets of response dynamics. Overall, multivariate modelling 
showed that TME activation and tumour structure play a greater role 
in treatment response when patients receive immunotherapy, and that 
early on-treatment biopsies improve predictive accuracy and could 
therefore help guide adaptive treatment strategies.

It remained unclear whether response to immunotherapy was driven 
by the combined effect of many features or just a few. We used an estab-
lished method20 to identify the dominant drivers of response (Fig. 6c). 
This analysis revealed clear immunotherapy response drivers. At base-
line, a total of 14 predictors contributed substantively to overall model 
performance, spanning cancer and TME cells, and mainly comprised 
cell–cell interactions and proliferative fractions (Fig. 6d). By far the best 
predictor was the proliferative fraction of CD8+TCF1+T cells, followed 
by the proliferative fraction of MHCI&IIhi cancer cells, cancer–B cell 
interactions and cancer–CD8+GZMB cell interactions. On-treatment, 
12 top predictors were identified (Fig. 6e). The two best predictors of 
these 12 corresponded to CD8+GZMB+T cell abundance (homotypic 
interactions and density), whereas the next two most important pre-
dictors corresponded to CD15+ cancer cell abundance (homotypic 
interactions and density). In summary, feature importance analysis 
revealed distinct immunotherapy response drivers at baseline versus 
on-treatment.

Discussion
By mapping the multicellular tumour ecosystem in situ in TNBC, we 
uncovered key ICB response predictors and showed that ICB distinc-
tively remodels tumour structure.

The top two predictors of ICB response at baseline were the prolif-
erative fractions of MHCI&IIhi cancer cells and CD8+TCF1+T cells. Past 
work has linked expression of MHCII by cancer cells to neoadjuvant ICB 
response in TNBC21. The triggers of aberrant cancer cell MHCII expres-
sion remain obscure but include local inflammatory signals such as 
interferon-γ (IFN-γ) and nuclear factor κB (NF-κB)22. Quiescent cancer 
cells residing in immunosuppressive niches in TNBC have been shown 
to resist ICB23 and could explain why lower MHCI&IIhi proliferative frac-
tions are associated with ICB resistance. Proliferating CD8+TCF1+T cells, 
however, proved the dominant response driver. CD8+TCF1+T cells are 
thought to be a progenitor stem-like population that underlies the 
proliferative burst of CD8+ T cells after ICB16, predicts ICB response 
in melanoma24 and resides in intratumoural niches characterized by 
dense APCs19. Our finding that proliferating CD8+TCF1+T cells are more 

often in contact with MHCII+ cells supports the idea of an intratumoural 
niche, and links this population to MHCII expression. Proliferative 
CD8+ T cells positive for exhaustion markers have previously been 
characterized as a differentiating population that drives ICB response 
in melanoma25 and co-locates with Treg cells in multicellular structures 
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Fig. 6 | Multivariate modelling to predict ICB response. a, Analytical 
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statistics for prediction probabilities derived from multivariate regularized 
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held-out test data repeated 100 times, as described in a; circles are mean AUCs, 
error bars are 95% confidence intervals. c, Diagram illustrating variable 
importance analysis including all predictors described in a. d,e, Boxplots 
depicting baseline (d) and on-treatment (e) predictors of immunotherapy 
response (associated with a Pbinomial < 0.01) ranked by importance in the model. 
On the right are heatmaps showing scaled mean values by response. Pbinomial 
indicates P values derived from variable importance analysis illustrated in c. 
For all boxplots, boxes show 25th, 50th and 75th centiles; whiskers indicate 75th 
centile plus 1.5 × inter-quartile range and 25th centile less 1.5 × inter-quartile 
range; points beyond whiskers are outliers. Dn, density; Het, heterotypic 
interactions; Hom, homotypic interactions; RF, random forest.



876 | Nature | Vol 621 | 28 September 2023

Article
in breast tumours13. In addition to their heightened activation state and 
distinct spatial location, therefore, recent studies also corroborate 
proliferative CD8+TCF1+T cells as drivers of ICB response.

Proliferative fractions and cell–cell interactions were closely linked 
in our analysis and enriched for cells in distinct activation states. Past 
analyses of TNBC showed that the interface between cancer cells and 
infiltrating leukocytes defines diverse, spatially distinct TMEs26,27. 
Correlations with gene expression and markers of immune activity 
revealed that these diverse TMEs are also functionally distinct26. The 
intimate relationship between structure and function is supported by 
our findings that T cells contacting cancer cells are more often prolifera-
tive and express higher levels of activation markers. T cells reactive to 
neoepitopes are also characterized by distinct activation programmes 
that include expression of checkpoints such as PD-1 (refs. 28,29), rais-
ing the possibility that spatial cell–cell interactions enrich for these 
tumour-reactive T cells. The predictive power of cell–cell interactions 
may therefore be explained by their close alignment with the underlying 
function of both the participant cells and the wider immune response.

We found that on-treatment features improved predictive perfor-
mance and that ICB induced distinctive changes on-treatment. In TNBC, 
past work showed that ICB induces clonal expansion of CD8+ T cells 
characterized by high PRF1 and GZMB expression30. This suggests that 
on-treatment CD8+GZMB+T cell expansion is driven by ICB and explains 
why it proved the top on-treatment response predictor in our study. We 
also found that CD15+ cancer cells on-treatment predicted resistance 
to ICB. CD15+ breast cancer cells have been previously described13,31. 
CD15 is a carbohydrate blood group antigen, expressed by neutrophils 
and monocytes, that plays a role in cell adhesion31. In some instances 
(in keeping with previous findings31) we saw a striking mosaic expres-
sion pattern of intimately admixed CD15+ and CD15− cancer cells, and 
heterotypic aggregations comprising CD15+ cancer cells surrounded 
by CD15+ leukocytes including neutrophils (Fig. 4f,g). Although the 
basis of our observation that on-treatment CD15+ cancer cells resist 
ICB is unclear, it supports the idea of discrete immunotherapy-resistant 
cell states in characteristic spatial contexts23. Finally, in addition to 
revealing markers of ICB effect, analysis of on-treatment samples also 
improved outcome prediction, highlighting the value of longitudinal 
sampling in neoadjuvant studies32.

