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Chromosomalinstability (CIN) is a driver of cancer metastasis'*, yet the extent to

which this effect depends on the immune system remains unknown. Using Contact
Tracing—anewly developed, validated and benchmarked tool to infer the nature

and conditional dependence of cell-cell interactions from single-cell transcriptomic
data—we show that CIN-induced chronic activation of the cGAS-STING pathway
promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic
tumour microenvironment. This re-wiring is manifested by type linterferon
tachyphylaxis selectively downstream of STING and a correspondingincreasein
cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN,
depletion of cancer cell STING or inhibition of ER stress response signalling abrogates
CIN-dependent effects on the tumour microenvironment and suppresses metastasis
inimmune competent, but not severelyimmune compromised, settings. Treatment
with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal
cancers inamanner dependent on tumour cell-intrinsic STING. Finally, we show that CIN
and pervasive cGAS activationin micronuclei are associated with ER stress signalling,
immune suppression and metastasis in human triple-negative breast cancer,
highlighting a viable strategy to identify and therapeutically intervene in tumours
spurred by CIN-induced inflammation.

Chromosomalinstability (CIN) is a cancer hallmark® that is associ-
ated with therapeutic resistance®, immune evasion’® and metastasis>.
CIN arises from ongoing errors in chromosome segregation during
mitosis™'. In normal cells, chromosome missegregation is poorly
tolerated" and can suppress oncogenic transformation'', Yet,
advanced human cancers are often characterized by elevated rates
of chromosome missegregation and aneuploidy>™*", invoking adap-
tive processes that allow tumours to withstand and co-opt CIN®. Using
isogenic models that enable genetic manipulation of chromosome
missegregation rates in cancer cells'®, we have previously shown that
CIN promotes metastasis by inducing a cytosolic double-stranded DNA
(dsDNA) response in tumour cells, mediated by the cGAS-STING innate
immune pathway?. Errors in chromosome segregation lead to the for-
mation of rupture-prone micronuclei” and exposure of genomic dsDNA
to the cytoplasm®'®%°, These findings were based on partially immune
compromised tumour models?; thus, it remained unknown whether

the effect of CIN on tumour progressionis cancer cell autonomous or
rather dependent on theimmune system. Moreover, it is unclear how
chromosomally unstable tumours adapt to CIN and evade immune
surveillance that would arise from cGAS-STING activationand adown-
stream type linterferon (IFN) response?.

Immune dependence of CIN-driven metastasis

Tointerrogate theinfluence of theimmune system on CIN-driven metas-
tasis, we used four syngeneic metastatic cancer models, including
triple-negative breast cancer (TNBC) (4T1and EO771.LMB), colorectal
adenocarcinoma (CT26) and melanoma (B16F10). Allmodels exhibited
elevated rates of chromosome segregation errors during anaphase
andapreponderance of micronuclei (Extended Data Fig.1a-c). Highly
metastatic melanoma cells (B16F10) had significantly higher rates
of CIN compared with their less metastatic parental counterparts
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Fig.1| CIN drives cancer progression through tumour cell non-autonomous
mechanisms. a, Number of surface lung metastases arising from orthotopically
transplanted and resected CIN"&" or CIN'* 4T1tumours in BALB/c hosts (n=19
and 23 animals for CIN™*and CIN"e", respectively) or from tail-vein-injected CIN"&"
or CIN"4T1cellsinNSG hosts (n=10); bars represent the median; ***P< 0.001,
*P<0.05, two-sided Mann-Whitney test. b, Normalized bioluminescence (BLI)
signal from BALB/c or NSG mice tail-vein injected with 4T1control and Cgas-KO
cells (n =10 animals per condition) and representative bioluminescence
images ondays 5and 8 for BALB/cand NSG mice, respectively; mean +s.e.m.
c-e,Number of surface lung metastases upon tail-vein injection of control,
Cgas-KO or Sting1-KO CT26 (c), EO771.LMB (d) or B16F10 cells (e) intoimmune
competent hosts (BALB/c for CT26, C57BL/6 for EO771.LMB and B16F10) or NSG
hosts; ****P<0.0001, ***P<0.001, two-sided-Mann-Whitney test; n = 8-29 mice

(B16F0 and B16F1, Extended Data Fig.1b,c). Inallmodels, we observed
CIN-dependent activation of cGAS-STING, as evidenced by cGAS locali-
zation in micronuclei, measurable cGAMP levels from cell lysates in a
manner dependent on cGAS expression and detectable STING protein
levels (Extended Data Fig.1d-f). We also manipulated CIN levels in4T1
cells through expression of the non-motile kinesin-13 proteins, Kif2b
or MCAK?, either of which led to significant reductions in anaphase
chromosome missegregation compared with wild-type (WT) cells,
or cells expressing a dominant-negative MCAK mutant (dnMCAK)*
(Extended DataFig. 1g). Expression of Kif2a, a kinesin-13 family mem-
ber that possesses microtubule depolymerizing activity but lacks a
centromere or kinetochore targeting domain, had no impact on CIN
(Extended Data Fig. 1g).

We next transplanted CIN"&" (WT, Kif2a or dnMCAK expressing) and
CIN"* (Kif2b or MCAK expressing) 4T1tumours inimmune competent
(BALB/c) and severelyimmune compromised (NOD-scid IL2Ry™", there-
after referred to as NSG) mice. There was an 11-fold difference in the
median number of surface lung metastases in the BALB/c mice when
comparing CIN"&" and CIN'* tumours as opposed to only a 1.1-fold

pergroup.f,Representative lungimages from C57BL/6 or NSG animals tail-
vein-injected with control or Sting1-KO B16F10 cells. g, Volume of resected
orthotopically transplanted control and StingI-depleted primary 4T1tumours;
n=8-16 mice per condition. h, Number of surface lung metastasesin animals
arising after tumour resection; lines in the plot represent the median; *P< 0.05,
two-sided t-test after testing for normality. i, Representative haematoxylinand
eosin (H&E)-stained lungs 3 weeks after resection of control or StingI-depleted
orthotopically transplanted 4T1tumours.j, Number of surface lung metastases
arising fromtail-veininjection of 4T1control, Stingl-KO and Sting1-KO cells with
exogenous overexpression (OE) of STING and immunoblot for STING and CoxIV
ofthecells; linesin the plot represent the median; ***P< 0.001, two-sided Mann-
Whitney test.KD, knockdown; p s™ cm™?sr™, photonsecond™ centimeter?
steradian; sg, single guide.

differencein NSG hosts (Fig.1a). We then depleted Cgas or Stingl from
CINMe" 4T1, B16F10, EO771.LMB and CT26 cells using CRISPR-Cas9
knockout (KO) (Extended Data Fig. 1e). Tail-veininoculation or ortho-
topictransplantation of WT, Cgas-KO or Sting1-KO cellsin BALB/c (4T1
and CT26) or C57BL/6 (B16F10 and EO771.LMB) led to a significant
reduction in lung colonization and metastasis as assessed directly
through enumeration of surface lung metastases or using biolumi-
nescence imaging (Fig. 1b-f and Extended Data Fig. 1h,i). Strikingly,
this phenotype was entirely dependent on the immune system, as
transplantation of these cells in NSG hosts completely abolished the
effect of Cgas or Stingl KO on metastasis (Fig. 1b-fand Extended Data
Fig. 1h,i). Loss of cancer cell Stingl did not impact primary tumour
size, whereas Cgas-KO tumours were slightly smaller compared with
control tumours, as previously reported® (Extended Data Fig. 1j). To
rule out potential off-target effects from CRISPR-Cas9-mediated KO,
we depleted Stingl using short hairpin RNA (shRNA) and observed a
similar reductionin lung metastasis with noimpacton primary tumour
formation (Fig. 1g-i and Extended Data Fig. 1k). Furthermore, comple-
mentation of Sting1-KO cells with constructs expressing WT Sting1 using
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Fig.2| CIN-induced STING signalling engenders animmune-suppressive
tumour microenvironment. a, Uniform manifold approximation and
projection (UMAP) of all single cells coloured by cell subtype assignment;
includes carcinoma, as well asimmune and other stromal cell types within the
TME (n=39,234 cells). Macro cell-type assignments are capitalized. Inset,
schematic showing that tumour cell rates of CIN were genetically dialled-up or

different promoters revealed a dose-dependent relationship between
Stingl re-expression and metastasis (Fig. 1j).

CIN and STING promote immune suppression

We orthotopically transplanted CIN"&", CIN'** and StingI-depleted
CIN"&"4T1 cells in the mammary fat pad of BALB/c mice and performed
single-cell RNA sequencing (scRNA-seq) of freshly resected 14-day-old
tumours (Fig. 2a). As expected, CIN"&" tumour cells exhibited signifi-
cantly higher karyotype diversity as inferred from scRNA-seq data
compared with their CIN'" counterparts (Extended Data Fig. 11). Ata
high level, CIN engendered a pro-metastatic tumour microenviron-
ment (TME) that was markedly enriched inimmune-suppressive mac-
rophages, granulocytic myeloid-derived suppressor cells (Gr-MDSCs)
and dysfunctional T cells (Fig. 2b and Extended Data Figs. 2a-g and
3a-d). Conversely, CIN"" tumours were enriched in pro-inflammatory
macrophages, IFN-responsive B cells, activated dendritic cellsand CD4*
T helper cells (Fig. 2b and Extended Data Figs. 2¢,h,l and 3). Impor-
tantly, depleting cancer cell StingI in CIN"€" tumours abolished many
of the effects of CIN on the TME, ultimately restoring it to a CIN'*-like
state (Extended Data Figs. 2c,e-g and 3). Some of the scRNA-seq find-
ings were validated through flow cytometry, revealing enrichment of
CD11b*and CD206" as well as CD11b*Ly6G* cells in CIN"8" compared with
CIN'"tumours (Extended Data Fig. 2a,b). Coculture of CIN"&" tumour
cells with macrophages led to significant reduction in relative argin-
ase expression upon loss of cancer cell Cgas or Stingl (Extended Data
Fig. 2f). And suppression of CIN or knockout of either Cgas or Stingl
in CIN"e" cells enhanced CD8* T cell migration and led to increased
tumour cell killing by pan-T cells, CD8" T cells or natural killer (NK)
cells (Extended Data Fig. 3e).

ContactTracing to map cell-cell interactions

To determine how CIN-induced STING signalling reprograms the
TME, we developed a fundamentally new, systems-level approach to
predict the effect of conditionally dependent cell-cell interactions
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in the TME, called ContactTracing. Our strategy exploited intrinsic
variability in scRNA-seq data to infer cellular responses to ligand-
receptor-mediated interactions. Importantly, this was done without
relying on prior knowledge of downstreamtarget genes, allowing unbi-
ased discovery of heretofore unknown cellular responses to receptor
engagement. This method was based on the simple premise that, within
agiven tumour, it is unlikely that all donor (ligand-producing) cells
and target (receptor-expressing) cells are fully engaged in a particu-
lar cell-cell interaction. Exploiting inherent biological variability in
(1) receptor expression on target cells and (2) sample-level ligand avail-
ability in the TME, we predicted the effect of a ligand on its target cell
inits native, in vivo context (Fig. 3a-c and Methods). For all putative
ligand-receptor-mediated interactions, we performed alikelihood
ratio test between receptor-expressing and receptor-null target cells
(Extended Data Fig. 4a,b), which could capture unwanted confound-
ing (correlation) between receptor expression and the expression of
other genes. However, by exploiting secondary variability in ligand
availability across experimental conditions—such as levels of CIN or
cancer cell STING expression (Extended DataFig. 4c)—we distinguished
ligand effects from genes merely co-expressed with the relevant recep-
tor (Fig. 3b,c and Extended Data Fig. 4c). True ligand effects were not
correlated across conditions, unlike their unobserved confounders
(Extended Data Fig. 4d,e). Ligand effects (that is, distinct transcrip-
tional responsesinreceptor-expressing target cellswhen theligandis
present) largely clustered by cell type (Extended Data Fig. 4f), and were
mapped back to subpopulations within the target cell type (Extended
DataFig. 4g).

We performed multiple orthogonal validations of ligand effects
predicted by ContactTracing. First, we compared target genesinferred
by ContactTracing with those previously reported in experimental
assays®® (Methods). ContactTracing predicted many transcriptional
responses, including those that were context-dependent and could not
beinferred fromin vitro cytokine assays, suchastarget genesinduced
in CCR2-expressing macrophages upon activation in vivo** (Extended
DataFig. 5a-c).Second, we observed significant correlation between
empirically derived transcriptional responses inferred from bulk
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RNA sequencing (RNA-seq) of ligand (in this case APOE)-treated and
untreated cells (RAW264.7 macrophages) (Extended Data Fig. 5d) and
those predicted by ContactTracing using scRNA-seq of APOE-treated
RAW264.7 cells only (Fig. 3d and Extended Data Fig. Se).

To benchmark our approach, we compared the top 1,000 CIN-
dependentinteractions predicted by ContactTracing with thoseiden-
tified by existing cell-cell interaction methods (Methods). Similar
to other methods that considered downstream signalling, interac-
tions predicted by ContactTracing were largely orthogonal to those
predicted by methods that merely relied on the mutual expression

samples, for which there exist matched single-cell and spatial transcriptomics
data. Histogram shows fraction of significantly colocalized interactionsina
200-pumradius on matched spatial transcriptomics data (Methods) for each
set.f, Colocalization of non-secreted interactions withina 50-umvisiumspot,
reported as afunction of number of top-ranked interactions. Each interactionis
defined by [ligand, receptor, target cell type], and is designated as colocalized
by anominal one-sided permutation-based P< 0.05; fraction colocalized was
assessed for ContactTracing (considers downstream signalling, no prior
knowledge), CellPhoneDB (no downstream signalling), NicheNet (prioritizes
interactions exhibiting downstream signalling based on prior knowledge) and
forrandomly ranked interactions asafunction of number of top interactions.
Lines represent the average fraction of colocalized interactions across four
patient tumours with matched spatial transcriptomics data. Dotted lines
representinteractions that did not pass prefiltering steps of NicheNet or
CellPhoneDB; these interactions were sorted randomly and assigned the
lowestscore. g, CIN-and STING-dependentinteractions between tumour cells
and macrophages, predicted by ContactTracing. Significantinteractions are
defined by receptor-expressing target cells that exhibit at least 10 significant
interaction effects (FDR < 0.25) when the cognate ligand is conditionally
availablein the TME, ligand abs(log,(FC)) > 0.12at FDR < 0.05, with log,(FC)
having the same sign for both the CIN and STING comparisons. abs, absolute;
mMDSC, myeloid-derived suppressor cell; sc-variability, single cell-variability.

of ligand-receptor pairs (Extended Data Fig. 6a,b). An analysis of
human TNBC scRNA-seq data® likewise revealed many unique CIN-
dependentinteractions predicted by ContactTracing (Fig.3e). We then
used matched spatial transcriptomics data to determine the veracity
of these interactions. Strikingly, many unique predictions made by
ContactTracing were found to colocalize on spatial transcriptomics
data from the same human tumour samples (Fig. 3e and Extended
DataFig. 6¢). Furthermore, ContactTracing prioritized interactionsin
away thatbetter captured their probability of colocalization on spatial
transcriptomics data (Fig. 3f).
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Immune suppression from endoplasmic reticulum stress

AlICIN- and STING-dependent cell-cell interactions were then visual-
izedfor cell pairs (Fig. 3g) or across all major cell typesinthe TME using
aCircosplot (Fig. 4a). Cell-cell interactions in CIN"&" tumours largely
involved cancer cells,immune-suppressive macrophages, Gr-MDSCs
and dysfunctional T cells (Extended Data Fig. 4h). Tumour cell-derived
factors contributing to these interactions had well-established
roles inimmune suppression and metastasis, including Ccl2, Cxcl1,
111, Apoe and Serpine2 (refs. 26-30) (Fig. 4a,c). Conversely, CIN¥
tumours were characterized by interaction between tumour cells,
pro-inflammatory macrophages, and helper and cytotoxic T cells
(Extended Data  Fig. 4h).

