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Non-cell-autonomous cancer progression 
from chromosomal instability


Jun Li1,2,14, Melissa J. Hubisz3,4,5,6,14, Ethan M. Earlie3,4,5,14, Mercedes A. Duran1,2,14, 
Christy Hong1,2, Austin A. Varela3,4,5, Emanuele Lettera1,2, Matthew Deyell3,4,5, 
Bernardo Tavora7, Jonathan J. Havel7, Su M. Phyu8, Amit Dipak Amin9,10, Karolina Budre3,4,5, 
Erina Kamiya3,4,5, Julie-Ann Cavallo1,2, Christopher Garris11,12, Simon Powell2, 
Jorge S. Reis-Filho13, Hannah Wen13, Sarah Bettigole7, Atif J. Khan2, Benjamin Izar9,10, 
Eileen E. Parkes8, Ashley M. Laughney3,4,5,15 ✉ & Samuel F. Bakhoum1,2,15 ✉

Chromosomal instability (CIN) is a driver of cancer metastasis1–4, yet the extent to 
which this effect depends on the immune system remains unknown. Using Contact 
Tracing—a newly developed, validated and benchmarked tool to infer the nature  
and conditional dependence of cell–cell interactions from single-cell transcriptomic 
data—we show that CIN-induced chronic activation of the cGAS–STING pathway 
promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic 
tumour microenvironment. This re-wiring is manifested by type I interferon 
tachyphylaxis selectively downstream of STING and a corresponding increase in  
cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN, 
depletion of cancer cell STING or inhibition of ER stress response signalling abrogates 
CIN-dependent effects on the tumour microenvironment and suppresses metastasis 
in immune competent, but not severely immune compromised, settings. Treatment 
with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal  
cancers in a manner dependent on tumour cell-intrinsic STING. Finally, we show that CIN 
and pervasive cGAS activation in micronuclei are associated with ER stress signalling, 
immune suppression and metastasis in human triple-negative breast cancer, 
highlighting a viable strategy to identify and therapeutically intervene in tumours 
spurred by CIN-induced inflammation.

Chromosomal instability (CIN) is a cancer hallmark5 that is associ-
ated with therapeutic resistance6, immune evasion7,8 and metastasis2.  
CIN arises from ongoing errors in chromosome segregation during 
mitosis9,10. In normal cells, chromosome missegregation is poorly  
tolerated11 and can suppress oncogenic transformation12,13. Yet, 
advanced human cancers are often characterized by elevated rates 
of chromosome missegregation and aneuploidy2,14,15, invoking adap-
tive processes that allow tumours to withstand and co-opt CIN3. Using 
isogenic models that enable genetic manipulation of chromosome 
missegregation rates in cancer cells16, we have previously shown that 
CIN promotes metastasis by inducing a cytosolic double-stranded DNA 
(dsDNA) response in tumour cells, mediated by the cGAS–STING innate 
immune pathway2. Errors in chromosome segregation lead to the for-
mation of rupture-prone micronuclei17 and exposure of genomic dsDNA 
to the cytoplasm2,18,19. These findings were based on partially immune 
compromised tumour models2; thus, it remained unknown whether 

the effect of CIN on tumour progression is cancer cell autonomous or 
rather dependent on the immune system. Moreover, it is unclear how 
chromosomally unstable tumours adapt to CIN and evade immune 
surveillance that would arise from cGAS–STING activation and a down-
stream type I interferon (IFN) response20.

Immune dependence of CIN-driven metastasis
To interrogate the influence of the immune system on CIN-driven metas-
tasis, we used four syngeneic metastatic cancer models, including 
triple-negative breast cancer (TNBC) (4T1 and EO771.LMB), colorectal 
adenocarcinoma (CT26) and melanoma (B16F10). All models exhibited 
elevated rates of chromosome segregation errors during anaphase 
and a preponderance of micronuclei (Extended Data Fig. 1a–c). Highly 
metastatic melanoma cells (B16F10) had significantly higher rates 
of CIN compared with their less metastatic parental counterparts 
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(B16F0 and B16F1, Extended Data Fig. 1b,c). In all models, we observed 
CIN-dependent activation of cGAS–STING, as evidenced by cGAS locali-
zation in micronuclei, measurable cGAMP levels from cell lysates in a 
manner dependent on cGAS expression and detectable STING protein 
levels (Extended Data Fig. 1d–f). We also manipulated CIN levels in 4T1 
cells through expression of the non-motile kinesin-13 proteins, Kif2b 
or MCAK16, either of which led to significant reductions in anaphase 
chromosome missegregation compared with wild-type (WT) cells, 
or cells expressing a dominant-negative MCAK mutant (dnMCAK)21 
(Extended Data Fig. 1g). Expression of Kif2a, a kinesin-13 family mem-
ber that possesses microtubule depolymerizing activity but lacks a 
centromere or kinetochore targeting domain, had no impact on CIN 
(Extended Data Fig. 1g).

We next transplanted CINhigh (WT, Kif2a or dnMCAK expressing) and 
CINlow (Kif2b or MCAK expressing) 4T1 tumours in immune competent 
(BALB/c) and severely immune compromised (NOD-scid IL2Rγnull, there-
after referred to as NSG) mice. There was an 11-fold difference in the 
median number of surface lung metastases in the BALB/c mice when 
comparing CINhigh and CINlow tumours as opposed to only a 1.1-fold 

difference in NSG hosts (Fig. 1a). We then depleted Cgas or Sting1 from 
CINhigh 4T1, B16F10, EO771.LMB and CT26 cells using CRISPR–Cas9 
knockout (KO) (Extended Data Fig. 1e). Tail-vein inoculation or ortho-
topic transplantation of WT, Cgas-KO or Sting1-KO cells in BALB/c (4T1 
and CT26) or C57BL/6 (B16F10 and EO771.LMB) led to a significant 
reduction in lung colonization and metastasis as assessed directly 
through enumeration of surface lung metastases or using biolumi-
nescence imaging (Fig. 1b–f and Extended Data Fig. 1h,i). Strikingly, 
this phenotype was entirely dependent on the immune system, as 
transplantation of these cells in NSG hosts completely abolished the 
effect of Cgas or Sting1 KO on metastasis (Fig. 1b–f and Extended Data 
Fig. 1h,i). Loss of cancer cell Sting1 did not impact primary tumour 
size, whereas Cgas-KO tumours were slightly smaller compared with 
control tumours, as previously reported22 (Extended Data Fig. 1j). To 
rule out potential off-target effects from CRISPR–Cas9-mediated KO, 
we depleted Sting1 using short hairpin RNA (shRNA) and observed a 
similar reduction in lung metastasis with no impact on primary tumour 
formation (Fig. 1g–i and Extended Data Fig. 1k). Furthermore, comple-
mentation of Sting1-KO cells with constructs expressing WT Sting1 using 
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Fig. 1 | CIN drives cancer progression through tumour cell non-autonomous 
mechanisms. a, Number of surface lung metastases arising from orthotopically  
transplanted and resected CINhigh or CINlow 4T1 tumours in BALB/c hosts (n = 19 
and 23 animals for CINlow and CINhigh, respectively) or from tail-vein-injected CINhigh 
or CINlow 4T1 cells in NSG hosts (n = 10); bars represent the median; ***P < 0.001, 
*P < 0.05, two-sided Mann–Whitney test. b, Normalized bioluminescence (BLI) 
signal from BALB/c or NSG mice tail-vein injected with 4T1 control and Cgas-KO 
cells (n = 10 animals per condition) and representative bioluminescence  
images on days 5 and 8 for BALB/c and NSG mice, respectively; mean ± s.e.m.  
c–e, Number of surface lung metastases upon tail-vein injection of control, 
Cgas-KO or Sting1-KO CT26 (c), EO771.LMB (d) or B16F10 cells (e) into immune 
competent hosts (BALB/c for CT26, C57BL/6 for EO771.LMB and B16F10) or NSG 
hosts; ****P < 0.0001, ***P < 0.001, two-sided-Mann–Whitney test; n = 8–29 mice 

per group. f, Representative lung images from C57BL/6 or NSG animals tail- 
vein-injected with control or Sting1-KO B16F10 cells. g, Volume of resected 
orthotopically transplanted control and Sting1-depleted primary 4T1 tumours; 
n = 8–16 mice per condition. h, Number of surface lung metastases in animals 
arising after tumour resection; lines in the plot represent the median; *P < 0.05, 
two-sided t-test after testing for normality. i, Representative haematoxylin and 
eosin (H&E)-stained lungs 3 weeks after resection of control or Sting1-depleted 
orthotopically transplanted 4T1 tumours. j, Number of surface lung metastases 
arising from tail-vein injection of 4T1 control, Sting1-KO and Sting1-KO cells with 
exogenous overexpression (OE) of STING and immunoblot for STING and CoxIV  
of the cells; lines in the plot represent the median; ***P < 0.001, two-sided Mann–
Whitney test. KD, knockdown; p s−1 cm−2 sr−1, photon second–1 centimeter–2 
steradian–1; sg, single guide.
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different promoters revealed a dose-dependent relationship between 
Sting1 re-expression and metastasis (Fig. 1j).

CIN and STING promote immune suppression
We orthotopically transplanted CINhigh, CINlow and Sting1-depleted 
CINhigh 4T1 cells in the mammary fat pad of BALB/c mice and performed 
single-cell RNA sequencing (scRNA-seq) of freshly resected 14-day-old 
tumours (Fig. 2a). As expected, CINhigh tumour cells exhibited signifi-
cantly higher karyotype diversity as inferred from scRNA-seq data 
compared with their CINlow counterparts (Extended Data Fig. 1l). At a 
high level, CIN engendered a pro-metastatic tumour microenviron-
ment (TME) that was markedly enriched in immune-suppressive mac-
rophages, granulocytic myeloid-derived suppressor cells (Gr-MDSCs) 
and dysfunctional T cells (Fig. 2b and Extended Data Figs. 2a–g and 
3a–d). Conversely, CINlow tumours were enriched in pro-inflammatory 
macrophages, IFN-responsive B cells, activated dendritic cells and CD4+ 
T helper cells (Fig. 2b and Extended Data Figs. 2c,h,I and 3). Impor-
tantly, depleting cancer cell Sting1 in CINhigh tumours abolished many 
of the effects of CIN on the TME, ultimately restoring it to a CINlow-like 
state (Extended Data Figs. 2c,e–g and 3). Some of the scRNA-seq find-
ings were validated through flow cytometry, revealing enrichment of 
CD11b+ and CD206+ as well as CD11b+Ly6G+ cells in CINhigh compared with 
CINlow tumours (Extended Data Fig. 2a,b). Coculture of CINhigh tumour 
cells with macrophages led to significant reduction in relative argin-
ase expression upon loss of cancer cell Cgas or Sting1 (Extended Data 
Fig. 2f). And suppression of CIN or knockout of either Cgas or Sting1 
in CINhigh cells enhanced CD8+ T cell migration and led to increased 
tumour cell killing by pan-T cells, CD8+ T cells or natural killer (NK) 
cells (Extended Data Fig. 3e).

ContactTracing to map cell–cell interactions
To determine how CIN-induced STING signalling reprograms the 
TME, we developed a fundamentally new, systems-level approach to 
predict the effect of conditionally dependent cell–cell interactions 

in the TME, called ContactTracing. Our strategy exploited intrinsic 
variability in scRNA-seq data to infer cellular responses to ligand–
receptor-mediated interactions. Importantly, this was done without 
relying on prior knowledge of downstream target genes, allowing unbi-
ased discovery of heretofore unknown cellular responses to receptor 
engagement. This method was based on the simple premise that, within 
a given tumour, it is unlikely that all donor (ligand-producing) cells 
and target (receptor-expressing) cells are fully engaged in a particu-
lar cell–cell interaction. Exploiting inherent biological variability in  
(1) receptor expression on target cells and (2) sample-level ligand avail-
ability in the TME, we predicted the effect of a ligand on its target cell 
in its native, in vivo context (Fig. 3a–c and Methods). For all putative 
ligand–receptor-mediated interactions, we performed a likelihood 
ratio test between receptor-expressing and receptor-null target cells 
(Extended Data Fig. 4a,b), which could capture unwanted confound-
ing (correlation) between receptor expression and the expression of 
other genes. However, by exploiting secondary variability in ligand 
availability across experimental conditions—such as levels of CIN or 
cancer cell STING expression (Extended Data Fig. 4c)—we distinguished 
ligand effects from genes merely co-expressed with the relevant recep-
tor (Fig. 3b,c and Extended Data Fig. 4c). True ligand effects were not 
correlated across conditions, unlike their unobserved confounders 
(Extended Data Fig. 4d,e). Ligand effects (that is, distinct transcrip-
tional responses in receptor-expressing target cells when the ligand is 
present) largely clustered by cell type (Extended Data Fig. 4f), and were 
mapped back to subpopulations within the target cell type (Extended 
Data Fig. 4g).

We performed multiple orthogonal validations of ligand effects 
predicted by ContactTracing. First, we compared target genes inferred 
by ContactTracing with those previously reported in experimental 
assays23 (Methods). ContactTracing predicted many transcriptional 
responses, including those that were context-dependent and could not 
be inferred from in vitro cytokine assays, such as target genes induced 
in CCR2-expressing macrophages upon activation in vivo23,24 (Extended 
Data Fig. 5a–c). Second, we observed significant correlation between 
empirically derived transcriptional responses inferred from bulk 
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RNA sequencing (RNA-seq) of ligand (in this case APOE)-treated and 
untreated cells (RAW264.7 macrophages) (Extended Data Fig. 5d) and 
those predicted by ContactTracing using scRNA-seq of APOE-treated 
RAW264.7 cells only (Fig. 3d and Extended Data Fig. 5e).