In conclusion, we used IMC to precisely map the multicellular dynam-
ics of ICB-treated TNBC. We found that key proliferative fractions and 
cell–cell interactions drive response, and that immunotherapy distinc-
tively remodels tumour structure. Our findings indicate that cell phe-
notype, activation state and spatial organization collectively determine 
ICB effect. Systematic mapping of the intact tumour ecosystem could 
therefore enable precision immuno-oncology.
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Methods

Study design and prospective tissue collection
Breast tumour samples were obtained from patients enrolled in a multi-
centre, randomized, open-label, phase III clinical trial14 (NeoTRIPaPDL1 
or NeoTRIP; NCT02620280). NeoTRIP was a neoadjuvant immunother-
apy trial of early high-risk TNBC in which 280 patients were randomized 
to receive neoadjuvant carboplatin and nab-paclitaxel on days 1 and 
8, with or without atezolizumab (anti-PD-L1) on day 1 (Supplementary 
Tables 1–3). This treatment was given every 3 weeks (one cycle), for a 
total of eight cycles. Tumours were subsequently surgically excised 
and, if the responsible clinician opted to do so, an additional four cycles 
of anthracyclines were given. Patients with treatment-naive, early 
high-risk TNBC were eligible. Tumour receptor and PD-L1 status (by 
SP142, Ventana Medical Systems) were determined by central pathol-
ogy review. Tumour infiltrating lymphocytes were also assessed using 
established methods at central pathology review33. The study protocol 
was approved at each participating institution; all patients provided 
written, informed consent.

Core biopsies for research were obtained at baseline and after one 
cycle of therapy (first day of second treatment cycle; on-treatment). 
Following the full course of therapy, tumours were surgically removed 
(post-treatment). Tissue microarrays (TMAs) were constructed for 
surgical excisions only. Regions of tumour, tumour–TME interface 
and adjacent stroma were annotated by a breast pathologist (G.V.) on 
corresponding H&E slides to guide TMA construction. Cores of 1 mm 
in diameter in the identified regions were removed and processed as 
TMAs.

RNA sequencing and tumour molecular subtyping
Gene expression data were generated for the biopsy and surgical 
specimens using exome capture-based RNA sequencing on total RNA 
samples derived from 5 µm tumour sections. Briefly, exome-enriched 
complementary DNA libraries were constructed according to the 
manufacturer’s instructions (TruSeq RNA Exome, Illumina). Pools 
of 48 libraries were sequenced on a NextSeq 500 or NextSeq 2000 
sequencing system (Illumina) with a high-output reagent kit for 75 base 
pair paired-end reads, with a mean of 10 million paired-end reads per 
sample per run. Pools were sequenced across replicate runs to achieve 
over 40 million paired-end reads per sample. Base call files from each 
sequencing run were converted to fastq format using bcl2fastq conver-
sion software v.2.20, replicate fastq files for each sample were merged 
and files were aligned to the Ensembl GRCh37 Homo sapiens reference 
using STAR v.2.5.2 (ref. 34). Transcript assembly and expression analysis 
were performed on each sample with cufflinks v.2.2.1 (ref. 35), resulting 
in fragments per kilobase million (FPKM) values for each transcript in 
the genes of interest. The TNBC subtypes were determined using the 
minimal 101-gene TNBCtype36 (Supplementary Table 13). Briefly, gene 
expression for each sample for 101 genes was extracted from the whole 
transcriptome data and compared with five centroids representing each 
of the five subtypes by Pearson correlation. The sample was assigned to 
the subtype with the highest correlation. If no correlation was above 
0.195, the subtype was not determined.

Multiplexed imaging antibody panel
Candidate commercial antibodies intended for use in IMC were first 
validated by immunofluorescence using tonsil and breast cancer tissue 
to confirm optimal staining intensity, specificity and signal-to-noise 
ratio. Antibodies that passed validation by immunofluorescence were 
conjugated to metal isotopes and validated using IMC to ensure pre-
servation of staining specificity and intensity. Sensitivity and specific-
ity were further validated in multiplexed IMC experiments to ensure 
appropriate patterns of marker co-localization. Finally, optimal con-
centrations of all metal-conjugated antibodies were determined by 
visual inspection of IMC images in both tonsil and breast cancer tissue.

Antibody conjugation
Indium, yttrium and lanthanide metals were conjugated to antibodies 
according to the manufacturer’s instructions (Maxpar X8 Multi-Metal 
Antibody Labelling Kit, Fluidigm). Platinum isotopes were conjugated 
directly to the reduced antibody without the polymer37. Conjugation 
of bismuth to the antibody required substitution of the L buffer from 
the Maxpar X8 labelling kit with 5% nitric acid (HNO3) during loading 
of the metal onto the polymer and deionized water (MilliQ) during the 
washes38,39. Metal-tagged antibodies were stored in a Candor Antibody 
Stabilizer (Candor Biosciences) at 4 °C. For a full list of antibodies and 
the metal conjugates, see Supplementary Table 6.

Tissue labelling
FFPE slides were dewaxed in xylene and rehydrated in an alcohol  
gradient12,40. Tissue underwent antigen retrieval (Tris pH 9.0, 95 °C for 
30 min) before blocking with 3% BSA in TBS for 1 h. Slides were incubated  
with unconjugated primary antibodies (PD-L1 clone SP142, PD-1 clone 
NAT105) overnight at 4 °C, then with metal-conjugated secondary 
anti-mouse and anti-rabbit antibodies for 3 h at room temperature. 
Next, slides were incubated with the remainder of the metal-tagged 
antibodies overnight at 4 °C, then with 0.5 µM iridium for DNA detec-
tion (Fluidigm, 201192B) for 30 min. Slides were washed with TBS 0.1% 
Tween between each labelling step, and air-dried following the final 
incubation.