Interestingly, CIN- and STING-dependent ligands that measurably
impacted recipient cells in the TME were associated with an unfolded
protein response (UPR) to endoplasmic reticulum (ER) stress, in
addition to canonical pathways associated with CIN such as NF-kB
and IL6-Jak-Stat3 signalling®*, whereas effectual ligands emanating
from CIN'"" or StingI-depleted CIN"&" tumour cells were associated
with IFN responses (Fig. 4b-d). Accordingly, pairwise comparison
of CIN"&" and CIN'" tumour cells revealed significant enrichment
of ER stress-related and NF-kB target genes and reduced IFN sig-
nalling (Extended Data Fig. 7a). On the other hand, pairwise analy-
sis between CIN'" and Stingil-depleted CIN"" tumour cells did not
reveal significant enrichmentin the ER stress (normalized enrichment
score (NES) = -0.85, false discovery rate (FDR) = 0.83) or type I IFN
(NES =0.56, FDR = 0.95) pathways, suggesting that StingI depletion
abolishes CIN-dependent effects in tumour cells. Transcriptional
targets of all three arms of the ER stress response® were upregu-
lated in basal stem-like tumour cells that were enriched in CIN"&"
tumours relative to the luminal-like subpopulations that primarily
belonged to CIN" and StingI-depleted CIN"e" tumours (Extended Data
Fig. 7b-f).

STING is required for ER stress response

Despite constitutive cGAS-STING activation, CIN"e" cells exhibited
low baseline expression of IFN-stimulated genes (ISGs), with mini-
mal induction upon treatment with exogenous cGAMP but not with
Poly(I:C), an activator of the dsRNA sensing pathway, which led to
arobust induction of ISGs (Extended Data Fig. 8a). We then treated
CIN"eh cells (4T1, BL6F10, EO771.LMB and CT26) with tunicamycin (TM),
an ER stress inducer, which promoted robust and time-dependent
ER stress response signalling (Fig. 5a and Extended Data Fig. 8b,c).
Notably, ER stress response signalling was blunted in Sting1-KO cells
(Fig. 5a and Extended Data Fig. 8b,c). We next knocked out each of
the three main ER stress sensors, IRE1a (Ernl), PERK (Eif2ak3) or ATF6
(Atf6), using CRISPR-Cas9 ribonucleoprotein transfection in 4T1
cells and observed a significant reduction in the number of surface
lung metastases after tail-vein inoculation, without impacting cel-
lular proliferation rates (Fig. 5b and Extended Data Fig. 8d,e). Strik-
ingly, this effect was again entirely dependent on the immune system
(Fig. 5b).

Next, we examined the expression of three ER stress-related
cytokines identified from ContactTracing, Ccl2, Cxcll1 and /11,
in 4T1 cells and validated their dependence on tumour-intrinsic
STING activation (Extended Data Fig. 8f). While KO of individual
cytokines in CIN"&"4T1 cells was not sufficient to significantly sup-
press metastasis, overexpression of either Ccl2 or Cxcl1 led to a sig-
nificant increase in metastasis of Sting1-KO cells (Extended Data
Fig. 8g). Treatment of CIN"&" tumours with AMG44, a selective PERK
inhibitor, led to a significant decrease in Gr-MDSCs and a corre-
sponding increase in NK cells and CD8' T cell infiltration, yet did not
measurably impact macrophage polarization (Extended Data
Fig.9a-d).
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STING inhibitors suppress metastasis

Giventhatsignalling downstream of STING in chromosomally unstable
cancer cells is skewed towards an ER stress response as opposed to
its canonical IFN function, we reasoned that STING inhibition might
represent a viable therapeutic strategy in tumours with CIN. Treat-
ment with C-176, a covalent inhibitor that blocks activation-induced
palmitoylation of STING**, dampened ER stress response signalling,
as evidenced by lower CHOP and BiP protein levels in TM-treated
CIN"e"4T1 cells, and reduced baseline CCL2 levels in conditioned media
(Extended Data Fig. 9¢,f). Transcriptomic analysis of C-176-treated
B16F10 CIN"e" cells revealed downregulation of pathways related to
inflammation, epithelial-to-mesenchymal transition, as well as the
UPR/ER stress response (Extended Data Fig. 9g). We next delivered
C-176 or H-151, asecond covalent STING inhibitor, through daily intra-
peritoneal injections to tumour-bearing immune competent animals
after tail-veininoculation of CIN"&"4T1, BI6F10 or CT26 tumour cells.
In all instances, treatment with C-176 or H-151 prolonged survival
(Fig. 5c and Extended Data Fig. 9h). We necropsied another subset
of animals 13 d after inoculation of CT26 cells and observed a signifi-
cant reduction in surface lung metastases (Extended Data Fig. 9i).
Reduced metastasis by the STING inhibitor did not match complete
Stingl KO, and this might be due to incomplete target exposure by
the drug or dichotomous contributions of cancer cell and host cell
STING, both of which would be inhibited with drug treatments. We
thus administered C-176 to C57BL/6 mice inoculated with StingI-KO
B16F10 cells. In these mice, C-176 treatment did not provide an addi-
tional survival advantage beyond Sting1 KO (Fig. 5c). Prolonged daily
treatment with the STING inhibitor was well tolerated and did not lead
to any clinically evident toxicity when compared with vehicle-treated
control animals.

IFN tachyphylaxis downstream of STING

To better define the context-dependent nature of cellular responses
to STING activation, we developed a tractable model system using
non-immortalized IMR90 human lung fibroblasts, which have anintact
cGAS-STING pathway that is unstimulated at baseline, yet primed to
respond upon cGAMP treatment®. We treated IMR90 fibroblasts with
cGAMP for five consecutive daily doses and assessed time-dependent
expression of key ISGs and ER stress response target genes after the
first and fifth daily doses of cGAMP. We observed expected induction
of IFNBI and ISGs after the first cGAMP treatment (Fig. 5d). However, by
thefifth daily treatment, the expression of ISGs was nearly completely
abolished (Fig. 5d). This reductionin IFN responsiveness to repetitive
stimulation—a process known as tachyphylaxis—was limited to STING,
astransfection with Poly:IC after the fifth cGAMP stimulationled toan
acute and robust ISG induction (Extended Data Fig. 10a), mirroring
observations derived from cancer cells (Extended Data Fig. 8a). Con-
versely, repetitive treatment with cGAMP led to increased expression
of ER stress and NF-kB target genes (Fig. 5d), which was abolished when
cells were cotreated with the chemical chaperone and ER stress inhibi-
tor 4-phenylbutyric acid (4-BPA) (Extended Data Fig. 10b). Treatment
of IMR9O fibroblasts with the STING antagonist H-151 reduced both
acute (early) and chronic (late) STING-dependent effects (Extended
DataFig.10c).

Repeated stimulation of IMR9O cells with cGAMP led to reduc-
tions in STING protein levels (Extended Data Fig. 11a), in line with
autophagy-lysosomal-dependent degradation of STING mediated
by its own activation®. Thus, we asked whether CIN-induced chronic
STING activation might also explain reduced STING protein levels
often observed in cancer cells. Indeed, alleviating chronic activa-
tion of STING through Cgas KO led to a significant rebound in STING
protein levels in three of the four CIN"" cancer cell lines examined
(Extended Data Figs. 1e and 11b). Furthermore, treatment with the
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autophagy inhibitor bafilomycin Al led to an increase in STING
protein levels in CIN™&" WT but not Cgas-KO cells (Extended Data
Fig.11c).

Prognosticrelevance of CIN in human TNBC

We thenasked whether the inverse relationship between cGAS activity
and STING protein levels can be recapitulated in human tumour sam-
ples. Using antibodies that were validated on WT and CGAS-depleted
cell pellets, we observed aninverse correlation between the frequency
of cGAS" micronuclei and tumour cell-intrinsic STING expression
in human TNBC (Extended Data Fig. 11d,e and Methods). Tumours
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vehicle control, log-rank test; ***P< 0.001; n =15 animals per arm. d, Relative
expression levels of ISGs and ER stress/NF-kB target genes atindicated time
points after the first (blue) and the fifth (red) cGAMP stimulations of IMR90
humanlung fibroblasts. e, Representative images from the same TNBC tumour
stained using DAPI(DNA), anti-cGAS and anti-STING antibodies, illustrating the
inverse correlation between the frequency of cGAS" micronucleiand STING
expressionin cancer cells. f, DMFS of patients with TNBC stratified based on
tumour cGAS and STING expression intensity, log-rank test; n =159 patients.

g, Schematicillustrating the functional consequences of acute and chronic
STING signalling.

with a preponderance of cGAS" micronuclei had low, but detectable,
STING protein levels within cancer cells (cGAS"8"STING'"), whereas
those with a paucity of cGAS" micronuclei had higher STING protein
expression (CGAS'°“STING"e"). This inverse correlation between the
expression of cGAS and STING in cancer cells was also observed within
spatially heterogeneous tumours (Fig. 5¢). cGAS"E"STING'" tumours
exhibited fewer tumour infiltrating lymphocytes and were associ-
ated with reduced distant metastasis-free survival (DMFS), whereas
cGAS" "STING"e" tumours had amore favourable prognosis (Extended
DataFig. 11f-h and Fig. 5f). Unlike cancer cells, stromal cells consist-
ently displayed strong STING protein expression without evidence
of cGAS" micronuclei.



We then analysed CIN-dependent interaction effects in available
scRNA-seq data from eight human TNBCs? using sample-level kar-
yotypic diversity and CIN-associated transcriptional signatures to
stratify patient tumours into CIN"€" and CIN'®* cohorts (Extended
DataFig.12aand Methods). There was a consistent cell-level correla-
tionbetween CIN transcriptional signatures?and cancer cell-intrinsic
expression of ER stress-related genes, but not ISGs (Extended Data
Fig.12b), across patients. CIN"&" tumours were likewise associated
with an immune-suppressive TME characterized by enrichment
of M2-like macrophages and dysfunctional T cells, whereas CIN'¥
tumours were enriched for M1-like macrophages and monocytes
(Extended DataFig.12c,d). Finally, we applied ContactTracing to iden-
tify CIN-and STING-dependent cell-cell interactions in human TNBCs,
and compared these with CIN-dependent interactions predicted in
the mouse (Extended Data Fig. 12e,f). Many conserved interactions
involved tumour ligands associated with ER stress, such as APOE,
IL11 and CCL2.

Discussion

CIN and STING activation are poorly tolerated in normal cells, where
they often promote cellular senescence and immune-mediated
clearance® 8, This led to the idea that CIN may act as a tumour
suppressor?, Furthermore, STING activation has been proposed asa
checkpointagainst cellular transformation®**° or the re-awakening of
dormant metastasis*. Paradoxically, advanced and metastatic human
tumours often exhibit evidence for CIN, and, in this context, it is asso-
ciated with immune evasion*”3**2 Similarly, in tumour models, CIN
and persistent STING activation were shown to promote tumour cell
survival as well as drive cancer progression, metastasis and immune
suppression>***#4% This dichotomy invokes key adaptive steps that
must take place for cancer cells to tolerate—and co-opt—ongoing chro-
mosome missegregation and downstream inflammatory signalling.
Rather than the wholesale loss of STING protein from cancer cells, our
data argue that the most parsimonious path toward tumour progres-
sion and metastasis is adaptive re-wiring of signalling downstream
of STING—a process that can occur within days, thereby allowing
tumours to simultaneously eschew the deleterious pro-inflammatory
role of type I IFN while benefiting fromimmune-suppressive ER stress
signalling (Fig. 5g).

Activators of the STING pathway are currently in clinical devel-
opment***!, The IFN-specific tachyphylaxis observed upon chronic
STING activation, along with an immunosuppressive TME, might
explain pre-existing resistance of chromosomally unstable tumours
to STING agonists, which have thus far demonstrated limited efficacy in
early-stage clinical trials despite evidence for adequate target engage-
ment>>L, Critically, our results pave the way for a biomarker-based
approach to stratify patients whose tumours still maintain the abi-
lity to mount an acute IFN-dominant response to STING activation
(cGAS™“STING"e", Fig. 5e,f). Our paradigm also recognizes a subset
of patients who might instead benefit frominhibition of cGAS-STING
signalling to curb tumour-intrinsic chronic inflammation and its
immune-suppressive sequalae (cGAS"S"STING"", Fig. 5¢,f). Given ongo-
ing efforts to develop selective inhibitors of cGAS, STING***?and ER
stress sensors, such as PERK*, our work offers an exciting opportunity
for therapeutic interventionin chromosomally unstable tumours for
which there are currently few effective therapeutic options.
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Methods

Cell culture

IMR90,4T1,CT26,RAW264.7 and B16F10 cell lines were purchased from
the American Type Culture Collection and cultured in MEM (IMR90),
DMEM (B16F10,RAW264.7) or RPMI (4T1,IMR90, CT26) supplemented
with10% FBS in the presence of penicillin (50 U mI™) and streptomycin
(50 pg miI™). All cells were found to be negative for mycoplasma upon
repeated routine testing.