To benchmark our approach, we compared the top 1,000 CIN- 
dependent interactions predicted by ContactTracing with those iden-
tified by existing cell–cell interaction methods (Methods). Similar 
to other methods that considered downstream signalling, interac-
tions predicted by ContactTracing were largely orthogonal to those 
predicted by methods that merely relied on the mutual expression 

of ligand–receptor pairs (Extended Data Fig. 6a,b). An analysis of 
human TNBC scRNA-seq data25 likewise revealed many unique CIN- 
dependent interactions predicted by ContactTracing (Fig. 3e). We then 
used matched spatial transcriptomics data to determine the veracity 
of these interactions. Strikingly, many unique predictions made by 
ContactTracing were found to colocalize on spatial transcriptomics 
data from the same human tumour samples (Fig. 3e and Extended 
Data Fig. 6c). Furthermore, ContactTracing prioritized interactions in 
a way that better captured their probability of colocalization on spatial 
transcriptomics data (Fig. 3f).
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CellPhoneDB; these interactions were sorted randomly and assigned the 
lowest score. g, CIN- and STING-dependent interactions between tumour cells 
and macrophages, predicted by ContactTracing. Significant interactions are 
defined by receptor-expressing target cells that exhibit at least 10 significant 
interaction effects (FDR < 0.25) when the cognate ligand is conditionally 
available in the TME, ligand abs(log2(FC)) > 0.12 at FDR < 0.05, with log2(FC) 
having the same sign for both the CIN and STING comparisons. abs, absolute; 
mMDSC, myeloid-derived suppressor cell; sc-variability, single cell-variability.
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Immune suppression from endoplasmic reticulum stress
All CIN- and STING-dependent cell–cell interactions were then visual-
ized for cell pairs (Fig. 3g) or across all major cell types in the TME using 
a Circos plot (Fig. 4a). Cell–cell interactions in CINhigh tumours largely 
involved cancer cells, immune-suppressive macrophages, Gr-MDSCs 
and dysfunctional T cells (Extended Data Fig. 4h). Tumour cell-derived 
factors contributing to these interactions had well-established 
roles in immune suppression and metastasis, including Ccl2, Cxcl1, 
Il11, Apoe and Serpine2 (refs. 26–30) (Fig. 4a,c). Conversely, CINlow 
tumours were characterized by interaction between tumour cells, 
pro-inflammatory macrophages, and helper and cytotoxic T cells 
(Extended Data Fig. 4h).

Interestingly, CIN- and STING-dependent ligands that measurably 
impacted recipient cells in the TME were associated with an unfolded 
protein response (UPR) to endoplasmic reticulum (ER) stress, in 
addition to canonical pathways associated with CIN such as NF-κB 
and IL6-Jak-Stat3 signalling2,31, whereas effectual ligands emanating 
from CINlow or Sting1-depleted CINhigh tumour cells were associated 
with IFN responses (Fig. 4b–d). Accordingly, pairwise comparison 
of CINhigh and CINlow tumour cells revealed significant enrichment 
of ER stress-related and NF-κB target genes and reduced IFN sig-
nalling (Extended Data Fig. 7a). On the other hand, pairwise analy-
sis between CINlow and Sting1-depleted CINhigh tumour cells did not 
reveal significant enrichment in the ER stress (normalized enrichment 
score (NES) = −0.85, false discovery rate (FDR) = 0.83) or type I IFN 
(NES = 0.56, FDR = 0.95) pathways, suggesting that Sting1 depletion 
abolishes CIN-dependent effects in tumour cells. Transcriptional 
targets of all three arms of the ER stress response32 were upregu-
lated in basal stem-like tumour cells that were enriched in CINhigh 
tumours relative to the luminal-like subpopulations that primarily 
belonged to CINlow and Sting1-depleted CINhigh tumours (Extended Data  
Fig. 7b–f).

STING is required for ER stress response
Despite constitutive cGAS–STING activation, CINhigh cells exhibited 
low baseline expression of IFN-stimulated genes (ISGs), with mini-
mal induction upon treatment with exogenous cGAMP but not with 
Poly(I:C), an activator of the dsRNA sensing pathway, which led to 
a robust induction of ISGs (Extended Data Fig. 8a). We then treated  
CINhigh cells (4T1, B16F10, EO771.LMB and CT26) with tunicamycin (TM), 
an ER stress inducer, which promoted robust and time-dependent 
ER stress response signalling (Fig. 5a and Extended Data Fig. 8b,c). 
Notably, ER stress response signalling was blunted in Sting1-KO cells 
(Fig. 5a and Extended Data Fig. 8b,c). We next knocked out each of 
the three main ER stress sensors, IRE1α (Ern1), PERK (Eif2ak3) or ATF6 
(Atf6), using CRISPR–Cas9 ribonucleoprotein transfection in 4T1 
cells and observed a significant reduction in the number of surface 
lung metastases after tail-vein inoculation, without impacting cel-
lular proliferation rates (Fig. 5b and Extended Data Fig. 8d,e). Strik-
ingly, this effect was again entirely dependent on the immune system  
(Fig. 5b).

Next, we examined the expression of three ER stress-related 
cytokines identified from ContactTracing, Ccl2, Cxcl1 and Il11, 
in 4T1 cells and validated their dependence on tumour-intrinsic 
STING activation (Extended Data Fig. 8f). While KO of individual 
cytokines in CINhigh 4T1 cells was not sufficient to significantly sup-
press metastasis, overexpression of either Ccl2 or Cxcl1 led to a sig-
nificant increase in metastasis of Sting1-KO cells (Extended Data 
Fig. 8g). Treatment of CINhigh tumours with AMG44, a selective PERK 
inhibitor, led to a significant decrease in Gr-MDSCs and a corre-
sponding increase in NK cells and CD8+ T cell infiltration, yet did not  
measurably impact macrophage polarization (Extended Data  
Fig. 9a–d).

STING inhibitors suppress metastasis
Given that signalling downstream of STING in chromosomally unstable 
cancer cells is skewed towards an ER stress response as opposed to 
its canonical IFN function, we reasoned that STING inhibition might 
represent a viable therapeutic strategy in tumours with CIN. Treat-
ment with C-176, a covalent inhibitor that blocks activation-induced 
palmitoylation of STING33, dampened ER stress response signalling, 
as evidenced by lower CHOP and BiP protein levels in TM-treated  
CINhigh 4T1 cells, and reduced baseline CCL2 levels in conditioned media 
(Extended Data Fig. 9e,f). Transcriptomic analysis of C-176-treated 
B16F10 CINhigh cells revealed downregulation of pathways related to 
inflammation, epithelial-to-mesenchymal transition, as well as the 
UPR/ER stress response (Extended Data Fig. 9g). We next delivered 
C-176 or H-151, a second covalent STING inhibitor, through daily intra-
peritoneal injections to tumour-bearing immune competent animals 
after tail-vein inoculation of CINhigh 4T1, B16F10 or CT26 tumour cells. 
In all instances, treatment with C-176 or H-151 prolonged survival 
(Fig. 5c and Extended Data Fig. 9h). We necropsied another subset 
of animals 13 d after inoculation of CT26 cells and observed a signifi-
cant reduction in surface lung metastases (Extended Data Fig. 9i). 
Reduced metastasis by the STING inhibitor did not match complete 
Sting1 KO, and this might be due to incomplete target exposure by 
the drug or dichotomous contributions of cancer cell and host cell 
STING, both of which would be inhibited with drug treatments. We 
thus administered C-176 to C57BL/6 mice inoculated with Sting1-KO 
B16F10 cells. In these mice, C-176 treatment did not provide an addi-
tional survival advantage beyond Sting1 KO (Fig. 5c). Prolonged daily 
treatment with the STING inhibitor was well tolerated and did not lead 
to any clinically evident toxicity when compared with vehicle-treated  
control animals.

IFN tachyphylaxis downstream of STING
To better define the context-dependent nature of cellular responses 
to STING activation, we developed a tractable model system using 
non-immortalized IMR90 human lung fibroblasts, which have an intact 
cGAS–STING pathway that is unstimulated at baseline, yet primed to 
respond upon cGAMP treatment34. We treated IMR90 fibroblasts with 
cGAMP for five consecutive daily doses and assessed time-dependent 
expression of key ISGs and ER stress response target genes after the 
first and fifth daily doses of cGAMP. We observed expected induction 
of IFNB1 and ISGs after the first cGAMP treatment (Fig. 5d). However, by 
the fifth daily treatment, the expression of ISGs was nearly completely 
abolished (Fig. 5d). This reduction in IFN responsiveness to repetitive 
stimulation—a process known as tachyphylaxis—was limited to STING, 
as transfection with Poly:IC after the fifth cGAMP stimulation led to an 
acute and robust ISG induction (Extended Data Fig. 10a), mirroring 
observations derived from cancer cells (Extended Data Fig. 8a). Con-
versely, repetitive treatment with cGAMP led to increased expression 
of ER stress and NF-κB target genes (Fig. 5d), which was abolished when 
cells were cotreated with the chemical chaperone and ER stress inhibi-
tor 4-phenylbutyric acid (4-BPA) (Extended Data Fig. 10b). Treatment 
of IMR90 fibroblasts with the STING antagonist H-151 reduced both 
acute (early) and chronic (late) STING-dependent effects (Extended 
Data Fig. 10c).

Repeated stimulation of IMR90 cells with cGAMP led to reduc-
tions in STING protein levels (Extended Data Fig. 11a), in line with 
autophagy-lysosomal-dependent degradation of STING mediated 
by its own activation35. Thus, we asked whether CIN-induced chronic 
STING activation might also explain reduced STING protein levels 
often observed in cancer cells. Indeed, alleviating chronic activa-
tion of STING through Cgas KO led to a significant rebound in STING 
protein levels in three of the four CINhigh cancer cell lines examined 
(Extended Data Figs. 1e and 11b). Furthermore, treatment with the 
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Fig. 4 | ContactTracing identifies ER stress as a central mediator of CIN- 
induced immune suppression. a, ContactTracing Circos plot highlighting all 
CIN- and STING-dependent interactions. Each segment represents a cell type, 
and cell types are further divided into ligands and receptors, which are ordered 
according to the first diffusion component (DC1) computed on differentially 
expressed genes (DEGs) in each cell type conditioned on ligand/receptor 
expression. Outer rings encode CIN-dependent interactions, which include 
target (receptor-expressing) cells distinguished by ≥10 CIN-dependent 
interaction effects (two-sided P value, FDR Q value < 0.25), as well as CIN- 
dependent ligands complementing those receptors (FDR Q value < 0.05 and 
abs(log2(ligand expression FC) > 0.12)). The outer circle represents cell type. 
The next circle shows the DC1 score for ligand/receptor represented at that 
coordinate; for example, macrophage response states were organized from 
pro-inflammatory to anti-inflammatory polarization states. The next circle 
shows the correlation between the log-normalized expression of that ligand/
receptor and its CIN-dependent differential abundance (log2(FC) as computed 
by Milo in local neighbourhoods and mapped to single cells as the described in 
the Methods). The histogram in the next inner circle shows the number of 
significant CIN-dependent interaction effects (FDR Q value < 0.25). Ribbons in 

the middle link interacting [ligand, donor cell type] and [receptor, target cell 
type] pairs; ribbon thickness is proportional to the number of genes exhibiting 
a CIN- and STING-dependent interaction effect (whichever is greater) and 
colour represents CIN- and STING-dependent log2(FC) of its complementary 
ligand measured in the donor cell type (whichever is greater). Links are only 
shown if they exhibit (1) CIN- and STING-dependent expression of ligand in 
donor cells (in the same direction with FDR Q value < 0.05 and abs(log2 
(expression FC) > 0.12)) and (2) at least 10 CIN-dependent and 10 STING- 
dependent interaction effects in the target cell type. Ligands/receptors are 
labelled at ribbon ends; ligands are in black and receptors in grey. The data 
encoded in the ContactTracing Circos plot are provided in Supplementary 
Table 9 and may be explored interactively at http://contacttracing.laughneylab.
com/circos. b, Differentially expressed pathways associated with CIN- and 
STING-dependent, tumour-derived ligands that effect the TME with nominal 
P < 0.05. The y axis is scaled by −log10(P values) times the sign of the odds ratio 
and colour indicates the pathway odds ratio. c, Bar plot highlighting CIN- and 
STING-dependent tumour-derived ligands that affect the TME, as described in 
a. d, Schematic illustrating the impact of chronic STING activation on functions 
associated with ligand effects.

http://contacttracing.laughneylab.com/circos
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autophagy inhibitor bafilomycin A1 led to an increase in STING 
protein levels in CINhigh WT but not Cgas-KO cells (Extended Data  
Fig. 11c).