ROIs and IMC
Two sequential sections of FFPE tissue were prepared from core biopsy 
(baseline and on-treatment) and TMA blocks (post-treatment). One was 
stained with H&E using an autostainer (Leica ST5020 Stainer/TS5025 
Transfer Station/CV5030 Coverslipper Workstation). H&E slides were 
scanned using the Leica Aperio AT2 Automated Digital Whole Slide 
Scanner. For core biopsies, ROIs measuring 500 × 500 µm2 were iden-
tified by a breast pathologist (H.R.A.) for acquisition by IMC using 
the Aperio eSlideManager web application (Leica Biosystems). Three 
ROIs were selected for each sample unless the biopsy was too small 
or, for baseline samples, contained no tumour cells. In on-treatment 
biopsies, if no invasive cancer was identified, regions of tumour bed 
were instead targeted for IMC.

The adjacent section was labelled with antibodies for IMC as 
described above. ROIs were mapped by manual inspection of anno-
tated H&E images and subjected to IMC (Fluidigm): tissue was raster 
laser-ablated at 1 µm resolution, then ablated tissue aerosol was ionized 
using inductively coupled plasma, and resulting isotopic ion reporters  
quantified using time-of-flight mass spectrometry to infer protein 
abundance3.

Spillover compensation
In mass cytometry applications such as IMC, signal from one channel  
may spill over to another channel due to trace amounts of contaminat-
ing isotopes in metal stock solutions. To account for this, all metal- 
conjugated antibodies in our panel were spotted separately onto glass 
slides and dried. Quantification by IMC of all metal isotopes in the 
panel was then conducted for each dried antibody spot on the slide. 
A ‘spillover matrix’ quantifying crosstalk was generated using the 
Bioconductor CATALYST41 package and subsequently used to correct 
single-cell measurements.

Image processing, epithelial masks and single-cell 
measurements
This process is described by Extended Data Fig. 4a. Raw txt file data were 
converted into multistack image tiff files using existing software42. To 
identify regions of contiguous epithelium, we labelled pixels as epithe-
lial based on their expression of cytokeratins and used a random-forest 
pixel classifier (Ilastik43) to assign all remaining pixels a probability of 
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belonging to an epithelial region. Probability maps were saved as a 
red, green and blue (RGB) tiff file, and epithelial regions segmented to 
generate image masks using standard segmentation tools.

For segmentation of single cells, ‘salt and pepper’ noise was removed 
using a median filter and relevant channels rescaled per image to lie 
between zero and one. A two-channel image was passed to the Mesmer 
deep learning single-cell segmentation model15: a nuclear channel (sum 
of Histone H3 and Ir191) and a cytoplasmic channel (sum of panCK and 
CK5). Whole-cell image masks were used for downstream measure-
ments (single-cell proteomic profiles and size) using CellProfiler44. 
Nuclei were mapped to whole-cell regions, and whole cells mapped to 
epithelial masks. To be considered ‘related’ to an epithelial mask, at least 
30% of the pixels from a whole cell had to overlap with the epithelial 
region. Before taking measurements, multistack tiff files were filtered 
for single hot pixels. Single-cell proteomic measurements were taken 
by computing the mean ion count for each segmented whole cell; these 
data were spillover corrected using the spillover matrix described 
above with a non-negative least squares linear model implemented 
in CATALYST41. Small objects (cells with area less than 31 µm2) were 
excluded from analyses. We left one platinum isotopic channel empty 
for detection of carboplatin. Carboplatin signal detected in other plati-
num isotopes, for which conjugated antibodies were included (Vimen-
tin and Calponin), was corrected by fitting a linear model to all cells: 
log-transformed cell expression was predicted using the carboplatin 
isotope, and the resulting model residuals were taken as corrected 
values.

Image curation and cell phenotyping
Cell phenotypes were assigned by semi-supervised clustering. Cells 
were first classified as epithelial or TME using multiple classification 
methods, in which the best performing method for each image was 
manually selected by visual inspection of tissue morphology and 
cytokeratin expression (Extended Data Fig. 4a,b). The classification 
methods are listed below.

A two-component Gaussian mixture model was fit to the log- 
transformed sum of all cytokeratins (panCK, CK8/18, CK5/14) to dis-
tinguish cells as positive or negative for cytokeratin. Cells related to  
epithelial masks based on a 30% area overlap were deemed ‘mask- 
positive’. All images were annotated with mask-positive, cytokeratin- 
positive or double-positive cells (those that were positive by both 
criteria). All images were inspected, using tissue morphology as the 
standard, to determine which method best captured epithelial cells. 
Most epithelial cells were accurately classified by this approach, but 
some infiltrating leukocytes were misclassified. To capture infil-
trating leukocytes, cells that were mask-positive and cells that were 
cytokeratin-positive were subclustered using a combination of key 
epithelial (panCK, CK8/18, CK5/14, AR, GATA3) and immune markers 
(CD3, CD4, CD8, CD68, CD163, CD11c). Inspection of average expres-
sion profiles per cluster was used to identify infiltrating leukocytes. 
This process was repeated until satisfactory results (determined by 
inspection of images annotated with cell phenotypes) were obtained. 
Tumours poorly classified by these approaches (often owing to low 
cytokeratin expression) were subjected to unsupervised clustering 
by Phenograph45 per image. Every marker (except for DNA, H3, Carbo-
platin, c-PARP, CD68, Calponin and Caveolin) was used for clustering, 
and values were rescaled to lie between zero and one per image. Clus-
ters were categorized as either epithelial or TME by manual inspection 
of annotated images.