The generation of KO and gene-overexpressing cell lines

Murine cancer cells with Cgas, Stingl, Atf6, Ernl, Eif2ak3, Ccl2, Cxcll
and /[11 KO were generated by Cas9 ribonucleoprotein nucleofection
using a Lonza 4D-Nucleofector and SF Pulse Code CM-150 Cell Line
Kit. For Cgasand Sting1 KO, four guides were screened per target and
KO cell lines were confirmed using immunoblotting. For Atf6, Erni
and Eif2ak3 KO, three guides were used simultaneously. For Ccl2,
Cxcll and Il11 KO, two guides were used sequentially. Stable knock-
down of Cgasor Stinglin 4T1cells was achieved using shRNAs in pRRL
(SGEP) plasmids obtained from the Memorial Sloan Kettering Cancer
Center (MSKCC) RNA Interference Core. Four distinct shRNA hair-
pins were screened per target. Targeted shRNA and CRISPR guide
RNA sequences are listed in Supplementary Table 1. To overexpress
Kif2c or dnMCAK, Kif2c and dnMCAK complementary DNA sequences
were cloned into the pEGFP vectors, which, then, were transfected
to 4T1 cells. Cells were selected using 2 pug ml™ puromycin. To exog-
enously express Stingl, Cxcll, Ccl2 or Il11,cDNAs were cloned into viral
pLenti-EF1a-Bsd-P2A vector and were transduced with the lentiviral
system.

cGAMP quantification

For cGAMP quantification in cell lysates, cancer cells were seeded in
15-cm culture dishes. When culture plates were 80-90% confluent,
cells were washed with PBS twice then trypsinized for 5 min at 37 °C,
and cells counts were measured. Cells were then centrifuged at >600g
at 4 °C for 15 min. Whole cell lysates were generated by lysing the cell
pelletin LP2 lysis buffer (Tris HCl pH 7.7 20 mM, NaCl 100 mM, NaF
10 mM, B-glycerophosphate 20 mM, MgCl, 5 mM, Triton X-100 0.1%
(v/v), glycerol 5% (v/v)). The homogenate was then subjected to centrifu-
gation at 10,000g for 15 min. For tumour samples, the tumour tissues
were homogenized in LP2 lysis buffer (1:10 w/v) with homogenizer.
The homogenate was then subjected to centrifugation at 10,000g for
15 min. cGAMP ELISA was performed according to the manufacturer’s
protocol using DetectX Direct2’,3’-Cyclic GAMP Enzyme Immunoassay
Kit (Arbor Assay).

Immunoblotting

Cells were pelleted and lysed using RIPA buffer. Protein concentra-
tion was determined using BCA protein assay and 20-30 pg of total
protein was loaded in each lane. Proteins were separated by gradient
SDS-PAGE and transferred to PVDF or nitrocellulose membranes.
Membranes were blocked with TBST buffer containing 5% BSA for
1hand incubated with the primary antibody in 5% BSA TBST over-
night at 4 °C. The primary antibody information is listed in Supple-
mentary Table 2. After three washes with TBST, membranes were
incubated with proper horseradish peroxidase (HRP)- or fluorescent
dye-conjugated secondary antibodies in TBST containing 3% BSAfor1h
atroomtemperature. After three washes with TBST, membranes using
fluorescent dye-conjugated secondary antibodies were imaged using
the LI-COR Odyssey system. For membranes using HRP-conjugated
secondary antibodies, signal was visualized using SuperSignal West
Femto Maximum Sensitivity Substrate by Amersham Imager. Relative
STING protein levels were quantified by measuring band intensities
onimmunoblots using Image) software, background subtracted and
normalized to aloading control.

Immunofluorescence microscopy

Cells were fixed with ice-cold (-20 °C) methanol for 15 min. Subse-
quently, cells were permeabilized using 1% Triton for 4 min. The primary
antibody informationislisted in Supplementary Table 3. TBS-BSA was
used as a blocking agent during antibody staining. DAPI was added
together with secondary antibodies. Cells were mounted with Prolong
Diamond Antifade Mountant (Life Technologies, P36961).

H&E staining of lung metastases

Lungs were excised from euthanized mice and submerged in 4% PFA
overnight at 4 °C, and then were transferred to 70% ethanol. Tissue
embedding, slide sectioning and H&E staining were performed by the
Molecular Cytology Core Facility at MSKCC.

Quantitative PCR

RNA was extracted from cells with Trizol (Invitrogen no.15596026).
cDNA was synthesized using the RNA to cDNA EcoDry Premix (Double
Primed) kit (Takara no. 639549). Real-time PCR was performed to
measure the relative messenger RNA expression levels of ISGs and the
control GAPDH using Luna Universal qPCR Master Mix (NEBM3003L).
The quantitative PCRreaction and analysis were performed on a Quant-
Studio 6 platform (Life Technology). The primer sequences are listed
in Supplementary Table 4. Relative expression of analysed genes was
determined, normalizing to human Gusb or mouse Actb housekeeping
gene expression.

Cell stimulation with APOE for bulk and single-cell RNA-seq

For APOE treatment assays, 1 x 10° RAW264.7 cells were seeded in
24-well plates or 5 x 10° RAW264.7 cells were seeded in 6-well plates.
After 36 h, when culture plates were 80-90% confluent, medium with
APOE (3 pg ml™) was added to the wells for 2 h. For scRNA-seq experi-
ments, treated and non-treated cells from 24-well plates were mixed at
equal cellular concentrations to generate 5,000 Gel Bead-In-Emulsions
(GEMs), with an average initial cell viability of 93%. RNA purification
from the cells seeded in six-well plates was performed using the
Monarch Total RNA Miniprep Kit (New England BioLabs), and samples
with high-quality RNA (RNA integrity number > 8.5) as measured using
2200 TapeStation (Agilent Technologies) were used for bulk RNA-seq
library preparation. cDNA was processed with TruSeq Stranded mRNA
Library Preparation Kit (Illumina, 20020594) and sequenced with a
NextSeq2000 instrument.

Invitro TM treatment

For TM treatment, 0.5 x 10* cells were seeded in 6-well plates. When
cell confluence reached 70 per cent, media containing indicated con-
centrations of TM (63 ngml ™ for4T1,126 ng ml™ for CT26,210 ng ml™*
for B16F10 and 84 ng ml™* for EO771.LMB) or dimethylsulfoxide were
added. Cell lysates were collected at indicated time points and were
analysed (12 h for CT26, 11 h for B16F10 and 10 h for EO771.LMB). For
the C-176 pretreatment experiment, cells were pretreated with 1 uM
C-176 or vehicle for 3 weeks, during which the medium was replaced
with freshly prepared medium with C-176 or vehicle and cells were split
every 3 d. When cells were treated with TM and vehicle, C-176 and its
vehicle were also present in the medium during treatment.

In vitro cGAMP stimulation

IMR90 cells were seeded at a density of 1 x 10* cells per well in 6-well
plates on day 0. For single-dose cGAMP stimulation, medium was
replaced withmedium containing 10 uM cGAMP. For repetitive stimula-
tion, mediumwas replaced with fresh medium containing cGAMP every
day. Gene expression analysis and immunoblots were performed as
described before. For 4-BPA (Enzo Life Technologies) treatment, cells
were stimulated with cGAMP in the presence of 5 mM 4-BPA. For STING
inhibitor treatment, cells were pretreated with 0.5 pM H-151 (Invivogen)
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followed by stimulation with cGAMP in the presence of H-151. For the
poly(I:C) stimulation, cells were stimulated by transfecting 2 pg ml™
poly(I:C) for 6 h at 24 h after the fifth cGAMP stimulation.

Autophagy inhibition by BafAl

In 6-well plates, 0.5 x 10° 4T1 WT and Cgas-KO cells were seeded per
wellonday 0.Onday 1, cells were treated with 0.5 uM BafAl or vehicle
together with 25 png ml™ cycloheximide. Cell lysates were collected and
were analysed as described before.

NKkilling assay

Primary NK cells were isolated from splenocytes of nude athymic mice
using EasySep mouse NK cell isolation kit (Stemcell Technologies,
19855) in accordance with the manufacturer’s protocol. The isolated
NK cells were then seeded with tumour cells at aratio of 1:10 (tumour:
NK cells) in media supplemented with 20 ng mI"IL-12 (BioLegend,
577002) and 10 ng mI™ IL-15 (BioLegend, 566302). After 16 h of cocul-
ture, wells were washed with PBS twice to remove dying tumour cells
and floating NK cells and the remaining adherent tumour cells were
collected and counted.

T cellkilling assay

Primary T cellsor CD8' T cells were isolated from splenocytes of BALB/cJ
mice using EasySep mouse T cell isolation kit (Stemcell Technolo-
gies, 19851) or CD8" cell isolation kit (Stemcell Technologies, 19853)
inaccordance withthe manufacturer’s protocol. Isolated T cells or CD8*
T cellswere activated with 20 ng mI™ IL-2 (BioLegend, 575402) for 24 h
before being seeded with tumour cells ataratio of 1:5 (tumour:T cells/
CDS8'T cells). After 24 h of coculture, wells were washed with 1 x PBS
twice and remaining adherent cells were collected and counted.

Macrophage polarization assay

Primary macrophages were collected from bone marrow of BALB/cJ
mice and differentiated into M1 macrophages as previously described*.
After 7 d of the differentiation process, differentiated M1 macrophages
were cultured with conditioned medium from tumour cells for 24 h.
Then, macrophages were collected, and RNA isolation was performed
using the RNAeasy mini plus kit (Qiagen, 74134). mRNA expression of
Arginasel from RT-PCR was employed as a proxy measurement of M1
polarization to M2 macrophages.

Transwell migration assay

Splenocytes collected from spleens of BALB/c) mice were seeded in the
top compartment of a Transwell chamber with 3-um pore size (Corning,
3462). Tumour cells were seeded in the bottom compartment 24 h
before the addition of splenocytes. After 48 h of incubation, media
fromthe bottom compartment were collected and numbers ofimmune
cells were calculated.

Flow cytometry analysis

Primary tumours arising by implanting 2.5 x 10° GFP-expressing 4T1
cells in 100 pl of PBS:Matrigel (1:1) into the mammary fat pads were
resected on day 10. Tumour pieces were digested to single-cell sus-
pensions with Collagenase/Hyaluronidase (Stemcell Technologies,
catalogue no.07912) and DNAase I (Stemcell Technologies, catalogue
no.100-0762) according to the manufacturer’s manual, followed by
filtration with 70-uM cell strainers. Cells were stained with Zombie
NIR Fixable Viability Kit (BioLegend, catalogue no. 423105) for 10 min
onice, followed by blocking with TruStain FcX (anti-mouse CD16/32)
antibody (BioLegend, catalogue no. 101319). Cells were then stained
with fluorophore-conjugated antibody solution in PBS containing 2%
FBS on ice for 30 min. The primary antibody information is listed in
Supplementary Table 5. After washing with PBS, cells were analysed
using the Cytek Aurora Flow Cytometry System. Data were analysed
with FlowJo software.

Animal metastasis studies

Animal experiments were performed in accordance with protocols
approved by the MSKCC Institutional Animal Care and Use Committee.
For survival experiments, power analysis indicated that 15 mice per
group would be sufficient to detect adifference at relative hazard ratios
ofless than 0.25 or more than 4.0 with 80% power and 95% confidence,
givenamediansurvival of 58 din the control group and a total follow-up
period of 180 d, accounting for accidental animal death during proce-
dures. For metastasis experiments relying on the tumourburdenorlung
surface metastasis number, the animal numbers were estimated based
on previous experience with these models. For in vivo experiments,
animals were randomly assigned to different groups. Investigators
were not blinded to group allocation. For tail-veininjections, 5 x 10*4T1,
1x10°4T1-Luc, 2.5 x10* B16F10 or 10° CT26 cells were injected into the
tail-vein of 6-7-week-old BALB/c (4T1and CT26) or C57BL/6 (B16F10)
female mice. For experiments using immune-deficient mice, 2.5 x 10*
4T1,1x10°4T1-Luc, 1.25 x 10* B16F10, 5 x 10* CT26 or 2.5 x 10° EO771.
LMB cells were injected into 6-8-week-old NSG mice (JAX:005557).
Metastasis was primarily assessed through overall survival. Overall
survival end point was when the mice died or met the criteria for
euthanasia under the Institutional Animal Care and Use Commiittee
protocol. Pain and distress were monitored by observing the pres-
ence of rapid weight loss, weight loss exceeding 20% of body weight,
hunched posture, lethargy, lack of movement, rapid growth of tumour
masses, mass larger than 2 cm?, gait abnormalities, lesion interfering
with eating and drinking, anuria, ulcerated tumour, change in stool
shape and/or size, and vaginal bleeding. Mice exhibiting any of these
signswere euthanized. Transplanted tumours were not to exceed 20%
inany dimension or10% of body weight. Surface lung metastases were
assessed at end point by direct visual examination after euthanasia, at
which point lungs were perfused and fixed in 4% paraformaldehyde
(4T1, EO771.LMB and B16F10 experiments) or stained using India ink
(CT26 experiments). Furthermore, lung metastasis after injection of
4T1 cells was qualitatively assessed using routine H&E staining. For
4T1orthotopic tumourimplantation, 2.5 x 10°4T1cellsin 50 pl of PBS
were mixed 1:1 with Matrigel (BD Biosciences) and injected into the
fourth mammary fat pad. For EO771.LMB orthotopic tumour implanta-
tion, 2.5 x 10°EO771.LMB cells in 50 pl of Hanks’ Balanced Salt Solution
were implanted. Only one tumour was implanted per animal. Primary
tumours were surgically excised on day 7 (4T1) or day 14 (EO771.LMB)
after implantation and metastatic dissemination was assessed by
monitoring overall survival or through quantification of surface lung
metastases upon euthanasiaonday 30. Thelength (L) and width (W) of
the primary tumours were measured using callipers. Tumour size was
calculated according to the following formula: L x W?%/2,

Bioluminescence imaging to monitor metastatic progression

4Tl cellswere transduced with lentiviral particles encoding firefly lucif-
erase under control of the CAG promoter with an RFP-blasticidin fusion
dual selection marker (Amsbio, LVP571). Transduced cells were grown
in selection media containing 20 pg ml™” blasticidin for 2 weeks, then
sorted foranarrow range of medium RFP expression. Plasmids encoding
enhanced specificity SpCas9 (eSpCas9), acustomized guide RNA, and
GFP were purchased from Genscript (eSpCas9-2A-GFP (PX458)). Guide
sequences for murine Cgas were: 5-GGCCAUGCAGAGAGCUUCCG-3’
and 5-CGAGUCUCCGGCUGCCCCCG-3'. Theguide sequence for murine
Trac was: 5’-UUCUGGGUUCUGGAUGUCUG-3". For Cgas-KO cells,
RFP-luc-4T1cells were transiently transfected with both Cgas-targeting
plasmids simultaneously. For Trac KO (cutting, but non-expressing
control) cells, RFP-luc-4T1 cells were transiently transfected with the
Trac-targeting plasmid. After 2 d, cells were sorted for GFP expression.
These cells were allowed to expand for 2 weeks. A second round of
transient transfection and GFP-based sorting was performed to obtain
polyclonal celllines with greater than 95% KO efficiency by westernblot.



