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Universality in long-distance geometry and 
quantum complexity

Adam R. Brown1,2 ✉, Michael H. Freedman3, Henry W. Lin1,2,4 & Leonard Susskind1,2

In physics, two systems that radically differ at short scales can exhibit strikingly 
similar macroscopic behaviour: they are part of the same long-distance universality 
class1. Here we apply this viewpoint to geometry and initiate a program of classifying 
homogeneous metrics on group manifolds2 by their long-distance properties. We 
show that many metrics on low-dimensional Lie groups have markedly different short- 
distance properties but nearly identical distance functions at long distances, and 
provide evidence that this phenomenon is even more robust in high dimensions.  
An application of these ideas of particular interest to physics and computer science  
is complexity geometry3–7—the study of quantum computational complexity using 
Riemannian geometry. We argue for the existence of a large universality class of 
definitions of quantum complexity, each linearly related to the other, a much finer- 
grained equivalence than typically considered. We conjecture that a new effective 
metric emerges at larger complexities that describes a broad class of complexity 
geometries, insensitive to various choices of microscopic penalty factors. We discuss 
the implications for recent conjectures in quantum gravity.

Universality is an idea that permeates physics and computer science. 
In various guises, this principle says that there are broad equivalence 
classes of phenomena at long distances, at long times or at high com-
plexity that may be insensitive to the details of how processes are 
defined at short distances, short times or low complexity. This means 
that large, slow and highly complex experimentalists can make predic-
tions that are robust against having to know the exact details of how 
everything works at the fundamental level.

In computer science, universality is integrated into the foundations 
of the field via the Church–Turing thesis. According to this thesis, and 
its associated theorems, a broad class of ways to define a computer all 
have the same computational power—that is, any function that can be 
computed in finite time by one machine in the class can be computed in 
finite time by any other member of the class. They all define the same set 
of computable functions. Universality is also foundational to complexity 
theory. To define the classes of functions that can be computed in polyno-
mial time on a classical computer (P) or on a quantum computer (BQP), 
we do not need to be too careful about exactly which fundamental opera-
tions are permitted for our computer because a broad class of definitions 
are all equivalent. If there exist compilers such that two programming 
languages can each emulate the other with only polynomial overhead, 
then the set of functions they can compute in polynomial time is the same.

Universality also has a key role in physics. A large number of physi-
cal theories that differ in their predictions at the highest energies and 
shortest distance scales all give rise to approximately the same predic-
tions at low energies and long distances. For example, in statistical 
physics, the Landau–Ginzburg theory of second-order phase transi-
tions8 says that the critical exponents generically depend only on the 
symmetries and are independent of any other details of the molecular 
dynamics. Similarly, in quantum field theory, almost all perturbations 

that can be made to the Hamiltonian at short distances (in the ‘ultra-
violet’ (UV)) turn out to be irrelevant—that is, they have an ever smaller 
effect as we probe the system on longer and longer length scales  
(in the ‘infrared’ (IR)). The renormalized couplings associated with 
these irrelevant perturbations are said to decrease with length scale.

In this paper, we explore a kind of universality in long-distance  
geometry. We study the distance function on several curved spaces 
and argue that the distance between two well-separated points can 
be insensitive to most changes in the metric at short separations. We 
illustrate this with various examples and provide evidence that it is a 
generic feature of high-dimensional Riemannian geometries.

We then connect this phenomenon in differential geometry back to 
complexity theory. The bridge is complexity geometry3–7 (Methods), 
which defines the complexity of performing operations on a quantum 
computer as a distance function on a high-dimensional group manifold. 
Through this definition, the conjectured universality of geometries 
becomes a universality of definitions of quantum complexity. Unlike 
the universality of computability, which allows any computational 
overhead as long as it is finite, or the universality of BQP, which demands 
only polynomial equivalence between runtimes, our conjectured uni-
versality allows at most linear overhead. We argue that this much more 
fine-grained universality is nevertheless robust. Finally, we describe 
how our results support previous conjectures about the connection 
between computational complexity and the properties of holographic 
black holes in quantum gravity.

Motivating example
Let us motivate our program with an example. Consider a homoge-
neous three-dimensional space, of finite volume and a diameter of 
one metre. Define a ‘small’ deformation of this metric as one that 
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preserves homogeneity and does not change the distance between 
any pair of points by more than one picometre.

Surprising fact: a small deformation can make the volume infinite. 
The surprise here is that in one sense, the homogeneous metric has 
been changed a lot (the volume becomes infinite), and in another sense, 
the metric has hardly been changed at all (the distance between any 
two points has a tiny additive variation). We will come to understand 
this phenomenon as an example of long-distance universality. Our 
small deformation will change the short-distance geometry, and we will 
see that while the volume is sensitive to the short-distance geometry, 
the distance function at large separations is not. The short-distance 
geometry and the long-distance geometry decouple.

Low-dimensional Riemannian cases
Berger sphere
Our first example of long-distance universality is the Berger sphere9. 
The Berger sphere manifests the surprising fact observed in the previ-
ous section and is the simplest non-trivial complexity geometry3–7—the 
complexity geometry of a single qubit10,11. It describes the difficulty of 
synthesizing elements of the group SU(2) when σx̂ and ̂σy rotations are 
cheap but ̂σz  rotations are expensive11. The metric in Euler angles 
U = e e eσ z σ y σ xi i iz y x  is

Is y x y z y xd = cos 2 d + d + (d + sin 2 d ) . (1)2 2 2 2 2

For = 1I , this gives the standard round metric on a three-sphere—which  
is both homogeneous and isotropic—otherwise known as the 
bi-invariant inner-product (‘Killing’) metric on SU(2). For ≠ 1I , this 
gives a squashed three-sphere, which is still homogeneous but no 
longer isotropic (right invariant but no longer left invariant).

