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Homologous recombination (HR) deficiency is associated with DNA rearrangements

and cytogenetic aberrations’. Paradoxically, the types of DNA rearrangements that are
specifically associated with HR-deficient cancers only minimally affect chromosomal
structure?. Here, to address this apparent contradiction, we combined genome-graph
analysis of short-read whole-genome sequencing (WGS) profiles across thousands of
tumours with deep linked-read WGS of 46 BRCAI- or BRCA2-mutant breast cancers.
These datarevealed adistinct class of HR-deficiency-enriched rearrangements called
reciprocal pairs. Linked-read WGS showed that reciprocal pairs with identical
rearrangement orientations gave rise to one of two distinct chromosomal outcomes,
distinguishable only with long-molecule data. Whereas one (cis) outcome corresponded
tothe copying and pasting of a small segment to a distant site, a second (¢rans) outcome
was a quasi-balanced translocation or multi-megabase inversion with substantial

(10 kb) duplications at each junction. We propose an HR-independent replication-
restart repair mechanism to explain the full spectrum of reciprocal pair outcomes.
Linked-read WGS also identified single-strand annealing as a repair pathway that is
specific to BRCA2 deficiency in human cancers. Integrating these featuresin a classifier
improved discrimination between BRCA1- and BRCA2-deficient genomes. In conclusion,
our datareveal classes of rearrangements that are specific to BRCA1 or BRCA2
deficiency as asource of cytogenetic aberrations in HR-deficient cells.

Cancer genomes provide a record of the genetic alterations acquired
from DNA damage and DNA repair defects during normal cell develop-
ment and carcinogenesis®. Genome-wide somatic alteration patterns
in BRCAIl-deficient (BRCA1d) and BRCA2-deficient (BRCA2d) cancers**
are attributed to a deficiency in HR, a major pathway for the repair of
double-strand breaks (DSBs) in human cells. Some of these mutational
patterns could reflect specific error-prone mechanisms of DSB repair
that cells use in the absence of HR®. Such mutational patterns can pro-
vide biomarkers of HR deficiency and help to identify clinically relevant
therapeutic vulnerabilities®”’.

Impaired DSB repair in HR-deficient (HRD) cells is thought to compro-
mise structural genomicintegrity, leading to characteristic cytogenetic
alterations including radial chromosomes and chromosome bridges'®°.
Confirmingthese cytogenetic observations, microarray and WGS stud-
ies have found loss of heterozygosity (LOH) and other megabase-scale
patterns of allelicimbalance to be enriched among HRD cancers®'* ™,
Such copy number alterations, however, are also found in HR-proficient

(HRP) tumours and have not been linked to specific classes of structural
variants (SVs). Paradoxically, the key genomic features that distinguish
BRCA1d and BRCA2d from HRP tumours are single-nucleotide variants
(SNVs), small deletions with microhomology, tandem duplications
and simple deletions?, all which have minimal effects on chromosomal
structure. As aresult, it is still poorly understood how aberrant DSB
repair produces the associated cytogenetic phenotype in HR deficiency.

Developments in the analysis of cancer genomes allow for system-
aticannotation of complex SVs such as chromothripsis (chromosome
shattering)™, chromoplexy (balanced rearrangement chains)® and
templated insertion chains (TICs) '8, Previous WGS analyses of HR
deficiency, however, have not considered this expanded SV taxon-
omy, either ignoring complex SVs* or treating them as a single ‘clus-
tered rearrangement’ category? They have also treated copy number
and rearrangement independently, unlike more recently developed
genome-graphalgorithms thatintegrate these features under the prin-
ciple of mass balance'®. We reasoned that a genome-graph analysis

'Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 2Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY,
USA. ®°New York Genome Center, New York, NY, USA. “Physiology and Biophysics PhD program, Weill Cornell Medicine, New York, NY, USA. *Tri-Institutional PhD Program in Computational
Biology and Medicine, Weill Cornell Medicine, New York, NY, USA. ®Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ’Englander Institute for Precision
Medicine, Weill Cornell Medicine, New York, NY, USA. ®Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA. °Meyer Cancer
Center, Weill Cornell Medicine, New York, NY, USA. °Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA. "Institute for Computational Biomedicine, Weill
Cornell Medicine, New York, NY, USA. ?Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA. *These authors contributed equally:
Jeremy Setton, Kevin Hadi, Zi-Ning Choo. “These authors jointly supervised this work: Simon N. Powell, Marcin Imielinski. ®e-mail: powells@mskcc.org; mski@mskilab.org

Nature | Vol 621 | 7 September 2023 | 129


https://doi.org/10.1038/s41586-023-06461-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06461-2&domain=pdf
mailto:powells@mskcc.org
mailto:mski@mskilab.org

Article

might uncover HR-deficiency-specific patterns of complex SVs, which
couldimprove the classification of HRD tumours and provide mecha-
nistic insights into their origin.

Genome-graph analysis of HRD tumours

To investigate the role of complex SVs in HRD cancers, we assembled
a dataset of 979 predominantly primary (95%) cancer WGS profiles
from four tumour types that are commonly associated with HR defi-
ciency” (breast, ovarian, prostate and pancreatic cancer; referred to
as BOPP, Methods and Extended Data Fig. 1). These included 24 and
36 cancers with biallelic inactivation of BRCA1 and BRCA2, respec-
tively, and 487 HRP tumours that lacked mono- or biallelic altera-
tions in any HR-pathway gene (Extended Data Fig. 1, Supplementary
Table 1, Methods and Supplementary Note 1). We then compared SV
patterns between BRCA1d, BRCA2d and HRP tumours using meth-
ods that integrate copy number changes and rearrangements across
genome graphs',

Analysing the burden of individual simple SV classes between
BRCA1d, BRCA2d and HRP tumours, we confirmed the previously
observed enrichment of short (1-100 kbp) SV duplications in BRCA1d
cancers, and deletionsinboth BRCA1d and BRCA2d cancers (Extended
Data Fig. 2a). Although BRCA1d and BRCA2d cancers had higher SV
burdens than did HRP cancers (Extended Data Fig. 2b), we found no
significant differencein the burden of simple translocations andinver-
sions (Extended Data Fig. 2a), as has been previously noted*.

We next asked whether HRD tumours were enriched in specific
classes of complex SVs, and found no significant difference in the
burden of seven previously characterized complex SV categories™
in BRCA1d or BRCA2d relative to HRP tumour samples (Extended
DataFig. 2c). Contrary to the commonly held assumption that HRD
cancers are exceptionally rearranged compared to HRP cancers, we
found that they contained similar burdens of most SV classes, includ-
ing complex SVs. TICs, however, were significantly enriched among
both BRCA1d and BRCA2d relative to HRP tumours (Extended Data
Fig. 2c). TICs arise through the copying and pasting of smaller (less
than10 kb) and genomically dispersed DNA segmentsinbetween larger
(megabase-scale) segments®.

Near-reciprocal SVs in HRD cancers

A classic reciprocal rearrangement (that is, balanced translocation
or inversion) occurs without the loss or gain of genetic material and
involves a pair of DNA junctions with break ends that adjoin the same
break point (Fig. 1a, left). However, many rearrangements, including
translocations andinversions, are near-reciprocal, withbreak ends that
arenearby but notadjacent onthe genome (Fig.1a, middle). TICs and
chromoplexies® (chains of balanced rearrangements) are examples of
complex SVs that are near-reciprocal.

Near-reciprocal SVs contain copy loss or gain of the intervening
genomic region, which we call a gap segment (Fig. 1a, middle). The
direction of copy loss versus gain at the gap segment is determined
by its polarity, which by conservation of mass yields a copy gain when
break endsjoin the gap segment (+ polarity) and copy loss when break
ends join the flanking segments (- polarity). For a (+) gap segment,
theidentical locus topology and copy number profile may be equally
consistent with a translocation or a simple templated insertion, in
whichagap segmentis copied toadistantlocus and leaves the source
locus unaltered (Fig. 1a, right).

Despite their enrichmentin BRCA1d and BRCA2d cancers, TICs were
still found in a substantial fraction (36%) of HRP tumours (Extended
DataFig.2d). We hypothesized that amore comprehensive analysis of
near-reciprocal junctions might yield uniquely HR-deficiency-specific
patterns. Analysing clusters of near-reciprocal junctions linked by
(+) and (-) polarity gaps (Methods and Extended Data Fig. 3a,b) ina
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training dataset (Extended Data Fig.1) revealed simple paired patterns
(for example, balanced translocations with short 6-7-bp (=) polarity
gap segments), as well as more complex cyclic and non-cyclic recip-
rocal SV topologies comprising (+) and/or (=) polarity gap segments
(Extended DataFig. 3c,d).

Comparing near-reciprocal SV topologies across genotypes, we
found that paired and cyclic patterns were most significantly enriched
in BRCA1d (1 =10.17 events per case, relative risk (RR) 4.72, P=3.6 x
1072, Wald test on gamma-Poisson regression) and BRCA2d (1 = 5.59, RR
4.73,P=5.7x10™) cancersrelative to HRP cancers (u = 1.13) (Extended
DataFig.3e). We call these cyclic and paired patterns reciprocal pairs.
Notably, we did not find genotype-specific differences in non-cyclic
or higher-order reciprocal SVs comprising more complex templated
insertion events and chromoplexies (Extended Data Fig. 3c-e).