Experimental metastasis assays were performed by injecting 100,000
4T1(Luc-RFP) cellsin the tail-vein of female BALB/cJ (Jackson Labora-
tory, stock no. 000651) mice. For the metastasis assay with NSG mice,
50,000 4T1 (RFP-Luc) cells were injected in the tail-vein of female
NSG mice (stock no. 005557). In all experiments, 5-7-week-old mice
were used. The cells were re-suspended in PBS and passed through
a70-pum cell strainer and injected in a final volume of 100 pl of PBS.
To detect lung metastasis, animals were injected retro-orbitally with
100 pl of luciferin (PerkinElmer, XenoLight D-Luciferin Potassium
Salt, catalogue no. 122799) diluted in PBS (final concentration of
16.67 mg ml™). Luminescence was measured twice aweek withan IVIS
spectrumdevice (PerkinElmer, CLS1363311VIS Lumina LT Inst, Series I,
120 V), starting straight after the tail-veininjection on day 0. Mice were
checked twice aday and euthanized when showing any signs of illness
or distress.

Analysis of cGAS and STING protein expression in breast tumour
samples

Primary analysis of cGAS and STING protein expression was performed
onatissue microarray of 217 formalin-fixed, paraffin-embedded TNBC
samples. Samples and follow-up data were collected under MSKCC
Institutional Review Board approval. Patients gave consent accord-
ing to the institutional review board-approved standard operating
procedures for informed consent. Written, informed consent was
obtained from all patients. The study was conducted in accordance
with the Declaration of Helsinki and good clinical practice guidelines.
There were three cores per tumour sample. Of the 217 samples, 183
and 180 samples had sufficient material for adequate assessment of
cGAS and STING expression levels, respectively. This included 179
samples with adequate expression and quality to simultaneously
quantify both proteins. Detailed clinical characteristics and clinical
follow-up data were previously reported®. Immunohistochemistry
for cGAS and STING was performed on the automated Discovery XT
processor (Ventana Medical Systems) by the Molecular Cytology Core
Facility at MSKCC>®. Briefly, after deparaffinization and tumour tissue
conditioning, the antigen was retrieved using standard CC1 (Ventana
Medical Systems). Following blockage with Background Buster
(Innovex), the slides were incubated with 1:100 diluted anti-STING
antibody for 4 h, and thenincubated with the biotinylated secondary
antibody for 30 min. The Streptavidin-HRP D kit (DABMap kit, Ventana
Medical Systems) and the Alexa Fluor 488 Tyramide SuperBoost Kit,
Streptavidin (Life Technologies, catalogue no. B40932) were used
to detect the signal according to the manufacturer instructions. A
similar procedure was then applied to detect cGAS with1:100 diluted
anti-cGAS antibody and Alexa Fluor 594 Tyramide SuperBoost Kit,
Streptavidin (Life Technologies, catalogue no. B40935). Slides were
counterstained with haematoxylinand were mounted with Permount
mounting medium. Slides ofimmunofluorescence and immunohisto-
chemistry were scanned with aPannoramic Flash 250 (3DHistech) with
x20/0.8 numerical aperture air objective by the Molecular Cytology
Core Facility at MSKCC. cGAS and STING protein expression levels
were assessed manually using scores of O (absent), 1 (weak), 2 (mod-
erate) and 3 (strong). STING expression was assessed separately in
the tumour and stromal compartments. cGAS was rarely localized
to micronucleiin the stromaand therefore was primarily assessed in
the tumour compartment. DMFS data were collected by reviewing
medical records available at MSKCC. Tumours were categorized as
having low (negative or weak) or high (moderate or strong) cGAS or
STING expression.

RNA-seq analysis

B16F10 cells were pretreated with1 uM C-176 or dimethylsulfoxide for
48 h,and media with fresh drug was added at 24 h. RNA was extracted
using the RNeasy MiniKit (Qiagen, 74104). Non-strand-specific paired-
end sequencinglibraries were generated with TruSeq Stranded mRNA

(Illumina, 20020594) and sequenced on the lllumina NovaSeq platform.
Reads were mapped to the mouse reference GRCm38 with the Broad
Picard Pipeline (http://broadinstitute.github.io/picard/). Gene
expression levels were estimated with GenomicAlignments (v.1.18.1)".
Differential analysis was performed by DESeq2 (v.1.24.0)*. Gene set
enrichment analysis was performed on the normalized reads estimated
by DESeq2. Genes downregulated in C-176-treated cells were filtered by
two cutoffs: adjusted P value less than 0.05 and log,-transformed FC
(C-176 versus vehicle) less than —1. Genes downregulated in Stingl
KO were filtered by two cutoffs: adjusted P value less than 0.1 and
log,-transformed FC less than -1.

Dissociation of murine tumours for scRNA-seq

Animal experiments were performed in accordance with protocols
approved by the MSKCC Institutional Animal Care and Use Com-
mittee. First, 1.25 x 10° 4T1 cells in 50 pl of PBS were mixed 1:1 with
Matrigel (Corning) and injected into the fourth mammary fat pad of
7-week-old BALB/cimmune competent mice. Primary tumours were
resected under sterile conditions 14 d after orthotopic implanta-
tion. The entire tumour was immediately placed in RPMI medium
(Corning) onice and dissociated using both mechanical and enzy-
matic digestion (Mouse Tumor Dissociation Kit no. 130-096-730,
Miltenyi Biotec), generally within 1 h of surgical resection. Tissues
were minced witharazorblade in the Miltenyi enzyme mix according
to the manufacturer’s specifications and transferred to a Gentle MACS
Octo Dissociator with heaters (no. 30-096-427, 37 °C) for further
mechanical dissociation. Upon dissociation, cell suspensions were
passed through a 70-um filter and washed twice with FACS buffer (2%
heat-inactivated FBS,1 mM EDTA and Pen/Strep in PBS without Ca or
Mg). The remaining cell suspensions were subsequently flow sorted
with aBD FACSAriall cell sorter fitted with a100-pum nozzle to enrich
for viable, single cells according to forward and side scattering, and
DAPI exclusion. Cells were sorted directly into RPMI medium with 10%
FBS, washed three times and re-suspended in PBS with 0.04% BSA for
single-cell encapsulation. Final cell concentrations were determined
with ahaemocytometer.

scRNA-seq library preparation

The 10X Genomics Chromium platform was used to generate a tar-
geted 5,000 single-cell GEMs per sample, loaded with an average initial
cell viability of 87%. scRNA-seq libraries were prepared following the
10X Genomics user guide (Single Cell 3’ V2 Reagent Kits User Guide
PN-120233, 10X Genomics). After encapsulation, emulsions were
transferred to a thermal cycler for reverse transcription at 53 °C for
45 min, followed by heat inactivation for 5 min at 85 °C. cDNA from
the reverse transcription reaction was purified using DynaBeads
MyOne Silane Beads (Thermo Fisher Scientific) and amplified for 12
cycles using Amplification mix and primers provided in the Single
Cell 3’ reagents module 1 (10X Genomics). After purification with 0.6X
SPRIselect beads (Beckman Coulter), cDNA quality and yield were evalu-
ated using Agilent Bioanalyzer 2100. Using a fragmentation enzyme
blend (10X Genomics), the libraries were fragmented, end-repaired
and A-tailed. Products were double-side cleaned using 0.6X and 0.8X
SPRIselect beads, and adaptors provided in the kit were ligated for
15minat 30 °C. After cleaning ligation products, libraries were ampli-
fied and indexed with unique sample index i7 through PCR amplifi-
cation. The number of PCR cycles was chosen based on cDNA yield
for each sample individually. Final libraries were double-side cleaned
using 0.6X and 0.8X SPRIselect beads and their quality and size were
evaluated using an Agilent Bioanalyzer 2100. Libraries were pooled
and sequenced on a HiSeq2500 (Illumina) paired-end read flow cell
following recommendations in the 10X Genomics guide, sequenced
for 26 cycles on the forward read (10X barcode + unique molecular
identifier), followed by 8-base pair 17 index (sampleindex) and 98 base
pairsonthereverse read.
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ContactTracing to identify and map the effects of conditionally
dependent cell-cell interactions

ContactTracing exploits inter- and intrasample variability in single-
cell datato ask whether putative interactions, identified based on the
co-occurrence of complementary ligand-receptor pairs in the TME®,
indeedyield atranscriptional response in target (receptor-expressing)
cells that depends on condition-specific presence of ligand (Fig. 3a-c
and Extended Data Fig. 4a-c). The model makes no assumptions
about what this ligand effect looks like, but rather infers genes and
processes associated with each cellular response based on intrinsic
variability in receptor expression (within the target cell type) and
ligand abundance in the TME (Extended Data Fig. 4f); here, we focus
on ligands that are CIN- or STING-dependent. Finally, we map these
cellular response states, that is, ligand effects, back to individual
cells to ask whether multiple, distinct tumour subpopulations coop-
eratively shape the TME and whether their abundance is dependent
on perturbation of tumour-intrinsic CIN or Stingl (Extended Data
Fig.4g,h).

Database of complementary ligand-receptor pairs. To obtain an
interaction database asinput to ContactTracing, wetook theintersec-
tion of two databases: CellTalkDb® (http://tcm.zju.edu.cn/celltalkdb/
download.php, accessed 26 March 2021) and the database used by
the CellPhoneDb*’ (v.2.1.4) method. CellTalkDb has both human- and
mouse- specific databases, and we used the appropriate one for each
species. CellPhoneDb is a human database; for the mouse analysis
we mapped the genes to the mouse genome as described in the next
section, ‘Mouse to human gene mapping’. CellPhoneDb includes ‘com-
plex’ ligands and receptors, where each complex consists of multiple
genes. For any putative complex-mediated interactions, we added a
corresponding ‘complex gene’ to our scRNA-seq expression matrix
whose expression is the minimum expression of all genes comprising
the complex. We removed any interactions where the ligand or recep-
tor werefiltered from our scRNA-seq database for low expression. The
total mouse interaction database contains 1,885 interactions (1,261
from CellTalkDb, 917 from CellPhoneDB, 293 of which overlap). The
total human interaction database contains 2,934 interactions (2,348
from CellTalkDb, 846 from CellPhoneDb; 260 overlapping).

Mouse to human gene mapping. Human-mouse orthologs annotated
by theJacksonLaboratory (http://www.informatics.jax.org/downloads/
reports/HOM_MouseHumanSequence.rpt, accessed 1March 2021) were
used to map 79.3% of our mouse genes to human genes one-to-one. An
additional 23 mouse ligands and receptors were mapped to human
genesthrough capitalization, thatis, Lgasl9 > LGASL9. Finally, we manu-
ally dealt with six human genes that mapped to multiple mouse genes
(HLA-A, SIRPB1, KLRBI, LILRB4, SAA1, CSF2RB). After inspecting expres-
sion patterns of these multi-mapped genes, we mostly used the average
expression across multiple orthologs for each gene to represent that
mapped ligand/receptor. The only exception was HLA-A, whose mouse
orthologs exhibited several distinct patterns of expression and so was
dropped from further analysis.

Testing for a transcriptional response in receptor-expressing tar-
get cells. We used the BioConductor package MAST® (v.1.14.0) to
perform a likelihood ratio test between receptor-expressing (any
molecules detected, target’) and receptor-null (no molecules detected,
target’) cells, within the target cell type, across all genes (Fig. 3b,c
and Extended Data Fig. 4a,b). We refer to this as the target test. The
MAST function, zIm, fits aHurdle model to the log-normalized expres-
sion of each gene using generalized linear regression. We used the
regression formula: Y= CDR + condition + target, where CDR models
the cellular detectionrate (fraction of genes detected inacell, animpor-
tant covariate for modelling single-cell expression data), conditionis

a categorical variable indicating sample source (CIN"&", CIN'" or
StingI*®) and target is a binary parameter indicating cell membership
inthe receptor-expressing subset (target®). The zIm function results
inparameter estimates for each gene, including log,(FC) estimates for
how expression relates to condition and target status. We then use
MAST’s IrTest function to compute the change in likelihood when tar-
getis dropped from the model. This produces a Pvalue for each gene
indicating whether the model including target as a covariate fits sig-
nificantly better than a model without. Thus, significant P values
indicate genes whose expression is different between receptor-
expressing (target’) and receptor-null (target™) subpopulations. We
apply the Benjamini-Hochberg procedure to account for multiple
hypothesis testing, yielding an FDR value per gene.

Testing for condition-specific responses to receptor engagement
intarget cells. Fitted parameter values from the target test can reflect
associations and are not causal if there is unobserved confounding
(correlation) betweenreceptor expression and the expression of other
genes. However, we may exploit secondary variability in ligand avail-
ability across conditions to distinguish genes that are ligand effects
fromthose that happento be co-expressed with therelevant receptor
protein. Thus, for allinteractions thatinvolve aligand that is differen-
tially expressed across conditions (CIN- or STING-dependent in any
cell type), we performed a second likelihood ratio test to determine
whether model fit improves with the addition of a condition-specific
interaction effect (Extended Data Fig. 4c). Thus, zIm fits the function:
Y= CDR + condition + target + condition_specific_interaction_effect,
where condition_specific_interaction_effect is a categorical variable
indicatinga cell thatis both expressing the receptor (target”) and from
a particular condition (that is, CIN"&"), The IrTest function evaluates
thesignificance of including the condition_specific_interaction_effect
covariate when modelling expression across all genes. The P values
produced by this test are significant when the transcriptional response
in receptor-expressing target cells differs across conditions (in this
case, through perturbation of tumour CIN or StingI), with condition-
specific ligand availability. Again, we apply the Benjamini-Hochberg
procedure to account for multiple hypothesis testing. Notably, the
number of genes differentially expressed in receptor-expressing
versus -null target cells is highly correlated across conditions, while
those exhibiting aninteraction effect (gene responses that differin the
presence of the ligand) are not (Extended Data Fig. 4d,e).

Defining ligand effects in target cells. Altogether, target and interac-
tion tests were performed for all receptors and ligands in our database,
crossed with all possible cell types in the TME. Target tests were per-
formed within cells derived from the target cell type, conditioned on
receptor expression; and interaction tests were performed in target
cell types when their complementary ligand was differentially
expressed across conditions in the TME. Thus, the output consists of
Pvalues and log,(FC) estimates across all genes for each component
of a putative cell-cell interaction. To functionally define transcrip-
tional responses to aligand-receptor-mediated interaction, we com-
pute —log,, (Pq) * log,(fold change) from the target likelihood ratio
testfor eachgene, where P, ; isthe Bonferroni-corrected Pvalue. Ligand
effectsare thentranscriptional response genes that exhibit a significant
interaction effectin the presence of the condition-specific ligand.
Foreach cell type, we create amatrix of condition-specific transcrip-
tional response vectors with rows corresponding to [receptor, target
cell type] pairs and columns corresponding to all genes. Since each
row of the matrix encodes both a cell type and areceptor, dependent
transcriptional responses can be evaluated across multiple cell types.
We then use scanpy to compute principal components on this matrix,
choosing an optimal number of principal components for data dimen-
sionality based on kneepoint analysis of the cumulative variance
described by each component, and visualize in two dimensions with
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UMAP (Extended Data Fig. 4f). Phenotypic states associated with recep-
tor expression in each cell type are computed according to
-log,,(Pg) * log,(fold change) from the target likelihood ratio test
for each gene, where P,;is the Bonferroni-corrected Pvalue. We com-
pute principle components and the DC1 on this matrix using Palantir
toidentify genes that significantly correlate with this principle source
of variance. After removing scores of zero and rescaling correlation
valuestotherange[-1,1], we usethese scores asinput to gene set enrich-
ment analysis (GSEA), along with cell-type-specific GMT files (provided
in Supplementary Table 7), to assign pathways to these major axes of
biological variation. For example, macrophage transcriptional
responses largely reflected underlying single-cell heterogeneity in
IFN-y responsiveness and polarization (Fig. 4a).