To exemplify the surprising fact, take the Berger sphere with I = 1030, 
and make the small deformation → ∞I . This sends the volume to infinity,  

I∫ g πdet[ ] = 2 → ∞2 , but makes only a tiny additive change to dis-
tances. It may seem surprising that taking → ∞I  only changes the dis-
tances a little, as it makes moving directly in the σz direction infinitely 
expensive: the cost of directly synthesizing e σ zi z  is I z. But we can also 
synthesize e σ zi z  indirectly by circling in the σx and σy directions and 
using the group commutator:

(2)z σ z σ z σ z σ z σ σ zσ(1 + i )(1 + i )(1 − i )(1 − i ) ≈ 1 + i [ , ] = 1 + 2i .x y x y x y z
2

The cost C  of this indirect technique—the geometric length of this 
path—is independent of I ; because the amount of σz generated is  
proportional to the area, the cost scales such as z  at small z, and in 
general is12,13

z π z(e ) ≡ lim (e ) = (2 − ) . (3)
σ z σ z

=∞
i

→∞

iz zC CI
I

Let us see how much distances change under our small deformation. 
As there are two ways to manufacture σz, the line e σ zi z  is cut into two. In 
the inner region, direct synthesis is the cheapest so C Iz z( ) = ; in this 
region, the geometry depends strongly on the value of I , and increas-
ing I  can make a large multiplicative change to distances. But when I  
is very big, this region is very small, extending only as far out as the cut 
locus at C I≈cut

−1/2. For larger z, the optimal path is a mixture of direct 
and indirect synthesis, and the farther we go the less direct synthesis 
is involved. This means that the farther we go into the outer region, the 
less the distance function depends on I : if you already were not avail-
ing yourself much of the direct technique, making the direct technique 
even more expensive makes little difference. This insensitivity to I  
reaches its apotheosis when making the very hardest unitary, z = π: for 
I ≥ 1, the cost of making U = e σ πi z  does not depend on I  at all, because 
we can reach the antipode by proceeding along any great circle 
e = e = e = − ,σ π σ π σ πi i ix y z �  so the greatest separation on the Berger sphere 
is exactly π and is completely insensitive to I (refs. 12,13). We are thus 
left with the following picture. Close to the origin, the distance function 
depends strongly on I , but this region is small and shrinks to zero in 
the sub-Riemannian limit, I → ∞. Outside this region, distances are 
largely independent of I . Nowhere does I  make a large additive  
difference.

A careful analysis12,13 confirms this picture and shows that the very 
largest additive discrepancy from the = ∞I  distance is found near the 
cut locus, so for all U and ≥ 1I ,

U U O( ) − ( ) ≤ ( ). (4)
=∞

− 1
2C C II I

As (10 ) = 1030 − −151
2 , the I = ∞ and I = 1030 Berger spheres agree on dis-

tances to within a picometre. (A two-dimensional example that shows 
the same phenomenon is given in Supplementary Information 3).

Finally, let us examine the role of curvature. At large I , the metric 
becomes strongly curved: the easy–easy section becomes very nega-
tively curved Iκ x y( , ) = 4 − 3 , and the easy–hard sections become  
very positively curved κ x z( , ) = I . We call the σx and σy directions easy 
because they are cheap to move it, whereas the σz direction is hard to 
move in for I > 1. The curvature length κ ≈−1/2 −1/2I , which is also the 
distance to the cut locus in the hard direction, becomes very short. 
The high curvature explains how the metric can hide lots of volume at 
short distances that are invisible at long distances. Consider an opera-
tional definition of volume that counts how many marbles can be 
packed into the space: if we can cram in n(r) marbles each of radius r, 
then the volume is proportional to r n rlim ( )

r →0

3 . Although the volume 

grows without bound as → ∞I , the effective volume n(r)r 3 at any finite 
value of r does not. Instead, the effective volume grows like r−1 as  
we take r smaller and only levels off at I  once r is less than the curva-
ture length −1/2I . Thus even as → ∞I  the effective volume, as probed 
by experiments with finite resolution, stays finite.

Euclidean group
Consider parallel parking a unicycle.

The unicycle starts facing parallel to the curb and ends facing parallel 
to the curb but displaced sideways by z. The configuration space of the 
unicycle is its possible locations { y, z} and orientations {θ}, forming the 
Euclidean group SE(2). There are three primitive operations: roll for-
wards or backwards; turn; or drift sideways (perpendicular to the rolling 
direction). We model the difficulty of any parking manoeuvre with

s x x θ

θ y θ z θ y θ z θ

d = d + d + d

= (cos d + sin d ) + (sin d − cos d ) + d .
(5)

2 2
�
2 2

2 2 2

I

I

The cost of parking z( )C  is the length ∫ds of the shortest path that  
connects our starting configuration {θ, y, z} = {0, 0, 0} to our parking 
spot {0, 0, z}.

zz

z

(z
)

√ z

z + constant

(z
)

a b

√z

Fig. 1 | Complexity of parallel parking a unicycle as a function of the distance  
z to the curb. a, When I = 1, we drift directly into the parking spot, and the 
complexity is simply z. b, For large I , there are three regimes: first, the 
complexity is linear with a large coefficient (orange); second, after the cut 
locus there is a square root regime (blue); and third, at large z, linear growth 
resumes with coefficient 1 (red).
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The important difference from the Berger sphere example is that, 

because there is no bound on how far away the curb can be, there is 
now no upper bound on z( )C . However, we still get an inequality like 
equation (4) that is all the more powerful in this non-compact setting. 
Whether drifting is just as easy as rolling ( = 1I ) or drifting is completely 
forbidden ( = ∞I ), the cost of parking never changes by more than O(1), 
so at large z all metrics with I ≥ 1 have the same linear growth.

Figure 1 plots the cost of parking. For = 1I , the metric is flat R S×2 1 
and the optimal parking manoeuvre is just to drift directly in the z direc-
tion at cost z z( ) =C . For large I , the optimal parking manoeuvre can 
be more complicated, and there are three regimes. The first regime, 
at tiny z, is to drift directly in the z direction, which gives linear growth 
C Iz z( ) =  that is strongly dependent on I ; this regime extends as far 
as the cut locus, a curvature length from the origin at C I≈cut

−1/2. The 
second regime involves commuting the two easy directions giving 

z z( ) ≈C . (Turn through an angle z, roll forwards z, turn back through 
z−  to be again parallel to the curb and then roll backwards z−  into 

the parking spot). So far this is the same as the Berger sphere example, 
but the difference is what happens next. For z ≳ 1, the square root behav-
iour comes to an end, because once you have turned to face the z direc-
tion, there are no further efficiencies from turning more. But because 
we have already paid the fixed cost of turning to face the z direction, 
the marginal cost of going farther in the z direction is just the cost of 
rolling forwards. The third regime is thus another linear regime, but 
this time with gradient one, C z z( ) = + constant.

There is a simple upper bound on the distance that works for all  
values of I . Consider a strategy in which we first turn 90°, then roll 
forwards all the way to the curb, and then on arrival turn 90° to end 
parallel to the curb. This upper-bounds z z( ) ≤ + +π π

2 2C , and by optimiz-
ing this strategy we find that at large z

C Iz z( ) = + 2 1 − + …, (6)−1

in which the omitted terms vanish rapidly at large z. Indeed, a more 
careful analysis finds the behaviour shown in Fig. 1.

