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Forced changes in the Pacific Walker 
circulation over the past millennium

Georgina Falster1,2,5 ✉, Bronwen Konecky2, Sloan Coats3 & Samantha Stevenson4

The Pacific Walker circulation (PWC) has an outsized influence on weather and 
climate worldwide. Yet the PWC response to external forcings is unclear1,2, with 
empirical data and model simulations often disagreeing on the magnitude and  
sign of these responses3. Most climate models predict that the PWC will ultimately 
weaken in response to global warming4. However, the PWC strengthened from 1992 
to 2011, suggesting a significant role for anthropogenic and/or volcanic aerosol 
forcing5, or internal variability. Here we use a new annually resolved, multi-method, 
palaeoproxy-derived PWC reconstruction ensemble (1200–2000) to show that the 
1992–2011 PWC strengthening is anomalous but not unprecedented in the context  
of the past 800 years. The 1992–2011 PWC strengthening was unlikely to have  
been a consequence of volcanic forcing and may therefore have resulted from 
anthropogenic aerosol forcing or natural variability. We find no significant industrial- 
era (1850–2000) PWC trend, contrasting the PWC weakening simulated by most 
climate models3. However, an industrial-era shift to lower-frequency variability 
suggests a subtle anthropogenic influence. The reconstruction also suggests that 
volcanic eruptions trigger El Niño-like PWC weakening, similar to the response 
simulated by climate models.

The PWC is the zonal component of atmospheric circulation over the 
tropical Pacific. The PWC may be characterized by a sea-level pressure 
(SLP) gradient (ΔSLP) across the equatorial Pacific, with deep convec-
tion over the Indo-Pacific warm pool, subsidence over the equatorial 
eastern Pacific, upper-tropospheric westerlies and surface easterlies 
(the Pacific trade winds). Tightly coupled to tropical Pacific sea-surface 
temperature (SST), the PWC forms the atmospheric component of the 
El Niño–Southern Oscillation (ENSO), the dominant mode of global 
interannual climate variability. Despite its importance to global climate, 
both the PWC’s response to external radiative forcings and its intrinsic 
variability are poorly understood2,6. For example, no consensus has 
emerged as to whether anthropogenic forcing has strengthened the 
PWC7,8, weakened it9–11 or had no detectable influence12. Most obser-
vational datasets indicate that the PWC strengthened considerably 
between around 1992 to 2011, in a trend to more ‘La Niña-like’ condi-
tions5,13. However, it is unknown if this strengthening was externally 
forced or the result of intrinsic variability2,8, in part because the 
strengthening is consistently absent from climate model simulations3,14.

The high intrinsic variability of the PWC is a substantial obstacle to 
detecting forced changes6, as observational records are too short to 
robustly characterize the two9. Annually resolved ENSO reconstruc-
tions have allowed assessment of the response of ENSO to volcanic 
eruptions, that is, the largest preindustrial forcing of the past millen-
nium15. However, the tropical Pacific SST response to volcanic forcing 
remains contentious16, and similar assessments have not been pos-
sible for the PWC, as atmospheric variability is notoriously difficult 

to reconstruct without complex proxy-system transformations17,18. 
Existing inferences of preindustrial PWC variability19–21 are derived 
from approximately decadally resolved records that rely on a mix of 
proxy sensors sensitive to different aspects of hydroclimate (rather 
than atmospheric circulation directly) and are of too low resolution 
to assess interannual variability.

PWC reconstruction approach
Here we contextualize observational-era PWC variability with a new 
annually resolved reconstruction of the PWC from 1200 to 2000, 
derived from 59 palaeoclimate proxy records and including 4,800 
ensemble members that sample uncertainty from observational data, 
reconstruction method and record chronologies. Our target variable 
was anomalies in the trans-Pacific ΔSLP (ref. 11), which has been used in 
many studies to quantify the PWC (Fig. 1b; Methods). ΔSLP anomalies 
were calculated relative to 1960–1990. Higher ΔSLP values represent a 
stronger PWC, which broadly corresponds to more ‘La Niña-like’ atmos-
pheric conditions; lower ΔSLP values represent a weaker PWC, or more 
‘El Niño-like’ conditions.