Mapping ligand-receptor-mediated effects to cellular subpopula-
tions. Toassign ligand effects to subclusters within the target cell type,
we took the dot-product between the transcriptional response score
(defined above) and the log,(FC) of every gene in each cell subcluster
versusall other cells using the MAST statistical framework® (Extended
Data Fig. 4g). The log,(FC) per gene per cluster is set to zero before
computing this dot-product when it is not significant (FDR > 0.15).
The dot-product score is standardized by normalizing to its max, and
transcriptional response states (conditioned on receptor expression)
areassigned to subclusters for standardized scores greater than 0.5; in
thisway, transcriptional response states can be assigned to more than
one subcluster. Ligands are simply assigned to subclusters if they are
positively enriched (FDR < 0.15, log,(FC) > 0) inthat subcluster relative
toall other cells in the donor cell type as determined by MAST®!,

Validating ligand effects predicted by ContactTracing

We downloaded the CytoSig database of human cytokine responses
(https://cytosig.ccr.cancer.gov/download/,accessed 11 February 2022).
This database provides measurements for 2,002 experimentsin which
cellsweretreated witha cytokine, and the log-fold expression change
was measured across 19,918 genes. We mapped all genes in this data-
baseto mouse genesinour dataset, yieldingamapped database of 740
experiments with measurements in 13,013 genes. We then associated
theligands in the CytoSig database to their corresponding receptors
inour set of mouse interactions, and focused on ligand-receptor pairs
thatare CIN-dependent (ligand log(FC) FDR < 0.05and at least 1 signifi-
cantinteraction effect). We found 115 CIN-dependent ligand-receptor
pairs, from 75 distinct receptors, that were in the mapped CytoSig
database (in a total of 571 experiments across different cell types and
conditions). We then compared every CIN-dependent transcriptional
response measured by ContactTracing with each of the 571 cytokine
responses measured by CytoSig. To compare the response vectors,
we computed the connectivity score®, illustrated in Extended Data
Fig. 5b, which is to test whether upregulated genes in one list are also
upregulated in another, without making many assumptions about the
distributions of valuesin the lists. ContactTracing upregulated genes
have alog(FC) > 0 from the target test, and are CIN-specific (interac-
tion test FDR < 0.05). We then apply the connectivity score to this set
of cytokine response genes in CytoSig; the larger the score, the more
these genes are also upregulated in CytoSig. We get a distribution of
connectivity scores fromour all-versus-all comparison. We then take a
subset of these comparisonsin which the target genes (receptor) are the
sameineach database, and the cell types are generally matched. There
wasalarge variety of cell type names used in the CytoSig database; we
manually created amapping to ContactTracing cell types according to
Supplementary Table 10 (many remain unmapped); we consider cell
types ‘roughly matched’ if they both belong in one of the following
sets: epithelial/stromal (tumour cells, fibroblast cells); myeloid (mac-
rophages/myeloid-derived suppressor cells (mMDSC), plasmacytoid
dendritic cells (pDC), classical dendritic cells (cDC), polymorphonu-
clear neutrophils (PMN)/granulocytic myeloid-derived suppressor

cells (Gr-MDSC)) or lymphoid (T cells, B cells, NK cells). Extended Data
Fig.5c compares the distribution of all-versus-all connectivity scores,
compared with the subset of those with matching target cell types and
receptors. We used aMann-Whitney test to determine that the connec-
tivity scores are significantly higher in the matched subset (P = 0.0031).

Benchmarking ContactTracing against existing methods that
infer cell-cell interactions from single-cell data

To compare the top set of interactions predicted by ContactTracing
with those predicted by other cell-cellinteraction models, we evaluate
their intersection (Fig. 3e and Extended Data Fig. 6a,b) and colocali-
zation in matched spatial transcriptomics data (Fig. 3f and Extended
DataFig. 6¢).

Implementation of alternative cell-cell interaction models. The
expression counts and ligand-receptor databases used by Contact-
Tracing were loaded using the typical workflows required by each
respectivetool. Counts matrices were split according to experimental
condition. For all instances that required conversion between human
and mouse gene names, we followed the same procedure described
above (‘Mouse to human gene mapping’). Since some methods are
unable to account for protein complex definitions, when necessary,
complexinteractionsaresplitinto all pairwise combinations of complex
componentstoagivenligand/receptor. Common approachestounder-
standingligand-receptor-mediated interactions are based on tests that
compare co-expression of ligands and receptors across cell types. The
mostcommon example of such tests is CellPhoneDB*. As many methods
aredifficult to supply with custom ligand-receptor databases, we use
the LIANA package (v.0.1.6)®, which reimplements many of these com-
mon methods. LIANA was configured to use the following methods:
‘cellphonedb’, ‘connectome’, ‘logfc’ (iTALK), ‘natmi’, ‘sca’ (SingleCell-
SignalR), ‘call_cellchat’ (CellChat) and ‘cytotalk’. Permutation-based
tests were set to use 10,000 permutations, and CellChat was set to
use 1,000 bootstraps. NicheNet®*v.1.1.0 was alsoimplemented using a
custom ‘ligand-receptor network’ withauthor-recommended settings,
which allowed us to integrate the same database of complementary
ligand-receptor pairs, while retaining the default ‘signalling’and ‘gene
regulatory’ networks. This new database was compiled using default
optimized NicheNet hyperparameters. Since NicheNetisbased on the
Seurattoolkit, expression was preprocessed using a typical preprocess-
ing workflow including its SCTransform ‘v2’ workflow (Seurat v.4.1.1,
SCTransformv.0.3.3), with a consistent number of variable features as
used for ContactTracing. NicheNet was run on all pairwise combina-
tions of cell types withrecommended parameters and ligand/receptor
activity was scored using NicheNet’s Pearson correlation coefficients.
A newer method for understanding cell-cell signalling is CellComm
(part of the FUSCA package, v.1.3.1)%. Expression data were prepared
for CellComm by following the typical FUSCA workflow demonstrat-
ed by the authors: counts were filtered to require a minimum of 100
genes expressed per cell and a minimum of 10 cells expressing each
gene, then processed using the ‘Normalize” and ‘scaleData’ functions.
The CellComm algorithm was run by computing co-expression pat-
terns with minimum mean expression set to 0.2, using 10,000 cluster
permutations across cell types. CellComm P values were calculated
using 1,000 permutations.

Application of cell-cell interaction models to human and mouse
data. When running tools on spatially matched human TNBC and ER
data®, we ran the typical workflow for each tool as described above
on each condition independently so that each condition’s colocali-
zation could be evaluated independently. To compare the results of
ContactTracing with other tools in the mouse model of CIN, we ran
LIANA-based methods on condition-specific counts matrices sepa-
rately. As a substitute for the lack of condition-dependent analyses
on those methods, we calculated a post hoc score for each method
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measuring the differential magnitude across conditions by comput-
ing the absolute value of the difference of CIN"&" and CIN'®" scores,
and if Pvalues were reported we selected the most significant value
to be representative. These scores were then used to rank reported
interactions from LIANA. To incorporate experimental conditions
from the mouse model in NicheNet results, we used the full counts
matrices (whichincludes both conditions) with the recently published
‘Differential NicheNet’ workflow, using ‘min_Ifc’ specificity scores with
anauthor-recommended cutoff of 0.15. While the typical Connectome
scores areimplementedin LIANA, the original implementation contains
a‘Differential Connectome’ workflow®® which would allow for explicit
consideration of experimental conditions. Since itis also Seurat-based,
we used the same data as prepared for Differential NicheNet and ran
the method according to the author-recommended usage to analyse
and calculate Pvalues. While CellComm does not explicitly have a ‘Dif-
ferential’ workflow, it has a ‘subcluster’ workflow which we used by
setting experimental condition as the ‘cluster’ and cell-type annotation
asthe‘subcluster’.

Comparing predicted interactions across models. As ContactTrac-
ingand alternative methods are runwith a consistent ligand/receptor
database, results differ only in terms of detection sensitivity and pri-
oritization. Thus, interactions are compared in terms of set overlap
(Fig. 3e and Extended Data Fig. 6a) and ranked differences (Extended
DataFig. 6b). For comparison, we required interactions to be present
in both conditions and collapsed interactions to unique (target cell
type, receptor) pairs. First, allmethods that report a Pvalue had results
filtered usinga 0.05threshold. Next, for each target cell type/receptor
pair, the maximum significant reported score (regardless of source
cell type and ligand) was selected to be the representative score for
each target cell type/receptor pair. Rankings were then determined
by sorting target cell type/receptor pairs according to previously
described maximum scores. Similarly, ContactTracing target cell type/
receptor pairs were first filtered by requiring at least one significant
interaction term (FDR < 0.05) in the target cell type for ligands that
were differentially expressed across conditionsinany donor cell type
(absolute log,(FC) > 0and FDR < 0.05). The ContactTracingtarget cell
type/receptor pairs were then sorted by the number of significant inter-
action terms, with ties broken by secondarily sorting according to the
number of DEGs for a given target cell type/receptor pair. Since the
methods had variable numbers of results reported, overlap coefficients
were calculated to represent set similarity. The overlap coefficientis a
set size-invariant metric for similarity that is related to the Jaccard
index. While the Jaccard index for sets X and Y is calculated as
Jaccard = :ig :1 ,the overlap coefficient corrects for set size difference
by normalizing set intersection cardinality by minimum set cardinal-
ity rather than the cardinality of the union between sets, that is,
Overlap = XL YD Similarly to theJaccardindex, overlap coefficients
range fromOto1, wherelrepresentsthe highest degree of overlap. All
pairwise combinations of ranked result lists were then used to calculate
corresponding overlap coefficients for various rank thresholds.

Validation within anindependent human breast cancer cohort

To validate the relevance of key biological findings in human breast
cancers, we obtained scRNA-seq data from a publicly available cohort
of 26 primary breast cancer tumours (11ER*, 5HER2*and 10 TNBCs)%.
To compare cell subtypes between the human and mouse cell atlases,
we mapped the subtype annotations provided by Wu et. al. to the
most similar cell subtype in the mouse for allimmune cells where a
corresponding cell subtype was present (Supplementary Table 10).
This was done using subtype-specific DEGs and pathways provided by
the original authors and recomputed using our pipeline. Most original
DEGs and annotations published were validated by our analyses, except
for the Myeloid:c8 SI00A9" cluster, which we classify as mMDSCs based
on their upregulation of SI00A8 and S1I00A9 (ref. 67). Following the

detection of significant sample-specific effects, Harmony® was applied
for batch correction to the full log-transformed count matrix to gener-
atethe defaultn=100 corrected Harmony principal components. Using
the optimal number of principal components selected before and after
batch correction (n=17 and n =19, respectively), sample mixing was
noticeably improved inimmune cell subsets; thus, corrected Harmony
principal components were used for downstream differential abun-
dance testing (Extended Data Fig. 12c,d). To validate CIN-dependent
findings from the 4T1 mouse model, we focused on the eight TNBC
samples that had tumour cells present in the data. To separate these
eight samples into expected ‘CIN'" and ‘CIN"&" groups, we used the
standard inferCNV i6 HMM model® to detect copy number variants
(CNVs) withinthe tumour cell compartment for each sample (applied
torawdata). Asameasure of CIN, we computed the Shannon diversity
index of the variant states, weighted by the number of copy number
alterations in each variant, for all tumour cellsin each sample:

n
CNVSD] = z _Si X |n(S,-)
i=1

where nisthe number of unique predicted variantsin current sample

_ freq;x ¢
7 3L, freq,x §

where freq; is the proportion of variant i in current sample and §; is
the sumofthe absolute values of the predicted difference from normal
across all chromosome positions for variant i. This CNV,,, metric not
only captures the diversity in the unique CNV states detected in the
sample, butitalsoaccounts for how altered these states are predicted to
be fromdiploid. As expected, the CNVp, was markedly higher in CIN"e"
mouse samples (Extended Data Fig. 11) and was used in conjunction
with the mean tumour cell expression of key pathways (Type 1IFN,
CINsignature, Non-Canonical Nf-Kb and Hallmark UPR) to cluster the
eighthuman TNBC samplesinto CIN'Y (n = 4) and CIN"&" (n = 4) subsets
(Extended Data Fig. 12a). We then used the Milo”® python framework
to compute differentially abundant neighbourhoods withinthe TNBC
subset between the inferred CIN'* and CIN"" samples (k=15,P=0.5
and d =22). The mapped cell subtype annotations were used to label
each neighbourhood based on the mode cell subtype and log,(FC)
values were mapped to the single-cell resolution in the same manner
as described in Supplementary Note 5. ContactTracing was likewise
applied to these human data to detect CIN-specific ligand effects, as
described in the section above (‘ContactTracing to identify and map
the effects of conditionally dependent cell-cell interactions’).

The breast cancer dataset also includes matched Visium spatial tran-
scriptomics data from four of the samples: two patients with TNBC
and two ER" patients. We ran ContactTracing on the scRNA-seq data for
these samples separately, comparing TNBC versus ER* conditions. We
used the output from ContactTracing to rank interactions relevant to
each condition; interactions identified by [ligand, receptor, receptor
cell type] are ranked by the number of significant interaction effects,
multiplied by the identity function thatindicates whether theligand is
upregulated in atleast one cell type for the relevant condition. There-
fore, thereis adifferent ranking of interactions relevant to TNBC, and
ofthoserelevantto ER". For each of the four patients, we then used the
relevant ranking, and assessed whether top TNBC or ER" interactions
tended to colocalize in the spatial data for patients in corresponding
breast cancer subtypes (Fig. 3f). Colocalization was determined by sum-
ming the product of [log(ligand expression), probability or Pr(target
cell type), Identity(receptor expressed)] across all cells in the spatial
dataforanindividual. Ligand expression was then permuted 100 times
and the colocalization statistic recomputed to obtain a colocalization
Pvalue (Extended Data Fig. 6¢). The probability of a target cell typein
each Visium spot was determined using the deconvolution software



SPOTIight™. The SPOTlight algorithm was seeded with scRNA-seq data
fromthe same individuals, and the cell-type annotations described in
the previous section.