Visualizing the gap segmentlengths and polarities of reciprocal pairs
revealed three distinct subpatterns that were specific to BRCA1 defi-
ciency and/or BRCA2 deficiency (Fig. 1b). The first was an enrichment
in BRCA1d tumours of reciprocal pairs with two 100-bp-100-kbp (+)
polarity gap segments, which we call reciprocal duplications (rDups;
Fig. 1c, left). The second was an enrichment in BRCA2d tumours of
reciprocal pairs with two 1-bp-10-kbp (-) gap segments, which we call
reciprocal deletions (rDels; Fig. 1d, left). The third was anenrichmentin
BRCA1d and BRCA2d cases of reciprocal pairs comprising 1-bp-100-kbp
gap segments of opposite (+) and (-) polarity, which we call reciprocal
deletion-duplications (rDelDups; Fig. 1e, left). Inspection of individual
reciprocal pair loci (Fig. 1c-e, left) confirmed that these occurred in
genomicregions that otherwise did not contain other rearrangements
withinal-Mbp vicinity. Analysis of these patternsin a validation dataset
(Extended DataFig.1) confirmed the enrichment of rDups, rDels, and
rDelDupsin BRCA1, BRCA2 and HR deficiency, respectively (Fig.1c-e,
right and Supplementary Note 2).

Long-molecule WGS of HRD cancers

Identical rearrangement topologies can have very distinct chromo-
somal outcomes, or phases (Fig. 1a). We noted that the topology and
copy number profile of reciprocal pairs were consistent with either
of two outcomes: (1) the templated insertion of a small (around
1bp-100 kbp) segment to an ectopic site; or (2) alarger quasi-balanced
rearrangement such as a translocation or inversion (Extended Data
Fig. 4a). We also observed that most reciprocal pairs comprised
long-range (either interchromosomal or larger than 10-Mbp intra-
chromosomal) junctions (Fig. If). This indicated that, depending on
the outcome, reciprocal pairs could have either a minimal or a major
effect on chromosomal structure.

Toresolvethisaspect of reciprocal pairs, we performed linked-read
(LR) and standard WGS on 46 tumours and matched normal sam-
ples that were originally found by clinical panel sequencing to have
inherited or somatic mutationsin BRCA1 (27 cases) or BRCA2 (19 cases;
Extended DataFigs.1and 4b and Supplementary Note 3). LRWGS pro-
vided deep (median, 149x) genome-wide physical coverage of tumour
and normal samples throughbarcoded short-read sequencing of long
DNA molecules (median length, 24.4 kbp; Extended Data Fig. 4c). We
reasoned thatlong molecules would help toresolve reciprocal pairsinto
phased somatic haplotypes and provide insight into the mechanistic
origin and outcome of these SVs.

Weidentified 186 reciprocal pairs among BRCAld and BRCA2d cases
(u=5.17 per case). Comparison of standard and LR WGS profiles showed
concordantrDel, rDup and rDelDup calls (83.5% overlap; Extended Data
Fig. 4d), although LR WGS identified 29 additional reciprocal pairs.
Confirming results from the BOPP short-read WGS dataset, BRCAld
tumours had higher burdens of rDups than did BRCA2d tumours
(P=1.95x107* RR =49.50, Wald test on gamma-Poisson regression),
and rDups were found in most (82%) BRCAld tumours but in only one
BRCA2d tumour. Similarly, rDels were present in most (71%) BRCA2d
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Fig.1|Reciprocal pairs are enriched in BRCAld and BRCA2d tumours.

a, Schematic of exact and near reciprocality, using translocations as an
example. Exactly reciprocaljunctionslink break ends that adjoin the same
break point (schematic on theright), giving rise to a balanced translocation.
Near-reciprocal junctions are associated with agap segment (dark blue) thatis
lost (middle left) or gained (right examples). The gap segment polarity refers to
whether the adjoiningjunctions connect to the gap segment (+ polarity; right
two examples) or toits adjacent segments (- polarity, middle left example). The
polarity determines whether there is a copy gain (+) or loss (- polarity) of the
gap segment. Both (-) and (+) gap segments can give rise to quasi-balanced
translocations; however, (+) gap segments are also equally consistent witha
templatedinsertion (right). CN, copy number. b, Gap segment lengths and

tumours but absent in all but four BRCA1d tumours (P=1.85x107,
RR =11.67; Extended Data Fig. 4e).

Toassess whether reciprocal pairs could be responsible for large-scale
rearrangementsin HRD cancers, we inferred their derivative chromo-
somalstructure, or phase (Extended Data Fig. 4a). The specific goal of
these analyses was to distinguish between cis (copy-paste, templated
insertion) outcomes and trans (balanced translocation or inversion)
outcomes on the basis of LR WGS alignment patterns (Fig. 2a and
Extended Data Fig. 4a; Methods). After benchmarking phasing meth-
ods (Extended Data Fig. 5a,b and Supplementary Note 4), we analysed
reciprocal pairsin our LR WGS data.

Phasing of 94 rDups in BRCAld samples revealed a predominance
(67/94; 71%) of cis phases (Fig. 2b,d), each resulting in the copying and
pasting of a gap segment in between the tandem-duplicated gap seg-
ments of a distant locus. For example, given two loci ABC and DEF,
thiswould yield an ABEBC haplotype containing the variant BEand EB
junctionsintandem, and leaving the other DEF haplotype unrearranged
(Fig. 2b). The remaining 29% of loci contained trans configurations
(Fig.2c,d), inwhichthe BE and EB junctions were placed on discontigu-
ous (for interchromosomal rDups) or distant (for intrachromosomal

polarities of three canonical reciprocal pair patterns (right) plotted across
BRCA1d, BRCA2d or HRP cases (left). Density is calculated as a Gaussian kernel
normalized by the number of BRCA1d (n=9), BRCA2d (n=23) or HRP (n =251)
casesineach plot.c-e,Examples of rDups (c), rDels (d) and rDelDups (e) with
violin plots showing their relative burdensacross 15BRCA1d, 13BRCA2d and
236 HRPsamples, which areindependent from the datainb. Pvalues obtained
by Wald test onagamma-Poisson regression model. f, Distribution of junction
spans associated with different classes of reciprocal pair SVs. Note that
junctionspanisdistinct fromgap segmentlength; the formerrefersto the
genomicdistance between the two break ends belonging to ajunction, whereas
thelatterrefersto the distance betweenreciprocal break ends belonging to
distinctjunctions.

rDups) rearranged alleles. In these outcomes, two distinct derivative
alleles ABEF and DEBC shared the duplicated B and E segments. This
included balanced translocations with up to around 20 kbp of dupli-
cated sequence at the junction (Fig. 2c).

Similarly, we used LR WGS to phase 46 rDelDups across 37 HRD cases
(22 BRCA1d, 14 BRCA2d and one both BRCA1ld and BRCA2d). As with
rDups, we found both cis and trans phases at various loci (Extended
Data Fig. 5c,d), although with a trans predominance of around 2:1in
BRCAI1d tumours and a cis predominance of around 4:1in BRCA2d
tumours (Fig. 2d). Given ABC and DEF loci, cis rDelDups comprised a
‘cut, copy and paste’ outcome with an additional copy of E replacing B
onaderivative AEC allele, with an unrearranged DEF locus containing
the other E copy; by contrast, trans loci showed the same (1-241 kbp)
Esegmentduplicated across two distinct DEC and AEF derivative loci.
Finally, BRCA2d-tumour-specific rDels were predicted by short reads
togiverisetostrictly trans outcomes, which was confirmed by LR WGS
(Fig. 2d and Extended Data Fig. 5e,f). These results show that trans
reciprocal pairs are frequent among rDups, rDels and rDelDups and
serveasasource oflarge-scale rearrangements in BRCAld and BRCA2d
tumours.
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Fig.2| LRWGSreveals cis and trans phases for similar reciprocal pair
topologies. a, Multiple phased allelic reconstructions are consistent with the
rDup SV patternobservedinshort-read WGS. Each derivative alleleis represented
asa‘walk’ ororiented sequence of reference genomic segments. A phased
reconstruction comprises asetof derivative alleles that together account for
junctionand segmental copy numbers observed inthe short-read WGS genome
graph.ForarDup, two of the three possible reconstructions (cis1and cis2)
placejunctions adjacently, correspondingto the templatedinsertionof a
distant segment between duplicated copies of agap segment at the source
locus. Inthe third case (trans), the junctions are located on discontiguous or

Chromosomal effect of trans reciprocal pairs

Given thedistinct chromosomal outcomes of cis versus transrecipro-
cal pairs, we looked for features that could distinguish these loci in
short-read WGS and thus enable the study of reciprocal pair phase
across alarger dataset. Deeper analysis and visualization of the phased
structure of cisrDups (Fig. 3a, top) revealed that ashort (50 bp-1kbp) E
segment was predominantly interleaved between two copies of along
(1-300 kbp) B segment in an ABEBC configuration. The trans rDups,
however, comprised pairs of longer (1 kbp-300 kbp) B and E segments
in ABEF and DEBC haplotypes (Fig. 3a, bottom).