Prognostic relevance of CIN in human TNBC
We then asked whether the inverse relationship between cGAS activity 
and STING protein levels can be recapitulated in human tumour sam-
ples. Using antibodies that were validated on WT and CGAS-depleted 
cell pellets, we observed an inverse correlation between the frequency 
of cGAS+ micronuclei and tumour cell-intrinsic STING expression 
in human TNBC (Extended Data Fig. 11d,e and Methods). Tumours 

with a preponderance of cGAS+ micronuclei had low, but detectable, 
STING protein levels within cancer cells (cGAShighSTINGlow), whereas 
those with a paucity of cGAS+ micronuclei had higher STING protein 
expression (cGASlowSTINGhigh). This inverse correlation between the 
expression of cGAS and STING in cancer cells was also observed within 
spatially heterogeneous tumours (Fig. 5e). cGAShighSTINGlow tumours  
exhibited fewer tumour infiltrating lymphocytes and were associ-
ated with reduced distant metastasis-free survival (DMFS), whereas 
cGASlowSTINGhigh tumours had a more favourable prognosis (Extended 
Data Fig. 11f–h and Fig. 5f). Unlike cancer cells, stromal cells consist-
ently displayed strong STING protein expression without evidence  
of cGAS+ micronuclei.
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We then analysed CIN-dependent interaction effects in available 
scRNA-seq data from eight human TNBCs25 using sample-level kar-
yotypic diversity and CIN-associated transcriptional signatures to 
stratify patient tumours into CINhigh and CINlow cohorts (Extended 
Data Fig. 12a and Methods). There was a consistent cell-level correla-
tion between CIN transcriptional signatures2 and cancer cell-intrinsic 
expression of ER stress-related genes, but not ISGs (Extended Data 
Fig. 12b), across patients. CINhigh tumours were likewise associated 
with an immune-suppressive TME characterized by enrichment 
of M2-like macrophages and dysfunctional T cells, whereas CINlow 
tumours were enriched for M1-like macrophages and monocytes 
(Extended Data Fig. 12c,d). Finally, we applied ContactTracing to iden-
tify CIN- and STING-dependent cell–cell interactions in human TNBCs, 
and compared these with CIN-dependent interactions predicted in 
the mouse (Extended Data Fig. 12e,f). Many conserved interactions 
involved tumour ligands associated with ER stress, such as APOE, 
IL11 and CCL2.

Discussion
CIN and STING activation are poorly tolerated in normal cells, where 
they often promote cellular senescence and immune-mediated 
clearance36–38. This led to the idea that CIN may act as a tumour  
suppressor12,13. Furthermore, STING activation has been proposed as a 
checkpoint against cellular transformation39,40 or the re-awakening of 
dormant metastasis41. Paradoxically, advanced and metastatic human 
tumours often exhibit evidence for CIN, and, in this context, it is asso-
ciated with immune evasion2,7,8,14,42. Similarly, in tumour models, CIN 
and persistent STING activation were shown to promote tumour cell 
survival as well as drive cancer progression, metastasis and immune 
suppression2,4,31,34,43–49. This dichotomy invokes key adaptive steps that 
must take place for cancer cells to tolerate—and co-opt—ongoing chro-
mosome missegregation and downstream inflammatory signalling. 
Rather than the wholesale loss of STING protein from cancer cells, our 
data argue that the most parsimonious path toward tumour progres-
sion and metastasis is adaptive re-wiring of signalling downstream 
of STING—a process that can occur within days, thereby allowing 
tumours to simultaneously eschew the deleterious pro-inflammatory 
role of type I IFN while benefiting from immune-suppressive ER stress  
signalling (Fig. 5g).

Activators of the STING pathway are currently in clinical devel-
opment50,51. The IFN-specific tachyphylaxis observed upon chronic 
STING activation, along with an immunosuppressive TME, might 
explain pre-existing resistance of chromosomally unstable tumours 
to STING agonists, which have thus far demonstrated limited efficacy in 
early-stage clinical trials despite evidence for adequate target engage-
ment50,51. Critically, our results pave the way for a biomarker-based 
approach to stratify patients whose tumours still maintain the abi
lity to mount an acute IFN-dominant response to STING activation 
(cGASlowSTINGhigh, Fig. 5e,f). Our paradigm also recognizes a subset 
of patients who might instead benefit from inhibition of cGAS–STING 
signalling to curb tumour-intrinsic chronic inflammation and its 
immune-suppressive sequalae (cGAShighSTINGlow, Fig. 5e,f). Given ongo-
ing efforts to develop selective inhibitors of cGAS, STING33,52 and ER 
stress sensors, such as PERK53, our work offers an exciting opportunity 
for therapeutic intervention in chromosomally unstable tumours for 
which there are currently few effective therapeutic options.
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Methods

Cell culture
IMR90, 4T1, CT26, RAW264.7 and B16F10 cell lines were purchased from 
the American Type Culture Collection and cultured in MEM (IMR90), 
DMEM (B16F10, RAW264.7) or RPMI (4T1, IMR90, CT26) supplemented 
with 10% FBS in the presence of penicillin (50 U ml−1) and streptomycin 
(50 μg ml−1). All cells were found to be negative for mycoplasma upon 
repeated routine testing.

The generation of KO and gene-overexpressing cell lines
Murine cancer cells with Cgas, Sting1, Atf6, Ern1, Eif2ak3, Ccl2, Cxcl1 
and Il11 KO were generated by Cas9 ribonucleoprotein nucleofection 
using a Lonza 4D-Nucleofector and SF Pulse Code CM-150 Cell Line 
Kit. For Cgas and Sting1 KO, four guides were screened per target and 
KO cell lines were confirmed using immunoblotting. For Atf6, Ern1 
and Eif2ak3 KO, three guides were used simultaneously. For Ccl2, 
Cxcl1 and Il11 KO, two guides were used sequentially. Stable knock-
down of Cgas or Sting1 in 4T1 cells was achieved using shRNAs in pRRL 
(SGEP) plasmids obtained from the Memorial Sloan Kettering Cancer 
Center (MSKCC) RNA Interference Core. Four distinct shRNA hair-
pins were screened per target. Targeted shRNA and CRISPR guide 
RNA sequences are listed in Supplementary Table 1. To overexpress 
Kif2c or dnMCAK, Kif2c and dnMCAK complementary DNA sequences 
were cloned into the pEGFP vectors, which, then, were transfected 
to 4T1 cells. Cells were selected using 2 µg ml−1 puromycin. To exog-
enously express Sting1, Cxcl1, Ccl2 or Il11, cDNAs were cloned into viral 
pLenti-EF1a-Bsd-P2A vector and were transduced with the lentiviral 
system.

cGAMP quantification
For cGAMP quantification in cell lysates, cancer cells were seeded in 
15-cm culture dishes. When culture plates were 80–90% confluent, 
cells were washed with PBS twice then trypsinized for 5 min at 37 °C, 
and cells counts were measured. Cells were then centrifuged at ≥600g 
at 4 °C for 15 min. Whole cell lysates were generated by lysing the cell 
pellet in LP2 lysis buffer (Tris HCl pH 7.7 20 mM, NaCl 100 mM, NaF 
10 mM, β-glycerophosphate 20 mM, MgCl2 5 mM, Triton X-100 0.1% 
(v/v), glycerol 5% (v/v)). The homogenate was then subjected to centrifu-
gation at 10,000g for 15 min. For tumour samples, the tumour tissues 
were homogenized in LP2 lysis buffer (1:10 w/v) with homogenizer. 
The homogenate was then subjected to centrifugation at 10,000g for 
15 min. cGAMP ELISA was performed according to the manufacturer’s 
protocol using DetectX Direct 2′,3′-Cyclic GAMP Enzyme Immunoassay 
Kit (Arbor Assay).

Immunoblotting
Cells were pelleted and lysed using RIPA buffer. Protein concentra-
tion was determined using BCA protein assay and 20–30 μg of total 
protein was loaded in each lane. Proteins were separated by gradient 
SDS–PAGE and transferred to PVDF or nitrocellulose membranes. 
Membranes were blocked with TBST buffer containing 5% BSA for 
1 h and incubated with the primary antibody in 5% BSA TBST over-
night at 4 °C. The primary antibody information is listed in Supple-
mentary Table 2. After three washes with TBST, membranes were 
incubated with proper horseradish peroxidase (HRP)- or fluorescent 
dye-conjugated secondary antibodies in TBST containing 3% BSA for 1 h 
at room temperature. After three washes with TBST, membranes using 
fluorescent dye-conjugated secondary antibodies were imaged using 
the LI-COR Odyssey system. For membranes using HRP-conjugated 
secondary antibodies, signal was visualized using SuperSignal West 
Femto Maximum Sensitivity Substrate by Amersham Imager. Relative 
STING protein levels were quantified by measuring band intensities 
on immunoblots using ImageJ software, background subtracted and 
normalized to a loading control.

Immunofluorescence microscopy
Cells were fixed with ice-cold (−20 °C) methanol for 15 min. Subse-
quently, cells were permeabilized using 1% Triton for 4 min. The primary 
antibody information is listed in Supplementary Table 3. TBS-BSA was 
used as a blocking agent during antibody staining. DAPI was added 
together with secondary antibodies. Cells were mounted with Prolong 
Diamond Antifade Mountant (Life Technologies, P36961).

H&E staining of lung metastases
Lungs were excised from euthanized mice and submerged in 4% PFA 
overnight at 4 °C, and then were transferred to 70% ethanol. Tissue 
embedding, slide sectioning and H&E staining were performed by the 
Molecular Cytology Core Facility at MSKCC.

Quantitative PCR
RNA was extracted from cells with Trizol (Invitrogen no. 15596026). 
cDNA was synthesized using the RNA to cDNA EcoDry Premix (Double  
Primed) kit (Takara no. 639549). Real-time PCR was performed to 
measure the relative messenger RNA expression levels of ISGs and the 
control GAPDH using Luna Universal qPCR Master Mix (NEB M3003L).  
The quantitative PCR reaction and analysis were performed on a Quant-
Studio 6 platform (Life Technology). The primer sequences are listed 
in Supplementary Table 4. Relative expression of analysed genes was 
determined, normalizing to human Gusb or mouse Actb housekeeping 
gene expression.

Cell stimulation with APOE for bulk and single-cell RNA-seq
For APOE treatment assays, 1 × 105 RAW264.7 cells were seeded in 
24-well plates or 5 × 105 RAW264.7 cells were seeded in 6-well plates. 
After 36 h, when culture plates were 80–90% confluent, medium with 
APOE (3 μg ml−1) was added to the wells for 2 h. For scRNA-seq experi-
ments, treated and non-treated cells from 24-well plates were mixed at 
equal cellular concentrations to generate 5,000 Gel Bead-In-Emulsions 
(GEMs), with an average initial cell viability of 93%. RNA purification 
from the cells seeded in six-well plates was performed using the  
Monarch Total RNA Miniprep Kit (New England BioLabs), and samples 
with high-quality RNA (RNA integrity number > 8.5) as measured using 
2200 TapeStation (Agilent Technologies) were used for bulk RNA-seq 
library preparation. cDNA was processed with TruSeq Stranded mRNA 
Library Preparation Kit (Illumina, 20020594) and sequenced with a 
NextSeq2000 instrument.

In vitro TM treatment
For TM treatment, 0.5 × 104 cells were seeded in 6-well plates. When 
cell confluence reached 70 per cent, media containing indicated con-
centrations of TM (63 ng ml–1 for 4T1, 126 ng ml–1 for CT26, 210 ng ml–1 
for B16F10 and 84 ng ml–1 for EO771.LMB) or dimethylsulfoxide were 
added. Cell lysates were collected at indicated time points and were 
analysed (12 h for CT26, 11 h for B16F10 and 10 h for EO771.LMB). For 
the C-176 pretreatment experiment, cells were pretreated with 1 μM 
C-176 or vehicle for 3 weeks, during which the medium was replaced 
with freshly prepared medium with C-176 or vehicle and cells were split 
every 3 d. When cells were treated with TM and vehicle, C-176 and its 
vehicle were also present in the medium during treatment.

In vitro cGAMP stimulation
IMR90 cells were seeded at a density of 1 × 104 cells per well in 6-well 
plates on day 0. For single-dose cGAMP stimulation, medium was 
replaced with medium containing 10 μM cGAMP. For repetitive stimula-
tion, medium was replaced with fresh medium containing cGAMP every 
day. Gene expression analysis and immunoblots were performed as 
described before. For 4-BPA (Enzo Life Technologies) treatment, cells 
were stimulated with cGAMP in the presence of 5 mM 4-BPA. For STING 
inhibitor treatment, cells were pretreated with 0.5 μM H-151 (Invivogen) 
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followed by stimulation with cGAMP in the presence of H-151. For the 
poly(I:C) stimulation, cells were stimulated by transfecting 2 μg ml−1 
poly(I:C) for 6 h at 24 h after the fifth cGAMP stimulation.

Autophagy inhibition by BafA1
In 6-well plates, 0.5 × 106 4T1 WT and Cgas-KO cells were seeded per 
well on day 0. On day 1, cells were treated with 0.5 μM BafA1 or vehicle 
together with 25 μg ml−1 cycloheximide. Cell lysates were collected and 
were analysed as described before.

NK killing assay
Primary NK cells were isolated from splenocytes of nude athymic mice 
using EasySep mouse NK cell isolation kit (Stemcell Technologies, 
19855) in accordance with the manufacturer’s protocol. The isolated 
NK cells were then seeded with tumour cells at a ratio of 1:10 (tumour: 
NK cells) in media supplemented with 20 ng ml−1 IL-12 (BioLegend, 
577002) and 10 ng ml−1 IL-15 (BioLegend, 566302). After 16 h of cocul-
ture, wells were washed with PBS twice to remove dying tumour cells 
and floating NK cells and the remaining adherent tumour cells were 
collected and counted.