Data visualization

Two-dimensional embeddings. The global atlas of all cells in the TME,
including diverse tumour, stroma, lymphoid and myeloid subsets,
was visualized using a UMAP (Fig. 2a). This dimensionality reduction
technique was appropriate given the diversity of cell types represented.
Force-directed graphs’ were alternatively used to visualize continu-
ous subpopulations within major cell types (Extended DataFigs. 2d, 3a
and 7b,e), because these better capture cell state transitions and local
relationships between cells. For both visualization methods, we used
the optimal number of principal components and the default k=15
nearest neighbours with scanpy.

Gene expression along within-cell-type trajectories. Heatmaps were
generated using the CellRank” heatmap plotting function, which uses
ageneralized additive model to smooth expression along the given
trajectory. Imputed expression was used to generate these visuals and
expression was normalized to a range of [0,1]. The order of genes was
determined by expression peak along the trajectory. Transition genes
did not exhibit an expression peak at either end point of the inferred
continuum. Colour bars above heatmaps were generated by ranking
the given variable along the given trajectory; continuous variables
were smoothed using the CellRank methodology. Similarly, gene trend
curves were generated using the built-in plotting method provided
by CellRank using the same generalized additive model method as in
the heatmap visual described above. Here, imputed expression was
normalized to its max for each gene independently.

Neighbourhood differential abundance plots. After mapping cell
subtypes to Milo neighbourhoods (Supplementary Note 5), differen-
tial abundance test results were visualized per neighbourhood using
strip plots overlaid on mean bar plots for significantly differentially
abundant neighbourhoods. In minority cell-type populations where
fewer than two significant neighbourhoods were detected, all neigh-
bourhoods were used for computing the log,(FC) mean. The size (or
opacity) of the scatter points reflects the significance (P value) of the
neighbourhoods, log,(FC) (Fig. 2b and Extended Data Figs. 2c,i, 3c,g, 7f
and12c,d).

Statistics and reproducibility

Experiments showing representative images were independently
repeated two (Fig. 5a,e, Extended Data Fig. 11a,d and Supplementary
Note 6) or three (Extended Data Figs. 1a,e,f, 10a and 11c) times with
similar results.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

AllscRNA-seq data generated in this study have been deposited in the
NCBI's Gene Expression Omnibus (GEO) database under accession
code: GSE189856. The GRCm38 genome referenceisavailable asaCell-
Ranger reference package (v.mm10-3.0.0). All scRNA-seq data from
theindependent human cohort are available in the NCBI’'s GEO under
accession code: GSE176078, and the spatial data from the same study
areat https://zenodo.org/record/4739739. CellPhoneDb can be found
at https://www.cellphonedb.org (v.2.1.4 was used for this study), and
the celltalkdb database is at http://tcm.zju.edu.cn/celltalkdb/down-
load.php. Aninteractive web dashboard is made available at http://
contacttracing.laughneylab.com to enable interactive exploration

of data from this study, allowing users to visualize pairwise ligand-
receptor-mediated interactions and systems-level interactionsin Circos
plots (similar to Fig. 4a and Extended Data Fig. 12e) using plotly v.5.11.0
and dash v.2.7.1. Processed scRNA-seq datasets appropriate for input
tothe ContactTracing method are available at https://doi.org/10.5281/
zen0do.8061222. Source data are provided with this paper.

Code availability

Custom code, including docker environments with jupyter notebooks
demonstrating the ContactTracing method, is available on the Laugh-
ney Lab GitHub (https://github.com/LaughneyLab/ContactTracing_
tutorial, https://zenodo.org/record/8061480). Code for the interactive
web dashboardis available on GitHub (https://github.com/Laughney-
Lab/ContactTracing-Viz/, https://zenodo.org/record/8067675). Circos
software™ (v.0.69-9) was used to visualize ligand-receptor interactions
based on measured transcriptional responses (ContactTracing). The
network plot in Extended Data Fig. 4h was created with Cytoscape”
v.3.8.2.
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Extended DataFig.1|See next page for caption.




Article

Extended DataFig.1| CIN-induced cGAS-STING activationdrives
metastasis inimmunocompetent models. a, Representativeimages of 4T1
TNBC cells undergoing anaphase with various chromosome segregation
defects stained using DAPI (DNA) and anti-centromere antibody (ACA), scale
bar5Sum.b, Frequency of anaphase cells with chromosome segregation defects
in poorly metastatic (B16FO and B16F1) and highly metastatic (B16F10,4T1,
EO771.LMB and CT26) cells; bars represent average + SD, **** p < 0.0001, two-
sided t-test, n =3 independent counting per cell line, ~-150 division events per
counting.c, Percentage of micronucleiin the various cell lines; barsrepresent
median, ****p <0.0001, two-sided Mann-Whitney test, n=5-17.d, cGAMP levels
incelllysates; barsrepresent median values, * p < 0.05,** p < 0.01, two-sided
Mann-Whitney test, n = 5-12. e, Immunoblots for cGAS and STING of control,
Cgas-KO, and StingI-KO B16F10,4T1,and CT26 cells with 3-Actin as aloading
control. f,Representative images of BI6F10, CT26,4T1and EO771.LMB cells with
micronucleistained using DAPI(DNA) and anti-cGAS antibody, scale bar 5 pum.

g, Percentage of 4T1cells undergoing anaphase with evidence for chromosome
missegregation, barsrepresentmean +SD, n =150 cellsin 3 biological replicates,
****p <0.0001, two-sided t-test. h, Experimental schema for metastasis
experiments. i, The number of surface lung metastasis metastases arising
after4T1tumorresectionin BALB/c hosts (n =14-25) or arising from tail-vein
injection of 4T1cellsinto NSG hosts (n =10); linesin the plot represent the
median, *p <0.05,****p <0.0001, two-sided Mann-Whitney test. j, Volume
ofresected orthotopically transplanted primary 4T1tumors; bars represent
medianvalues, ** p < 0.01, two-sided Mann-Whitney test, n =14-15 animals per
group. k, Immunoblots of cGAS and STING of control and Stingl-depleted 4T1
cellswith B-actin as aloading control.l, Violin plot showing the distribution of
tumor cell CNV diversity (Methods) in CIN®" (n = 4) and CIN"&" (n = 9) murine
tumor samples (one-sided t-test p-value <0.05). Overlaid box plots denote the
minima, maxima, median, and 1**and 3" quartiles.
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Extended DataFig.2 | CINand STING dependent effects on the tumor
myeloid landscape. a, Percentage of M2 macrophage among total infiltrating
CD45+cellsin CIN'"and CIN"&"4T1 primary tumors resected on day 14; bars
representmean ts.e.m., two-sided Mann-Whitney test, n=5independent
biological replicates. b, Percentage of GR-MDSC among total infiltrating
CD45+cellsin CIN'"and CIN"&"4T1 primary tumors resected on day 14; bars
representmean ts.e.m., two-sided Mann-Whitney test, n=5independent
biological replicates. ¢, Myeloid population strip plot showing conserved CIN-
and STING-dependent differential abundance effects (mean enrichment must
beboth positive or both negative) at the neighborhood level grouped by cell
subtype and ranked by mean CIN-dependent log,(fold change) of neighborhoods
within each cell subtype. Nodesizeis scaled by p-value, so that more significant
differentialabundance neighborhoods are larger. Bar plots show the mean
log,(fold change) of neighborhoods with significant scores (p-value <=0.1);

if fewer than two significant neighborhoods are detected, all neighborhoods
areused in computing the mean. d, Force-directed layout with transition vectors
ofallmacrophages (n=9,800 cells) colored by CIN-dependent differential
abundance computedinlocal neighborhoods using Milo and mappedtosingle
cells for visualization (Supplementary Information, top) and cell subtype
(bottom). The overlayed directed partitioned-based graph abstraction (PAGA)
shows theinferred transitions between subtype clusters based on Palantir
pseudotime with nodes scaled by relative subtype size and arrows scaled by
transition confidence. The overlaid black nodes show cells with Monocyte
probability >=95%, computed by CellAssign; the green node highlights the
initial seed cell for Palantir pseudotime. e, Scaled imputed expression of
transition genes (Supplementary Information) for all macrophages (n=9,800
cells) ranked along pseudotime. For each gene, expression was modeled using
ageneralized additive model (GAM) along the M2-like macrophage lineage.
Ranked color bars above heatmap show CIN-and STING-dependent differential
abundance, log,(fold change), computedinlocal neighborhoods using Milo
and mapped to single cells for visualization (Supplementary Information).
Additional ranked color bars below the heatmap show CellRank terminal state
probability andinitial state probability along macrophage pseudotime.
Thebar plotshows top two most enriched gene signatures enriched along
macrophage pseudotime (FDR <0.005). The x-axis shows the —-log,,(FDR

q-value) times the sign of the pathway normalized enrichment score (NES)

and colorindicates the pathway NES. Complete list of genes and gene set
enrichmentanalysis (GSEA) results for cells ranked along macrophage
pseudotime, including nominal and corrected p-values, are providedin
Supplementary Table 8.f, Relative expression of Arg-1in macrophages cultured
for24 hwith conditioned medium from4T1tumor cells; barsrepresent mean +
s.e.m., two-sided t-test, n =4 independentbiological replicates. g, Scaled
imputed expression of transition genes (Supplementary Information) for all
ISG-Neutrophils and GR-MDSCs (n=12,593 cells) ranked along CellRank
ISG-Neutrophil macrostate probability. For each gene, expression was modeled
using ageneralized additive model (GAM) as in (e). Ranked color bars above
heatmap show CIN-and STING-dependent differential abundance, log,(fold
change), computed inlocal neighborhoods using Milo and mapped to single
cells for visualization (Supplementary Information). Additional ranked color
barsbelow the heatmap show CellRank ISG-Neutrophil macrostate and
GR-MDSC(a) macrostate probabilities ranked by ISG-Neutrophil macrostate
probability. The bar plot shows top gene signatures enriched along ISG-
Neutrophil macrostate probability with FDR<0.05and abs(NES) >2.5. The
x-axis shows the -log,,(FDR g-value) times the sign of the pathway normalized
enrichmentscore (NES) and colorindicates the pathway NES. Complete list of
genesandgene setenrichmentanalysis (GSEA) results for cells ranked along
macrophage pseudotime, including nominal and corrected p-values, are
providedin Supplementary Table 8. h, UMAP projection for the dendritic
cellsubset (n=1,075 cells) colored by DC subtype (top) and imputed IL12b
expression (bottom).1i, Left, dot plot showing relative frequency of dendritic
cells expressing canonical lineage markers (any counts detected) and the
average log-transformed expression of each gene per dendritic cell subtype.
Genes are clustered using the average cosine distance and subtypes are
ordered according to (middle) average CIN-dependent differential abundance
oflocal neighborhoods mapped to dendritic cell subtypes (Supplementary
Information). Complete DEG and GSEA results per dendritic cell subtype
(relative to all other dendritic cells), including nominal and corrected p-values,
areprovided in Supplementary Table 8. Right, Example of IFN-promoting
feedbackloop between antigen presenting cells (APCs) and T cells.
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Extended DataFig.3 | CINand STING dependent effects on the tumor
lymphoidlandscape. a, Force-directed layout with transition vectors of all
CD8+ T cells color by subtype (n=4,797 cells). The overlaid, directed PAGA
shows inferred transition between subtype clusters based on Palantir
pseudotime with nodes scaled by subtype size and arrows scaled by transition
confidence.b, Activated (top) and dysfunctional (bottom) gene trends along
CD8+Tcell pseudotime using scaled imputed expression modeled by a GAM.
Completelist of correlation-ranked genes and GSEA results along CD8+ T cell
pseudotime, includingnominal and corrected p-values, are providedin
Supplementary Table 8. ¢, Strip plot showing CIN- (circular nodes) and STING-
(triangle nodes) dependent differential abundance at the neighborhood level
grouped by cell subtype. Node size is scaled by p-value, so that more significant
differentialabundance neighborhoods are larger. Bar plots show the mean
log,(fold change) of neighborhoods with significant (p-value <=0.1)
differential abundancescores; if fewer than two significant neighborhoods
detected, allneighborhoods are used in computing the mean. d, Radar plot

showingrelative expression of key marker genes per conditionin CD8+ T cells.
Geneexpressionis normalized by 1 or the max average marker expression
acrossall conditions, whichever is higher. e, Percentage of 4T1 cells killed
after co-cultured with T cells, CD8+ T cells, and natural killer cells, number
ofimmune cells migrating from the upper compartment to the bottom
compartment where4T1tumor cells seeded; barsrepresent mean +s.e.m., two-
sided t-test, n =4 (T cells), 3 (NK cells), 2 (CD8+, no error bar), or 3 (migration).
f, Clustered heatmap showing the normalized enrichment score (NES) of
relevant gene signatures differentially expressed within B cell subtypes
(relative to all other B cells) withan FDR g-value < 0.05in at least one subtype.
Signatures not meeting the FDR g-value threshold are opaque. Complete DEG
and GSEAresults per B cell subtype (relative to all other B cells), including
nominal and corrected p-values, are provided in Supplementary Table 8.
g,Same as (c), but for B cell subtypes and ordered by mean CIN-dependent
log,(fold change).
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Extended DataFig. 4| ContactTracinginference of cell-cellinteractions
fromsingle cell data. a, lllustrative histogram showing log-transformed
expression of the Mrclreceptorin Macrophages (target cell type) for the
receptor-null (white) and receptor-expressing (gray) subsets. b, Volcano plot
showing genes differentially expressed in Mrcl-expressing vs. Mrcl-null
macrophages (target celltype). Nodes are scaled by the absolute value of the
transcriptional response score; top up-and down-regulated genes are labeled.
¢, Visual summary of MAST results from the CIN-dependent interaction test
(see Methods); shown here for Mrclreceptor expressionin macrophage target
cells. Eachnode represents a highly variable gene. The x-axis shows the log2-
fold change estimate in receptor-expressing vs. receptor-null target cellsin the
CIN* condition. The y-axis shows the same parameter estimate, but computedin
the CIN"&" condition. Nodessize is proportional to the significance of the interaction
effect,and the node color represents the magnitude of the interaction effect, which
here shows CIN-dependent amplification of the transcriptional response.d, Each
noderepresentsareceptor/cell type combination, on the x-axis is the number of
geneswithsignificanttranscriptional response (FDR < 0.05) in the CIN"&"/CIN'"
dataset; on the y-axisis the same value for the CIN"" Sting1""/Sting1*® data set.
e, Asind, except the number of genes with significant conditionally-dependent
interaction effect (FDR < 0.05) is shown. f, UMAP projection based on STING-
dependentinteraction effectsin CIN"&" tumors. The effect matrix hasa row for

eachreceptor/cell-type combination with at least one significantinteraction
effect (FDR g-value <0.05), and acolumn for every gene. Eachentryinthe
matrixis —log,,(p-value)*interaction_coef.Node colorreflects the cell type
inwhichtheligand effectis measured and node size reflects the number of
significant condition-specificinteraction effectsin target cells expressing the
receptor. g, Transcriptional response states are mapped to individual cell
clusters by taking the dot-product between the transcriptional response score
foragivengene (given by x-axis) and its log2(expression fold change), here
shown for one tumor subcluster vs. all other tumor cells (y-axis) and visualized
using a clustered heatmap based on the average Euclidean distance metric.
Red: positive dot-product, blue: negative dot-product, white: any value with
abs(dot product) <0.5. Thelog2(expression fold change) was set to zero if it
was notsignificant (FDR g-value > 0.15) prior tocomputing the dot product.