Cell phenotypes were derived separately for epithelial and TME 
cells. Only proteins known to be expressed by epithelial or TME cells 
based on previous knowledge or manual inspection were included. 
The proliferation marker Ki67 was excluded from cell clustering. 
Expression values were clipped at the 99th centile, mean centred and 
scaled before clustering. Clustering was performed in two steps. First, 
a self-organizing map (SOM) was created using GigaSOM46, then median 

expression values per SOM node were passed to Phenograph45 and 
resulting clusters mapped back to single cells. Heatmaps of scaled 
median expression values were inspected, and clusters lacking mean-
ingful differences merged. Resulting clusters were labelled based on 
their expression profiles. Cluster validity was further investigated by 
inspecting images annotated with cluster labels and expression profiles 
to ensure cell morphology and expression values were concordant 
with the cluster label.

Extensive image curation was conducted under the supervision of 
a pathologist (H.R.A.) to identify invasive cancer cells and exclude 
in situ or normal epithelial cells from clinical correlative analyses. All 
TME cells were retained for downstream analysis. For a full breakdown 
of cell numbers and image numbers acquired for this study, refer to 
Supplementary Tables 4 and 5.

Thresholds for marker positivity
We identified thresholds for assigning a cell as ‘positive’ for a given 
marker by inspecting a random selection of at least 50 images for which 
cells passing a quantile threshold (calculated using all data) were high-
lighted. This procedure was repeated at differing quantile thresholds 
until the value that most closely aligned with marker positivity was 
identified.

Differential cell phenotype abundance analysis
We used generalized linear models under a binomial distribution 
with logit link function to determine whether abundance of a given 
cell phenotype differed between categorical groups47 (PD-L1 status 
and tumour transcriptional subtype). Cell phenotype proportion per 
tumour was taken as the response variable and predicted by the binary 
predictor. The precision of proportion estimates varied substantially 
between tumours because the total number of cells sampled was also 
highly variable. When more cells were sampled, proportion estimates 
were more precise. To account for this variable precision, generalized 
linear models were weighted by the total number of cells. Proportion 
values were computed separately by epithelial or TME compartments. 
The same approach was taken to investigate the relationship between 
stromal infiltrating lymphocytes and cell phenotype proportions, fit-
ting stromal infiltrating lymphocytes as a continuous predictor. Model 
coefficients were exponentiated, log2-transformed and reported as 
log2 odds ratios. P values were adjusted for multiple testing by the 
Benjamini–Hochberg method.

Cell densities
Cell phenotype densities were calculated by dividing the number of 
total cells obtained per biopsy by the total area of the tissue acquired 
(per mm2; Fig. 2a). As tissue did not cover the entirety of all ROIs, the 
convex hull method was used to draw a ‘tissue’ area based on the exist-
ence of all segmented cells. Summary values, P values and point esti-
mates for associations between cell densities and response can be 
found in Supplementary Tables 7 and 8.

Cell–cell interaction metrics
Cells were defined as participating in an interaction if their whole-cell 
masks were in direct contact (that is, their pixels were contiguous; 
Fig. 2e). Taking direct contact as the criterion, we computed interac-
tions for all cells using CellProfiler. Cell phenotypes were mapped to 
cell–cell interaction maps. For each tumour, four ‘flavours’ of cell–cell 
interaction metric were computed (epithelial homotypic (all epithelial 
cells interacting with each of the 17 epithelial phenotypes), epithelial 
heterotypic (all epithelial cells interacting with each of the 20 TME phe-
notypes), TME homotypic (all TME cells interacting with each of the 20 
TME phenotypes) and TME heterotypic (all TME cells interacting with 
each of the 17 epithelial phenotypes)). The homotypic interactions for 
an epithelial cell phenotype of interest, for example, were computed as 
the total number of interactions between that phenotype and all other 



epithelial cells (regardless of phenotype), divided by the total number 
of cells in the tumour sample (epithelial and TME cells combined). By 
contrast, the epithelial heterotypic interactions for a TME phenotype of 
interest were computed as the number of epithelial–TME interactions 
(with that TME phenotype) divided by the total number of cells. The 
definitions for TME-centric interactions were the same but computed 
from the perspective of the TME (heterotypic interactions were with 
different epithelial cell phenotypes). Summary values, P values and 
point estimates for associations between cell–cell interactions and 
response can be found in Supplementary Tables 9 and 10.

Proliferative fractions
The proportion of cells positive for the proliferation marker Ki67 was 
computed per cell phenotype per tumour per timepoint (Fig. 3a). When 
a cell phenotype was absent, its corresponding proliferative fraction 
was also zero. Ki67 status per cell was determined using the method 
described above to find a suitable threshold for positivity. Summary 
values, P values and point estimates for associations between prolifera-
tive fractions and response can be found in Supplementary Table 11.

Associations with immunotherapy response
We used pCR as a response end point and fitted univariate logistic 
regression models to test for associations between response and tis-
sue features. Plots illustrating estimates of association between tissue 
features and pCR depict two odds ratios (and 95% confidence intervals) 
per predictor: one for each treatment arm, resulting from a univariate 
logistic regression model restricted to the relevant (C or C&I) study 
population. Adjacent to these two odds ratios, P values for statistical 
interaction (Pinteraction) are depicted: these were derived from trivari-
ate logistic regression models that included the feature of interest, 
treatment (C or C&I) and a term for statistical interaction between 
the feature of interest and treatment. Pinteraction values corresponded 
to the statistical term for interaction computed in these models. All 
predictors (cell densities, cell–cell interactions and proliferative frac-
tions) were square-root-transformed and modelled as continuous. 
Model coefficients and 95% confidence intervals were exponentiated 
and reported as odds ratios. When necessary, predictor values were 
multiplied (proliferative fractions by 10, and cell–cell interactions 
by 100) so that more interpretable odds ratios could be derived. All 
clinical correlative analyses were limited to the per-protocol patient 
population (n = 258; that is, patients who were treated according to the 
entire trial protocol). To account for multiple testing and to evaluate 
the likelihood of false positives among significant associations, we 
computed the FDR using the Benjamini–Hochberg method.