T cell killing assay
Primary T cells or CD8+ T cells were isolated from splenocytes of BALB/cJ  
mice using EasySep mouse T cell isolation kit (Stemcell Technolo-
gies, 19851) or CD8+ cell isolation kit (Stemcell Technologies, 19853) 
in accordance with the manufacturer’s protocol. Isolated T cells or CD8+ 
T cells were activated with 20 ng ml−1 IL-2 (BioLegend, 575402) for 24 h 
before being seeded with tumour cells at a ratio of 1:5 (tumour:T cells/
CD8+ T cells). After 24 h of coculture, wells were washed with 1 × PBS 
twice and remaining adherent cells were collected and counted.

Macrophage polarization assay
Primary macrophages were collected from bone marrow of BALB/cJ 
mice and differentiated into M1 macrophages as previously described54. 
After 7 d of the differentiation process, differentiated M1 macrophages 
were cultured with conditioned medium from tumour cells for 24 h. 
Then, macrophages were collected, and RNA isolation was performed 
using the RNAeasy mini plus kit (Qiagen, 74134). mRNA expression of 
Arginase1 from RT–PCR was employed as a proxy measurement of M1 
polarization to M2 macrophages.

Transwell migration assay
Splenocytes collected from spleens of BALB/cJ mice were seeded in the 
top compartment of a Transwell chamber with 3-µm pore size (Corning,  
3462). Tumour cells were seeded in the bottom compartment 24 h 
before the addition of splenocytes. After 48 h of incubation, media 
from the bottom compartment were collected and numbers of immune 
cells were calculated.

Flow cytometry analysis
Primary tumours arising by implanting 2.5 × 105 GFP-expressing 4T1 
cells in 100 μl of PBS:Matrigel (1:1) into the mammary fat pads were 
resected on day 10. Tumour pieces were digested to single-cell sus-
pensions with Collagenase/Hyaluronidase (Stemcell Technologies, 
catalogue no. 07912) and DNAase I (Stemcell Technologies, catalogue 
no. 100-0762) according to the manufacturer’s manual, followed by 
filtration with 70-µM cell strainers. Cells were stained with Zombie 
NIR Fixable Viability Kit (BioLegend, catalogue no. 423105) for 10 min 
on ice, followed by blocking with TruStain FcX (anti-mouse CD16/32) 
antibody (BioLegend, catalogue no. 101319). Cells were then stained 
with fluorophore-conjugated antibody solution in PBS containing 2% 
FBS on ice for 30 min. The primary antibody information is listed in 
Supplementary Table 5. After washing with PBS, cells were analysed 
using the Cytek Aurora Flow Cytometry System. Data were analysed 
with FlowJo software.

Animal metastasis studies
Animal experiments were performed in accordance with protocols 
approved by the MSKCC Institutional Animal Care and Use Committee. 
For survival experiments, power analysis indicated that 15 mice per 
group would be sufficient to detect a difference at relative hazard ratios 
of less than 0.25 or more than 4.0 with 80% power and 95% confidence, 
given a median survival of 58 d in the control group and a total follow-up 
period of 180 d, accounting for accidental animal death during proce-
dures. For metastasis experiments relying on the tumour burden or lung 
surface metastasis number, the animal numbers were estimated based 
on previous experience with these models. For in vivo experiments, 
animals were randomly assigned to different groups. Investigators 
were not blinded to group allocation. For tail-vein injections, 5 × 104 4T1, 
1 × 105 4T1-Luc, 2.5 × 104 B16F10 or 105 CT26 cells were injected into the 
tail-vein of 6–7-week-old BALB/c (4T1 and CT26) or C57BL/6 (B16F10) 
female mice. For experiments using immune-deficient mice, 2.5 × 104 
4T1, 1 × 105 4T1-Luc, 1.25 × 104 B16F10, 5 × 104 CT26 or 2.5 × 105 EO771.
LMB cells were injected into 6–8-week-old NSG mice ( JAX:005557). 
Metastasis was primarily assessed through overall survival. Overall 
survival end point was when the mice died or met the criteria for 
euthanasia under the Institutional Animal Care and Use Committee 
protocol. Pain and distress were monitored by observing the pres-
ence of rapid weight loss, weight loss exceeding 20% of body weight, 
hunched posture, lethargy, lack of movement, rapid growth of tumour 
masses, mass larger than 2 cm3, gait abnormalities, lesion interfering 
with eating and drinking, anuria, ulcerated tumour, change in stool 
shape and/or size, and vaginal bleeding. Mice exhibiting any of these 
signs were euthanized. Transplanted tumours were not to exceed 20% 
in any dimension or 10% of body weight. Surface lung metastases were 
assessed at end point by direct visual examination after euthanasia, at 
which point lungs were perfused and fixed in 4% paraformaldehyde 
(4T1, EO771.LMB and B16F10 experiments) or stained using India ink 
(CT26 experiments). Furthermore, lung metastasis after injection of 
4T1 cells was qualitatively assessed using routine H&E staining. For 
4T1 orthotopic tumour implantation, 2.5 × 105 4T1 cells in 50 μl of PBS 
were mixed 1:1 with Matrigel (BD Biosciences) and injected into the 
fourth mammary fat pad. For EO771.LMB orthotopic tumour implanta-
tion, 2.5 × 105 EO771.LMB cells in 50 μl of Hanks’ Balanced Salt Solution 
were implanted. Only one tumour was implanted per animal. Primary 
tumours were surgically excised on day 7 (4T1) or day 14 (EO771.LMB) 
after implantation and metastatic dissemination was assessed by 
monitoring overall survival or through quantification of surface lung 
metastases upon euthanasia on day 30. The length (L) and width (W ) of 
the primary tumours were measured using callipers. Tumour size was 
calculated according to the following formula: L × W 2/2.

Bioluminescence imaging to monitor metastatic progression
4T1 cells were transduced with lentiviral particles encoding firefly lucif-
erase under control of the CAG promoter with an RFP–blasticidin fusion 
dual selection marker (Amsbio, LVP571). Transduced cells were grown 
in selection media containing 20 μg ml−1 blasticidin for 2 weeks, then 
sorted for a narrow range of medium RFP expression. Plasmids encoding 
enhanced specificity SpCas9 (eSpCas9), a customized guide RNA, and 
GFP were purchased from Genscript (eSpCas9-2A-GFP (PX458)). Guide 
sequences for murine Cgas were: 5′-GGCCAUGCAGAGAGCUUCCG-3′ 
and 5′-CGAGUCUCCGGCUGCCCCCG-3′. The guide sequence for murine 
Trac was: 5′-UUCUGGGUUCUGGAUGUCUG-3′. For Cgas-KO cells, 
RFP-luc-4T1 cells were transiently transfected with both Cgas-targeting 
plasmids simultaneously. For Trac KO (cutting, but non-expressing 
control) cells, RFP-luc-4T1 cells were transiently transfected with the 
Trac-targeting plasmid. After 2 d, cells were sorted for GFP expression. 
These cells were allowed to expand for 2 weeks. A second round of 
transient transfection and GFP-based sorting was performed to obtain 
polyclonal cell lines with greater than 95% KO efficiency by western blot.  



Experimental metastasis assays were performed by injecting 100,000 
4T1 (Luc-RFP) cells in the tail-vein of female BALB/cJ ( Jackson Labora-
tory, stock no. 000651) mice. For the metastasis assay with NSG mice, 
50,000 4T1 (RFP-Luc) cells were injected in the tail-vein of female 
NSG mice (stock no. 005557). In all experiments, 5–7-week-old mice 
were used. The cells were re-suspended in PBS and passed through 
a 70-μm cell strainer and injected in a final volume of 100 μl of PBS. 
To detect lung metastasis, animals were injected retro-orbitally with 
100 μl of luciferin (PerkinElmer, XenoLight d-Luciferin Potassium 
Salt, catalogue no. 122799) diluted in PBS (final concentration of 
16.67 mg ml−1). Luminescence was measured twice a week with an IVIS 
spectrum device (PerkinElmer, CLS136331 IVIS Lumina LT Inst, Series III, 
120 V), starting straight after the tail-vein injection on day 0. Mice were 
checked twice a day and euthanized when showing any signs of illness  
or distress.

Analysis of cGAS and STING protein expression in breast tumour 
samples
Primary analysis of cGAS and STING protein expression was performed 
on a tissue microarray of 217 formalin-fixed, paraffin-embedded TNBC 
samples. Samples and follow-up data were collected under MSKCC 
Institutional Review Board approval. Patients gave consent accord-
ing to the institutional review board-approved standard operating 
procedures for informed consent. Written, informed consent was 
obtained from all patients. The study was conducted in accordance 
with the Declaration of Helsinki and good clinical practice guidelines. 
There were three cores per tumour sample. Of the 217 samples, 183 
and 180 samples had sufficient material for adequate assessment of 
cGAS and STING expression levels, respectively. This included 179 
samples with adequate expression and quality to simultaneously 
quantify both proteins. Detailed clinical characteristics and clinical 
follow-up data were previously reported55. Immunohistochemistry 
for cGAS and STING was performed on the automated Discovery XT 
processor (Ventana Medical Systems) by the Molecular Cytology Core 
Facility at MSKCC56. Briefly, after deparaffinization and tumour tissue 
conditioning, the antigen was retrieved using standard CC1 (Ventana  
Medical Systems). Following blockage with Background Buster 
(Innovex), the slides were incubated with 1:100 diluted anti-STING 
antibody for 4 h, and then incubated with the biotinylated secondary 
antibody for 30 min. The Streptavidin-HRP D kit (DABMap kit, Ventana 
Medical Systems) and the Alexa Fluor 488 Tyramide SuperBoost Kit, 
Streptavidin (Life Technologies, catalogue no. B40932) were used 
to detect the signal according to the manufacturer instructions. A 
similar procedure was then applied to detect cGAS with 1:100 diluted 
anti-cGAS antibody and Alexa Fluor 594 Tyramide SuperBoost Kit, 
Streptavidin (Life Technologies, catalogue no. B40935). Slides were 
counterstained with haematoxylin and were mounted with Permount 
mounting medium. Slides of immunofluorescence and immunohisto-
chemistry were scanned with a Pannoramic Flash 250 (3DHistech) with 
×20/0.8 numerical aperture air objective by the Molecular Cytology 
Core Facility at MSKCC. cGAS and STING protein expression levels 
were assessed manually using scores of 0 (absent), 1 (weak), 2 (mod-
erate) and 3 (strong). STING expression was assessed separately in 
the tumour and stromal compartments. cGAS was rarely localized 
to micronuclei in the stroma and therefore was primarily assessed in 
the tumour compartment. DMFS data were collected by reviewing 
medical records available at MSKCC. Tumours were categorized as 
having low (negative or weak) or high (moderate or strong) cGAS or 
STING expression.

RNA-seq analysis
B16F10 cells were pretreated with 1 μM C-176 or dimethylsulfoxide for 
48 h, and media with fresh drug was added at 24 h. RNA was extracted 
using the RNeasy Mini Kit (Qiagen, 74104). Non-strand-specific paired- 
end sequencing libraries were generated with TruSeq Stranded mRNA 

(Illumina, 20020594) and sequenced on the Illumina NovaSeq platform. 
Reads were mapped to the mouse reference GRCm38 with the Broad  
Picard Pipeline (http://broadinstitute.github.io/picard/). Gene 
expression levels were estimated with GenomicAlignments (v.1.18.1)57.  
Differential analysis was performed by DESeq2 (v.1.24.0)58. Gene set 
enrichment analysis was performed on the normalized reads estimated 
by DESeq2. Genes downregulated in C-176-treated cells were filtered by  
two cutoffs: adjusted P value less than 0.05 and log2-transformed FC 
(C-176 versus vehicle) less than −1. Genes downregulated in Sting1 
KO were filtered by two cutoffs: adjusted P value less than 0.1 and 
log2-transformed FC less than −1.