We have thus found a large universality class of metrics (every I ≥ 1), 
all of which agree at long distances, up to moderate additive correc-
tions. In this equivalence class, the leading-order long-distance behav-
iour is independent of I . As the dependence on I  appears to be only 
in the sub-leading corrections, we may say that I  is an irrelevant defor-
mation. Although the members of the equivalence class agree at long 
distances (borrowing the language of quantum field theory, we could 
say they agree in the IR), they disagree markedly at short distances  
(in the UV): they have radically different curvatures, and radically  
different cut loci.

For most members of the universality class, the relationship between 
short- and long-distance geometry is convoluted. For one member, 
however, the relationship is straightforward. For = 1I —the critical value 
below which changes in I  do affect the long-distance behaviour—the 
UV behaviour and the IR behaviour match exactly, with the same linear 
growth coefficient. We refer to this special value as giving the critical 
metric. If you wish to approximate distances in the IR, it is easiest just 
to calculate with this critical metric, no matter what the true UV value 
of ≥ 1I  is. As we approach the critical metric, the cut locus gets  
pushed out to z = ∞ and the curvature becomes small. We use these  
properties to help identify the critical metric in more complicated  
models.

Finally, let us comment on the error, or lack thereof. For the unicycle 
parking, we did not have to introduce a tolerance, because we can hit 
exactly with minimal extra cost any point that we can get close to, even 
in the I → ∞ limit. From the IR point of view, this is obvious—because 
small changes in direction have small costs, and we have plenty of  
‘wiggle room’ to make minor adjustments to the end point. From the 
UV point of view, this is surprising—a Suzuki–Trotter-style14 perturba-
tive expansion in z that models the path as a piecewise linear sequence 

of time-independent Hamiltonians markedly overestimates the cost 
of correcting errors.

The Berger sphere has a diameter π and therefore no long-distance 
regime. The unicycle parking example does have a long-distance 
regime, but the critical geometry is flat. In the next example, we will 
see a non-trivial critical distance function.

High-dimensional gate example
In the gate model of quantum complexity, we build complex unitaries 
by arranging simple unitaries in a circuit15. The simple unitaries are 
k-local gates, which means unitaries in U(2k) that act non-trivially on k 
qubits. We can use any element of U(2k), at a cost kI  (the cost therefore 
depends on only k); the cost of a circuit that uses nk k-local gates  
is n[circuit] = ∑k k kC I . To complete our definition of complexity,  
we need to specify the penalty schedule, which means specifying  
the penalty factors Ik  for every value of k ≤ N. We then ask how the  
complexity of a given unitary depends on our choice of penalty  
schedule.

Our first observation is that if we take any one of the kI  large (while 
keeping the others fixed) the complexity soon becomes completely 
independent of the value of that penalty factor. This is because instead 
of directly deploying a k-local gate, we could also indirectly synthesize 
the same unitary with a subcircuit built out of cheaper gates. No gate 
is indispensable, and the set of m-local gates for any individual m ≥ 2 
is sufficient to reconstitute all the others15. To replace a k-local gate we 
never need to pay more than I n kmin ( )m m m , where nm(k) is defined as 
the number of m-local gates needed to build any U ∈ U(2k). Once kI  
exceeds this critical value, the complexity becomes completely inde-
pendent of kI .

Now let us consider the critical schedule for which every penalty 
factor takes its critical value. This means that the price of each gate is 
the same as the cost of indirectly synthesizing it out of cheaper gates. 
We can show that there is a schedule with approximately this property 
by estimating nm(k), which simple dimension counting bounds by

‐ (7)n k m( ) ≡ number of locals to build U(2 ) ≥
dim[U(2 )]
dim[U(2 )]

= 4 .m
k

k

m
k m−

This lower bound is approximately saturated16 (although not exactly 
saturated because when two consecutive gates overlap on a qubit, 
there is an U(2) isotropy subgroup, so adding the dimensions of  
the two gates overcounts by dim[U(2)] = 4). If we fix the normali-
zation by setting = 12I , this means that the critical schedule is  
roughly

I ≈ 4 , (8)k
k2( −2)

independent of N for fixed k. For this critical schedule, direct and indi-
rect syntheses are approximately degenerate. If we start with the criti-
cal schedule and make one of the penalty factors more expensive, this 
has little effect on the complexity of any unitary, because we will just 
switch to the cheaper option. By contrast, if we start with the critical 
schedule and make any penalty factor less expensive, the complexity 
of almost all unitaries reduces.

We have thus, once again, found a large universality class of defini-
tions of complexity (every schedule with I I= = 12 2  that is no less expen-
sive than the critical schedule I Ik∀ , ≥k k), all of which approximately 
agree on the complexities of all unitaries. If the penalty schedule is in 
this universality class, the large-distance complexity will be the same. 
For most members of this class, the cheapest way to make a typical 
element of U(2k) involves a convoluted compilation strategy, but there 
is a unique member of the class for which the optimal compilation is 
straightforward: for the critical schedule, we make the element with a 
single gate.
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The universality behaviour is somewhat broader than the class 
= , ≥k k2 2I I I I . First, if we start with the critical schedule and make 2I  

bigger, this may have a large effect at short distances but only a small 
effect at long distances: in the language of quantum field theory, this 
would be an ‘irrelevant’ deformation. Similarly, if we take some of the 

kI  with moderate k and make them cheaper than the critical schedule, 
this would affect both the UV and the IR, but its effect on the IR would 
be just to multiply all complexities by min /k k kI I : the entire effect on 
the IR of a complicated UV deformation would be summarized by a 
single parameter.

The features mentioned above all have direct analogues in the exam-
ples given in the section ‘Low-dimensional Riemannian cases’. Now  
let us examine a feature that emerges only when the number of dimen-
sions is large. The critical schedule was defined by demanding that 

n k= min ( )k m k m m<I I . But there is a scaling symmetry nm(k) ≈ nm(p) 
np(k), which means that if we want to make a k-local unitary out of 
m-local gates, we pay little extra cost for doing a hierarchical compila-
tion that first makes the k-local unitary out of p-local gates and then 
makes the p-local gates out of m-local gates. This scaling symmetry 
means that for the critical schedule the quantity n k( )m mI  is largely 
independent of m. There is thus a huge degeneracy of ways to make a 
k-local gate: there is an equal-length path for every value of m, as well 
as a great many more paths of mixed m. It is this massive degeneracy 
and redundancy—called ‘load balancing’ in network engineering—that 
makes the numerical value of the complexity so robust against upward 
deformations of the penalty schedule.