Differential T cell activation
To compare the differential activation state between T cells in contact 
with tumour cells versus those not in contact, we computed the mean 
expression level (of activation markers TOX, PD-1, GZMB, OX40, ICOS) 
per tumour per timepoint for each group of T cells (in contact and not) 
and compared the resulting distributions using two-sided Wilcoxon 
tests. The same method, taking per-tumour averages, was deployed 
for comparison of the proportion of Ki67+ cells. The same analysis was 
conducted when comparing proliferating versus non-proliferating 
CD8+TCF1+T cells.

Immunotherapy-induced tissue dynamics
We compared the cellular composition of tumours through treatment 
to identify changes that characterized sensitivity and resistance to 
immunotherapy. We plotted the mean proportion of each cell phe-
notype (computed separately for epithelial and TME compartments) 
across timepoints, treatments and response. Means were Z-scored 
per phenotype and illustrated as trend plots. Significant differences 
between treatments were illustrated as boxplots and tested using a 
two-sided Wilcoxon test.

Multivariate modelling and variable importance
We fitted regularized logistic regression models (using the R package 
glmnet) to determine the discriminatory performance of tissue features 
taken in aggregate to predict pCR. We derived three distinct sets of 
features for each tumour, separating epithelial and TME compartments: 
cell phenotype densities; cell interaction metrics as described above; 
proliferative fractions of cell phenotypes.

A total of 148 variables were derived for single timepoints and 296 
when baseline and on-treatment timepoints were combined. Only vari-
ables with more than six unique values across samples were retained. 
We further reduced the feature space for multivariate models by iden-
tifying groups of highly correlated variables (Spearman rank correla-
tion > 0.95) and selecting one representative variable at random. To 
identify highly correlated groups, we first built a graph of variables with 
at least one correlation of greater than 0.95 (edges were weighted by the 
correlation coefficient) and used Louvain clustering to discretise sub-
graphs representing groups of highly correlated variables. Next, data 
were randomly split into training (75%) and test (25%) sets, for which 
the proportion of responders was approximately balanced between the 
two. Regularized logistic regression models were fitted to the training 
set (using cross validation to identify the minimal shrinkage factor 
lambda) and predictions made using the test data. An AUC statistic 
was computed using the prediction probabilities in the test data. To 
estimate the precision of AUC values, and to derive 95% confidence 
intervals, the random split procedure, model fitting and testing were 
repeated 100 times. This whole process was conducted separately by 
treatment arm, by timepoint (baseline and on-treatment) and for a com-
bined model (data from both baseline and on-treatment timepoints).

To determine which predictors were most important in driving pre-
dictions we used an established feature selection algorithm (imple-
mented in the R package Boruta)20. The principle of this method is 
repeated comparison of true values with randomly shuffled features 
to identify which outperform random data more often than would 
occur by chance. Briefly, all predictors are randomly shuffled, dou-
bling the original predictor set (the original plus the shuffled data), 
and a random-forest classifier fitted to determine the importance of all 
predictors in the doubled dataset (importance is calculated by replac-
ing a feature with its randomly permuted equivalent and computing 
the resulting percentage of misclassified tumours, and then scaled by 
dividing by the standard error from all misclassification rates). The 
maximum feature importance achieved among all the randomly shuf-
fled predictors is the threshold for a true feature to then be deemed 
important (on the basis that an important predictor must outperform 
random equivalents). This process was repeated 1,000 times to gener-
ate a binomial distribution of the number of times a given feature was 
regarded as important, and a final set of important variables identi-
fied based on a threshold of P < 0.01. Taking only those features that 
outperformed randomly shuffled data more often than expected by 
chance (at Bonferroni-corrected P < 0.01), we plotted the distribution 
of their importance values (the scaled percentage misclassification 
rate) across all 1,000 runs to rank their importance.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
All imaging mass cytometry and clinical response data can be accessed 
via a Zenodo data repository (https://doi.org/10.5281/zenodo.7990870) 
for academic non-commercial research. For commercial access, par-
ties will be directed to an appropriate contact. Gene expression data 
used to call transcriptomic subtypes of TNBC together with subtype 
assignments are provided in Supplementary Table 13.
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Code availability
Code for image processing is hosted at https://github.com/Bodenmill-
erGroup/ImcSegmentationPipeline and https://github.com/vanvalen-
lab/deepcell-tf. All additional analysis code can be accessed via https://
doi.org/10.5281/zenodo.7990870 alongside study data.
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Extended Data Fig. 1 | Localisation of proteins expressed by both epithelial and TME cells. White scale bars represent 50 µm.
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Extended Data Fig. 2 | Analysis of intratumoural heterogeneity across ROIs. 
a, Bar plots showing the distribution of ROIs per tumour per timepoint separately 
for epithelial (blue) or TME cells (beige). b, Boxplots comparing the Pearson 
correlations of cell phenotype proportions for epithelial cell phenotypes 
(blue) and TME cell phenotypes (beige) between ROIs for each tumour. Values 

above whiskers are the percentage of correlations greater than 0.5. c, Boxplots 
showing variance of the proportion of each cell phenotype across ROIs for each 
tumour by timepoint. For all boxplots, boxes show 25th, 50th, and 75th 
centiles; whiskers indicate 75th centile plus 1.5x inter-quartile range and 25th 
centile less 1.5x inter-quartile range; points beyond whiskers are outliers.