Dissociation of murine tumours for scRNA-seq
Animal experiments were performed in accordance with protocols 
approved by the MSKCC Institutional Animal Care and Use Com-
mittee. First, 1.25 × 105 4T1 cells in 50 μl of PBS were mixed 1:1 with 
Matrigel (Corning) and injected into the fourth mammary fat pad of 
7-week-old BALB/c immune competent mice. Primary tumours were 
resected under sterile conditions 14 d after orthotopic implanta-
tion. The entire tumour was immediately placed in RPMI medium 
(Corning) on ice and dissociated using both mechanical and enzy-
matic digestion (Mouse Tumor Dissociation Kit no. 130-096-730,  
Miltenyi Biotec), generally within 1 h of surgical resection. Tissues 
were minced with a razor blade in the Miltenyi enzyme mix according 
to the manufacturer’s specifications and transferred to a Gentle MACS 
Octo Dissociator with heaters (no. 30-096-427, 37 °C) for further 
mechanical dissociation. Upon dissociation, cell suspensions were 
passed through a 70-µm filter and washed twice with FACS buffer (2% 
heat-inactivated FBS, 1 mM EDTA and Pen/Strep in PBS without Ca or 
Mg). The remaining cell suspensions were subsequently flow sorted 
with a BD FACSAria II cell sorter fitted with a 100-µm nozzle to enrich 
for viable, single cells according to forward and side scattering, and 
DAPI exclusion. Cells were sorted directly into RPMI medium with 10% 
FBS, washed three times and re-suspended in PBS with 0.04% BSA for 
single-cell encapsulation. Final cell concentrations were determined 
with a haemocytometer.

scRNA-seq library preparation
The 10X Genomics Chromium platform was used to generate a tar-
geted 5,000 single-cell GEMs per sample, loaded with an average initial 
cell viability of 87%. scRNA-seq libraries were prepared following the 
10X Genomics user guide (Single Cell 3′ V2 Reagent Kits User Guide 
PN-120233, 10X Genomics). After encapsulation, emulsions were 
transferred to a thermal cycler for reverse transcription at 53 °C for 
45 min, followed by heat inactivation for 5 min at 85 °C. cDNA from 
the reverse transcription reaction was purified using DynaBeads 
MyOne Silane Beads (Thermo Fisher Scientific) and amplified for 12 
cycles using Amplification mix and primers provided in the Single 
Cell 3′ reagents module 1 (10X Genomics). After purification with 0.6X 
SPRIselect beads (Beckman Coulter), cDNA quality and yield were evalu-
ated using Agilent Bioanalyzer 2100. Using a fragmentation enzyme 
blend (10X Genomics), the libraries were fragmented, end-repaired 
and A-tailed. Products were double-side cleaned using 0.6X and 0.8X 
SPRIselect beads, and adaptors provided in the kit were ligated for 
15 min at 30 °C. After cleaning ligation products, libraries were ampli-
fied and indexed with unique sample index i7 through PCR amplifi-
cation. The number of PCR cycles was chosen based on cDNA yield 
for each sample individually. Final libraries were double-side cleaned 
using 0.6X and 0.8X SPRIselect beads and their quality and size were 
evaluated using an Agilent Bioanalyzer 2100. Libraries were pooled 
and sequenced on a HiSeq2500 (Illumina) paired-end read flow cell 
following recommendations in the 10X Genomics guide, sequenced 
for 26 cycles on the forward read (10X barcode + unique molecular 
identifier), followed by 8-base pair I7 index (sample index) and 98 base 
pairs on the reverse read.

http://broadinstitute.github.io/picard/
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ContactTracing to identify and map the effects of conditionally 
dependent cell–cell interactions
ContactTracing exploits inter- and intrasample variability in single- 
cell data to ask whether putative interactions, identified based on the 
co-occurrence of complementary ligand–receptor pairs in the TME59, 
indeed yield a transcriptional response in target (receptor-expressing) 
cells that depends on condition-specific presence of ligand (Fig. 3a–c 
and Extended Data Fig. 4a–c). The model makes no assumptions 
about what this ligand effect looks like, but rather infers genes and 
processes associated with each cellular response based on intrinsic 
variability in receptor expression (within the target cell type) and 
ligand abundance in the TME (Extended Data Fig. 4f); here, we focus 
on ligands that are CIN- or STING-dependent. Finally, we map these 
cellular response states, that is, ligand effects, back to individual 
cells to ask whether multiple, distinct tumour subpopulations coop-
eratively shape the TME and whether their abundance is dependent 
on perturbation of tumour-intrinsic CIN or Sting1 (Extended Data  
Fig. 4g,h).

Database of complementary ligand–receptor pairs. To obtain an 
interaction database as input to ContactTracing, we took the intersec-
tion of two databases: CellTalkDb60 (http://tcm.zju.edu.cn/celltalkdb/
download.php, accessed 26 March 2021) and the database used by 
the CellPhoneDb59 (v.2.1.4) method. CellTalkDb has both human- and 
mouse- specific databases, and we used the appropriate one for each 
species. CellPhoneDb is a human database; for the mouse analysis 
we mapped the genes to the mouse genome as described in the next 
section, ‘Mouse to human gene mapping’. CellPhoneDb includes ‘com-
plex’ ligands and receptors, where each complex consists of multiple 
genes. For any putative complex-mediated interactions, we added a 
corresponding ‘complex gene’ to our scRNA-seq expression matrix 
whose expression is the minimum expression of all genes comprising 
the complex. We removed any interactions where the ligand or recep-
tor were filtered from our scRNA-seq database for low expression. The 
total mouse interaction database contains 1,885 interactions (1,261 
from CellTalkDb, 917 from CellPhoneDB, 293 of which overlap). The 
total human interaction database contains 2,934 interactions (2,348 
from CellTalkDb, 846 from CellPhoneDb; 260 overlapping).

Mouse to human gene mapping. Human–mouse orthologs annotated 
by the Jackson Laboratory (http://www.informatics.jax.org/downloads/
reports/HOM_MouseHumanSequence.rpt, accessed 1 March 2021) were 
used to map 79.3% of our mouse genes to human genes one-to-one. An 
additional 23 mouse ligands and receptors were mapped to human 
genes through capitalization, that is, Lgasl9 → LGASL9. Finally, we manu-
ally dealt with six human genes that mapped to multiple mouse genes 
(HLA-A, SIRPB1, KLRB1, LILRB4, SAA1, CSF2RB). After inspecting expres-
sion patterns of these multi-mapped genes, we mostly used the average 
expression across multiple orthologs for each gene to represent that 
mapped ligand/receptor. The only exception was HLA-A, whose mouse 
orthologs exhibited several distinct patterns of expression and so was 
dropped from further analysis.

Testing for a transcriptional response in receptor-expressing tar-
get cells. We used the BioConductor package MAST61 (v.1.14.0) to 
perform a likelihood ratio test between receptor-expressing (any 
molecules detected, target+) and receptor-null (no molecules detected, 
target−) cells, within the target cell type, across all genes (Fig. 3b,c  
and Extended Data Fig. 4a,b). We refer to this as the target test. The  
MAST function, zlm, fits a Hurdle model to the log-normalized expres-
sion of each gene using generalized linear regression. We used the 
regression formula: Y ≈ CDR + condition + target, where CDR models 
the cellular detection rate (fraction of genes detected in a cell, an impor
tant covariate for modelling single-cell expression data), condition is 

a categorical variable indicating sample source (CINhigh, CINlow or  
Sting1KD) and target is a binary parameter indicating cell membership 
in the receptor-expressing subset (target+). The zlm function results 
in parameter estimates for each gene, including log2(FC) estimates for 
how expression relates to condition and target status. We then use 
MAST’s lrTest function to compute the change in likelihood when tar-
get is dropped from the model. This produces a P value for each gene 
indicating whether the model including target as a covariate fits sig-
nificantly better than a model without. Thus, significant P values  
indicate genes whose expression is different between receptor- 
expressing (target+) and receptor-null (target−) subpopulations. We 
apply the Benjamini–Hochberg procedure to account for multiple 
hypothesis testing, yielding an FDR value per gene.

Testing for condition-specific responses to receptor engagement 
in target cells. Fitted parameter values from the target test can reflect 
associations and are not causal if there is unobserved confounding 
(correlation) between receptor expression and the expression of other 
genes. However, we may exploit secondary variability in ligand avail-
ability across conditions to distinguish genes that are ligand effects 
from those that happen to be co-expressed with the relevant receptor 
protein. Thus, for all interactions that involve a ligand that is differen-
tially expressed across conditions (CIN- or STING-dependent in any 
cell type), we performed a second likelihood ratio test to determine 
whether model fit improves with the addition of a condition-specific 
interaction effect (Extended Data Fig. 4c). Thus, zlm fits the function: 
Y ≈ CDR + condition + target + condition_specific_interaction_effect, 
where condition_specific_interaction_effect  is a categorical variable 
indicating a cell that is both expressing the receptor (target+) and from 
a particular condition (that is, CINhigh). The lrTest function evaluates 
the significance of including the condition_specific_interaction_effect 
covariate when modelling expression across all genes. The P values 
produced by this test are significant when the transcriptional response 
in receptor-expressing target cells differs across conditions (in this 
case, through perturbation of tumour CIN or Sting1), with condition- 
specific ligand availability. Again, we apply the Benjamini–Hochberg 
procedure to account for multiple hypothesis testing. Notably, the 
number of genes differentially expressed in receptor-expressing  
versus -null target cells is highly correlated across conditions, while 
those exhibiting an interaction effect (gene responses that differ in the 
presence of the ligand) are not (Extended Data Fig. 4d,e).

Defining ligand effects in target cells. Altogether, target and interac-
tion tests were performed for all receptors and ligands in our database, 
crossed with all possible cell types in the TME. Target tests were per-
formed within cells derived from the target cell type, conditioned on 
receptor expression; and interaction tests were performed in target 
cell types when their complementary ligand was differentially  
expressed across conditions in the TME. Thus, the output consists of 
P values and log2(FC) estimates across all genes for each component 
of a putative cell–cell interaction. To functionally define transcrip-
tional responses to a ligand–receptor-mediated interaction, we com-
pute P−log ( ) × log (fold change)10 adj 2  from the target likelihood ratio 
test for each gene, where Padj is the Bonferroni-corrected P value. Ligand 
effects are then transcriptional response genes that exhibit a significant 
interaction effect in the presence of the condition-specific ligand.

For each cell type, we create a matrix of condition-specific transcrip-
tional response vectors with rows corresponding to [receptor, target 
cell type] pairs and columns corresponding to all genes. Since each 
row of the matrix encodes both a cell type and a receptor, dependent 
transcriptional responses can be evaluated across multiple cell types. 
We then use scanpy to compute principal components on this matrix, 
choosing an optimal number of principal components for data dimen-
sionality based on kneepoint analysis of the cumulative variance 
described by each component, and visualize in two dimensions with 
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UMAP (Extended Data Fig. 4f). Phenotypic states associated with recep-
tor expression in each cell type are computed according to 

P−log ( ) × log (fold change)10 adj 2  from the target likelihood ratio test 
for each gene, where Padj is the Bonferroni-corrected P value. We com-
pute principle components and the DC1 on this matrix using Palantir 
to identify genes that significantly correlate with this principle source 
of variance. After removing scores of zero and rescaling correlation 
values to the range [−1,1], we use these scores as input to gene set enrich-
ment analysis (GSEA), along with cell-type-specific GMT files (provided 
in Supplementary Table 7), to assign pathways to these major axes of 
biological variation. For example, macrophage transcriptional 
responses largely reflected underlying single-cell heterogeneity in 
IFN-γ responsiveness and polarization (Fig. 4a).

Mapping ligand–receptor-mediated effects to cellular subpopula-
tions. To assign ligand effects to subclusters within the target cell type, 
we took the dot-product between the transcriptional response score 
(defined above) and the log2(FC) of every gene in each cell subcluster 
versus all other cells using the MAST statistical framework61 (Extended 
Data Fig. 4g). The log2(FC) per gene per cluster is set to zero before 
computing this dot-product when it is not significant (FDR > 0.15). 
The dot-product score is standardized by normalizing to its max, and 
transcriptional response states (conditioned on receptor expression) 
are assigned to subclusters for standardized scores greater than 0.5; in 
this way, transcriptional response states can be assigned to more than 
one subcluster. Ligands are simply assigned to subclusters if they are 
positively enriched (FDR < 0.15, log2(FC) > 0) in that subcluster relative 
to all other cells in the donor cell type as determined by MAST61.

Validating ligand effects predicted by ContactTracing
We downloaded the CytoSig database of human cytokine responses 
(https://cytosig.ccr.cancer.gov/download /, accessed 11 February 2022). 
This database provides measurements for 2,002 experiments in which 
cells were treated with a cytokine, and the log-fold expression change 
was measured across 19,918 genes. We mapped all genes in this data-
base to mouse genes in our dataset, yielding a mapped database of 740 
experiments with measurements in 13,013 genes. We then associated 
the ligands in the CytoSig database to their corresponding receptors 
in our set of mouse interactions, and focused on ligand–receptor pairs 
that are CIN-dependent (ligand log(FC) FDR < 0.05 and at least 1 signifi-
cant interaction effect). We found 115 CIN-dependent ligand–receptor 
pairs, from 75 distinct receptors, that were in the mapped CytoSig 
database (in a total of 571 experiments across different cell types and 
conditions). We then compared every CIN-dependent transcriptional 
response measured by ContactTracing with each of the 571 cytokine 
responses measured by CytoSig. To compare the response vectors, 
we computed the connectivity score62, illustrated in Extended Data 
Fig. 5b, which is to test whether upregulated genes in one list are also 
upregulated in another, without making many assumptions about the 
distributions of values in the lists. ContactTracing upregulated genes 
have a log(FC) > 0 from the target test, and are CIN-specific (interac-
tion test FDR < 0.05). We then apply the connectivity score to this set 
of cytokine response genes in CytoSig; the larger the score, the more 
these genes are also upregulated in CytoSig. We get a distribution of 
connectivity scores from our all-versus-all comparison. We then take a 
subset of these comparisons in which the target genes (receptor) are the 
same in each database, and the cell types are generally matched. There 
was a large variety of cell type names used in the CytoSig database; we 
manually created a mapping to ContactTracing cell types according to 
Supplementary Table 10 (many remain unmapped); we consider cell 
types ‘roughly matched’ if they both belong in one of the following 
sets: epithelial/stromal (tumour cells, fibroblast cells); myeloid (mac-
rophages/myeloid-derived suppressor cells (mMDSC), plasmacytoid 
dendritic cells (pDC), classical dendritic cells (cDC), polymorphonu-
clear neutrophils (PMN)/granulocytic myeloid-derived suppressor 

cells (Gr-MDSC)) or lymphoid (T cells, B cells, NK cells). Extended Data 
Fig. 5c compares the distribution of all-versus-all connectivity scores, 
compared with the subset of those with matching target cell types and 
receptors. We used a Mann–Whitney test to determine that the connec-
tivity scores are significantly higher in the matched subset (P = 0.0031).