Application to complexity geometry
We now extrapolate the lessons learnt from the simple examples 
seen in the sections ‘Low-dimensional Riemannian cases’ and 
‘High-dimensional gate example’ and to make conjectures about the 
long-distance behaviour of high-dimensional complexity geometry. 
Complexity geometry is reviewed in the Methods.

Main conjectures
Let us ask how the value of the complexity of a unitary depends on the 
choice of penalty schedule. Our fundamental observation is that the 
complexity geometry shares the same properties that drove the uni-
versal behaviour we saw in the previous examples. The universal behav-
iour in these cases was caused by the overcompleteness of the set of 
primitive operations, which meant that there were many different ways 
to effect any given change. The complexity geometry is even more 
overcomplete than the gate definition of the previous section, because 
on the one hand its target is the same (elements of U(2N)) but on the 
other hand the tools at its disposal are much more powerful: whereas 

a k-local gate is constrained to act only on k qubits at a time, in the 
complexity geometry we may also move in any polynomial superposi-
tion over different k-local terms, or terms of mixed k-locality; and 
whereas the gate definition gets charged a full Ik  for even a small step 
of inner-product size ϵ in a k-local direction, the complexity geometry 
charges only I �k  and is, therefore, able to change direction without 
penalty and economically deploy very wiggly paths. Because construct-
ing a path through the complexity geometry affords so many more 
options than compiling gates into a circuit, the primitive operations 
are more overcomplete, and so the universality behaviour should be 
correspondingly more robust.

On the basis of these considerations, we expect an enhanced version 
of the same universality properties we saw earlier. We can formalize 
this into two (independent) conjectures:

Conjecture 1. There exists a critical schedule kI , and a universality 
class consisting of all schedules that are anchored at =2 2I I  that are no 
easier than the critical schedule, k∀ , ≥k kI I . In this universality class, 
the distance functions may differ greatly at short separation (in the 
UV), but will approximately agree at long separation (in the IR).

Conjecture 2. The critical schedule Ik is the unique member of the 
universality class for which the UV and the IR behaviours match. This 
means that for the critical schedule the cut locus is pushed far out in 
almost all directions, so that geodesics leaving the origin typically 
remain minimal for a time exponential in N and the linear growth  
continues uninterrupted with the same coefficient at long and short  
distances.

To make these conjectures more quantitative, we need to specify 
how close the members of the universality class are to each other and 
to identify the critical schedule. Our purpose in this paper is not to 
settle these more quantitative questions but to lay out an effective 
geometry program to address them, and to identify some valid candi-
date answers. The easiest schedule in the universality class is the 
critical schedule, Ik, whereas the hardest schedule is the cliff metric:

I I I I= = 1 and = (9)k1 2 ≥3 cliff

in the limit I → ∞cliff . As the penalty factors vary by an infinite amount 
between these two extremes, we might think that the assigned com-
plexities could as well; the content of conjecture 1 is that this does not 
happen. Let us now describe a plausible quantitative conjecture 
inspired by the results of the previous sections and describe some 
supporting evidence. In the Methods, we lay out some more conjectures 
about the critical metric and describe more directly the relationship 
to the existing mathematics literature.

Quantitative conjecture for complexity growth
For concreteness, let us consider the complexity of a unitary of the 
form U = e H zi k , where Hk is a typical (polynomial) k-local Hamiltonian. 
We normalize such that HTr = 12 , so that z is the inner-product (Killing) 
distance. This is a useful case to consider because constant Hk gives a 
geodesic. This is because all terms in Hk have the same weight, and  
by assumption the penalty factor depends only on the weight, and a 
constant Hamiltonian in which all terms have the same penalty factor  
gives a geodesic. A candidate quantitative conjecture is shown in Fig. 2.

The complexity growth for the easiest schedule in the universality 
class, the critical schedule kI , is shown in Fig. 2a. For a k-local Hamilto-
nian, our statement that the critical metric typically does not hit a cut 
locus means the complexity C is simply given by the direct geodesic 
distance s, that is, C Is z(e ) = =H z

k
i k , until z is exponentially large in N.

The complexity growth for the hardest schedule in the universality 
class, the infinite-cliff metric = = 11 2I I , I I= → ∞k≥3 cliff , is shown in 
Fig. 2b. At vanishingly small distances, the two schedules disagree 
about the complexity of e H zi k  by a multiplicative factor of I I/ → ∞kcliff . 
However, as Icliff diverges, the cut locus in the z direction approaches 
the origin, and beyond the cut locus e H zi k  will be more economically 

zz

(e
iH

1,
00

0z )

√ cliff z

(e
iH

1,
00

0z )

√ 1,000z
√ 1,000z

1
999

√ 1,000z + constant

Critical metric Cliff metrica b

Fig. 2 | Conjectured complexity   as a function of the inner-product 
distance z, in which H1,000 is a 1,000-local polynomial Hamiltonian. a, For 
the proposed critical metric, the complexity grows linearly with the same 
coefficient at all z (until it saturates at a z exponential in N). b, For the cliff 
metric, equation (9), at very short distances the complexity grows linearly 
(orange), then it hits the cut locus and slows to sublinear growth (blue), before 
transitioning to linear growth again but with a lower slope that matches the 
critical metric (red).
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synthesized by an indirect path that commutes the cheap directions. 
For the cliff metric, we expect the same three-regime behaviour as we 
saw for the parking unicycle in Fig. 1. The first regime is linear with a 
huge coefficient C I z= cliff . This regime soon ends at a cut locus (and 
is squeezed out entirely for → ∞cliffI ). Beyond the cut locus, we synthe-
size e H zi k  indirectly, by commuting 2-local Hamiltonians. As the number 
of 2-local operators we must commute to make a k-local operator is at 
least k − 1, the second regime has sublinear growth with z∝ k

1
−1C  with 

some multiplicative coefficient (the exponent of this power law is fixed 
by the ball-box theorem)17. After z ~ 1, linear growth resumes with coef-
ficient given by the critical metric. In a strong form of the conjecture, 
the additive deviation of the complexity is never more than the cost of 
a single k-local gate so that O[e ] ≤ [e ] + ( )H z H z

kcliff
i

critical
ik kC C I .

We have argued that there exists a critical metric. In the section 
‘Quantitative conjecture for critical metric’, we make a quantitative 
conjecture for the form of this metric, and argue that the penalty fac-
tors should grow at least exponentially with the number of qubits they 
touch. In the section ‘Consistency checks’, we discuss further evidence 
for these conjectures.