Extended Data Fig. 3 | Detection of carboplatin in situ during therapy. 
 a, Mean intracellular carboplatin detected per tumour by timepoint and arm. 
b, Amount of carboplatin detected in macrophages, epithelial cells and other 
TME cells by timepoint and arm. For both (a) and (b), Boxes show 25th, 50th, 
and 75th centiles; whiskers indicate 75th centile plus 1.5x inter-quartile range 
and 25th centile less 1.5x inter-quartile range; points beyond whiskers are 

outliers. ***P < 0.001 based on two-sided Wilcoxon tests. c, Representative 
images of carboplatin distribution in breast tumour tissue at baseline, 
on-treatment and post-treatment reveal co-localisation with CD68 indicating 
uptake by macrophages. White scale bars represent 100 µm. Baseline, B; 
On-treatment, OT; Post-treatment, PT; Chemotherapy, C; Chemotherapy and 
immunotherapy, C&I.
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Extended Data Fig. 4 | Flow chart of detailed cell phenotyping methodology. 
a, Workflow showing different approaches to characterising epithelial and TME 
cells as well as phenotyping the cells by compartment. Depicted cell segmentations 
are for illustration only. b, Curation of cells as epithelial or TME depends on 

visual inspection of cell morphology and staining patterns of specified 
markers. Cancer cells characterised by low cytokeratin and increased 
mesenchymal protein expression were frequent, and only reliably identified by 
multi-tiered and semi-supervised methods. White scale bars represent 50 µm.



Extended Data Fig. 5 | Illustrative examples of multiplexed images and corresponding cell phenotype assignments. a, Example of epithelial cell phenotypes 
and their protein expression b, Example of TME cell phenotypes and their protein expression. White scale bar is 50 µm.
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Extended Data Fig. 6 | Associations between PD-L1 status and high 
dimensional imaging data. a, Representative images comparing the staining 
pattern of two different antibody clones targeting PD-L1. White scale bar 
represents 50µm. b, Boxplots of PD-L1 expression by IMC in tumour and TME 
cells separated by clinical PD-L1 status. Boxes show 25th, 50th, and 75th 
centiles; whiskers indicate 75th centile plus 1.5x inter-quartile range and 25th 

centile less 1.5x inter-quartile range; points beyond whiskers are outliers.  
c, Associations between cell phenotypes and clinical PD-L1 status depicted as 
log2 odds ratios derived from binomial generalised linear models where PD-L1 
status was a predictor of cell phenotype proportion. Bar charts depict cell 
phenotype proportion relative to epithelial or TME cells, split by PD-L1 status. 
Immunohistochemistry, IHC.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Associations between cell phenotypes, tumour 
infiltrating lymphocytes, and TNBC subtypes. a, Levels of lymphocyte 
density by IMC compared to intratumoural tumour infiltrating lymphocytes 
(iTILs) or stromal TILs (sTILs) per tumour per timepoint. ρ is Spearman rank 
correlation coefficient. An outlier tumour with high lymphocyte density post-
treatment in IMC but low iTILs/sTILs is highlighted with a representative IMC 
image (lymphocyte lineage markers combined in red). b, Odds ratios from 
generalised linear models depicting associations between proportions of TME 
and epithelial cell phenotypes and levels of sTILs at baseline. Circles are point 
estimates and horizontal bars are 95% confidence intervals; circle size is 

inversely proportional to the standard error. c, Associations between cell 
phenotypes and TNBC subtypes depicted as log2 odds ratios where tumour 
subtype predicts cell phenotype proportion relative to all other subtypes. 
Number of tumours per subtype depicted in bottom right of each panel. Bar 
charts depict proportion of cell phenotype relative to all epithelial or TME cells 
within a given tumour subtype. Circles are point estimates and horizontal bars, 
where visible, are 95% confidence intervals; circle size is inversely proportional 
to the standard error. Basal-like 1, BL1; Basal-like 2, BL2; Luminal androgen 
receptor, LAR; Mesenchymal, M; Mesenchymal stem-like, MSL; Tumour 
infiltrating lymphocytes, TILs.



Extended Data Fig. 8 | Baseline predictors of immunotherapy response. 
 a, Odds ratios for associations between cell density and pCR for epithelial cell 
phenotypes. b, Proportion of TME cells interacting with epithelial cells and the 
proportion of heterotypic to homotypic interactions per tumour. c, Representative 
images of tumours with few, some, and many heterotypic interactions relative 
to total cell count. For all images, white scale bar represents 50 µm and a 
median filter was applied. d–f, Odds ratios for associations between cell-cell 
interactions and pCR among epithelial-to-epithelial cells (d), TME-to-epithelial 
cells (e) and TME-to-TME cells (f). For a, d–f, Odds ratios are derived from 

univariate logistic regression: circles represent point estimates and whiskers 
indicate 95% confidence intervals. Depicted P-values are derived from a term 
for interaction between the predictor and treatment in logistic regression 
models (including separate terms for the predictor and treatment) and have 
not been adjusted for multiple tests. Asterisks indicate P-values associated 
with false discovery rate <0.1 using the Benjamini-Hochberg method. False 
discovery rate, FDR; Pathological complete response, pCR; Residual disease, 
RD; Chemotherapy, C; Chemotherapy and immunotherapy, C&I.
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Extended Data Fig. 9 | Correlations between cell phenotype density and 
cell-cell interactions. a, Heatmap depicting associations between density of a 
cell phenotype and interactions between that cell phenotype and all epithelial 
or TME cells as indicated by the index cell headings. Numbers are spearman rank 
correlation coefficients. b–i, Scatterplots illustrating selected relationships 

between density and cell-cell interactions indicated in (a). ρ denotes Spearman 
rank correlation coefficient. Zeros have been retained for each plot by adding a 
value 0.3x the smallest value per plot before taking the log value. Baseline, B; 
On-treatment, OT.