Plottingthese LR WGS phased cisand translocialongside unphased
data from the short-read WGS BOPP dataset, oriented to the length of
thelonger gap segmentin each pair (yaxis), revealed two distinct rDup
clusters. Thefirst ‘long-short’ rDup clusterinvolved the linking of longer
(1-100 kbp) and shorter (10 bp-1kbp) gap segments and comprised
exclusively cisevents. By contrast, transrDups were entirely containedin
thesecond ‘long-long’ cluster (Fig. 3b). Similar length differences were
found to differentiate cis and trans rDelDups (Extended Data Fig. 6a,b
and Supplementary Note 5). These length differences made it possible
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distantalleles, consistent with alarge translocation orinversion, respectively,
inwhicheach derivative allele contains a copy of both gap segments. Each
reconstruction hasadistinct LRWGS footprint, as visualized by aheat map
inwhichthe pixelsrepresent LRWGS barcode sharing between rearranged

loci (bottomright schematic, also applicabletoband c).LRS, linked-read
sequencing.b,c, TworDups, each phased by LRWGS, in cis (b) and in trans (c).
d, Counts of LRWGS phased rDups, rDels and rDelDups from either BRCA1d
(top; n=22) or BRCA2d (bottom; n=14) tumours. Reciprocal pairs are coloured
by their junction span (1-10 Mbp, >10 Mbp or interchromosomal), see Fig. 1f for
explanation.

to impute reciprocal pair phase in short-read WGS with reasonable
accuracy (Extended DataFig. 6¢c and Supplementary Note 6; Methods).

Because trans reciprocal pairs might engender long-range SVs (for
example, balanced translocations and inversions), we predicted that
transbut not cis events would be constrained in their chromosomal
orientation. Specifically, transreciprocal pairs can occurin one of two
centromeric orientations: the first (typel) orientation generates only
monocentric chromosomes, whereas the second (type Il) generates
one or more acentric derivatives (Fig. 3c). As acentric DNA fragments
arepronetolossinsubsequent cell divisions, ajunctionresidingonan
acentric fragment will be preferentially lost and the remaining junction
will not be detected as a reciprocal pair. This will result in a type I bias
for trans reciprocal pairs. Conversely, because templated insertions
do not alter the chromosomal dosage of centromeres, cis loci should
be agnostic to type I versus type Il orientation.

Indeed, when we analysed our LR WGS phased data, we found that
translocihad abias of more than9:1towardstypelversustypell, whereas
cislociwere equally likely tobein either the typelor the typell orienta-
tion (P=3.9 x107%, odds ratio (OR) = 8.57, Fisher’s exact test; Fig. 3d,
left). We next analysed unphased reciprocal pairs in the short-read
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WGS BOPP dataset, imputing cis and trans phase on the basis of size
and orientation (Fig. 3a,b and Extended Data Fig. 6a-c; Methods). We
found the same direction of bias in these data (P=1.4 x 10, OR =1.96;
Fig.3d, right), despite having onlyimputed phases. In particular, these
analyses showed that intrachromosomal trans reciprocal pairs yield
megabase-scaleinversions similarly constrained by centromere dosage.

Wealso found that the size distributions of interstitial and telomeric
losses predicted to occur with transreciprocal pairs mirrored the distri-
bution ofinterstitialand telomeric LOH found in HRD cancers (Fig. 3e,f
and Supplementary Note 7). Together, these results suggest that trans
reciprocal pairs have large-scale chromosomal consequences, and
thus can be implicated in cytogenetically visible aberrations that are
classically associated with BRCAI and BRCA2inactivation.

Replication-restart model of reciprocal pairs

The observation of distinct cis and trans phases arising from nearly
identicaljunctiontopologies (for example, rDups) suggested that they
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n=131events)and imputed (right; short-read (SR) WGS, n =593 events) cisand
transreciprocal pairs. Pvalues obtained by two-sided Fisher’s exact test. Error
bars: 95% confidence interval on Bernoulli trial parameter. e, Schematic of LOH
outcomes after a transreciprocal pair. f,LOH length distributions plotted
versus gap-to-telomere and gap-to-gap lengths for inter-and intrachromosomal
reciprocal pairs, respectively,among BRCA1d (n = 46) and BRCA2d (n=50)
BOPP cases. g, Proposed replication-restart model linking tandem duplications,
cisand transrDups and LOH. Locus 1(ABC) undergoes replication-fork collapse
and may invadelocus 2 (DEF), giving rise to cisand trans rDups. The latter might
lead to LOH (after mis-segregation). seDSB, single-ended DSB. Variations of
thismodel for rDelDups and rDels are shown in Extended Data Fig. 6g,h.
Diagramsinc, e, g created with BioRender.com.

couldrepresent distinct outcomes of ashared DNA-repair intermediate.
Notably, most reciprocal pairs joined distant genomic locations (Figs. 1f
and 2d) and had minimal sequence homology (Extended Data Fig. 6d),
suggesting apossible homology-independent repair mechanism. The
aberrant restart of a broken replication fork®® has been implicated in
the genesis of around 10-100-kbp tandem duplications in BRCAld
tumours?. Indeed, a key role of HR in human cells is in the repair of
single-ended DSBs, which can arise at stalled replication forks** %,

To investigate the possibility of a shared mechanism between tan-
dem duplications and reciprocal pairs, we analysed their distribu-
tions in our data. Notably, tandem duplications, rDups and rDelDups
frequently co-occurred in BRCA1d cases (Extended Data Fig. 6e).
In addition, the size distribution of the longer (+) gap segments in
rDups or rDelDups, but not the shorter (+) gap segments in rDups,
closely mirrored that of BRCAld-tumour-specific tandem duplica-
tions (Extended Data Fig. 6f). Although the underlying mechanism
will require experimental confirmation, we found that several sim-
ple extensions to the replication-restart model could explain the full
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spectrum of reciprocal pair alterations, including rDups (Fig. 3g),
rDelDups (Extended Data Fig. 6g) and rDels (Extended Data Fig. 6h).

Replication restart (for example, break-induced replication;
BIR) mechanisms are known to be prone to template switching
and half-crossovers, and have previously been linked to templated
insertions in cancer cells?>**%%, A key decision point between tem-
plate switching and half-crossover in BIR rests on the fate of the
displacement loop after strand invasion®*?, Factors that promote
displacement-loop disassembly or nascent strand displacement
favour template switching with shorter replication tracts*. By con-
trast, factors that stabilize the displacement loop favour long-tract
synthesis and half-crossover formation®. In our data, rDups and
rDelDups with short ectopic (E segment) tracts were exclusively in
cis, consistent with a template switch (Fig. 3a-d). In addition, for
cis rDups associated with BRCA1 deficiency, the shorter E segment
was always copied between two longer B segments (Fig. 3a). By con-
trast, only half-crossover outcomes (¢ransrDups and rDelDups) were
observed alongside longer E (1-100 kbp) segments (Fig. 3a,b). Inboth
outcomes, the distribution of rDup B-segment lengths mirrored the
size distribution of tandem duplications in BRCAld tumours (Fig. 3a
and Extended Data Fig. 6f).

Together, our observations suggest that reciprocal SVs canbe found
in both cis and trans forms, with topological and tract-length char-
acteristics previously associated with half-crossover and templated
insertion outcomes of BIR?>°, We propose a provisional model invoking
microhomology-mediated BIR (Fig. 3g and Extended Data Fig. 6g-h),
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extended from experimentally validated models established for
BRCAIld-associated tandem duplications®, that plausibly accounts
for the full spectrum of reciprocal pairs.

Scars of backup repair in BRCA2d tumours

Given our LR WGS data, we posited that other scars of HR-deficiency-
specificrepair pathways could be detected using long-molecule map-
ping.Single-strand annealing (SSA) is a DSB repair pathway thatinvolves
the hybridization of approximately homologous (homeologous) repeat
sequences flanking a DSB. Experimental model systems of HR deficiency
have shown that SSA is active in BRCA2d but notin BRCA1d cancers® >,
SSA cantolerate as little as 80% sequence identity when annealing
similar sequences deep inside resected break ends*; however, previous
genome studies of HR deficiency have only analysed exact microhomol-
ogy and have not examined inexact sequence identity.

Tobetter assessthe burden of SSAin LR WGS profiles, we developed
and validated an algorithm (Methods and Supplementary Note 8) to
detect runs of homeology, or 80% or higher sequence identity, near
somatic break ends (Fig. 4a). This algorithmidentified a peak of home-
ology around 50 bp (Fig. 4b), yielding 138 junctions with homeology
greater than 10 bp across 46 LR WGS samples. Notably, most of these
homeologous junctions were also detected with high efficiency in
short-read WGS (Extended Data Fig. 7a,b and Supplementary Note 9),
indicating that our analysis of homeology could be applied to the full
short-read WGS BOPP dataset.
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a, Receiver operating characteristic (ROC) curve and precisionrecall curve
(PRC) comparing SV features highlighted in this study with those usedin
HRDetect for accurately classifying HR deficiency (either BRCAld or BRCA2d).
Pvalues denote comparison of AUROC by two-tailed DeLong test. TPR, true
positiverate. FPR, false positiverate.b,c, Importance of highlighted SV features
inanindependent pan-cancer WGS dataset (b) and its non-BOPP subset (c).
‘Combo’ refers toacombination of the B1+2 classifier-specific SV features
highlighted in this study.IHDel, SV deletion with inexact homology.d,ROC
curvesassessing B1+2 and arandom forest classifier using only the six HRDetect
featuresinpredicting BRCA1d versus BRCA2d status. e,f, Featureimportance
for BRCA1d versus BRCA2d classificationinanindependent pan-cancer WGS
dataset (e) and itsnon-BOPP subset (f). See Extended Data Fig.1and Methods