h, ContactTracingnetwork plot corresponding to datain Fig. 4a. Here, nodes
represent cell subtypes; node sizeis scaled by their relative fractionin the
TME, and color reflects their average CIN-dependent differential abundance.
Directed arrows representinteractions between cell subtypes (emanating
fromligand-producing, donor cell subtype toreceptor-expressing, target cell
subtype), witharrow thickness encoding the total number of CIN-dependent
interactions predicted between each pair of subtypes, and arrow darkness
reflecting the number of STING-dependentinteractions.
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Extended DataFig. 5| ContactTracingvalidation. a, ContactTracing-
predicted ligand effectin CCR2-expressing macrophages ranked and scaled
by observedlog,(fold change). Known target genes are annotated in vivo if
definedin, orinvitroif within the top orbottom 20 responses reported in the
CytoSig databases (ranked based on log,(fold change) of cytokine-treated cell
linesin culture). b, lllustration of connectivity score used to compare ligand
effectsinferred by ContactTracingtothe those reportedinthe CytoSig
database (tests whether up-regulated genesin onelist are also up-regulated
inanother, Methods). ¢, Distribution of connectivity scores between all CIN-
dependentinteraction effects predicted by ContactTracing compared to gene
responses reported by CytoSig for ligands matching the same set of receptors
incelltypesrelevant tothe breast cancer TME (Methods); the left box shows

thedistribution of connectivity scores across all comparisons (n = 558). The
right box shows enrichment of connectivity scores for comparisons with
matched receptorsinsimilar macro celltypes (n =44, two-sided Mann-Whitney
test, p=0.003). The boxes span the 1°-3" quartiles, with red line indicating the
median, whereas whiskers denote the rest of distribution within1.5x the
interquartilerange, other outliersindicated with an xd, Volcano plot showing
differentially expressed genesinduced by APOE treatment of macrophages
invitro (bulk sequencingof treated vs. untreated macrophages) e, Asin Fig.3d,
comparestheeffect of APOE on macrophages inferred by ContactTracing as
compared toligand effect measured in bulk for two additional, expressed
receptors that compliment APOE (Sdcland Ldlr). R?is Pearson’s correlation
coefficient, p-valueis two-sided and testing for correlation.
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Extended DataFig.7 | ER stress signaling enriched in mesenchymal
stem-like tumor cells. a, Directed bar plot showing relevant tumor gene
signatures (annotated in Supplementary Table 7) differentially expressedina
CIN-dependent manner (FDR < 0.25). The x-axis shows the -log,,(FDR) and bar
colorisscaled by the normalized enrichment score (NES) of the gene signature.
b, Force-directed layout of all tumor cells (n = 3,596 cells) colored by Louvain
subtype.c, Dot plot showing relative frequency of tumor cells expressing
canonical stem cell and lineage markers (any counts detected) and the average
log-transformed expression of each gene per subtype. Hierarchical clustering
of genes and subtypesis computed using the complete linkage of the Pearson
correlation matrix. Average expression of Hallmark Unfolded Protein Response
(annotated in Supplementary Table 7) for all cells per tumor subtype (right).

d, Clustered heatmap showing the normalized enrichment score (NES) of gene
signatures differentially expressed within atleast one tumor subtype, having a
positive NESwith FDR < 0.001. Signatures not meeting the FDR threshold are
opaque. Complete DEG and GSEA results per tumor cell subtype (relative to all
other tumor cells), including nominal and corrected p-values, are provided in

Supplementary Table 8. e, Force-directed layout with transition vectors of all
tumor cells colored by average log-transformed expression of the Hallmark
Unfolded Protein Response (UPR) gene signature. Overlayed arrows show two
major branches fromamore mesenchymal stem-like phenotype toamore
luminal or basal state. f, Z-normalized average imputed expression of Unfolded
Protein Response/ER stressrelated genes across tumor subclusters. Genes
groupsare organized according to transcriptional arms of the Unfolded
Protein Responseto ER stress and clustered withingene groups using the
average cosine distance. Tumor subtypes are hierarchically clustered using
theaverage Euclidean distance. Right, strip plots showing CIN-and STING-
dependent differentialabundance (two pairwise-comparisons), log2(fold
change), of tumor subpopulations ranked along the subtype hierarchically
clustering (left). Node opacity is scaled by p-value, so that more significant
differentialabundance neighborhoods are darker. Bar plots show the mean
log,(fold change) of neighborhoods with significant (p-value <=0.1)
differential abundancescores; if fewer than two significant neighborhoods
detected, allneighborhoods are used in computing the mean.
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Extended DataFig. 8 | Tumor progression through STING-dependent ER
stressresponse. a, Relative expression levels of Ifnbl and ISGs in mock,
cGAMP, or Poly(I:C)-transfected 4T1 cells; bars represent mean + SD, two-way
ANOVA test,n=3independent experiments (n=2for Poly(l:C)-treated), each
with two technical replicates. b-¢, Immunoblots for BiP and STING of WT and
Sting KO cells of B16F10, CT26 (b) and EO771.LMB (c) with B-actin (b) or COX-1V
(c) asloading control.d, Cellular growth curves for of Control and IREla (Erni),
PERK (Eif2ak3), or ATF6 (Atf6)-KO 4T1cells; data are presented as mean

values £SD.,n =3 per condition. e,Immunoblots of Control and IREla (Ern1i),

PERK (Eif2ak3), or ATF6 (Atf6)-KO 4T1cells blotted for IRE1a, PERK, ATF6,

and o-tubulinas aloading control. f, Relative expression levels of Ccl2, Cxcl1,
and/l11intumor cellsisolated from primary tumorsresected on day 7; bars
represent meanvalues+SD, *p < 0.05,**p < 0.01, two-sided t-test, n =4 animals
pergroup. g, Number of surface lung metastasis in mice inoculated with
control4T1cells or cells lacking cytokines (left) or StingI-depleted cells or
Stingl-depleted cells overexpressing cytokines (right); bars represent the
median, **p < 0.01, two-sided Mann-Whitney test, n =10 animals per group.



)

CT26
_ , 60
. . ci76 -t -+ g 2 :
%07 & - S £ %0 ™ - -+ 3 5 8 u|; ¢
2 6 : < 2 20 25kD 9 : = <+ -
3 25 84 a8 o 30 CHOP | - o o g |
O 1S4 = T J | 38 = °
o ||, ¢ o= g 20 BiP | - roe G081 || 320 ° L
< ! & 2 ﬁ 8 a 10 B-Acti | [50'@3 o | I® £ o
= 4 ° o SACHN [ — — — g 5
0 T ﬁ 0 T T 0 0 6 ; @ 0
O W& O WM T o o« ° ©
o N N ° S
W Q&,@c’ N £ 2 2=
® ® = * = °
g h
o 4 IL6 Inflammatory CT26 4T1 CT26
kS Hypoxi aSTAT3 response 100 100~ 100+
% l{NF-KB
= 2 UPR\.. o % 75 75 75
[ ] = 7 1 a4
@ '.b\EMT g;ansaling <
20 M ‘g 50{ P= 0.017 50 P = 0.0002 501 P = 0.03
P o OxPhos "Y€ % HR =0.24 HR =0.34 HR = 0.34
o o o a (0.07-0.77) (0.15-0.77) (0.12-0.92)
© 21 DNAT * 251 . 251 : 05| (0120
© repair Mitotic spindie —s ~ Vehicle = Vehicle - Vehicle
8 A E2F targets—e 0 - C-176 2 -~ C-176 - H-151
- . . . . . ) . . .
1 01 0.01 <0.001 0 25 50 75 0 10 20 30 0 25 50 75
FDRq Time (days) Time (days) Time (days)

Extended DataFig. 9 | Pharmacological suppression of STING and ER

stress attenuates tumor progression. a-d, Abundance of Gr-MDSCs

(a), NK-cells (b), CD8+ T-cells (c), and M2-like macrophages (d) in freshly
resected CIN"&"4T114-day-old tumors treated with vehicle or AMG44 a PERK
inhibitor; barsrepresent meanvalues+s.e.m,*p <0.05,**p <0.01, 2-sided
t-test, n=4 (vehicle) or 7(AMG44). e, Immunoblots for CHOP and BiPin4T1cells
with or without tunicamycin treatmentin the presence STING inhibitor C-176 or
vehicle with B-actin asloading control. f, Relative Ccl2 productionlevels in
vehicleand H-151treated 4T1cells; barsrepresent mean +SD, ****p <0.0001,

two-sided Welch’s t test, n = 8.g, Gene-set enrichment analysis (GSEA) results
showing HALLMARK gene sets that are differentially enriched between vehicle
and C-176-treated B16F10 cells, one-sided weighted Smirnov-Kolmogorov test
corrected for multiple tests. h, Animal survival upon tail vein inoculation of
CT260r4T1cellsin BALB/c hosts that were treated with C-176, H151 or a
corresponding vehicle control, two-sided log-rank test, n = 15animals per
experimental arm. i, The number of surface lung metastases after tail vein
inoculation of CT26 cells; bars represent median values, * p < 0.05, two-sided
Mann-Whitney test, n =12-13 animals per group.
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Extended DataFig.10 | Repetitive cGAMP stimulation reveals signal
re-wiring downstream of STING. a, Relative expression levels of Ifnbland ISGs
inmock, cGAMP, or Pol(I:C)-transfected 4T1cells; barsrepresent mean,n=3
independent experiments (n =2 for Poly(I:C)-treated), each with two technical
replicates. b, Relative expression level of ER-stress genes in IMR9O0 cells after
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the fifth cGAMP stimulationin the presence of 4-Phenylbutyric Acid (4-BPA,
orange) or vehicle (red). ¢, Relative expression level of interferon-stimulated
genes (ISGs) after the first cGAMP stimulation and ER-stress/NF-kB target
genes after the fifth cGAMP stimulationin IMR90 cellsin the presence of STING
inhibitor H-151 (blue) or vehicle control (red).
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Extended DataFig.11| ChroniccGAS-STING activation forebodes poor
prognosis inhuman TNBC. a,Immunoblots for STING inIMR90 after the
firstand fifth cGAMP stimulation with B-actin asloading control. b, Normalized
STING protein levelsin control, CgasKO, and Sting1 KO cells; bars represent
mean+SD, *p <0.05,two-sided ratio-paired t-test, n =3 independent
experiments. ¢, Immunoblots for STING of 4T1WT and Cgas KO cells treated
with BafAlor vehicleinthe presence of translation inhibitor cycloheximide
with B-Actinasloading control. d, Representative high-resolutionimage of
human tumor sample stained with DAPI (DNA) and anti-cGAS antibody showing

lymphocytes (%)

selectivelocalization of cGAS at micronuclei, scale bar 5-pm. e, Bar graph
depicting therelationship between tumor cGAS and STING proteinlevelsin
TNBC, two-sided Chi-Square x*test, n =179 tumors. f-g, Distant metastasis-free
survival (DMFS) of patients with TNBC stratified based tumor STING (f) and
cGAS (g) expressionintensity, log-rank test, n =155 patients. h, Percentage of
tumorinfiltrating lymphocytesin TNBC tumors stratified based on protein
expression of cGAS and STING, barsrepresent mean+s.e.m,n=16 and 57
patientsinthe cGAS""STING"&"and cGAS"e"STING'"*" tumors, respectively,
two-sided t-test.
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Extended DataFig.12 | CINis associated withimmune suppressionin
human tumors. a, Clustered heatmap (average Euclidean distance) showing
min-max normalized average log-transformed expression of key pathways and
tumor cell CNV Diversity (Methods) used to stratify the 8 human TNBC tumors
into CIN'"and CIN"&"subsets. b, Violin plots for the significant (p < 0.05)
within-sample Spearman correlations between the mean CIN signature and
mean TypelIFN (left), non-canonical NF-kB (middle), and hallmark UPR (right)
signatures computed using all tumor cells within each sample (n =10,836 cells
from 8 human tumors). Nodes are colored by sample condition (blue: CIN'¥,
red: CIN"e") and the overlaid box plots denote the minima and maxima (within
1.5*IQR), median, and 1*and 3" quartiles. ¢, Strip plot showing CIN-dependent
differential abundance within human TNBC cohort. Same as Fig. 2b, but for all
celltypesinthehuman TNBC cohort.d, Strip plot showing conserved CIN-
dependent differentialabundance effects (mean enrichment must be both
positive or both negative) of cell types in mouse and human TNBC data, ranked
by the mean mouse CIN-dependent log,(fold change) within each cell subtype.
Nodesizeisscaled by p-value, so that more significant differential abundance

neighborhoods are larger. Bar plots show the mean log,(fold change) of
neighborhoods with significant (p-value <=0.1) differential abundance scores;
if fewer than two significant neighborhoods are detected, all neighborhoods
areused in computing the mean. e, ContactTracingcircos plot, asin Fig. 4a,
intersected with CIN-dependentinteractions detected in human TNBC; which
aredefined as exhibiting CIN-dependent differential expression of theligand
inhuman tumors (q < 0.05,log,FC mustbein same direction as CIN-and STING-
inmouse analysis), and we detection >=10 CIN-dependent interaction effects
inthetargetcell type. DataprovidedinSupplementary Table 9. f, Fraction of
overlapping CIN-dependentinteractions predicted inmouse and human TNBC
samples asafunction of the top ranked interactions per dataset; evaluated
withinthe subset of interactions that canbe mapped between the human and
mouse. Eachuniqueinteraction (identified by receptor, target cell type,
ligand) is ranked by the number of CIN-dependentinteraction effects detected
inthetargetcell type, multiplied by the identity function that expression of the
ligandis also CIN-dependentin any cell type inthe TME.
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< The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Software and code

Policy information about availability of computer code

Data collection  Western blots were captured using ImageStudio software version 5.2 and Amersham ImageQuant™ 800 version 1.2.
Bioluminescence images were collected with IVIS Lumina LT Inst, Series Ill.
Zen 3.4 Blue Edition for image capture.
SpectroFlo (Cytek Biosciences) was used for flow cytometry data acquisition.

CellRanger (v3.1.0) was utilized to construct a count matrix from raw reads, including sample demultiplexing, alignment to CellRanger’s
mm10-3.0.0 reference (GRCm38, available as a CellRanger reference package on 10X Genomics Downloads page), barcode processing, and
the generation of a raw digital expression matrix by collapsing groups of reads with the same unique molecular identifier (UMI), cell barcode
and gene annotation. The count matrix was then loaded into python using scanpy (v1.7.2) (read_10x_h5) for subsequent pre-processing and
downstream analysis.