Discussion
In this paper, we investigated long-distance universality and argued that 
short-distance geometry and long-distance geometry can decouple. For 
homogeneous metrics, the short-distance properties—those that can be 
measured in the vicinity of a point, such as the curvature and its deriva-
tives—determine (up to global identifications) everything about the 
entire geometry. But the farther away from the origin you get, the more 
convoluted the relationship between short-distance and long-distance 
geometry becomes. We illustrated this by considering firing a geodesic 
in some direction and following it for a distance z. At first, the distance 
from the origin is just z, so the distance function is simple. But when a 
cut locus is encountered, the geodesic is no longer minimal, and the 
distance function becomes much more complicated. Nevertheless, we 
argued that at even greater separations the distance function becomes 
simple again. We argued that far out beyond the cut locus a new kind of 
order emerges. This new order—an emergent long-distance metric—is 
largely insensitive to the details of the short-distance metric. There is 
instead a form of universality, in which a broad class of short-distance 
metrics all give rise to the same effective long-distance geometry, with 
the entire effect of the short-distance geometry being summarized in 
a handful of relevant parameters. This is the short–long decoupling 
that enables different spaces of wildly different volumes to agree on 
every distance to within a picometre.

In the section ‘Low-dimensional Riemannian cases’, we exhibited 
long-distance universality in low-dimensional Riemannian examples that 
we could solve exactly. In the section ‘High-dimensional gate example’,  
we exhibited large-complexity universality in the high-dimensional but 
non-Riemannian case of gate complexity. In the section ‘Application 
to complexity geometry’ we studied high-dimensional Riemannian 
geometries, and marshalled the evidence for our conjectures that these 
complexity geometries exhibit long-distance universality (which in this 
context is, by definition, the same thing as high-complexity universality).

Our investigations were originally motivated by the ideas in holo-
graphic black holes. Although our results stand independent of those 
motivations, we discuss the implications for holography in the sec-
tion ‘Relation to black holes and holography’; we observe that if our 
conjectures are true, then complexity geometry may provide just the 
precise-but-robust definition of complexity needed to undergird the 
holographic complexity correspondences18–21. An inspiration for our 
investigations was the Wilsonian theory of renormalization in quantum 
field theory1. In some sense, this paper is an attempt to apply those ideas 
to geometry. We develop the connection further in the section ‘Wilso-
nian connections’. Although we have emphasized the application of our 
ideas to complexity geometry, it seems likely that they are applicable to 

all right-invariant metrics on sufficiently ‘large’ Lie groups, where ‘large’ 
could mean either non-compact or a sequence of compact Lie groups 
with growing dimensions; an interesting mathematical program (Meth-
ods and Supplementary Information) would be to characterize the 
equivalence classes of right-invariant geometries on large Lie groups.

Long-distance universality should be a robust feature of sufficiently 
rich high-dimensional spaces. Here we have examined the implications 
for one example of a high-dimensional space: the space of unitary func-
tions on quantum states, which has a dimension exponential in the 
number of qubits. But high-dimensional spaces are found in many 
areas in physics and computer science, from many-body systems to 
deep neural networks. It is tempting to speculate that the concept of 
emergent geometry may be of broader relevance.
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Methods

Review of complexity geometry
Now we provide an overview of Nielsen’s complexity geometry3–7; we 
recommend ref. 11 (sections 1 and 2) as a more pedagogical review (for 
other recent works, see refs. 22–29). Similar to gate complexity, com-
plexity geometry endows the unitary group U(2N) with a right-invariant 
distance function �C CU U U U( , ) = ( , )1 2 1 2

−1  between two unitaries, which 
we interpret as the definition of the relative complexity. However, in 
contrast with gate complexity, which is not a continuous function of 
U, complexity geometry endows the unitary group with a smooth  
Riemannian metric. A general Riemannian right-invariant metric is 
parameterized by a symmetric moment of inertia tensor IJI , so that  
the infinitesimal distance ds between U and U U σ U+ d = ( + i dΩ )I

I�  is 
given by

sd = dΩ dΩ (10)I
IJ

J2 I

and U σ UdΩ = iTr dI
I

† . Here σI are the generalized-Pauli operators, which 
provide a complete basis on the tangent space,

σ σ iσ σ σ σ σ{ } ∈ { , , , , …} , (11)I a
A

a
A

b
B

a
A

b
B

c
C( ) ( ) ( ) ( ) ( ) ( )�

where lowercase letters run over the Pauli indices a ∈ {x, y, z} and  
capital letters indicate the qubit on which the Pauli operator acts, 
A ∈ {1, 2, …, N}, and we have normalized the trace so that � σTr = Tr = 1I

2 . 
The distance between the two unitaries is defined as the minimal geo-
desic distance in this metric, ∫ s= min dC . If IIJ were the identity matrix, 
this would recover the standard inner-product metric on the unitary 
group in which all directions are equally easy to move in, but in general 
a complexity geometry will stretch difficult directions to make complex 
unitaries farther away. To specify a complexity geometry, we must 
specify IJI . Following Nielsen, let us consider IIJ s that are diagonal in 
the generalized-Pauli basis and for which the penalty factor of a given 
generalized-Pauli operator is solely a function of the k-locality, that is, 
solely a function of the weight (or size) k of the operator, defined as 
the number of capital indices in equation (11). Notice that a k-local 
Hamiltonian can be an arbitrary superposition of weight-k generalized- 
Pauli operators—it is allowed to touch all the qubits, so long as no sin-
gle term touches more than k at a time—whereas a k-local gate (defined 
in the section ‘High-dimensional gate example’) acts on only k qubits. 
To specify the metric, we then need only to specify the penalty sched-
ule kI , that is, the choice of kI  for each k ≤ N.

We can also consider the complexity geometry on 2N Majorana  
fermions; this would be natural for studying the complexity 
of the Sachdev–Ye–Kitaev (SYK) model30,31 or other fermionic  
theories32,33.

The critical metric
Here we elaborate on the conjectures made in the section ‘Application 
to complexity geometry’.