Analysis of 583 tumour—normal pairs (BRCA1d, BRCA2d or HRP)
revealed that 1,248 of 49,561 (2.5%) junctions were homeologous,
with a distribution that mirrored LR WGS (Fig. 4c). Although the
median homeology length among these junctions was 40 bp, we
observed tracts as long as 128 bp. We next asked which classes of
simple or complex variants contained homeologous junctions.
Comparing distributions across genotypes revealed that BRCA2d
tumours had asignificantly higher burden and fraction of larger (more
than1kbp) homeologous deletions relative to BRCAld (RR =3.93,
P=4.2x107*, Wald test on gamma-Poisson regression) and HRP can-
cers (RR=3.28, P=8.37 x107°, Wald test on gamma-Poisson regres-
sion; Fig. 4d). Although we also observed homeologous break ends
in other SV classes, the burden of these events did not correlate with
HR-proficiency status (data not shown). Notably, the median size
of homeologous deletions (around 10 kbp; Fig. 4e) was consistent
with the length of end resection that is known to occur in BRCA2d

for training and testing dataset summary. MH-del, short deletion with
microhomology. g, Frequency of HR deficiency, as defined by either Blor B2
score >0.5,among common cancer types, including samples excluded from
training and testing for harbouring VUSs or monoallelic variants (n =7,918).
BRCA, breastadenocarcinoma; OV, ovarian cancer; PACA, pancreatic
adenocarcinoma; PRAD, prostate adenocarcinoma. h, Blversus B2 scoresin

the B1+2 classifier. i, Fraction of cases that are Bl or B2 positive (score > 0.5) for
cases withararebiallelic germline or somatic mutationinadditional (that s,

not BRCAI or BRCA2) HR-pathway genes (n=7,918 tumours). Error bars show 95%
confidenceinterval onthe Bernoullitrial parameter. Pvalues and odds ratios
obtained with Fisher’s exact test, without adjustment for multiple comparisons.
WT, wild type.

cells®»*2, supporting the role of SSA as a backup repair pathway in
human BRCA2d tumours (Fig. 4f).

SV features improve HRD subclassification

Having identified SV footprints of backup repair that are specific to
BRCA1d and BRCA2d cancers, we next sought to understand whether
these features could improve pan-cancer HR-deficiency classification.
Toassess the predictive value of the SV features highlighted in our study,
we built a pan-cancer HR-deficiency classifier B1+2, which augments
thesix features used by HRDetect with the five highlighted in our study
(1-100-kb tandem duplications, rDups, rDelDups, rDels and home-
ologous deletions; Methods and Supplementary Note 10). We trained
the classifier on 62 BRCA1d, 64 BRCA2d and 2,536 HRP pan-cancer
cases built from our BOPP and MSKCC datasets and additional publicly
available samples (Extended Data Fig. 1 and Supplementary Note 11).
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Whenapplied toanindependent test set of 1,966 BRCA1d, BRCA2d and
HRP pan-cancer WGS profiles from the Hartwig Medical Foundation
(‘HMF’ dataset), B1+2 showed a marginal improvement over HRDetect
(B1+2 areaunder thereceiver operator characteristic (AUROC) = 0.98,
AUPRC = 0.87; HRDetect AUROC = 0.97, AUPRC = 0.86; Extended Data
Fig. 8a). Indeed, as with HRDetect, classification was mainly driven
by the fraction of indels with microhomology, yielding similar scores
between the two algorithms (Extended Data Fig. 8b-d).

Given that HR deficiency is a disorder of DSB repair and altered
genome structure, we next asked how well HR deficiency could be
predicted solely on the basis of break-point-level structural genomic
features. To assess this, we compared the performance of arandom for-
est classifier trained using only the SV featuresinHRDetect (RS3 and RS5
signatures) and one trained with additional SV features specific to B1+2
(homeologous deletions, reciprocal pairs and 1-100-kbp simple dupli-
cations). We found substantially better performance (P<2.2 x107%,
DelLong test) with the B1+2-based SV classifier (AUROC = 0.93,
AUPRC = 0.57, pan-cancer HMF) relative to the SV classifier based on
HRDetect (AUROC = 0.73, AUPRC = 0.57; Fig. 5a). Although certain B1+2
classifier-specific SV features were individually relevant, the highest
performance was observed when these features were used in combi-
nation (Fig. 5b,c). The performance improvement was most clearly
attributable to the B1+2-specific SV features that recognized BRCA2d
tumours (Extended Data Fig. 8e).

We next asked whether B1+2 could distinguish between BRCA1
and BRCA2 deficiency, which are distinct biological states, each with
possibly distinct therapeutic vulnerabilities®. As HRDetect was not
developed to address this task, we compared B1+2 to arandom forest
classifier trained on six HRDetect features (see above). We found that
B1+2 substantially outperformed (AUROC = 0.90, AUPRC = 0.91) this
HRDetect-like classifier (AUROC = 0.80, AUPRC = 0.83) indistinguish-
ing BRCA1d from BRCA2d tumours (P=0.005, DeLong test; Fig. 5d).
B1+2 classifier-specific SV features were particularly important for
making this distinction in non-BOPP cancers (Fig. 5e,f). We also per-
formed similar comparisons to CHORD* (Extended Data Fig. 9a-cand
Supplementary Note 12). As B1+2 outputs the separate probability of
BRCAI1d (Blscore) and BRCA2d (B2 score), we could analyse the prob-
ability of BRCAld or BRCA2d in the tumours called HR-deficient by the
classifier (B1+2 positive, B1+ B2 score > 0.5). This analysis confirmed that
prostate and pancreatic cancer HR deficiency is significantly enriched
inthe BRCA2d phenotype relative to breast and ovarian cancer, inwhich
BRCAland BRCA2 deficiency are equally likely®? (Fig. 5g). Extending
this analysis tonon-BOPP samples, we found alower rate (less than 5%)
of HR deficiency, but with anincreased bias toward BRCA2 deficiency
(hepatocellular carcinoma and sarcoma; Extended Data Fig. 9d,e).

Amajor use of HR-deficiency genomic signatures is to uncover alter-
nate mechanisms by which the HR pathway is inactivated and assess the
pathogenicity of variants of uncertain significance (VUSs). Investigating
Bl+2scoredistributionsin cases that were excluded from our training
and test data (Fig. 5h; including cases with monoallelic alterations and
VUSsin BRCAIand BRCA2and/or other HR-pathway alterations; Supple-
mentary Table1), we found asignificantly higher rate of B1+2 positivity
across various strata of monoallelic and/or VUS cases (Fig. 5iand Sup-
plementary Note 13), although this rate was substantially lower than
that for cases with biallelic pathogenic alterations in BRCAI or BRCA2
(95%). This included genes with distinct biases for BRCA1d (BARD1
and EMEI) versus BRCA2d (PALB2 and RADSIC), consistent with their
known roles in the HR pathway (Extended Data Fig. 9f). These results
indicate that the B1+2 classifier could help to uncover and subclassify
pathogenic alleles that are responsible for HR deficiency.

To further assess the relevance of classifier results, we investigated
clinical outcomes for three cases with high B1+2 scores among 80 WGS
cases profiled at Weill Cornell Medicine (Methods). All three cases with
adequate follow-up data showed favourable responses to platinum
chemotherapies and/or PARP inhibition (Supplementary Fig.1and
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Extended Data Fig. 10). This included a B2-high (B2 = 0.912) de novo
case of metastatic neuroendocrine prostate cancer with an atypical
(20.7 months) extracranial complete response to first-line platinum
doublet (cisplatin-docetaxel) therapy and asecond complete response
to platinum rechallenge. The other two cases showed survival that
exceeded the expectation (less than one year) for tumours of this his-
tology and stage. Although all three cases also showed high HRDetect
and CHORD scores, B1+2 provided extra certainty in distinguishing
between BRCA1d and BRCA2d (Extended Data Fig. 10).

Discussion

Our LR WGS study provides one of the largest datasets so far of long-
molecule whole-genome profiles in DNA-repair-deficient cancers.
Long-molecule phasing allowed us to specifically link transreciprocal
pairs to large-scale chromosomal alterations. These results address a
paradoxinthefield by providing alink between HR-deficiency-specific
rearrangement patterns and megabase-scale cytogenetic phenotypes
that are associated with HR deficiency™*"*,

Long-molecule data also reveal specific scars of backup repair
pathways in HRD cells, including SSA, which has long been thought
to help to maintain genome stability in BRCA2d cells®. Although SSA
hasbeen extensively studied usinginduced DSBs in synthetic plasmid
reporter systems, it has not previously been shown to be relevant to
human BRCA2d cancer genomes. Our data also provisionally extend
therelevance of a second repair mechanism, homology-independent
replication restart (Fig. 3g and Extended Data Fig. 6g,h), which has
been previously implicated in BRCAl-deficiency-associated tandem
duplications®. Extension of this mechanism to reciprocal pairs is most
strongly supported by the existence of translocations and large inver-
sions (trans rDups and rDelDups) with substantial (1-100 kbp) DNA
duplication at one or both junctions. The substantial (more than 50 bp)
duplications seen at trans rDups and rDelDups cannot be explained
by simple end-joining butimply areplication-coupled repair process.

In HRP cells, BIR restarts replication when stalled and/or collapsed
forks create single-ended DSBs?*?>*, A RAD51-RAD52-independent
variant of BIR called microhomology-mediated BIR (MMBIR) can repair
single-ended DSBs by invading nearby DNA duplexes in the absence
of homology®** and drive replication restart in HRD cells?*. MMBIR
intermediates are also exceptionally prone to template exchanges
and crossovers, and thus provide the most plausible candidate for the
genesis of reciprocal pairs as well as more complex SVs. In particular,
factors that stabilize displacement loops and facilitate longer tracts
of repair synthesisincrease thelikelihood of crossover products after
BIR¥224942 consistent with our observation that trans reciprocal SVs
containlarger duplications than do their cis counterparts (Fig. 3aand
Extended Data Fig. 6f).