Data analysis Western blots images were analyzed with ImageJ (1.52m 20) and ImageStudio software version 5.2
Bulk RNA sequencing analysis of BI6F10 was done with:
Broad Picard Pipeline (2.19.1)
GenomicAlignments (v1.18.1)

DESeq2 (v1.24.0)

Flow cytometry data was analyzed with FlowJo software, version 10.8.2.
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Custom code, including docker environments with jupyter notebooks demonstrating the ContactTracing method, are available on the
Laughney Lab GitHub (https://github.com/LaughneylLab/ContactTracing_tutorial, https://zenodo.org/record/8061480). Code for the
interactive web dashboard is available on GitHub (https://github.com/Laughneylab/ContactTracing-Viz/, https://zenodo.org/
record/8067675), respectively, Circos software93 (v0.69-9) was used to visualize ligand-receptor interactions based on measured
transcriptional responses (ContactTracing). Network plot in Extended Data Fig. 4h was created with Cytoscape94 v3.8.2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All single cell RNA sequencing data generated in this study have been deposited in the NCBI's Gene Expres-sion Omnibus (GEO) database under accession code:
GSE189856 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189856).

The GRCm38 genome reference is available as a CellRanger reference package (version mm10-3.0.0).

All single cell RNA sequencing from the independent human cohort is available in the NCBI's GEO under accession code: GSE176078, and the spatial data from the
same studly is at https://zenodo.org/record/4739739.

CellPhoneDb can be found at https://www.cellphonedb.org (v2.1.4 was used for this study), and celltalkdb database is at http://tcm.zju.edu.cn/celltalkdb/
download.php.

An interactive web dashboard is made available at http://contacttracing.laughneylab.com/ to enable interactive exploration of data from this study, allowing users
to visualize pair-wise ligand-receptor-mediated interactions and systems-level interactions in circos plots (like Fig. 4a and Extended Data Fig. 12e) using plotly
v5.11.0 and dash v2.7.1. Processed scRNA-seq data sets appropriate for input to the ContactTracing method are available at https://doi.org/10.5281/
zen0do.8061222.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant

groupings

Population characteristics This was an existing tissue microarray of breast tumor samples
Recruitment N/A

Ethics oversight Memorial Sloan Kettering Cancer Center Institutional Review Board

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Power analysis was used to estimate the numbers of animals for survival experiments. For metastasis experiments relying on the tumor
burden or lung surface metastasis number, the animal numbers were estimated based on prior experience with the models

Data exclusions  Cell selection and filtering are detailed in the Methods section. Viable cells were distinguished from droplets consisting of ambient mRNA
transcripts arising in solution due to premature lysis or cell death based on library size. Cells were ranked by library size (total molecule
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counts) in descending order. We then computed the first and second derivative of the normalized sum of this array (based on average of a 10-
cell rolling window) and identified the inflection point, or first instance in which the second derivative is zero. All cells with a library size less
than 0.9X the inflection point were discarded. Additionally, cells with > 10% of transcriptions derived from mitochondria cells with low
coverage, or cells with low complexity libraries (in which detected molecules align to a small subset of genes determined by at least 0.4X
standard deviations from a linear fit) were discarded. Following single sample pre-processing and filtering, all biological samples (n =13
murine tumors) were merged. Cell doublet scores computed in individual samples were subsequently assessed at the cluster and single cell
level for the merged library. Three clusters distinguished by high average double score and individual cells with doublet scores greater a
threshold were removed. Altogether, this resulted in the removal of 474 putative doublet cells from the merged cell atlas. Louvain clustering
distinguished one small cluster (n = 1,174 cells) with a high fraction of unassigned cells (63%) and characteristically low average library size (<
1,000 molecules/cell); (n=745) unassigned cells from this cluster were removed as low-quality cells with an unclear phenotype. Three within-
cell type clusters (comprising a total of 773 cells) exhibited features of apoptotic cells with low library size and were removed. Additionally, a
contaminating subset of osteoclasts (n = 150 cells) were removed from downstream analyses.

This strategy resulted in 39,234 cells obtained from 14 surgically removed mouse primary tumor samples.
Replication No attempts for the replication failed. Replicates were stated in the figure legends or in the Method section.

Randomization  Forin vivo experiments, animals were randomly assigned to different groups.
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Blinding Investigators were not blind to group allocation as this information was essential for experiment conducting.
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Antibodies

Antibodies used Following antibodies were used in immunoblots:
Anti-Mouse cGAS (Cell Signaling Technology, Cat# 31659, D3080)
Anti-B-actin (Abcam, Cat#f ab6276, AC-15)
Anti-STING (Cell Signaling Technology, Cat# 13647, D2P2F)
Anti-STING (Cell Signaling Technology, Cat# 50494, D1V5L)
Anti-a-tubulin (Sigma-Aldrich, Cat# 79026, DM1A)
Anti-p-PERK (Thr980) (Cell Signaling Technology, Cat# 3179, 16F8)
Anti-PERK (Cell Signaling Technology, Cat# 3192, C33E10)
Anti-BiP (Cell Signaling Technology, Cat# 3177, C50B12)
Anti-CHOP (Cell Signaling Technology, Cat# 2895, L63F7)
Anti-ATF4 (Cell Signaling Technology, Cat# 11815, D4B8)
Anti-p-elF2a (Ser51) (Cell Signaling Technology, Cat# 3597, 119A11)
Anti-elF2a (Cell Signaling Technology, Cat# 5324, D7D3)
Anti-CoxIV (Abcam, Cat# ab16056, polyclonal)

Following antibodies were used in immunofluorescence staining:

Anti-Mouse cGAS (Cell Signaling Technology, Cat# 31659,D3080)

Anti-Human cGAS (Millipore Sigma, Cat# ABF124,Polyclonal) Lot# 3168722
Anti-Human cGAS (Sigma Aldrich, Cat# HPA031700,Polyclonal) Lot# D117238
Anti-Human cGAS (LSBio, Cat# LS-C757990,1697CT136.65.30) Lot# 164559
Anti-Human centromere proteins (Antibodies Incorporated, Cat# 15-234-0001,)
Anti-STING (Cell Signaling Technology, Cat# 13647,D2P2F)

Following antibodies were used in the flow cytometry analysis:
Anti-CD11b-PE-Cyanine7 (Thermo Fisher Scientific, Cat# 25-0112-82, M1/70)
Anti-Ly-6G-APC (Thermo Fisher Scientific, Cat# 17-9668-82, 1A8-Ly6g)
Anti-CD80-Brilliant Violet 650 (BioLegend, Cat# 104732, 16-10A1)
Anti-CD206-PE (Biolegend, Cat# 141706, CO68C2)

Anti-F4/80-PE/Cyanine5 (Biolegend, Cat# 123111, BM8)




Validation

Anti-MHC class II-Brilliant Violet 605 (BioLegend, Cat# 107639, M5/114.15.2)
Anti-CD44-Alexa Fluor® 647 (BioLegend, Cat# 103017, IM7)
Anti-NKp46-Brilliant Violet 510 (BioLegend, Cat# 137623, 29A1.4)
Anti-CD8a-Brilliant Violet 421 (BioLegend, Cat# 155010, QA17A07)
Anti-CD45RB-PerCP/Cyanine5.5 (BioLegend, Cat# 103313, C363-16A)
Anti-CD45R/B220-Alexa Fluor® 700 (BioLegend, Cat# 103231, RA3-6B2)
Anti-Gr-1-APC/Fire™ 750 (BioLegend, Cat# 108455, RB6-8C5)

Anti-CD16/32 (BiolLegend, Cat# 101319, 93)

The primary antibodies used were purchased from reputable sources validated for the species and application (immunoblotting, flow
cytometry, or immunofluorescence) by their respective manufacturers in their website's validation statements.

Anti-mouse CD11b-PE-Cyanine7 (https://www.thermofisher.com/antibody/product/CD11b-Antibody-clone-M1-70-
Monoclonal/25-0112-82)

Anti-mouse Ly-6G-APC (https://www.thermofisher.com/antibody/product/Ly-6G-Antibody-clone-1A8-Ly6g-Monoclonal/17-9668-82)
Anti-mouse CD80-Brilliant Violet 650 (https://www.biolegend.com/en-us/products/brilliant-violet-650-anti-mouse-cd80-
antibody-7642)

Anti-mouse CD206-PE (https://www.biolegend.com/en-us/products/pe-anti-mouse-cd206-mmr-antibody-7424)

Anti-mouse F4/80-PE/Cyanine5 (https://www.biolegend.com/en-us/products/pe-cyanine5-anti-mouse-f4-80-antibody-4069)
Anti-mouse MHC class II-Brilliant Violet 605 (https://www.biolegend.com/en-us/products/brilliant-violet-605-anti-mouse-i-a-i-e-
antibody-11988)

Anti-mouse CD44-Alexa Fluor® 647 (https://www.biolegend.com/en-us/products/alexa-fluor-647-anti-mouse-human-cd44-
antibody-3098)

Anti-mouse NKp46-Brilliant Violet 510 (https://www.biolegend.com/en-us/products/brilliant-violet-510-anti-mouse-cd335-nkp46-
antibody-9578)

Anti-mouse CD8a-Brilliant Violet 421 (https://www.biolegend.com/en-us/products/brilliant-violet-42 1-anti-mouse-cd8a-
recombinant-antibody-18186)

Anti-mouse CD45RB-PerCP/Cyanine5.5 (https://www.biolegend.com/en-us/products/percp-cyanine5-5-anti-mouse-cd45rb-
antibody-6225)

Anti-mouse CD45R/B220-Alexa Fluor® 700 (https://www.biolegend.com/en-us/products/alexa-fluor-700-anti-mouse-human-cd45r-
b220-antibody-3408)

Anti-mouse Gr-1-APC/Fire™ 750 (https://www.biolegend.com/en-us/products/apc-fire-750-anti-mouse-ly-6g-ly-6¢-gr-1-
antibody-13202)

Anti-mouse CD16/32- (https://www.biolegend.com/en-us/products/trustain-fcx-anti-mouse-cd16-32-antibody-5683)

Anti-Mouse cGAS (https://www.cellsignal.com/products/primary-antibodies/cgas-d3o8o-rabbit-mab/31659)

Anti-b-actin (https://www.abcam.com/products/primary-antibodies/beta-actin-antibody-ac-15-ab6276.html)

Anti-STING (https://www.cellsignal.com/products/primary-antibodies/sting-d2p2f-rabbit-mab/13647)

Anti-STING (https://www.cellsignal.com/products/primary-antibodies/sting-d1v5I-rabbit-mab/50494)

Anti-a-tubulin (https://www.sigmaaldrich.com/US/en/product/sigma/t9026)

Anti-p-PERK (Thr980) (https://www.cellsignal.com/products/primary-antibodies/sting-d1v5I-rabbit-mab/50494)

Anti-PERK (https://www.cellsignal.com/products/primary-antibodies/perk-c33e10-rabbit-mab/3192)

Anti-BiP (https://www.cellsignal.com/products/primary-antibodies/bip-c50b12-rabbit-mab/3177)

Anti-CHOP (https://www.cellsignal.com/products/primary-antibodies/chop-163f7-mouse-mab/2895)

Anti-ATF4 (https://www.cellsignal.com/products/primary-antibodies/atf-4-d4b8-rabbit-mab/11815)

Anti-p-elF2a (Ser51) (https://www.cellsignal.com/products/primary-antibodies/phospho-eif2a-ser51-119al1-rabbit-mab/3597)
Anti-elF2a (https://www.cellsignal.com/products/primary-antibodies/eif2a-d7d3-xp-rabbit-mab/5324)

Anti-CoxIV (https://www.abcam.com/products/primary-antibodies/cox-iv-antibody-mitochondrial-loading-control-ab16056.html)
Anti-B-Tubulin (https://www.thermofisher.com/antibody/product/beta-Tubulin-Antibody-clone-2-28-33-Monoclonal/32-2600)

Anti-Human cGAS (https://www.sigmaaldrich.com/US/en/product/mm/abf124)

Anti-Human cGAS (https://www.sigmaaldrich.com/US/en/product/sigma/hpa031700)

Anti-Human cGAS (https://www.lsbio.com/antibodies/c6orf150-antibody-mb21d1-antibody-clone-1697ct136.65.30-elisa-whb-
western-Is-c757990/783701)

Anti-Human centromere proteins (https://www.antibodiesinc.com/products/anti-centromere-protein-antibody-15-234)

For human cGAS antibody in immunofluorescence staining, we validated them with human cell lines with Cgas shRNA knockdown
samples.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

4T1 (CRL-2539), B16F10 (CRL-6475), THP-1 (TIB-202), B16FO(CRL-6322), B16F1 (CRL-6323), IMR90 (CCL-186), EO771.Imb
(CRL-3405), RAW 264.7 (TIB-71), and CT26 (CRL-2638) cells were purchased from American Type Culture Collection (ATCC).

All cell lines used in this manuscript were authenticated by ATCC which used morphology, karyotyping and PCR-based
techniques.

Mycoplasma contamination All cell lines tested negative for mycoplasma using Lonza MycoAlert® Detection Kit.
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Commonly misidentified lines  None.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals All mice were purchased from Jackson Laboratories. 6-8-week-old female were used.
NOD-scid IL2Rgammanull (NSG) (Jackson Laboratories strain 005557)
Athymic nude (Jackson Laboratories strain 002019)
BALB/cJ (Jackson Laboratories strain 000651)
C57BL/6 (Jackson Laboratories strain 000664)

Animals were housed under the following conditions: 12-12 hour light-dark cycle, 21.1-22.2 °C, 30%-70% humidity.
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Wild animals No wild animals were used in the study.
Reporting on sex All mice are female. EO771.Imb and 4T1 are breast cancer model. For B16F10 and CT26, female are widely used in literatures.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight Animal experiments were performed in accordance with protocols approved by the MSKCC Institutional Animal Care and Use
Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  N/A Retrospective Biospecimen protocol

Study protocol MSKCC Institutional Review Board
Data collection N/A
Qutcomes N/A

Flow Cytometry

Plots
Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Tumor pieces were digested to single-cell suspension with Colla- genase/Hyaluronidase (Stemcell Technologies, Catalog #
07912) and DNAase | (Stemcell Technologies, Catalog # 100-0762) according to the manufactural manual, followed by filtered
with 70-uM cell strainers. Cells were stained with Zombie NIRTM Fixable Viability Kit (BioLegend Catalog # 423105) for 10
minutes on ice and followed by blocking with TruStain FcXTM (anti- mouse CD16/32) Antibody (BioLegend Catalog # 101319).
Cells were then stained with fluorophore-conjugated antibody solution in PBS containing 2% FBS on ice for 30 minutes.

Instrument Analysis was performed on a Cytek Aurora instrument.

Software Data was analyzed with FlowJo software, version 10.8.2.

Cell population abundance We didn't have any data using FACS sorted cells.




Gating strategy Gating Strategy was illustrated in Supplementary Information.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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