Quantitative conjecture for critical metric. Let us identify a good 
candidate to be the critical schedule. Unlike the cliff metric, for which 
all Ik≥3 are the same, for the critical metric we expect the penalty  
factors to steadily grow with k. This is to reflect the fact that the  
difficulty of compiling a direction using two-local Hamiltonians  
increases with the k-locality. On the other hand, we expect the largest 
penalty factor to be exponentially large in N. This is to reflect the fact 
that the maximum complexity is exponentially large in N, and the 
maximum complexity is bounded above by the maximum penalty 
factor, complexity Iπ≤max max . In equation (8), we showed that the 
exponential metric,

≈ 4 , (12)k
k2( −2)I

is a good approximation to the critical schedule of the gate model, up 
to sub-exponential corrections. Our quantitative conjecture is that an 
exponential metric, possibly with some different base x not necessarily 
equal to 4, is also a good approximation to the critical schedule for the 
complexity geometry,

I x≈ . (13)k
k2( −2)

A previous study7 pointed out some of the attractive features of 
the exponential metric for complexity geometry. One of the fea-
tures is that, similar to the critical metric we examined in the 
section ‘Low-dimensional Riemannian cases’, the exponential 
metric has low curvature. Let us review that now. Another study2 
showed that when the commutator of two directions is much 
more expensive than either direction individually, the sectional  
curvatures are

I

I I

I

I I
κ H H κ H H H( , ) ≈ − , ( , [ , ]) ≈ + . (14)I J

H H

H H
I I J

H H

H H

[ , ] [ , ]I J I J

I J I J

Two generalized-Pauli operators have a non-zero commutator only 
when they overlap on at least a single qubit, so the weight of the com-
mutator is always less than the sum of the weights of the two operators,

σ σ σ σWeight([ , ]) ≤ Weight( ) + Weight( ) − 1. (15)I J I J

This means that for the exponential metric the magnitude of all the 
sectional curvatures, of both signs, is always less than O(1). In the sec-
tion ‘Low-dimensional Riemannian cases’, we saw that low curvature 
is a signature of the critical metric. By contrast, the cliff metric has huge 
sectional curvatures because two easy 2-local directions (I = 12 ) com-
mute to a very hard 3-local direction I I( = )3 cliff . This huge sectional 
curvature of the cliff metric indicates that the cut locus in the hard 
direction is close.

Consistency checks. Now let us describe some important consistency 
checks on these ideas.

An important consistency check is the diameter. If members of the 
universality class are to have approximately the same long-distance 
behaviour, then they certainly need to approximately agree on the 
diameter (that is, the greatest separation of any pair of points). We saw 
in the Berger sphere example that all members of that universality class 
agree on the diameter exactly. It is not obvious in advance that the cliff 
metric with I → ∞cliff  should even have a finite diameter, because some 
of the directions are becoming infinitely expensive and the volume is 
diverging. However, Chow’s theorem34,35 ensures that so long as we can 
reach every element of the algebra by nested commutators of finitely 
expensive elements of the algebra, then the distance function con-
verges in the limit → ∞cliffI  and the diameter is therefore finite. We can 
place a tighter upper bound by noticing that everything we can do in 
the gate definition of complexity from the section ‘High-dimensional 
gate example’ we can do no more expensively (up to a multiplicative 
factor of π) in the complexity geometry with the same penalty sched-
ule because every k-qubit gate U(2k) can be made by evolving with a  
k ′-local Hamiltonian k k( ′ ≤ ) that acts only on those k ′ qubits for an 
inner-product distance at most π, giving a complexity geometry cost 
at most Iπ k . Furthermore, we know from ref. 16 that even with the 
infinite-cliff schedule we can construct a circuit for every element of 
U(2N) with a cost no greater than N24N. This gives the upper bound. A 
previous study4 was also able to prove a lower bound on the diameter 
of the cliff metric of 4N/3. If our conjecture is correct, the diameter of 
the critical schedule cannot be substantially less than the diameter of 
the infinite-cliff metric. It is therefore relevant that in ref. 36 a result is 
proved that lower-bounds the diameter of the exponential metric, 



Article
equation (13), for all x > 1 (and several other metrics) by a quantity 
exponentially large in N. Our conjecture thus passes this consistency 
check.

This result is encouraging, but much weaker than what we want to 
show. We want to show that not only do all metrics in the universality 
class agree on the diameter, but also they approximately agree on the 
complexity of almost all sufficiently complex unitaries. Let us now 
report a step in that direction.

First, let us describe a heuristic compilation strategy for e H zi k  that 
suggests an upper bound for the critical schedule. This compilation 
strategy aims to synthesize e H zi k  using only 2-local Hamiltonians (which 
are always cheap for all members of the universality class). A typical 

k-local Hamiltonian Hk = ∑IωIσI is a weighted sum of about N
k

k3k 





 -local 

generalized-Pauli operators (monomials). The dimensionality of the 
space of k-local Hamiltonians is therefore exponentially bigger than 
the dimensionality of the space of 2-local Hamiltonians, by a factor of

n k

N
k
N

( ) ≡
3

3
2

. (16)
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If we wish to write a typical k-local Hamiltonian as the nested com-
mutator of 2-local Hamiltonians, simple dimension counting tells us 
that this requires no fewer than n2(k) levels of nesting. However, there 
are atypical k-local Hamiltonians that can be generated much more 
compactly. In particular, there is a special set of Hamiltonians, of dimen-

sion approximately  






k N( − 1)3
2

2 , that can be written as the nested  
commutator of only (k − 1) 2-local terms. This set includes the k-local 
generalized-Pauli operators. Our compilation strategy uses these spe-
cial Hamiltonians as building blocks. In particular, we use the fact that 
any operator of the form e σ zi I , where σI is a k-local generalized-Pauli 
operator, can be constructed exactly out of 2-local operations with a 
cost no greater than O(k).

An example of a compilation strategy is the following. Any generalized- 
Pauli σK of weight k can be written as the commutator of a weight-(k − 1) 
generalized-Pauli σJ and a weight-2 σI that overlap at a single qubit. 
These three operators satisfy e = e e eσ z σ σ z σi i i −iK I

π
J I

π
4 4 , just as they would 

if they were elements of SU(2). In this way, we can recursively synthesize 
motion in any k-local monomial direction with a cost C O k[e ] ≤ ( )σ zi K . As 
moving indirectly in monomial directions is so cheap, the cut locus in 
monomial directions is very close to the origin even for the critical 
schedule. The extreme closeness of cut loci in monomial directions 
does not violate conjecture 2 because monomial directions are 
extremely atypical.