The ultimate criterion by which to judge HR-deficiency classifiers
is their ability to predict response to genotoxic therapy. Assessment
of this hypothesis beyond a few vignettes (Extended Data Fig. 10)
will require large retrospective analyses of clinically annotated and
WGS-profiled cases or prospective clinical trials with WGS-based classi-
fiersasanend-point. Furthermore, theimproved ability to distinguish
between phenotypes of BRCAland BRCA2 deficiency, previously also
addressed by CHORD?*, could inform future clinical trials that target
BRCAI1d- or BRCA2d-specific vulnerabilities®, As clinical WGS becomes
cheaper and more practical, the routineimplementation of approaches
such as B1+2, which use more detailed features of BRCA1- and BRCA2-
deficiency-specific SV patterns, might become an essential part of
therapeutic decision-making.
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Methods

Pan-cancer WGS data sources

GrCh37/hgl9 BAM alignments for 2,489 primary tumour and
matched normal whole-genome sequencing data were obtained
as previously described®. In brief, 989 tumour—normal (T/N) pairs
were obtained from The Cancer Genome Atlas (TCGA) Research Net-
work (Genomic Data Commons at https://portal.gdc.cancer.gov/,
accession: phs000178.v11.p8). Additional WGS data were obtained
for 874 T/N pairs from the International Cancer Genome Consor-
tium (ICGC) from multiple studies publicly available through the
European Genome-phenome Archive (EGA; https://ega-archive.org).
These cohortsinclude: 124 breast cancers? (EGA: EGAS00001001178),
179 melanomas** (EGA: EGAS00001001552), 49 lung adenocarcinomas**
(EGA: EGAS00001002801), 422 oesophageal adenocarcinomas®
(EGA: EGAD00001004417) and 100 malignant lymphomas (EGA:
EGAD00001002123).

Additional BAMs for 121 T/N pairs from a pan-cancer cohort obtained
aspartof aNew York City-based multi-institution collaborative research
effort comprising the Memorial Sloan Kettering Cancer Center
(MSKCC), New York University, Stony Brook University Hospital, Lenox
Hill, Northwell Health, Columbia University, Montefiore, and Cornell,
andled by the New York Genome Center, wereincluded here and were
previously described'. Study approval was obtained through a central
institutional review board (IRB), Biomedical Research Alliance of New
York, and by local IRBs, including Stony Brook University and Northwell
Health.Inaddition, 55 prostate cancers that were previously published
were obtained through dbGaP with accession phs000447.v1.p1 (ref.15).
BAMs for 80 T/N pairs were obtained from a collaborative precision
oncology effort between the Weill Cornell Englander Institute for Preci-
sion Medicine (EIPM) and the New York Genome Center. This study was
approved by aninstitutional review board (WCMIRB n0.1305013903). A
total of 340 T/N pairs across 80 cases across longitudinally or spatially
distinct biopsies from Barrett’s oesophagus tumours were obtained as
part of a previous study*.

Callsets were obtained from 1,484 additional T/N pairs contributing
additional primary tumour whole genomes from the Pan-Cancer Analy-
sis of Whole Genomes Consortium*’ (Extended Data Fig. 1, PCAWG’
dataset, https://dcc.icgc.org/pcawg) and 3,957 T/N pairs from meta-
static whole genomes from the Hartwig Medical Foundation (HMF,
https://www.hartwigmedicalfoundation.nl/), whichincluded germline,
somatic SNV orindel, and somatic SV calls*® (Extended DataFig.1:‘HMF’
dataset).

MSKCC cohort

LR WGS and short-read WGS were performed on a cohort of 46 cases
biopsied for ductal carcinomas of breast and found to have BRCA1
(n=28) or BRCA2 (n=18) mutations on clinical panel sequencing. These
cases were collected under informed consent as part of a prospective
biospecimenresearch protocol at the Memorial Sloan Kettering Cancer
Center (MSKCC, MSKCCIRB no.16-675). T/N pairs were profiled with
lllumina short-read WGS and LR WGS (see below for protocol details).
Rawsequencing datafrom these experiments have been made available
(see ‘Dataavailability’ section; Extended Data Fig.1:‘'MSKCC’ dataset).

Pipelines

Harmonized variant calling was performed on 2,489 T/N BAM
file pairs by adapting previously described pipelines™. Additional
details are provided below.

SV calling

In brief, genome-wide, 200-bp binned tumour and normal read
depthwas calculated fromalignments and corrected for GC and mappa-
bility biases (https://github.com/mskilab-org/fragCounter). Somatic SV
calls were obtained with SYAbA* and filtered using a panel-of-normals

(PON) comprising all germline SVs detected across 2,489 T/N pairs.
Any somatic SV found within 500 bp of ajunction within the germline
SVPON with matching orientations was discarded. PCAWG consensus
SVsand200-bp binned tumour and normal read depths were obtained
from PCAWG SV release 1.6 and the PCAWG data coordination centre.

HMF SV data were obtained from the Hartwig Medical Founda-
tion through a data sharing agreement*s. In brief, junction calls from
GRIDSS*® and 1-kbp tumour/normal coverage ratios” corrected for GC
content were obtained for 3,957 T/N pairs.

Genome graph analysis

High-confidence junctions, binned tumour-normal read depthratios,
and purity and ploidy estimates (see below) were used to performjunc-
tion balance analysis (JaBbA; github.com/mskilab-org/JaBbA) and gen-
eratebalanced genome graphs for 7,918 and 46 cases in the pan-cancer
WGS and MSKCC datasets, respectively. For a detailed treatment of
the formulation behind JaBbA, see a previous report'®. Heterozygous
germlinesingle-nucleotide polymorphism (SNP) datawere used toinfer
allelic copy number after total copy number inference was performed
genome-wide as described™.

Purity and ploidy estimation

Across Hadi dataset cases, tumour purity and ploidy were estimated
using ASCAT?". For the 46 cases from the MSKCC cohort, a manual
review of purity and ploidy was conducted to enhance downstream
genotyping accuracy; ultimately, alternative manual estimates of purity
and ploidy from MSKCC were chosen for 4 out of 46 cases. For PCAWG
and HMF datasets, purity and ploidy estimates were obtained from the
respective PCAWG (https://dcc.icgc.org/releases/PCAWG/) and HMF
(https://www.hartwigmedicalfoundation.nl/en/database/) portals*s.

LRWGS SV calling

For the LRWGS profiles generated from the MSKCC cohort of 46 cases,
junctions called using LinkedSV>? were merged with SVAbA junctions
called onthe corresponding short-read WGS for each case. These were
then input into JaBbA using short-read coverage profiles to generate
genome graphs. Merging was performed using the gGnome R package
(https://github.com/mskilab-org/gGnome) to determine junctions
that were uniquely detected by LR WGS (LinkedSV).

Analysis of gap segment topology

Gap segments were defined as short genomic segments joining
reference-consecutive break ends, each belonging to distinct junctions
and occurring onopposite strands. Each gap segment was additionally
associated with a polarity (+ or —) based on the topology of junctions
around the gap segment; (+) polarity corresponded to a gap segment
with junctions directly attached to it, (=) polarity corresponded to a
gap segment with junctions attached to the two segments to the left
and right of the gap segment on the reference. The length threshold
to define gap segments was visually chosen as 1 Mbp after inspection
of a density plot of segments lengths across gap segment candidates
satisfying the above topological criteria. This threshold was confirmed
through the application of abackground model, in which the gap seg-
ment candidate length distributionin each sample was fit with an expo-
nential distribution and each gap segment candidate was assigned a
Pvalue according to the left tail of the exponential cumulative distri-
bution function. Short (less than1Mbp) gap segment candidates were
found to significantly deviate from expectation (false discovery rate
(FDR) < 0.10) under this model.

Applying this definition, gap segments with shared junctions were
next clustered together (applying ‘eclusters’ gGraph method in the
gGnome R package) toidentify and classify reciprocal clusters. Recipro-
calclustersinwhichevery junction was connected to two gap segments
was labelled as ‘cyclic’. Reciprocal clusters were annotated with the
number of cluster-associated junctions and gap segments. A reciprocal


https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8
https://ega-archive.org
https://ega-archive.org/studies/EGAS00001001178
https://ega-archive.org/studies/EGAS00001001552
https://ega-archive.org/studies/EGAS00001002801
https://ega-archive.org/datasets/EGAD00001004417
https://ega-archive.org/datasets/EGAD00001002123
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000447.v1.p1
https://dcc.icgc.org/pcawg
https://www.hartwigmedicalfoundation.nl/
https://github.com/mskilab-org/fragCounter
https://github.com/mskilab-org/JaBbA
https://dcc.icgc.org/releases/PCAWG/
https://www.hartwigmedicalfoundation.nl/en/database/
https://github.com/mskilab-org/gGnome

pair (rPair) is a special case of a cyclic reciprocal cluster that contains
two gap segments of either orientation. rDups, rDels and rDelDups
each contain two (+) gap segments, two () gap segments and one (+)
and one (-) gap segment, respectively.

Annotating known SV events

Classes of previously described™® simple and complex SV were anno-
tated in balanced genome graphs derived by JaBbA for both the
pan-cancer WGS (n =7,918) and MSKCC datasets (n = 46). The following
simple events were annotated within each graph: deletions, duplica-
tions, translocations, inversions and inverted duplications. The follow-
ing complex events were annotated: breakage-fusion-bridge cycles,
double minutes, tyfonas, chromoplexy, chromothripsis and TICs.
Implementation of each event classifier can be found in the ‘events’
functionin the gGnome R package.