Benchmarking ContactTracing against existing methods that 
infer cell–cell interactions from single-cell data
To compare the top set of interactions predicted by ContactTracing 
with those predicted by other cell–cell interaction models, we evaluate 
their intersection (Fig. 3e and Extended Data Fig. 6a,b) and colocali-
zation in matched spatial transcriptomics data (Fig. 3f and Extended 
Data Fig. 6c).

Implementation of alternative cell–cell interaction models. The  
expression counts and ligand–receptor databases used by Contact
Tracing were loaded using the typical workflows required by each  
respective tool. Counts matrices were split according to experimental 
condition. For all instances that required conversion between human 
and mouse gene names, we followed the same procedure described 
above (‘Mouse to human gene mapping’). Since some methods are  
unable to account for protein complex definitions, when necessary, 
complex interactions are split into all pairwise combinations of complex 
components to a given ligand/receptor. Common approaches to under-
standing ligand–receptor-mediated interactions are based on tests that 
compare co-expression of ligands and receptors across cell types. The 
most common example of such tests is CellPhoneDB59. As many methods  
are difficult to supply with custom ligand–receptor databases, we use 
the LIANA package (v.0.1.6)63, which reimplements many of these com-
mon methods. LIANA was configured to use the following methods: 
‘cellphonedb’, ‘connectome’, ‘logfc’ (iTALK), ‘natmi’, ‘sca’ (SingleCell-
SignalR), ‘call_cellchat’ (CellChat) and ‘cytotalk’. Permutation-based 
tests were set to use 10,000 permutations, and CellChat was set to 
use 1,000 bootstraps. NicheNet64 v.1.1.0 was also implemented using a 
custom ‘ligand–receptor network’ with author-recommended settings, 
which allowed us to integrate the same database of complementary 
ligand–receptor pairs, while retaining the default ‘signalling’ and ‘gene 
regulatory’ networks. This new database was compiled using default 
optimized NicheNet hyperparameters. Since NicheNet is based on the 
Seurat toolkit, expression was preprocessed using a typical preprocess-
ing workflow including its SCTransform ‘v2’ workflow (Seurat v.4.1.1, 
SCTransform v.0.3.3), with a consistent number of variable features as 
used for ContactTracing. NicheNet was run on all pairwise combina-
tions of cell types with recommended parameters and ligand/receptor 
activity was scored using NicheNet’s Pearson correlation coefficients. 
A newer method for understanding cell–cell signalling is CellComm 
(part of the FUSCA package, v.1.3.1)65. Expression data were prepared 
for CellComm by following the typical FUSCA workflow demonstrat-
ed by the authors: counts were filtered to require a minimum of 100 
genes expressed per cell and a minimum of 10 cells expressing each 
gene, then processed using the ‘Normalize’ and ‘scaleData’ functions. 
The CellComm algorithm was run by computing co-expression pat-
terns with minimum mean expression set to 0.2, using 10,000 cluster 
permutations across cell types. CellComm P values were calculated  
using 1,000 permutations.

Application of cell–cell interaction models to human and mouse 
data. When running tools on spatially matched human TNBC and ER 
data25, we ran the typical workflow for each tool as described above 
on each condition independently so that each condition’s colocali-
zation could be evaluated independently. To compare the results of 
ContactTracing with other tools in the mouse model of CIN, we ran 
LIANA-based methods on condition-specific counts matrices sepa-
rately. As a substitute for the lack of condition-dependent analyses 
on those methods, we calculated a post hoc score for each method 
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measuring the differential magnitude across conditions by comput-
ing the absolute value of the difference of CINhigh and CINlow scores, 
and if P values were reported we selected the most significant value 
to be representative. These scores were then used to rank reported 
interactions from LIANA. To incorporate experimental conditions 
from the mouse model in NicheNet results, we used the full counts 
matrices (which includes both conditions) with the recently published 
‘Differential NicheNet’ workflow, using ‘min_lfc’ specificity scores with 
an author-recommended cutoff of 0.15. While the typical Connectome 
scores are implemented in LIANA, the original implementation contains 
a ‘Differential Connectome’ workflow66 which would allow for explicit 
consideration of experimental conditions. Since it is also Seurat-based, 
we used the same data as prepared for Differential NicheNet and ran 
the method according to the author-recommended usage to analyse 
and calculate P values. While CellComm does not explicitly have a ‘Dif-
ferential’ workflow, it has a ‘subcluster’ workflow which we used by 
setting experimental condition as the ‘cluster’ and cell-type annotation 
as the ‘subcluster’.

Comparing predicted interactions across models. As ContactTrac-
ing and alternative methods are run with a consistent ligand/receptor 
database, results differ only in terms of detection sensitivity and pri-
oritization. Thus, interactions are compared in terms of set overlap 
(Fig. 3e and Extended Data Fig. 6a) and ranked differences (Extended 
Data Fig. 6b). For comparison, we required interactions to be present 
in both conditions and collapsed interactions to unique (target cell 
type, receptor) pairs. First, all methods that report a P value had results 
filtered using a 0.05 threshold. Next, for each target cell type/receptor 
pair, the maximum significant reported score (regardless of source 
cell type and ligand) was selected to be the representative score for 
each target cell type/receptor pair. Rankings were then determined  
by sorting target cell type/receptor pairs according to previously  
described maximum scores. Similarly, ContactTracing target cell type/
receptor pairs were first filtered by requiring at least one significant 
interaction term (FDR < 0.05) in the target cell type for ligands that 
were differentially expressed across conditions in any donor cell type 
(absolute log2(FC) > 0 and FDR < 0.05). The ContactTracing target cell 
type/receptor pairs were then sorted by the number of significant inter
action terms, with ties broken by secondarily sorting according to the 
number of DEGs for a given target cell type/receptor pair. Since the 
methods had variable numbers of results reported, overlap coefficients 
were calculated to represent set similarity. The overlap coefficient is a 
set size-invariant metric for similarity that is related to the Jaccard  
index. While the Jaccard index for sets X and Y is calculated as 
Jaccard = ∩

∪
X Y
X Y

∣ ∣
∣ ∣, the overlap coefficient corrects for set size difference 

by normalizing set intersection cardinality by minimum set cardinal-
ity rather than the cardinality of the union between sets, that is, 

∣ ∣
∣ ∣ ∣ ∣Overlap = ∩X Y

X Ymin( , )
. Similarly to the Jaccard index, overlap coefficients 

range from 0 to 1, where 1 represents the highest degree of overlap. All 
pairwise combinations of ranked result lists were then used to calculate 
corresponding overlap coefficients for various rank thresholds.

Validation within an independent human breast cancer cohort
To validate the relevance of key biological findings in human breast 
cancers, we obtained scRNA-seq data from a publicly available cohort 
of 26 primary breast cancer tumours (11 ER+, 5 HER2+ and 10 TNBCs)25. 
To compare cell subtypes between the human and mouse cell atlases, 
we mapped the subtype annotations provided by Wu et. al.25 to the 
most similar cell subtype in the mouse for all immune cells where a 
corresponding cell subtype was present (Supplementary Table 10). 
This was done using subtype-specific DEGs and pathways provided by 
the original authors and recomputed using our pipeline. Most original 
DEGs and annotations published were validated by our analyses, except 
for the Myeloid:c8 S100A9+ cluster, which we classify as mMDSCs based 
on their upregulation of S100A8 and S100A9 (ref. 67). Following the 

detection of significant sample-specific effects, Harmony68 was applied 
for batch correction to the full log-transformed count matrix to gener-
ate the default n = 100 corrected Harmony principal components. Using 
the optimal number of principal components selected before and after 
batch correction (n = 17 and n = 19, respectively), sample mixing was 
noticeably improved in immune cell subsets; thus, corrected Harmony 
principal components were used for downstream differential abun-
dance testing (Extended Data Fig. 12c,d). To validate CIN-dependent 
findings from the 4T1 mouse model, we focused on the eight TNBC 
samples that had tumour cells present in the data. To separate these 
eight samples into expected ‘CINlow’ and ‘CINhigh’ groups, we used the 
standard inferCNV i6 HMM model69 to detect copy number variants 
(CNVs) within the tumour cell compartment for each sample (applied 
to raw data). As a measure of CIN, we computed the Shannon diversity 
index of the variant states, weighted by the number of copy number 
alterations in each variant, for all tumour cells in each sample:

∑ s sCNV = − × ln( )
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n
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where freqi is the proportion of variant i in current sample and δi is 
the sum of the absolute values of the predicted difference from normal 
across all chromosome positions for variant i. This CNVSDI metric not 
only captures the diversity in the unique CNV states detected in the 
sample, but it also accounts for how altered these states are predicted to 
be from diploid. As expected, the CNVSDI was markedly higher in CINhigh 
mouse samples (Extended Data Fig. 1l) and was used in conjunction 
with the mean tumour cell expression of key pathways (Type 1 IFN, 
CIN signature, Non-Canonical Nf-Kb and Hallmark UPR) to cluster the 
eight human TNBC samples into CINlow (n = 4) and CINhigh (n = 4) subsets 
(Extended Data Fig. 12a). We then used the Milo70 python framework 
to compute differentially abundant neighbourhoods within the TNBC 
subset between the inferred CINlow and CINhigh samples (k = 15, P = 0.5 
and d = 22). The mapped cell subtype annotations were used to label 
each neighbourhood based on the mode cell subtype and log2(FC) 
values were mapped to the single-cell resolution in the same manner 
as described in Supplementary Note 5. ContactTracing was likewise 
applied to these human data to detect CIN-specific ligand effects, as 
described in the section above (‘ContactTracing to identify and map 
the effects of conditionally dependent cell–cell interactions’).
The breast cancer dataset also includes matched Visium spatial tran-
scriptomics data from four of the samples: two patients with TNBC 
and two ER+ patients. We ran ContactTracing on the scRNA-seq data for 
these samples separately, comparing TNBC versus ER+ conditions. We 
used the output from ContactTracing to rank interactions relevant to 
each condition; interactions identified by [ligand, receptor, receptor 
cell type] are ranked by the number of significant interaction effects, 
multiplied by the identity function that indicates whether the ligand is 
upregulated in at least one cell type for the relevant condition. There-
fore, there is a different ranking of interactions relevant to TNBC, and 
of those relevant to ER+. For each of the four patients, we then used the 
relevant ranking, and assessed whether top TNBC or ER+ interactions 
tended to colocalize in the spatial data for patients in corresponding 
breast cancer subtypes (Fig. 3f). Colocalization was determined by sum-
ming the product of [log(ligand expression), probability or Pr(target 
cell type), Identity(receptor expressed)] across all cells in the spatial 
data for an individual. Ligand expression was then permuted 100 times 
and the colocalization statistic recomputed to obtain a colocalization 
P value (Extended Data Fig. 6c). The probability of a target cell type in 
each Visium spot was determined using the deconvolution software 



SPOTlight71. The SPOTlight algorithm was seeded with scRNA-seq data 
from the same individuals, and the cell-type annotations described in 
the previous section.

Data visualization
Two-dimensional embeddings. The global atlas of all cells in the TME, 
including diverse tumour, stroma, lymphoid and myeloid subsets, 
was visualized using a UMAP (Fig. 2a). This dimensionality reduction 
technique was appropriate given the diversity of cell types represented. 
Force-directed graphs72 were alternatively used to visualize continu-
ous subpopulations within major cell types (Extended Data Figs. 2d, 3a 
and 7b,e), because these better capture cell state transitions and local 
relationships between cells. For both visualization methods, we used 
the optimal number of principal components and the default k = 15 
nearest neighbours with scanpy.

Gene expression along within-cell-type trajectories. Heatmaps were 
generated using the CellRank73 heatmap plotting function, which uses 
a generalized additive model to smooth expression along the given 
trajectory. Imputed expression was used to generate these visuals and 
expression was normalized to a range of [0,1]. The order of genes was 
determined by expression peak along the trajectory. Transition genes 
did not exhibit an expression peak at either end point of the inferred 
continuum. Colour bars above heatmaps were generated by ranking 
the given variable along the given trajectory; continuous variables 
were smoothed using the CellRank methodology. Similarly, gene trend 
curves were generated using the built-in plotting method provided 
by CellRank using the same generalized additive model method as in 
the heatmap visual described above. Here, imputed expression was 
normalized to its max for each gene independently.

Neighbourhood differential abundance plots. After mapping cell 
subtypes to Milo neighbourhoods (Supplementary Note 5), differen-
tial abundance test results were visualized per neighbourhood using 
strip plots overlaid on mean bar plots for significantly differentially 
abundant neighbourhoods. In minority cell-type populations where 
fewer than two significant neighbourhoods were detected, all neigh-
bourhoods were used for computing the log2(FC) mean. The size (or 
opacity) of the scatter points reflects the significance (P value) of the 
neighbourhoods, log2(FC) (Fig. 2b and Extended Data Figs. 2c,i, 3c,g, 7f 
and 12c,d).