This implies that we can approximate the operator ∏U = eI
ω σ zi I I  with 

a total cost of about C kn k≈ ( )2 . This operator agrees with our target 
operator e ∑ ω σ zi I I I  at leading order in z, and has an inner-product error 
of about z2. This can be improved to z3 by using the next order in the 
Suzuki–Trotter expansion, but going to even higher orders becomes 
prohibitively expensive. It is at this point that we make our heuristic 
step. In the Euclidean group example, we saw that the complexity geom-
etry has so many degrees of freedom that by making minor deforma-
tions of the path we can correct small errors at small extra cost, in a 
way that is not captured by any finite order of the Suzuki–Trotter expan-
sion, and is instead an emergent feature in the IR. Compared with the 
SU(2) example in the section ‘Berger sphere’, the task of compiling in 
U(2N) is complicated by the fact that there are many more directions 
in which to err; on the other hand, there are correspondingly more 
directions in which we can wiggle the path to eliminate the error,  
and as a statistical matter, we expect that to dominate. If the small 
inner-product errors can be corrected by wiggling the path, then we 
can synthesize e H zi k  for z < 1 at cost kn2(k). To generate e H zi k  at larger 
values of z, the triangle inequality ( az a z( ) ≤ ( )C C  for any Na ∈ )  

guarantees that the complexity grows no faster than linearly with coef-
ficient kn2(k). This argument heuristically shows that the binomial 
metric is in the same universality class as the infinite-cliff metric, and 
therefore upper-bounds the critical schedule:

≲ k n k( ) . (17)k
2

2
2I

The upper-bound equation (17) holds at all but the largest k, where the 
analysis becomes unreliable. Note also that although the binomial 
metric does not have a curvature as small as the exponential metric, it 
is still very moderate ∣κ∣ ≤ O(N) compared to the cliff metric κ ~ cliff∣ ∣ I . 
The reasoning that leads to equation (17) is heuristic, because to elim-
inate error it appeals to a statistical argument. In ref. 37, it is shown that 
there is a weaker result that can be proved. The study also shows that 
any unitary that can be reached with a path that in the binomial metric 
has a length U( )bin.C  can be approximated to within inner-product error 
ϵ by a path that in the infinite-cliff metric has a length

C
C

U π N
U

�
( ) ≤ 17

( )
. (18)cliff

2 bin.
7/2

5/2

Our conjectures imply that this can be improved from polynomial to 
linear-with-additive-constant and from approximate to exact.

Finally, let us note that a property we have conjectured for the com-
plexity geometry—namely, linear growth of complexity that lasts for 
an exponential duration—has been proved already in two simple toy 
models: a discrete random-circuit model on Cayley graphs38 and a 
continuous random-circuit model on the unitary group that tolerates 
zero error39.

Next steps. In attempting to prove, refute or provide further evidence  
for our conjectures about precise equivalences between high- 
dimensional complexity geometries, two broad strategies could be 
pursued: starting at low dimension and working up or starting at high 
dimension and making the equivalencies more precise.

Following the latter strategy, we could initiate a program of prov-
ing increasingly precise equivalence relations. We would show that 
all metrics in the equivalence classes have approximately the same 
large-separation distance functions, with escalating strength for the 
form of the discrepancy (for example, polynomial versus linear ver-
sus additive), for the N dependence of the discrepancy (for example, 
exponential versus polynomial versus linear), for the form of the error 
tolerated (for example, inner-product distance versus operator-norm 
distance versus exact), and for whether tight bounds on the discrepancy 
are to be found in only moderately easy directions or in all directions. 
This program would pursue a progressive strengthening of the results 
given in ref. 37.

A complementary program would be to start with the low-dimensional 
examples in the section ‘Low-dimensional Riemannian cases’ and stead-
ily increase the dimension. For example, a concrete next step to test our 
conjectures would be to numerically calculate the distance function for 
a modest number of qubits (or Majoranas), extending the numerical 
analysis of ref. 40 from two qubits to a handful or more.

Relation to black holes and holography
In the context of the gauge–gravity duality41, it has been conjectured 
that some geometric properties of the black hole interior18–21 are related 
to the quantum complexity of the holographic dual of the black hole. 
For example, in ref. 19 it was conjectured that

Complexity ≈ Volume, (19)

where the volume is the volume of a wormhole behind a black hole 
horizon and the ≈ symbol accounts for an unknown multiplicative 
constant. In refs. 20,21, an even more precise conjecture was made:



πħ
Complexity =

Action
, (20)

where again the action is evaluated for a certain geometric region of 
the holographic wormhole and this time there is no multiplicative 
ambiguity.

From the point of view of conventional complexity theory, equa-
tions (19) and (20) are alarming. On the right-hand side of the equations 
we have geometric quantities whose values can be calculated exactly, 
whereas on the left-hand side we have a quantity that in the conven-
tional view is robustly defined only up to polynomial equivalence, and 
only then not for a single solution but for a family of solutions of vary-
ing N in the limit that N gets large. In this view, it is a category error to 
expect to be able to give robust meaning to the numerical value of the 
complexity of a particular unitary. Of course, even in this view, we can 
always extract a numerical value by being extremely precise about 
which choices we make for the definition of complexity (for example, 
exactly which primitive gates or which penalty factors), but there would 
be no expectation that the numerical value would be robust against 
perturbing these choices. Furthermore, there are no known principles 
that would dictate these seemingly arbitrary choices.

But if the conjectures in this study are correct, equations (19) and (20) 
are no longer so alarming. Instead, the universality of long-distance 
complexity tells you that (in the semi-classical limit, in which complexi-
ties are large and the dual spacetime is effectively classical), there is a 
robust definition of complexity to place on the left-hand sides of equa-
tions (19) and (20), in which many of the seemingly arbitrary choices of 
penalty factors do not matter. This could enable a rigorous formulation 
of holographic complexity.

Further links between holography and the results are discussed in 
Supplementary Information 2.

Wilsonian connections
We make explicit the analogy between our findings in geometry and 
the Wilsonian theory of renormalization1.

A starting point for complexity geometry, both logically and his-
torically, is Nielsen’s cliff metric with a huge penalty factor for the 
non-easy directions Icliff (see section ‘Main conjectures’). In terms of 
renormalization, we might call this a bare theory of complexity. For 
this theory, the behaviours of the UV (that is, short distances) and the 
IR (that is, long distances) are very different. The UV has violently large 
curvatures and a very short distance to the cut locus. Using the bare 
theory, computing complexity growth in the UV (short-distance behav-
iour) is straightforward. We find a linear growth with a very large slope. 
However, the calculation breaks down once the geodesic we are  
following passes the cut locus, in which non-perturbative effects 
become important. These effects slow the growth of complexity, and 
if our conjectures are correct, eventually the complexity growth 
becomes linear again, but with a much-reduced slope. A new schedule 
of penalty factors—the critical schedule—defines an effective theory 
that is easy to use in the IR.