Variant calling and genotyping

For the 2,489 ‘Hadi’ dataset WGS T/N pairs (Extended Data Fig. 1),
somatic mutation calls were generated with Strelkal for SNVs andindels.
Germline mutation calls were obtained with Strelka2 run onalignments
fromblood or adjacent normal samples and filtered to remove common
variants above a population allele frequency of 1% (EXAC population:
ftp.broadinstitute.org/pub/EXAC_release/release0.3.1/subsets/). SNVs
and indels were filtered through a universal genome-wide mask for
hg19 (https://github.com/Ih3/CHM-eval) to remove artefacts due to
low mappability, as described before®>. All germline and somatic SNVs
andindels were annotated with ClinVar status (ftp.ncbi.nlm.nih.gov:/
pub/clinvar/vcf_GRCh37; database date 2022-07-30). The impacts of
protein-coding SNVs and indels were also annotated through SnpEff
(GRCh37.75database). SNVs and indels were considered pathogenic if
annotated as ‘pathogenic’ or ‘likely_pathogenic’ through ClinVar CLNSG
oriftheir SnpEffannotation fell within the following classes: ‘frameshift
variant’, ‘start_lost’, ‘stop_gained’, ‘stop_lost’, ‘splice_acceptor_variant’ or
‘splice_donor_variant’. ClinVar annotation took precedence over SnpEff.

LOH was determined by allele-specific copy number (CN) using allele
counts across germline heterozygous SNP sites. Specifically, LOH was
called in regions in which minor allele CN = 0 and major allele CN >0,
usingallelic copy number asinferred from short-read sequencing data
(see ‘Junction balance analysis’). Similarly, homozygou deletions (hom-
dels) were called in regions in which total copy number (sum of major
and minor allele CN) =0.

Genotype was determined across samples for 48 HR-related genes
(Supplementary Table1), including BRCAI, BRCA2, PALB2 and RAD51C.
Eleven of these genes were highlighted in a previous study**. Biallelic
loss was called for genesifthey contained any of the following: (1) two or
more germline and/or somatic pathogenic mutations (including SNVs,
indels and SVs); (2) one germline or somatic pathogenic mutationalong
with LOH; or (3) ahomozygous deletion. Within the MSKCC cohort, 22
cases were found to have biallelic loss of BRCAI, 14 cases were found
with biallelic loss of BRCA2, and one case was found with biallelic loss
of both BRCAI and BRCA2.

For PCAWG dataset cases, somatic SNV and indel calls were obtained
from ICGC (2016 data freeze), and annotated driver mutations were
obtained from the PCAWG consortium*. HMF provided the following
for cases in their dataset: germline SNVs and indels (through GATK
HaplotypeCaller), somatic SNVs and indels (through Strelkal and
annotated by SnpEff).

Short-read WGS

Short-read WGS for the 46 MSKCC donors was performed at the New
York Genome Center to a target of 80x tumour and 40x normal cov-
erage. Library preparation from genomic DNA for these new cases
was performed using the NEBNext Ultra Il End Repair/dA-Tailing
Module, NEBNext Ultra Ligation Module (New England Biolabs) and
KAPA Dual-Indexed Adapter Kit (Roche) following the manufacturers’

protocols. Quality control was performed on the finished libraries with
the Agilent 2100 Bioanalyzer on the High Sensitive DNA Chip platform
(Agilent Technologies) and KAPA Library Quantification Kit (Roche).
Quality control determined that libraries contained an average peak
height (fragment size) of atleast 400 bp. Libraries were sequenced on
an lllumina NovaSeq 6000 System (lllumina) to generate paired-end
2 x150-bp reads. Reads were aligned to the GRCh37/hg19 reference
using Burrows-Wheeler aligner software®, bwa mem, 0.7.10-r789).
Read post-processing was done in accordance with best practices for
post-alignment data processing with Picard tools (https://broadinsti-
tute.github.io/picard/) tomark duplicates, the GATK (v.2.7.4) (https://
gatk.broadinstitute.org/hc/en-us) IndelRealigner module and GATK
base quality recalibration.

LRWGS

Each of the 46 BRCAI- or BRCA2-mutant cases in the MSKCC cohort was
subjected to additional LR WGS. High-molecular-weight (HMW)
genomic DNA (gDNA) was extracted using a Qiagen MagAttract HMW
DNAKit (Qiagen) according to the suggested protocol. Inbrief, approxi-
mately 1-2 million cells were obtained from each frozen tissue sam-
pleandlysed,and HMW gDNA was captured by magnetic particles. Then
the magnetic particles with HMW gDNA were washed in wash buffer
and eluted in EB Buffer (10 mM Tris-HCI, pH 8.5). The HMW gDNA had a
mode length of 50 kbp and maxlength 200 kbp, as estimated on a sepa-
rate 75-V pulse-field gel electrophoresis using a BluePippin 5-430-kbp
protocol (Sage Science). LR WGS library preparation was performed
using a Chromium Genome Library Kit v2 (10X Genomics) following
the Chromium Genome Reagent Kits v2 User Guide. In brief, 1 ng of
extracted HMW gDNA was used to prepare a library, with an average
fragment length of 625 bp (ranging from 300 to 2,000 bp, measured
withthe Agilent Bioanalyzer High Sensitivity DNA Chip). Quality con-
trol for the finished libraries was performed as above for the general
WGS library preparation. The prepared libraries were sequenced on
an [llumina NovaSeq 6000 Sequencing System (Illumina) with an S4
flow cell, to an average read depth of about 33x. All linked reads were
aligned to GRCh37/hg19 with the EMerAld aligner (v.0.6.2)*. Germline
haplotypes were obtained from Strelka2 germline SNV calls processed
using HapCut2 (https://github.com/vibansal/HapCUT2; ref. 57).

Phasing rearranged haplotypes with LR WGS

Our specificgoal insomatic phasing was to distinguish SVs that placed
both reciprocal junctions on the same molecule (cis) from those that
placed junctions at distant loci (trans, including distinct derivative
chromosomes) in the cancer genome (Extended Data Fig. 3a). Somatic
phasing is distinct from parental phasing, which determines whether
reciprocal break ends arose on the same or distinct parental homo-
logue. Namely, break ends that arise on the same parentalhomologue
(germline cis phase) can end up on distinct derivative chromosomes
(somatic trans phase).

We approached somatic phasing by assessing LR WGS molecule
support for derivative rearranged haplotypes. Derivative rearranged
haplotypes canbe deconvolved fromjunction-balanced genome graphs
aswalks'®. Walks were derived from JaBbA graphs on the MSKCC cohort
forwhich both LR and short-read WGS were available using the ‘walks’
gGraph method in the the gGnome package (https://github.com/
mskilab-org/gGnome). Barcoded reads were matched against each
possible walk within a100-kbp window of the junctions to be phased
(gGnome score.walks function). The walk (or set of walks) that carried
the largest number of junction-supporting barcodes was considered
the likeliest haplotype explaining the rearrangement.

Specifically withrespect to the rDup and rDelDup patterns, two sets
of possible derivative haplotypes exist: cisand trans. Cishaplotypes for
rDup or rDelDup patterns are walks that contain both involved rear-
rangements consecutively, or,inother words, containasingle segment
that is flanked by both junctions. Trans haplotypes are two separate
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walks that each contain one of the two rDup or rDelDup rearrangements
and would have to exist simultaneously, and thus are considered as a
single set of walks. Junction-supporting LR barcodes were counted for
each possible walk across every rDup or rDelDup instance inthe MSKCC
cohort. To assess whether the rDup or rDelDup patterns existed with
thejunctionsincis or trans, walk-supporting LR barcode counts were
compared among the individual ciswalks and the trans walks summed
together. The walk (or set of walks in the trans case) was taken to be the
derivative haplotype underlying the rDup or rDelDup pattern. Hap-
lotypes were also validated by visually assessing the barcode sharing
patterns for each rDup or rDelDup present in the dataset to confirm
the haplotype as labelled by this heuristic.

Imputing short-read-sequencing reciprocal pair haplotypes

To impute the haplotype phase of reciprocal pairs identified by
short-read WGS, we applied a threshold of 3.5 to the log,, gap length.
Specifically, for rDup reciprocal pairs, the imputed haplotype phase
was cis if the minimum of the two log,, gap lengths was less than 3.5,
and transotherwise. For rDelDup pairs, theimputed haplotype phase
was cisif the log,, length of the (+)-polarity gap was less than 3.5, and
transotherwise. Theimputed phase of all rDel pairs was transbecause
thisis the only phase possible given the junction topology.

Sequence homeology

‘Homeology’ refers to approximate (higher than 80%) similarity
between a pair of genomic sequences. To assess sequences at junction-
associated break ends, we applied asliding binapproach. For every posi-
tion within a 200-bp window around each break end pair, a 41-bp bin
centred at the base was queried for the corresponding hgl9 reference
sequence. All pairs of 41-bp bins within each junction-associated 200-bp
window were then aligned to one another to construct a200-by-200
matrix of Levenshtein edit distances. The distance matrix was the con-
verted to a similarity matrix (Fig. 4a heat map) in which each entry
ijindicates the sequence similarity, calculated as (1- Levenshtein edit
distance)/41, between a pair of 41-mers corresponding tobinsiand,jin
the junction-associated window. The matrix was then converted to a
binary bitmap image in which each pixel denoted sequence similarity
of>0.8. Connected components of pixelsin theimage were annotated
with the Pearson’s correlation of the associated pixel indices, which
was used asameasure of linearity of the pattern. Each junction was then
annotated withthe size (in pixels) of the largest connected component
with alinearity of at least r*> 0.9. This value thus represents the long-
est contiguous stretch of bases with at least 80% sequence similarity.
This procedure was run using the ‘homeology’ function in the GxGR
package (see ‘Code availability’).