Extended Data Fig. 10 | Differential T cell activation by cancer cell contact 
and proliferation status. a, Representative image of interactions between 
CD8 T cells and epithelial cells. b, Boxplots of mean expression levels (per 
tumour) of activation markers for T cells in contact or not in contact with 
cancer cells at baseline. c, Proportion of T cells positive for Ki67 in contact or 
not in contact with tumour cells at baseline. d, Boxplots of mean expression 
levels of activation markers in Ki67+ versus Ki67− CD8+TCF1+T cells at baseline.  
e, Proportion of Ki67+ and Ki67− CD8+TCF1+T cells in contact with cancer cells at 
baseline. f, An example of a baseline tumour with Ki67+ and Ki67−CD8+TCF1+T 
cells in contact with cancer cells. g, Proportion of Ki67+ and Ki67− CD8+TCF1+T 
cells in contact with MHCII+ cancer cells at baseline. h, Boxplots of mean 

expression levels of activation markers in Ki67+ versus Ki67− CD8+TCF1+T cells 
early on-treatment for each treatment arm. i, Proportion of Ki67+ epithelial, 
immune and stromal cells by timepoint, treatment arm and response. Note all 
values are the mean per tumour (i.e., each tumour contributes one data point 
per measurement). For all boxplots, boxes show 25th, 50th, and 75th centiles; 
whiskers indicate 75th centile plus 1.5x inter-quartile range and 25th centile less 
1.5x inter-quartile range; points beyond whiskers are outliers. Asterisks denote 
P-values < 0.05 (*), < 0.01 (**) or < 0.001 (***) based on two-sided Wilcoxon tests. 
A median-filter was applied to a and, for all images, white scale bar is 50 µm. 
Baseline, B; On-treatment, OT; Chemotherapy, C; Chemotherapy and 
immunotherapy, C&I.
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Extended Data Fig. 11 | Early on-treatment predictors of immunotherapy 
response. a - d, Odds ratios for associations between cell-cell interactions and 
pCR among epithelial-to-TME (a), epithelial-to-epithelial (b), TME-to-epithelial 
(c) and TME-to-TME (d) cells. e, f, Odds ratios for associations between 
proliferative fraction and pCR for Epithelial (e) and TME (f) cell phenotypes. 
Odds ratios are derived from univariate logistic regression: circles represent 
point estimates and whiskers indicate 95% confidence intervals. Depicted 

P-values are derived from a term for interaction between the predictor and 
treatment in logistic regression models (including separate terms for the 
predictor and treatment) and have not been adjusted for multiple tests. 
Asterisks indicate P-values associated with false discovery rate <0.1 using  
the Benjamini-Hochberg method. False discovery rate, FDR; Tumour 
microenvironment, TME; Pathological complete response, pCR; Residual 
disease, RD; Chemotherapy, C; Chemotherapy and immunotherapy, C&I.



Extended Data Fig. 12 | Representative images of a tumour across timepoints. 
a, Representative image of a tumour from a patient who responded to 
immunotherapy treatment illustrating changes in GZMB+ cells. b, Representative 
image of a tumour from a patient with residual disease following neoadjuvant 

immunotherapy treatment illustrating changes in CD15+ cells over time. White 
scale bar is 100 µm. Pathological complete response, pCR; Residual disease, 
RD; Chemotherapy, C; Chemotherapy and immunotherapy, C&I.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Aperio eSlideManager (Leica Biosystems) - viewing H&E slides and annotating ROI selection 
CYTOF Software v7.0 (Fluidigm) - for running of the Hyperion imaging mass cytometry system and acquisition of samples



2

nature portfolio  |  reporting sum
m

ary
April 2023

Data analysis Image Processing: 
>python v3.8 (to run imctools and DeepCell) 
>imctools package v1.0.8 (https://github.com/BodenmillerGroup/imctools)- for conversion of .txt files to .tiff files 
>DeepCell package  v0.11.0 (https://github.com/vanvalenlab/deepcell-tf, Greenwald, N.F., Miller, G., Moen, E. et al. Whole-cell segmentation 
of tissue images with human-level performance using large-scale data annotation and deep learning. Nat Biotechnol 40, 555–565 (2022)) - for 
single-cell segmentation 
>CellProfiler v4.0.6 (https://cellprofiler.org/) - generating single cell, epithelial and vessel masks 
>Ilastik v1.3 - training epithelial/vessel masks 
 
Cell Clustering: 
>GigaSOM v0.6.6 (https://github.com/LCSB-BioCore/GigaSOM.jl) 
>Phenograph v0.99.1(https://github.com/JinmiaoChenLab/Rphenograph) 
 
Statistical Analysis: 
R  v3.5.1 
A full list of packages with versions and details about the exact virtual environment used can be found in the conda environment provided 
with the data (condaEnv.yml) found here: https://doi.org/10.5281/zenodo.7990870

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All imaging mass cytometry and clinical response data have been placed in the public domain in a Zenodo data repository (https://doi.org/10.5281/
zenodo.7990870) for academic non-commercial research.  For commercial access parties will be directed to an appropriate contact.  Gene expression data used to 
call transcriptomic subtypes of TNBC together with subtype assignments are provided in Supplementary Table 13.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender As part of the inclusion criteria, only female patients were eligible to participate in the NeoTRIP clinical trial. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Patients were recruited from multiple centres across Europe and Asia. Information about race and ethnicity of patients was 
not provided for this study.

Population characteristics As part of the inclusion criteria, only patients over the age of 18 with early high-risk (T1cN1; T2N1; T3N0) or locally advanced 
and inflammatory ductal breast cancers (stage III A-C according to AJCC) suitable for neoadjuvant treatment were eligible to 
participate. For the 280 patients enrolled in the NeoTRIPaPDL1 trial, the age range was 24-79, with a median age of 50. Of 
these 280 enrolled patients, 279 were analysed in this study. Further details about the patients enrolled in the trial can be 
found in Supplementary Table 1. 

Recruitment Physicians recruited patients who attended participating clinical centres if they met the inclusion criteria (listed above) and 
consented to the study. Key exclusion criteria were metastatic disease (stage IV), bilateral breast cancer, other malignancies, 
inadequate bone marrow or renal function, impaired liver function, impaired cardiac function, uncontrolled hypertension, 
pregnancy, refusal to use contraception and history of autoimmune disease.  
 