In statistical mechanics and quantum field theory, this is analogous 
to the statement that a field theory is a flow between a UV conformal 
field theory and an IR conformal field theory. This means (among other 
things) that certain correlation functions in field theories exhibit a 
power-law decay in the UV and a power-law decay in the IR, but with 
different (anomalous) logarithmic slopes (referred to as critical expo-
nents) in the UV and IR. Here the slopes of the linear growth of dis-
tances play the part of the logarithmic slopes in statistical physics. Our 
conjecture that the IR slopes differ dramatically from the UV slopes 
is analogous to the statement that in a strongly coupled field theory, 
anomalous dimensions are typically large.

The values of the penalty factors Ik are the parameters of the theory, 
playing the role of the set of (inverse) coupling constants in a quantum 
field theory. If a given penalty factor is greater than the value it attains 

in the critical schedule, then that parameter is irrelevant—that is, per-
turbing it does not affect the IR behaviour. The penalty factor becomes 
relevant only when it has the same value it would have had on the 
critical schedule, and any further decrease in kI  beyond this point then 
changes the distance function in the IR.

In describing the geometry of the group manifolds, we have used 
the terms of Wilsonian quantum field theory: UV and IR, bare theory, 
anomalous dimension, non-perturbative, effective theory, flow, cou-
pling constants, relevant and irrelevant. At the moment the similarities 
between complexity geometry and the renormalization of quantum 
field theories are far from a precise isomorphism, but they are sugges-
tive of deeper connections.

Connection to coarse geometry
We explain the relationship of our work to the mathematical subject of 
coarse geometry and geometric group theory42,43. Supplementary Infor-
mation 1 further rephrases our investigation and conjectures in this lan-
guage, but the equivalences discussed there are somewhat less coarse 
than those allowed under the standard definitions reviewed here.

The main idea of coarse geometry is that given two metric spaces 
X X, ′ equipped with distance functions d d, ′ we can say that they are 
coarse equivalent or quasi-isometric d d~ ′ iff there exists a map f X X: → ′ 
such that

c d x x a d f x f x cd x x a( , ) − ≤ ′( ( ), ( )) ≤ ( , ) + (21)−1
1 2 1 2 1 2

for some c ≥ 1 and a ≥ 0. Furthermore, it is required that every point 
x X′ ∈ ′  is at most a fixed distance b ≥ 0 from some image point f(x), 
where x could depend on x ′. For our purposes, we apply this definition 
to the same underlying space X X= ′ equipped with two different dis-
tance functions and take f to be the identity. We then say that the two 
metrics are coarse equivalent d d~ ′  iff there exist a and c such that

c d x x a d x x cd x x a( , ) − ≤ ′( , ) ≤ ( , ) + . (22)−1
1 2 1 2 1 2

For an unbounded metric space, the statement has content because 
a and c are required to be finite. For a bounded space such as a metric 
on a finite group or a compact Lie group, the statement has no content 
unless we upper-bound a and c. In the context of complexity geometry, 
it is natural to consider a sequence of metric spaces Xn, for example,  
Xn = U(2N). Then we would say that the sequences of geometries 
are coarse equivalent if we can find some constants a and c that are 
independent of n. If the diameter of Xn is unbounded as n → ∞ this is a 
non-trivial statement.

The notion of coarse equivalent or quasi-isometry defines an equiv-
alence relation on the set of metrics d on a given space. In our context, 
we are interested in the case in which the space is a Lie group G. In gen-
eral, we can fully specify a left-invariant geometry on a Lie group of 
dimension Gdim( ) by specifying a G Gdim( ) × dim( ) matrix I  worth of 
parameters (which we refer to as penalty factors), which can be viewed 
as the infinitesimal line element near the identity element of the Lie 
group2. Hence in this context, we are discussing equivalence relations 
on these penalty factors I I~ ′. As mentioned above, this equivalence 
relation is meaningful as stated for a non-compact Lie group in which 
the diameter of the geometry is infinite with any reasonable choice of 
penalty factors. For sequences of compact Lie groups Xn, for example, 
U(2N), we consider corresponding sequences of penalty factors I{ }n  
and define an equivalence relation between such sequences I I{ } ~ { ′ }n n .

More generally, we can imagine adjusting this criterion in various 
directions. For example, we could require that a and c are not inde-
pendent of n but have a mild n dependence. In the Supplementary 
Information, we mention a bound44 that was proved in the context of 
nilpotent Lie groups of the form

∣ ∣d x x d x x O d x x a( , ) − ′( , ) ≤ ( ( , ) ) + (23)α
1 2 1 2 1 2
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where 0 < α < 1. This implies that the fractional error vanishes at large 
d at a rate no slower than dα−1. This is a stronger statement than equa-
tion (22) if c is left unspecified, but it is a slightly weaker statement than 
equation (22) if it requires c = 1.

In the context of discrete groups, an elementary result is that the 
coarse geometry defined by the Cayley graph is independent of the 
choice of generating set43. That is, we can consider a group G that is gener-
ated by some set of easy elements g1, …, gk. The distance from the identity 
to some group element g is the minimum length of the word formed from 
g1, …, gk that expresses g. Although the metric depends on the choice of 
generating set (or more generally, the penalty factors associated with 
each group element), the claim is that different choices of generating 
sets give distance functions that satisfy equation (22). Furthermore, 
we can consider properties of the geometry that depend on only the 
equivalence class. A particularly interesting property is δ-hyperbolicity, 
which is a notion of negative curvature that applies even in this discrete 
context. We can identify negative curvature by observing that all trian-
gles in negatively curved spaces are slim—that is, any point on one side 
of the triangle is close to some point on another side of the triangle, 
with the maximum separation set by the curvature scale. This property 
defines what is known as Gromov hyperbolic groups45 and is the subject 
of ongoing mathematical work. A simple example is a free group, where 
the Cayley graph is an infinite tree. This notion of negative curvature may 
explain our conjecture that the critical metric has negative sectional 
curvatures7,38. In particular, the notion of δ-hyperbolicity shows that the 
concept of large-scale curvature is not a contradiction. In the context of 
Lie groups, we expect that although many members of a given equiva-
lence class exhibit extreme local curvatures, their large-scale curvatures 
(for example, that probed by large triangles) should approximately agree 
with the large-scale curvatures of the critical metric.

This work calls for an extension of the geometric group theory pro-
gram to cover non-compact Lie groups and sequences of compact 
Lie groups. Furthermore, in analogy to the Cayley graph and discrete 
groups, we believe that in many cases, the number of equivalence 
classes of coarse geometries is small, despite there being a naively 
infinite number of different right-invariant metrics on Lie groups.
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