Discordant and split reads supporting junctions with homeology
wererealigned to hgl9 usingbwa mem (implemented usingan Rwrap-
perinthe package RSeqLib), to obtain uniform mapping quality scores
for those cases containing junction homeology within the in-house
dataset in which alignments were present. Reference mappability was
determined using two orthogonal means. In the first, sliding 150-mers
stepping by one base were queried across hgl9 and aligned to the full
reference usingbwa memto determine mapping quality scores. Average
mapping quality was determined for each base for hgl9. The second
method used GEM mappability score with a sliding 150-mer across
hg19 as described previously®®.

Mutational signatures

Mutational signatures were derived from the signature.tools.lib R
package suite for implementing the HRDetect algorithm?. In brief,
SNVsignatures were deconvolved using the known signature weights
from COSMIC SNV signature version 2 (https://cancer.sanger.ac.uk/
signatures/signatures_v2/, available through the signature.tools.lib
R package®®) with an implementation of non-negative least squares
(‘SignatureFit’ function fromthe signature.tools.lib package). With the

same approach, JaBbA-derived SVs were classified into the 32 SV types
on the basis of size, topology and junction clustering as previously
described?, and were fit to rearrangement signatures derived from
560 breast cancers. Microhomology in small deletions was searched
in 3’ flanking sequence for up to 25 bases. The HRD-LOH index was
determined by the number of segments per genome larger than 15 Mbp
(but under the span of an entire chromosome) containing LOH.

Classifying HR, BRCA1 and BRCA2 deficiency

To build classifiers distinguishing overall HR deficiency, BRCA1 defi-
ciency and BRCA2 deficiency, random forests (RFs; from the random-
Forest R package) were trained on a dataset of pan-cancer primary
tumours consisting of 62 BRCAld, 66 BRCA2d and 2,536 controls that
were confidently HRP (lacking CLINVAR pathogenic, CLINVAR VUS,
truncating or missense mutation in BRCAI, BRCA2, RADS1, RADS1B,
RADS1C,RADSID and PALB2 and LOHin BRCA1 or BRCA2). The following
six features were counted for each case using the R package signature.
tools.lib: COSMIC SNV signatures 3 and 8; rearrangement signatures 3
and 5; HRD-LOH index; and proportion of deletions with microhomol-
ogy.rDups, rDels and rDelDups were also counted after annotation on
each genome graph.

To evaluate the performance of RFs, ROC curves and corresponding
AUROCs were computed on an independent test set of pan-cancer
metastatic tumours (HMF dataset, Extended Data Fig. 1) consisting
of 40 BRCA1d, 92 BRCA2d and 1,834 HRP controls using the pROCR
package (v.1.18.0, https://cran.r-project.org/web/packages/pROC/).
Featureimportance was determined by resampling the test set across
30 bootstraps with permutation. The decrease in accuracy after per-
muting each feature on the test set was calculated.

In the following two comparisons, classifier skill to discriminate
overall HR deficiency from HR proficiency was analysed by using the
full (Hadi, MSKCC, and PCAWG) training set and evaluating the result-
ing models onthe full (HMF) test set (Extended Data Fig.1). An SV-only
RF was trained on rDups, rDels, rDelDups, homeologous deletions,
duplications with length 10-100 kbp, RS3 and RSS as features and
compared against an RF trained on rearrangement signatures 3 and
5 as features to compare the efficacy of the classes of SVs described
in this manuscript against the established SV types previously used
in HRDetect? A full RF consisting of currently described features and
previously established features (rDups, rDels, rDelDups, homeologous
deletions, duplications with length 10-100 kbp, RS3, RS5, MH-dels,
SNV3, SNV8 and LOH score) was trained and then tested against the
published HRDetect model (consisting of MH-dels, SNV3, SNV8, RS3,
RSS5 and LOH score as features) using ROC curves and feature impor-
tance metrics. HRDetect scores were obtained by running the function
‘applyHRDetectDavies2017’ from the signature.tools.lib R package on
afeature matrix composed of test samples.

The third comparison evaluated classifier skill to discriminate BRCA1
deficiency from BRCA2 deficiency. For this test, the full RF trained with
currentand previous features was used to compare against aRF trained
with HRDetect-only features. In contrast to the above, ROC and feature
importance evaluation were performed on only the 40 BRCAld and 92
BRCA2d cases from the test dataset (Extended Data Fig. 1).

Statistical information

All statistical analysis was performed as stated in the figure legends
using the R programming language (v.4.0.2). Pvalues obtained that are
smaller than2.2 x 10" are not accurately estimated inRand are listed
assuch (‘P<2.2x107®). Generalized linear modelling was performed
using the ‘glm’ or ‘glm.nb’ function from the stats or MASS R pack-
ages. Wilcoxon rank-sum testing was performed using the ‘wilcox.test’
function from the stats R package. Fisher’s exact test was performed
using the function ‘fisher.test’ from the stats R package. ROC curves
were generated using the function ‘roc’ from the R package ‘pROC..
Comparison of ROC curves was done using the function ‘roc.test’ from
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the R package ‘pROC’ with the argument ‘method =‘delong’. Statistical
methods were not used to predetermine sample size. The study design
did not involve blinding or randomization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Dataavailability

The datasets generated for the current study include the WGS and
LR WGS data for 46 BRCAI and BRCA2-mutated cases (see ‘MSKCC
cohort’) have been deposited at the European Genome-phenome
Archive (EGA), whichis hosted by the European Bioinformatics Institute
(EBI) and the Centre for Genomic Regulation (CRG), under accession
number EGAD00001010326. Further information about EGA can be
found at https://ega-archive.org (the European Genome-phenome
Archive of human data consented for biomedical research). Processed
dataand anassociated notebook for generating the main and Extended
Datafigure panels are provided as a GitHub repository (https://github.
com/mskilab/setton_hadi_choo_2023).Source dataare provided with
this paper.

Code availability

Executable notebook code spanning all key analyses across main
and Extended Data figure panels is provided as a GitHub repository
(https://github.com/mskilab/setton_hadi_choo_2023). Analyses
were performed using R v.4.0.2 with R packages available from CRAN
(https://cran.r-project.org/). The following lists R packages developed
by authorsto performthe described analyses. Genome-wide coverages
for samples for which a BAM alignment was present were calculated
with the fragCounter R package (https://github.com/mskilab-org/frag-
Counter). Fitting of junction-balanced genome graphs was carried out
using the JaBbA R package'® (https://github.com/mskilab-org/jabba).
Analysis of junction links and link clusters as well as classification of
complex event types within each genome graph was performed with
the function ‘eclusters’ in the package gGnome (https://github.com/
mskilab-org/gGnome). Walk deconvolution on genome graphs was
also performed using gGnome. LR WGS barcodes supporting junc-
tions were queried using the ‘score.walks’ function in the skitools R
package (https://github.com/mskilab-org/skitools). Visualization of
genomic tracks were made with the gTrack R package (https://github.
com/mskilab-org/gTrack). Analysis of sequence homeology across
junction break ends is implemented with the function ‘homeology’
in the package GxG (https://github.com/mskilab-org/GxG). Custom
tools for miscellaneous data manipulation tasks were implemented
using the package khtools (https://github.com/kevinmhadi/khtools).
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Extended DataFig. 6 | Links between reciprocal pairs, LOH and tandem
duplications. a, Schematic defining the (+) gap segment of rDelDup reciprocal
pairs (left). The (+) gap segment lengths of cisand trans phased haplotypes
from BRCA1d (n =22) and BRCA2d (n =14) samples are shownin the centre and
right panels, respectively.b, (+) gap segment length distribution of unphased
rDelDupreciprocal pairsacrossn=96 BRCAld or BRCA2d WGS samples with
vertical lines denotinglengths of LRWGS phased events across n=36 BRCA1d
or BRCA2d samples. ¢, ROC curve for cis/trans phasing using gap segment length
threshold (left panel) with selected value showninred (cis phaseisimputed if
thelog,,length <3.5).rDup (centre) and rDelDup (right) gap segment length
distributions with background colour showing the length threshold used for
phaseimputation. d, Base pairs of microhomology at 644 and 328 reciprocal-

pairjunctions across 46 BRCAld and 50 BRCA2d tumours, respectively. Error
barsshow 95% confidenceinterval on the Bernoullitrial parameter. e, rDup
and tandem duplication count per sample across 46 BRCA1d samples. R*and
Pvalue obtained by two-tailed Spearman rank correlation. f, Violin plots showing
length of the longer rDup gap segment, (+) rDelDup gap segment and tandem
duplicationsegmentin BRCAld (red) (n=46) and HRP (n = 487) samples (grey).
Pvalues obtained by two-tailed Wilcoxon rank-sum test. g,h, Extensions of the
aberrantreplication-restart model for rDups (Fig. 3g) can be used to explain
rDelDups (g) and rDels (h) around alocus (ABC) that undergoes replication-
fork collapse and invades asecond locus (DEF), resulting in distinct phased
outcomesincluding trans configurations that canlead to LOH in subsequent
cellcycles. Diagramsin (g) and (h) created with BioRender.com.
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realigning sliding window of 150-mers from hg19 stepping by 1base to hgl19 and
averagingacross each base pair. Right, plot of alternate mappability scores
calculated asthe average of the reciprocal of the number of unique locations
thateach150-mer overlapping abreak-end-associated base pair aligns.
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Extended DataFig. 8| Comparing the performance of B1+2 and HRDetect.
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Extended DataFig. 9 |See next page for caption.
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Extended DataFig. 9 | Distinguishingbetween BRCA1and BRCA2 deficiency.