Statistics and reproducibility
Experiments showing representative images were independently 
repeated two (Fig. 5a,e, Extended Data Fig. 11a,d and Supplementary 
Note 6) or three (Extended Data Figs. 1a,e,f, 10a and 11c) times with 
similar results.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All scRNA-seq data generated in this study have been deposited in the 
NCBI’s Gene Expression Omnibus (GEO) database under accession 
code: GSE189856. The GRCm38 genome reference is available as a Cell-
Ranger reference package (v.mm10-3.0.0). All scRNA-seq data from 
the independent human cohort are available in the NCBI’s GEO under 
accession code: GSE176078, and the spatial data from the same study 
are at https://zenodo.org/record/4739739. CellPhoneDb can be found 
at https://www.cellphonedb.org (v.2.1.4 was used for this study), and 
the celltalkdb database is at http://tcm.zju.edu.cn/celltalkdb/down-
load.php. An interactive web dashboard is made available at http://
contacttracing.laughneylab.com to enable interactive exploration 

of data from this study, allowing users to visualize pairwise ligand–
receptor-mediated interactions and systems-level interactions in Circos 
plots (similar to Fig. 4a and Extended Data Fig. 12e) using plotly v.5.11.0 
and dash v.2.7.1. Processed scRNA-seq datasets appropriate for input 
to the ContactTracing method are available at https://doi.org/10.5281/
zenodo.8061222. Source data are provided with this paper.

Code availability
Custom code, including docker environments with jupyter notebooks 
demonstrating the ContactTracing method, is available on the Laugh-
ney Lab GitHub (https://github.com/LaughneyLab/ContactTracing_
tutorial, https://zenodo.org/record/8061480). Code for the interactive 
web dashboard is available on GitHub (https://github.com/Laughney-
Lab/ContactTracing-Viz/, https://zenodo.org/record/8067675). Circos 
software74 (v.0.69-9) was used to visualize ligand–receptor interactions 
based on measured transcriptional responses (ContactTracing). The 
network plot in Extended Data Fig. 4h was created with Cytoscape75 
v.3.8.2.
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Extended Data Fig. 1 | CIN-induced cGAS–STING activation drives 
metastasis in immunocompetent models. a, Representative images of 4T1 
TNBC cells undergoing anaphase with various chromosome segregation 
defects stained using DAPI (DNA) and anti-centromere antibody (ACA), scale 
bar 5 μm. b, Frequency of anaphase cells with chromosome segregation defects 
in poorly metastatic (B16F0 and B16F1) and highly metastatic (B16F10, 4T1, 
EO771.LMB and CT26) cells; bars represent average ± SD, **** p < 0.0001, two-
sided t-test, n = 3 independent counting per cell line, ~ 150 division events per 
counting. c, Percentage of micronuclei in the various cell lines; bars represent 
median, **** p < 0.0001, two-sided Mann-Whitney test, n = 5–17. d, cGAMP levels 
in cell lysates; bars represent median values, * p < 0.05, ** p < 0.01, two-sided 
Mann-Whitney test, n = 5–12. e, Immunoblots for cGAS and STING of control, 
Cgas-KO, and Sting1-KO B16F10, 4T1, and CT26 cells with β-Actin as a loading 
control. f, Representative images of B16F10, CT26, 4T1 and EO771.LMB cells with 
micronuclei stained using DAPI (DNA) and anti-cGAS antibody, scale bar 5 μm. 

g, Percentage of 4T1 cells undergoing anaphase with evidence for chromosome 
missegregation, bars represent mean ± SD, n = 150 cells in 3 biological replicates, 
**** p < 0.0001, two-sided t-test. h, Experimental schema for metastasis 
experiments. i, The number of surface lung metastasis metastases arising  
after 4T1 tumor resection in BALB/c hosts (n = 14–25) or arising from tail-vein 
injection of 4T1 cells into NSG hosts (n = 10); lines in the plot represent the 
median, * p < 0.05, **** p < 0.0001, two-sided Mann-Whitney test. j, Volume  
of resected orthotopically transplanted primary 4T1 tumors; bars represent 
median values, ** p < 0.01, two-sided Mann-Whitney test, n = 14–15 animals per 
group. k, Immunoblots of cGAS and STING of control and Sting1-depleted 4T1 
cells with β-actin as a loading control. l, Violin plot showing the distribution of 
tumor cell CNV diversity (Methods) in CINlow (n = 4) and CINhigh (n = 9) murine 
tumor samples (one-sided t-test p-value <0.05). Overlaid box plots denote the 
minima, maxima, median, and 1st and 3rd quartiles.
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Extended Data Fig. 2 | CIN and STING dependent effects on the tumor 
myeloid landscape. a, Percentage of M2 macrophage among total infiltrating 
CD45+ cells in CINlow and CINhigh 4T1 primary tumors resected on day 14; bars 
represent mean ± s.e.m., two-sided Mann-Whitney test, n = 5 independent 
biological replicates. b, Percentage of GR-MDSC among total infiltrating 
CD45+ cells in CINlow and CINhigh 4T1 primary tumors resected on day 14; bars 
represent mean ± s.e.m., two-sided Mann-Whitney test, n = 5 independent 
biological replicates. c, Myeloid population strip plot showing conserved CIN- 
and STING-dependent differential abundance effects (mean enrichment must 
be both positive or both negative) at the neighborhood level grouped by cell 
subtype and ranked by mean CIN-dependent log2(fold change) of neighborhoods  
within each cell subtype. Node size is scaled by p-value, so that more significant 
differential abundance neighborhoods are larger. Bar plots show the mean 
log2(fold change) of neighborhoods with significant scores (p-value <= 0.1);  
if fewer than two significant neighborhoods are detected, all neighborhoods 
are used in computing the mean. d, Force-directed layout with transition vectors 
of all macrophages (n = 9,800 cells) colored by CIN-dependent differential 
abundance computed in local neighborhoods using Milo and mapped to single 
cells for visualization (Supplementary Information, top) and cell subtype 
(bottom). The overlayed directed partitioned-based graph abstraction (PAGA) 
shows the inferred transitions between subtype clusters based on Palantir 
pseudotime with nodes scaled by relative subtype size and arrows scaled by 
transition confidence. The overlaid black nodes show cells with Monocyte 
probability >=95%, computed by CellAssign; the green node highlights the 
initial seed cell for Palantir pseudotime. e, Scaled imputed expression of 
transition genes (Supplementary Information) for all macrophages (n = 9,800 
cells) ranked along pseudotime. For each gene, expression was modeled using 
a generalized additive model (GAM) along the M2-like macrophage lineage. 
Ranked color bars above heatmap show CIN- and STING-dependent differential 
abundance, log2(fold change), computed in local neighborhoods using Milo 
and mapped to single cells for visualization (Supplementary Information). 
Additional ranked color bars below the heatmap show CellRank terminal state 
probability and initial state probability along macrophage pseudotime.  
The bar plot shows top two most enriched gene signatures enriched along 
macrophage pseudotime (FDR < 0.005). The x-axis shows the −log10(FDR 

q-value) times the sign of the pathway normalized enrichment score (NES)  
and color indicates the pathway NES. Complete list of genes and gene set 
enrichment analysis (GSEA) results for cells ranked along macrophage 
pseudotime, including nominal and corrected p-values, are provided in 
Supplementary Table 8. f, Relative expression of Arg-1 in macrophages cultured 
for 24 h with conditioned medium from 4T1 tumor cells; bars represent mean ± 
s.e.m., two-sided t-test, n = 4 independent biological replicates. g, Scaled 
imputed expression of transition genes (Supplementary Information) for all 
ISG-Neutrophils and GR-MDSCs (n = 12,593 cells) ranked along CellRank  
ISG-Neutrophil macrostate probability. For each gene, expression was modeled 
using a generalized additive model (GAM) as in (e). Ranked color bars above 
heatmap show CIN- and STING-dependent differential abundance, log2(fold 
change), computed in local neighborhoods using Milo and mapped to single 
cells for visualization (Supplementary Information). Additional ranked color 
bars below the heatmap show CellRank ISG-Neutrophil macrostate and  
GR-MDSC(a) macrostate probabilities ranked by ISG-Neutrophil macrostate 
probability. The bar plot shows top gene signatures enriched along ISG-
Neutrophil macrostate probability with FDR < 0.05 and abs(NES) > 2.5. The 
x-axis shows the −log10(FDR q-value) times the sign of the pathway normalized 
enrichment score (NES) and color indicates the pathway NES. Complete list of 
genes and gene set enrichment analysis (GSEA) results for cells ranked along 
macrophage pseudotime, including nominal and corrected p-values, are 
provided in Supplementary Table 8. h, UMAP projection for the dendritic  
cell subset (n = 1,075 cells) colored by DC subtype (top) and imputed IL12b 
expression (bottom). i, Left, dot plot showing relative frequency of dendritic 
cells expressing canonical lineage markers (any counts detected) and the 
average log-transformed expression of each gene per dendritic cell subtype. 
Genes are clustered using the average cosine distance and subtypes are 
ordered according to (middle) average CIN-dependent differential abundance 
of local neighborhoods mapped to dendritic cell subtypes (Supplementary 
Information). Complete DEG and GSEA results per dendritic cell subtype 
(relative to all other dendritic cells), including nominal and corrected p-values, 
are provided in Supplementary Table 8. Right, Example of IFN-promoting 
feedback loop between antigen presenting cells (APCs) and T cells.
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Extended Data Fig. 3 | CIN and STING dependent effects on the tumor 
lymphoid landscape. a, Force-directed layout with transition vectors of all 
CD8+ T cells color by subtype (n = 4,797 cells). The overlaid, directed PAGA 
shows inferred transition between subtype clusters based on Palantir 
pseudotime with nodes scaled by subtype size and arrows scaled by transition 
confidence. b, Activated (top) and dysfunctional (bottom) gene trends along 
CD8+ T cell pseudotime using scaled imputed expression modeled by a GAM. 
Complete list of correlation-ranked genes and GSEA results along CD8+ T cell 
pseudotime, including nominal and corrected p-values, are provided in 
Supplementary Table 8. c, Strip plot showing CIN- (circular nodes) and STING-  
(triangle nodes) dependent differential abundance at the neighborhood level 
grouped by cell subtype. Node size is scaled by p-value, so that more significant 
differential abundance neighborhoods are larger. Bar plots show the mean 
log2(fold change) of neighborhoods with significant (p-value <= 0.1) 
differential abundance scores; if fewer than two significant neighborhoods 
detected, all neighborhoods are used in computing the mean. d, Radar plot 

showing relative expression of key marker genes per condition in CD8+ T cells. 
Gene expression is normalized by 1 or the max average marker expression 
across all conditions, whichever is higher. e, Percentage of 4T1 cells killed  
after co-cultured with T cells, CD8+ T cells, and natural killer cells, number  
of immune cells migrating from the upper compartment to the bottom 
compartment where 4T1 tumor cells seeded; bars represent mean ± s.e.m., two-
sided t-test, n = 4 (T cells), 3 (NK cells), 2 (CD8+, no error bar), or 3 (migration).  
f, Clustered heatmap showing the normalized enrichment score (NES) of 
relevant gene signatures differentially expressed within B cell subtypes 
(relative to all other B cells) with an FDR q-value < 0.05 in at least one subtype. 
Signatures not meeting the FDR q-value threshold are opaque. Complete DEG 
and GSEA results per B cell subtype (relative to all other B cells), including 
nominal and corrected p-values, are provided in Supplementary Table 8.  
g, Same as (c), but for B cell subtypes and ordered by mean CIN-dependent 
log2(fold change).
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Extended Data Fig. 4 | ContactTracing inference of cell-cell interactions 
from single cell data. a, Illustrative histogram showing log-transformed 
expression of the Mrc1 receptor in Macrophages (target cell type) for the 
receptor-null (white) and receptor-expressing (gray) subsets. b, Volcano plot 
showing genes differentially expressed in Mrc1-expressing vs. Mrc1-null 
macrophages (target cell type). Nodes are scaled by the absolute value of the 
transcriptional response score; top up- and down-regulated genes are labeled. 
c, Visual summary of MAST results from the CIN-dependent interaction test 
(see Methods); shown here for Mrc1 receptor expression in macrophage target 
cells. Each node represents a highly variable gene. The x-axis shows the log2-
fold change estimate in receptor-expressing vs. receptor-null target cells in the 
CINlow condition. The y-axis shows the same parameter estimate, but computed in 
the CINhigh condition. Node size is proportional to the significance of the interaction  
effect, and the node color represents the magnitude of the interaction effect, which 
here shows CIN-dependent amplification of the transcriptional response. d, Each 
node represents a receptor/cell type combination, on the x-axis is the number of 
genes with significant transcriptional response (FDR < 0.05) in the CINhigh/CINlow 
dataset; on the y-axis is the same value for the CINhigh Sting1WT/Sting1KD data set. 
e, As in d, except the number of genes with significant conditionally-dependent 
interaction effect (FDR < 0.05) is shown. f, UMAP projection based on STING-
dependent interaction effects in CINhigh tumors. The effect matrix has a row for 

each receptor/cell-type combination with at least one significant interaction 
effect (FDR q-value < 0.05), and a column for every gene. Each entry in the 
matrix is −log10(p-value)*interaction_coef. Node color reflects the cell type  
in which the ligand effect is measured and node size reflects the number of 
significant condition-specific interaction effects in target cells expressing the 
receptor. g, Transcriptional response states are mapped to individual cell 
clusters by taking the dot-product between the transcriptional response score 
for a given gene (given by x-axis) and its log2(expression fold change), here 
shown for one tumor subcluster vs. all other tumor cells (y-axis) and visualized 
using a clustered heatmap based on the average Euclidean distance metric. 
Red: positive dot-product, blue: negative dot-product, white: any value with 
abs(dot product) < 0.5. The log2(expression fold change) was set to zero if it 
was not significant (FDR q-value > 0.15) prior to computing the dot product.  
h, ContactTracing network plot corresponding to data in Fig. 4a. Here, nodes 
represent cell subtypes; node size is scaled by their relative fraction in the  
TME, and color reflects their average CIN-dependent differential abundance. 
Directed arrows represent interactions between cell subtypes (emanating 
from ligand-producing, donor cell subtype to receptor-expressing, target cell 
subtype), with arrow thickness encoding the total number of CIN-dependent 
interactions predicted between each pair of subtypes, and arrow darkness 
reflecting the number of STING-dependent interactions.