It is expected that the patients recruited would be representative of the overall population of patients who fit the inclusion 
criteria in routine clinical practice. There could be a bias of certain patients being more willing to consent to the study, but it 
is unknown how this would affect our analyses. 

Ethics oversight NeoTRIPaPDL1 trial is a multicentric international study involving 41 active centers from Italy, Spain, Russia, Germany, 
Austria, Ireland and Taiwan. First approval for the study protocol was obtained from the Independent Ethics Committee of 
the San Raffaele Scientific Institute in Milan. Following approvals for the study protocol (and any modifications thereof) were 
obtained from independent ethics committees at each participating site: 
 
Comitato Etico dell'IRCCS Ospedale San Raffaele di Milano 
Comitato Etico Unico Regionale 
Comitato Etico Provinciale di Reggio Emilia 
Comitato Etico Azienda Ospedaliero-Universitaria di Bologna 
Comitato Etico della Fondazione IRCCS Istituto Nazionale dei Tumori, Milano 
Comitato Etico Regionale della Liguria 
Comitato Etico Interaziendale Milano Area A 



3

nature portfolio  |  reporting sum
m

ary
April 2023

Comitato Etico degli IRCCS Istituto Europeo di Oncologia e Centro Cardiologico Monzino 
Comitato Etico Fondazione Piemonte per l'Oncologia 
Comitato Etico Regionale Sezione Area Vasta Sud Est 
Ethikkommission Land Salzburg 
Ethikkommissionbei der LMU Muenchen 
Clinical Research Ethics Committee University College Cork 
Ethics Committee Federal State Budgetary Institution “N.N. Petrov Research Institute of Oncology” of the Ministry of Health 
of the Russian Federation  
Ethics Committee of “Komanda” LLC  
Ethics Committee of the N.N. Blokhin Russian Cancer Research Centre 
Ethics Committee of the State Budgetary Institution of Healthcare “St. Petersburg Clinical Scientific Center of Specialized 
Services of the Medical Assistance (Oncology)” 
Comité Etico de Investigacion Clinica del Hospital Clinico Universitario de Valencia 
Research Ethics Committee D, 
National Taiwan University Hospital 
Institutional Review Board Committee A Chianghua Christian Hospital 
Institutional Review Board Taipei Veterans General Hospital 
Institutional Review Board Kaohsiung Medical University Chung-Ho Memorial Hospital 
Research Ethics Committee China Medical University & Hospital 
 
This information is included as Supplementary Table 6 along with a list of participating investigators and sites.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size calculation for the NeoTRIPaPDL1 clinical trial is described in Gianni et al. 2022, Annals of Oncology. In sum, sample size was 
calculated based on the comparison of the primary parameter EFS between the two treatment groups, by a log-rank test in the context of a 
group-sequential design. Sample size was not calculated for correlative studies. Analysis was conducted using all available tissue. 

Data exclusions As detailed in Supplementary Table 2, some tumours were not assessed by IMC due to either having no tissue available for sampling, or no 
areas of invasive tumour to image. Similarly, epithelial cells in acquired images that were not invasive tumour cells were annotated and 
excluded from analysis. As each acquired image was manually checked, we excluded images that had poor data quality (very few cells, poor 
staining, bad tissue quality) as these were not representative of the TME. No other data points/outliers have been excluded in our subsequent 
analyses. 

Replication NeoTRIPaPDL1 is a randomised controlled trial involving human participants.  Findings were not validated (replicated) in a second clinical trial.

Randomization Patients were randomised computationally by geographical area, disease stage (early high-risk vs locally advanced) and PD-L1 expression (yes 
or no) as described in Gianni et al. 2022, Annals of Oncology. 

Blinding This study was open-label (both participants and investigators knew treatment assignment). The surrogate endpoint is pathological complete 
response and the final endpoint is event-free survival after 5 years. Researchers conducting correlative analyses were not blinded to clinical 
data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used List all all antibodies used along with their staining concentrations can be found in Supplementary Table 6.

Validation Antibody validation occurred in multiple stages. Candidate commercial antibodies intended for use in IMC were first validated by 
immunofluorescence (IF) using tonsil and breast cancer tissue to confirm optimal staining intensity, specificity, and signal-to-noise 
ratio.  Antibodies that passed validation by IF were conjugated to metal isotopes and validated using IMC to ensure preservation of 
staining specificity and intensity.  Sensitivity and specificity were further validated in multiplexed IMC experiments to ensure 
appropriate patterns of marker co-localisation.  Finally, optimal concentrations of all metal-conjugated antibodies were determined 
by visual inspection of IMC images in both tonsil and breast cancer tissue following antibody titration. The final antibodies and their 
staining concentrations used for the study can be found in Supplementary Table 6. 

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT02620280

Study protocol Clinical trial findings have been published: 
Gianni, L., Huang, C. S., Egle, D., Bermejo, B., Zamagni, C., Thill, M., . . . Viale, G. (2022). Pathologic complete response (pCR) to 
neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP 
Michelangelo randomized study. Annals of Oncology. doi:https://doi.org/10.1016/j.annonc.2022.02.004

Data collection A full list of participating research groups, investigators and sites can be accessed at Gianni et al. 2020 Annals of Oncology. To 
summarise, patients were recruited by the Taiwan Breast Cancer Consortium, Cancer Trials Ireland and Michelangelo (Austria, 
Germany, Russia, Spain and Italy). The trial opened for recruitment on April 2016 and the last patient was randomised December 28, 
2018. Final pCR assessment was completed September 2019. Biopsies and surgical excisions were sectioned from February-April 
2021.

Outcomes The primary outcome of the clinical trial is to compare event-free survival in the two treatment arms 5 years after randomisation of 
the last patient. However, correlative analyses utilising the clinical data was performed with the surrogate endpoint, pathological 
complete response (pCR), defined as the absence of invasive cells in the breast and lymph nodes. This was assessed by a pathologist 
on sections of the surgical excision. 
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