a,ROC curves and PRCs for discriminating BRCA1d from BRCA2d tumours by
CHORD and by arandom forest trained on CHORD features augmented with
the SV classes introduced in this manuscript. Pvalues obtained by two-tailed
DeLongtest.b,c, Featureimportance for BRCAlversus BRCA2 deficiency
classificationin (b) anindependent pan-cancer WGS dataset and (c) its non-
BOPPsubset. See Extended Data Fig.1and Methods for training and testing
dataset summary. d, Tumour type and pan-cancer prevalence of B1+2 positivity
(n=7,918 tumour samples). The fraction of B1+2 positive (B1 + B2 score >0.5)
cases per tumour type isshown on the left; only tumour types with at least 20
examples are shown. Orange bar denotes the pan-cancer B1+2 positivity rate.
Error bars show 95% confidence interval on the Bernoullitrial parameter.e. The
fraction of cases with B2>Blout of the cases that were B1+2 positive (n=7,918

tumour samples); only tumour types with at least five B1+2 positive examples
areshown. Tumour typessignificantly enriched for B2 positivity relative to the
reference class (breastand ovarian cancer, highlighted in orange) are indicated
withstars. Error bars show 95% confidence intervals on the Bernoulli trial
parameter and starsindicate relative enrichment of B2 positivity within each
tumour type. Pvalues were obtained by two-tailed Fisher’s exact test. f, Number
of B1+2 positive (B1+ B2 score > 0.5) cases with BI>B2 or B2>Bland harbouring
biallelic or monoallelic and pathogenic or VUS variants in HR-associated genes
(seemaintextand Methods). LOH=burden of large genomic segments harbouring
loss of heterozygosity. HomeoDel = count of large deletions (>1 kbp) with
homeology. del-MH = proportion of small deletions (<50 bp) with microhomology.
RS3,RS5=proportion of junctions with rearrangement signature 3 or 5 (ref. 2).
SBS3,SBS8: COSMICsingle base signature 3 and 8 (ref. 60).
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Extended DataFig.10| Clinical vignettes of patients with HRD tumours.

a, Patientwith BRCA2d neuroendocrine prostate cancer. Top left, prostate-
specificantigen (PSA) and carcinoembryonic antigen (CEA) response kinetics.
Time points1-4 correspond to axial computed tomography images depicted
onbottomright, illustrating favourable response to platinum-based
chemotherapy. Right, classifier scores (top) and genomic features (bottom) for
the highlighted patient (vertical lines) vs dataset-wide distributions stratified
by genotype (violin plots; BRCAld n =102, BRCA2d n =158, HRP n = 4360, HRP).
b, Metastatic pancreas adenocarcinoma case with high Bl score (0.962), with
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(blue triangles and corresponding right panels) demonstrating excellent
response to chemotherapy. ¢, High risk stage IIb pancreas adenocarcinoma
case (WCM1462) with high B2 score (0.31), with CA19-9 and CEAresponse
kinetics (top) and axial CT (bottom). LOH =burden of large genomic segments
harbouringloss of heterozygosity.ihDels = count of large deletions (>1 kbp)
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signature 3 or 5 (ref. 2). SBS3, SBS8: COSMICsingle base signature 3 and 8 (ref. 60).
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Data collection No code used for data collection.

Data analysis Short reads were aligned to the GRCh37/hg19 reference using Burrows-Wheeler aligner software58, bwa mem, 0.7.10-r789. Read post-
processing was done in accordance with best practices for post-alignment data processing with Picard tools (https://broadinstitute.github.io/
picard/) to mark duplicates, the GATK (v.2.7.4) (https://gatk.broadinstitute.org/hc/en-us) IndelRealigner module, and GATK base quality
recalibration. All linked-reads were aligned to GRCh37/hg19 with the EMerAld aligner (v0.6.2). Germline haplotypes were obtained from
Strelka2 germline SNV calls processed using HapCut2 (github.com/vibansal/HapCUT2). SNV signatures were deconvolved using the known
signature weights from COSMIC SNV signature version 2 (https://cancer.sanger.ac.uk/signatures/signatures_v2/, available through
signature.tools.lib R package with an implementation of non-negative least squares ("SignatureFit" function from the signature.tools.lib
package). To evaluate performance of random forests, receiver-operating characteristic (ROC) curves and corresponding areas under the
curve (AUCs) were computed using the pROC R package (v1.18.0, https://cran.r-project.org/web/packages/pROC/). Generalized linear
modeling was performed using "glm" or "glm.nb" function from the stats or MASS R package. Wilcoxon rank sum testing performed using
"wilcox.test" function from the stats R package. Fisher's exact test was performed using the function "fisher.test" from the stats R package.
Receiver-operator curves (ROC) were generated using the function "roc" from the R package "pROC". Comparison ROC curves was done using

m

the function "roc.test" from R package "pROC" with argument "method = 'delong"'.

Analyses were performed using R-4.0.2 with R packages available from CRAN (https://cran.r-project.org/). The following lists R packages
developed by authors to perform the described analyses. Genome-wide coverages for samples for which a BAM alignment was present were
calculated with the fragCounter R package (github.com/mskilab/fragCounter). Fitting of junction-balanced genome graphs was carried out
using JaBbA R package (github.com/mskilab/jabba) (Hadi et al. 2020). Analysis of junction links and link clusters as well as classification of
complex event types within each genome graph was performed with the function "eclusters" in the package gGnome (github.com/mskilab/
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gGnome). Walk deconvolution on genome graphs was also performed using gGnome. |0X LR barcodes supporting junctions were queried
using the "score.walks" function in the skitools R package (github.com/mskilab/skitools). Visualization of genomic tracks were made with the
gTrack R package (github.com/mskilab/gTrack). Analysis of sequence homeology across junction breakends is implemented with the function
"homeology" in the package GxG (github.com/mskilab/GxG). Custom tools for miscellaneous data manipulation tasks were implemented using
the package khtools (github.com/kevinmhadi/khtools).
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The datasets generated for the current study include the WGS and 10X linked-read sequencing data for the 46 BRCA1&2-mutated cases (see Linked-read whole
genome sequencing cohort) have been deposited at the European Genome-phenome Archive (EGA), which is hosted by the European Bioinformatics Institute (EBI)
and the Centre for Genomic Regulation (CRG), under accession number EGAD00001010326. Further information about EGA can be found at https://ega-archive.org
(the European Genome-phenome Archive of human data consented for biomedical research).The datasets generated for the current study include the WGS and 10X
linked-read sequencing data for the 46 BRCA1&2-mutated cases (see Linked-read whole genome sequencing cohort) are available for download under NCBI
BioProject accession: PRINA746293.
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Reporting on sex and gender Cancer genomes were included for analysis in this study irrespective of their sex or gender.

Reporting on race, ethnicity, or Cancer genomes were included for analysis in this study irrespective of race, ethnicity, or other socially relevant groupings.
other socially relevant

groupings

Population characteristics Primarily European ancestry cancer genomes, see Extended Data Figure 1 for additional cohort details.

Recruitment Consecutive breast cancer genomes with germline BRCAI/2 alterations (consented to MSK IRB 06-107, 12-245) were included
in LR-sequencing cohort. Additional genomes included as described in methods.

Ethics oversight Ethics oversight provided in setting of multi-institution collaborative research effort comprised of Memorial Sloan Kettering

Cancer Center, New York University, Stony Brook University Hospital, Lenox Hill, Northwell Health, Columbia University,
Montefiore, Cornell, and led by the New York Genome Center were included here and were previously described in (Hadi et
al. 2020). Study approval was obtained via a central institutional review board (IRB), Biomedical Research Alliance of New
York, and by local IRBs.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size See Extended Data Figure 1. No sample size calculation was performed; all available genomes were used in our analysis and for each
comparison sufficient numbers were determined based on an FDR-corrected p-value and magnitude of effect size.

Data exclusions  To investigate the role of complex SVs in HR-deficient cancers, we assembled a cohort of 979 prediominantly (95%) cancer WGS profiles
profiles from four tumor types commonly associated with HR-deficiency (breast, ovary, prostate, and pancreas cancer; referred to as BOPP
moving forward, see Methods and Supplementary Fig. 1) (Roy et al. 2011). We next sought to identify confidently BRCAld, BRCA2d, and HR-
proficient cases in this BOPP cohort. We required biallelic inactivation of BRCAI or BRCA2 for a tumor to be classified as BRCAId (n=24) or
BRCA2d (n=36) respectively (Riaz et al. 2017) (see Methods). We also identified 487 HR proficient BOPP samples that lacked pathogenic or
rare variants in any HR-associated gene (e.g. BRCAI, BRCA2, PALB2, RADSIC; see Supplementary Table 1 for full list). We excluded the
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remaining 432 BOPP cases, which comprised tumors with monoallelic alterations and/or variants of unknown significance (VUSs) in BRCAI or
BRCA2 or mutations in other HR-associated genes.

Replication See Extended Data Figure 1. We demonstrated the robustness of SV calling by recapitulating our results with an alternative SV caller (GRIDSS)
or a consensus caller, demonstrating that our results are not dependent on the choice of SV-calling algorithm.

Randomization  Not applicable as no intervention was analyzed (not possible to randomize the effect of genotype on structural variation).

Blinding Not applicable as the outcome measured is objective (genomic structural variation), and no intervention was analyzed.
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