Extended Data Fig. 5 | ContactTracing validation. a, ContactTracing- 
predicted ligand effect in CCR2-expressing macrophages ranked and scaled  
by observed log2(fold change). Known target genes are annotated in vivo if 
defined in, or in vitro if within the top or bottom 20 responses reported in the 
CytoSig databases (ranked based on log2(fold change) of cytokine-treated cell 
lines in culture). b, Illustration of connectivity score used to compare ligand 
effects inferred by ContactTracing to the those reported in the CytoSig 
database (tests whether up-regulated genes in one list are also up-regulated  
in another, Methods). c, Distribution of connectivity scores between all CIN- 
dependent interaction effects predicted by ContactTracing compared to gene 
responses reported by CytoSig for ligands matching the same set of receptors 
in cell types relevant to the breast cancer TME (Methods); the left box shows 

the distribution of connectivity scores across all comparisons (n = 558). The 
right box shows enrichment of connectivity scores for comparisons with 
matched receptors in similar macro cell types (n = 44, two-sided Mann-Whitney 
test, p = 0.003). The boxes span the 1st–3rd quartiles, with red line indicating the 
median, whereas whiskers denote the rest of distribution within 1.5x the 
interquartile range, other outliers indicated with an x d, Volcano plot showing 
differentially expressed genes induced by APOE treatment of macrophages 
in vitro (bulk sequencing of treated vs. untreated macrophages) e, As in Fig. 3d, 
compares the effect of APOE on macrophages inferred by ContactTracing as 
compared to ligand effect measured in bulk for two additional, expressed 
receptors that compliment APOE (Sdc1 and Ldlr). R2 is Pearson’s correlation 
coefficient, p-value is two-sided and testing for correlation.
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Extended Data Fig. 6 | ContactTracing benchmarking. a, Clustered Heatmap 
of the overlap coefficient between top 1,000 CIN-dependent interactions 
predicted by ContactTracing and existing methods for inferring cell-cell 
interactions from single cell data. Alternate tools were run (Methods) using  
the same ligand-receptor database as ContactTracing with “differential” 
workflows when possible, and results were aggregated and ranked by using the 
best score for every receptor/cell type combination regardless of ligand 
source. b, Distributions of rank differences between the top CIN-dependent 
interactions predicted by ContactTracing and other methods for inferring 
cell-cell interactions from single cell data. Rank differences are included for 
top 1000 interactions (unless fewer detected, exceptions listed) predicted by 

the following methods: CellChat (n = 116 interactions), CellComm (n = 282 
interactions), NicheNet (n = 746 interactions), Differential Connectome, 
NATMI, CytoTalk (n = 788 interactions), iTALK, CellPhoneDB, SingleCellSignalR,  
and Connectome. Boxes range from 1st to 3rd quartile, with median indicated, 
and whiskers extending to min/max of each distribution (there were no outliers).  
c, Co-localization was determined by summing the product of log10(ligand 
expression), probability(receptor cell type) and indicator(receptor expressed) 
per spot in each sample, and computing a one-sided p-value by comparing this 
value to 100 permutations in which ligand expression is permuted in the spatial 
data; co-localized interactions have p < 0.05.



Extended Data Fig. 7 | ER stress signaling enriched in mesenchymal 
stem-like tumor cells. a, Directed bar plot showing relevant tumor gene 
signatures (annotated in Supplementary Table 7) differentially expressed in a 
CIN-dependent manner (FDR < 0.25). The x-axis shows the -log10(FDR) and bar 
color is scaled by the normalized enrichment score (NES) of the gene signature. 
b, Force-directed layout of all tumor cells (n = 3,596 cells) colored by Louvain 
subtype. c, Dot plot showing relative frequency of tumor cells expressing 
canonical stem cell and lineage markers (any counts detected) and the average 
log-transformed expression of each gene per subtype. Hierarchical clustering 
of genes and subtypes is computed using the complete linkage of the Pearson 
correlation matrix. Average expression of Hallmark Unfolded Protein Response  
(annotated in Supplementary Table 7) for all cells per tumor subtype (right).  
d, Clustered heatmap showing the normalized enrichment score (NES) of gene 
signatures differentially expressed within at least one tumor subtype, having a 
positive NES with FDR < 0.001. Signatures not meeting the FDR threshold are 
opaque. Complete DEG and GSEA results per tumor cell subtype (relative to all 
other tumor cells), including nominal and corrected p-values, are provided in 

Supplementary Table 8. e, Force-directed layout with transition vectors of all 
tumor cells colored by average log-transformed expression of the Hallmark 
Unfolded Protein Response (UPR) gene signature. Overlayed arrows show two 
major branches from a more mesenchymal stem-like phenotype to a more 
luminal or basal state. f, Z-normalized average imputed expression of Unfolded 
Protein Response/ER stress related genes across tumor subclusters. Genes 
groups are organized according to transcriptional arms of the Unfolded 
Protein Response to ER stress and clustered within gene groups using the 
average cosine distance. Tumor subtypes are hierarchically clustered using  
the average Euclidean distance. Right, strip plots showing CIN- and STING- 
dependent differential abundance (two pairwise-comparisons), log2(fold 
change), of tumor subpopulations ranked along the subtype hierarchically 
clustering (left). Node opacity is scaled by p-value, so that more significant 
differential abundance neighborhoods are darker. Bar plots show the mean 
log2(fold change) of neighborhoods with significant (p-value <= 0.1) 
differential abundance scores; if fewer than two significant neighborhoods 
detected, all neighborhoods are used in computing the mean.
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Extended Data Fig. 8 | Tumor progression through STING-dependent ER 
stress response. a, Relative expression levels of Ifnb1 and ISGs in mock, 
cGAMP, or Poly(I:C)-transfected 4T1 cells; bars represent mean ± SD, two-way 
ANOVA test, n = 3 independent experiments (n = 2 for Poly(I:C)-treated), each 
with two technical replicates. b-c, Immunoblots for BiP and STING of WT and 
Sting KO cells of B16F10, CT26 (b) and EO771.LMB (c) with β-actin (b) or COX-IV 
(c) as loading control. d, Cellular growth curves for of Control and IRE1α (Ern1), 
PERK (Eif2ak3), or ATF6 (Atf6)-KO 4T1 cells; data are presented as mean  
values ± SD., n = 3 per condition. e, Immunoblots of Control and IRE1α (Ern1), 

PERK (Eif2ak3), or ATF6 (Atf6)-KO 4T1 cells blotted for IRE1a, PERK, ATF6,  
and α-tubulin as a loading control. f, Relative expression levels of Ccl2, Cxcl1,  
and Il11 in tumor cells isolated from primary tumors resected on day 7; bars 
represent mean values ± SD, * p < 0.05, ** p < 0.01, two-sided t-test, n = 4 animals 
per group. g, Number of surface lung metastasis in mice inoculated with 
control 4T1 cells or cells lacking cytokines (left) or Sting1-depleted cells or 
Sting1-depleted cells overexpressing cytokines (right); bars represent the 
median, ** p < 0.01, two-sided Mann-Whitney test, n = 10 animals per group.



Extended Data Fig. 9 | Pharmacological suppression of STING and ER  
stress attenuates tumor progression. a–d, Abundance of Gr-MDSCs  
(a), NK-cells (b), CD8+ T-cells (c), and M2-like macrophages (d) in freshly 
resected CINhigh 4T1 14-day-old tumors treated with vehicle or AMG44 a PERK 
inhibitor; bars represent mean values ± s.e.m, * p < 0.05, ** p < 0.01, 2-sided 
t-test, n = 4 (vehicle) or 7 (AMG44). e, Immunoblots for CHOP and BiP in 4T1 cells 
with or without tunicamycin treatment in the presence STING inhibitor C-176 or 
vehicle with β-actin as loading control. f, Relative Ccl2 production levels in 
vehicle and H-151 treated 4T1 cells; bars represent mean ± SD, **** p < 0.0001, 

two-sided Welch’s t test, n = 8. g, Gene-set enrichment analysis (GSEA) results 
showing HALLMARK gene sets that are differentially enriched between vehicle 
and C-176-treated B16F10 cells, one-sided weighted Smirnov-Kolmogorov test 
corrected for multiple tests. h, Animal survival upon tail vein inoculation of 
CT26 or 4T1 cells in BALB/c hosts that were treated with C-176, H151 or a 
corresponding vehicle control, two-sided log-rank test, n = 15 animals per 
experimental arm. i, The number of surface lung metastases after tail vein 
inoculation of CT26 cells; bars represent median values, * p < 0.05, two-sided 
Mann-Whitney test, n = 12-13 animals per group.
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Extended Data Fig. 10 | Repetitive cGAMP stimulation reveals signal 
re-wiring downstream of STING. a, Relative expression levels of Ifnb1 and ISGs 
in mock, cGAMP, or Pol(I:C)-transfected 4T1 cells; bars represent mean, n = 3 
independent experiments (n = 2 for Poly(I:C)-treated), each with two technical 
replicates. b, Relative expression level of ER-stress genes in IMR90 cells after 

the fifth cGAMP stimulation in the presence of 4-Phenylbutyric Acid (4-BPA, 
orange) or vehicle (red). c, Relative expression level of interferon-stimulated 
genes (ISGs) after the first cGAMP stimulation and ER-stress/NF-κB target 
genes after the fifth cGAMP stimulation in IMR90 cells in the presence of STING 
inhibitor H-151 (blue) or vehicle control (red).



Extended Data Fig. 11 | Chronic cGAS–STING activation forebodes poor 
prognosis in human TNBC. a, Immunoblots for STING in IMR90 after the  
first and fifth cGAMP stimulation with β-actin as loading control. b, Normalized 
STING protein levels in control, Cgas KO, and Sting1 KO cells; bars represent 
mean ± SD, * p < 0.05, two-sided ratio-paired t-test, n = 3 independent 
experiments. c, Immunoblots for STING of 4T1 WT and Cgas KO cells treated 
with BafA1 or vehicle in the presence of translation inhibitor cycloheximide 
with β-Actin as loading control. d, Representative high-resolution image of 
human tumor sample stained with DAPI (DNA) and anti-cGAS antibody showing 

selective localization of cGAS at micronuclei, scale bar 5-μm. e, Bar graph 
depicting the relationship between tumor cGAS and STING protein levels in 
TNBC, two-sided Chi-Square χ2-test, n = 179 tumors. f-g, Distant metastasis-free 
survival (DMFS) of patients with TNBC stratified based tumor STING (f) and 
cGAS (g) expression intensity, log-rank test, n = 155 patients. h, Percentage of 
tumor infiltrating lymphocytes in TNBC tumors stratified based on protein 
expression of cGAS and STING, bars represent mean ± s.e.m, n = 16 and 57 
patients in the cGASlowSTINGhigh and cGAShighSTINGlow tumors, respectively, 
two-sided t-test.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | CIN is associated with immune suppression in 
human tumors. a, Clustered heatmap (average Euclidean distance) showing 
min-max normalized average log-transformed expression of key pathways and 
tumor cell CNV Diversity (Methods) used to stratify the 8 human TNBC tumors 
into CINlow and CINhigh subsets. b, Violin plots for the significant (p < 0.05) 
within-sample Spearman correlations between the mean CIN signature and 
mean Type I IFN (left), non-canonical NF-kB (middle), and hallmark UPR (right) 
signatures computed using all tumor cells within each sample (n = 10,836 cells 
from 8 human tumors). Nodes are colored by sample condition (blue: CINlow, 
red: CINhigh) and the overlaid box plots denote the minima and maxima (within 
1.5*IQR), median, and 1st and 3rd quartiles. c, Strip plot showing CIN-dependent 
differential abundance within human TNBC cohort. Same as Fig. 2b, but for all 
cell types in the human TNBC cohort. d, Strip plot showing conserved CIN-
dependent differential abundance effects (mean enrichment must be both 
positive or both negative) of cell types in mouse and human TNBC data, ranked 
by the mean mouse CIN-dependent log2(fold change) within each cell subtype. 
Node size is scaled by p-value, so that more significant differential abundance 

neighborhoods are larger. Bar plots show the mean log2(fold change) of 
neighborhoods with significant (p-value <= 0.1) differential abundance scores; 
if fewer than two significant neighborhoods are detected, all neighborhoods 
are used in computing the mean. e, ContactTracing circos plot, as in Fig. 4a, 
intersected with CIN-dependent interactions detected in human TNBC; which 
are defined as exhibiting CIN-dependent differential expression of the ligand 
in human tumors (q < 0.05, log2FC must be in same direction as CIN- and STING- 
in mouse analysis), and we detection >= 10 CIN-dependent interaction effects 
in the target cell type. Data provided in Supplementary Table 9. f, Fraction of 
overlapping CIN-dependent interactions predicted in mouse and human TNBC 
samples as a function of the top ranked interactions per dataset; evaluated 
within the subset of interactions that can be mapped between the human and 
mouse. Each unique interaction (identified by receptor, target cell type, 
ligand) is ranked by the number of CIN-dependent interaction effects detected 
in the target cell type, multiplied by the identity function that expression of the 
ligand is also CIN-dependent in any cell type in the TME.
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