The first mode of observed global interannual precipitation δ18O over 
1982–2015 is significantly (P < 0.05) correlated with and explains 55% 
of the ΔSLP variance22. This is the case even though many individual 
precipitation δ18O records are not highly or significantly correlated 
with ΔSLP (ref. 22) and supports the use of a non-local reconstruction 
approach. The ΔSLP imprint in global precipitation δ18O arises from 
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several well-documented processes, including PWC-related changes in 
moisture source and transport length, and a PWC-driven or ENSO-driven 
‘amount effect’ in tropical regions. Global precipitation δ18O variability 
is more strongly correlated with the PWC than with ENSO. This is prob-
ably because PWC-related changes in atmospheric circulation directly 
affect precipitation δ18O, whereas SST changes must be transmitted to 
precipitation δ18O by means of atmospheric processes22.

We therefore reconstructed ΔSLP from 54 globally distributed annu-
ally or sub-annually resolved proxy records for the stable isotopic com-
position of precipitation and other meteoric waters (‘water isotopes’) 
and five annually resolved non-isotope-based palaeoclimate records 
that have a strong mechanistic relationship with the PWC or ENSO 
(Supplementary Table 1 and Extended Data Figs. 1 and 2; Methods). The 
reconstruction uses the Iso2k database23, an innovative global synthe-
sis of water-isotope proxy records. Iso2k includes data from diverse 
archive types and allows ready integration of water-isotopic signals into 
palaeoclimate reconstructions. Although not all water-isotope proxy 
records directly reflect precipitation δ18O variability, it is the primary 
driver of variability for most records used in this reconstruction23. 
The availability of continuous annually resolved records decreases 
rapidly back through time; to maximize information incorporated 
into our reconstruction, we performed the reconstruction in five tem-
poral subsets (1200–2000, 1400–2000, 1600–2000, 1800–2000 and 
1860–2000), in each case using proxy records with >66% coverage over 
that interval (Extended Data Figs. 1 and 2).

Palaeoclimate reconstructions are sensitive to both reconstruction 
method and the observational data used for training the reconstruc-
tion24. We therefore took a comprehensive, ensemble-based approach 
to reconstructing ΔSLP that accounts for these and other uncertainties. 

We used five statistical methods: composite plus scale (CPS), principal 
component regression (PCR), pairwise comparison (PaiCo) and two 
variants of principal component analysis (PCA): (1) an ‘overlap-period’ 
PCA (opPCA), in which the first principal component of the proxy data 
is calculated over the calibration interval, then the loadings are pro-
jected over the full length of the time series, and (2) a ‘full-interval’ PCA 
(fiPCA), in which the first principal component of the proxy data is 
calculated over the full reconstruction interval. We performed the PCR 
reconstructions using (1) all proxy records and (2) the subset of proxy 
records correlated significantly (P < 0.1) with ΔSLP in the calibration 
window. We performed CPS reconstructions using the entire proxy 
dataset, as well as two subsets: (1) only proxy records in a broad tropical 
Pacific ‘centre of action’ (CPScoa) and (2) only proxy records that do 
not have a known bias to a particular season (CPSns). For each statisti-
cal method, we trained the reconstructions on ΔSLP calculated from 
three gridded SLP products: the Hadley Centre SLP dataset (HadSLP25), 
the International Comprehensive Ocean-Atmosphere Data Set SLP 
dataset (ICOADS26) and SLP from the ERA twentieth-century reanalysis 
(ERA-20C (ref. 27)). In all cases, we used a 1900–2000 calibration inter-
val. We explicitly incorporated chronological uncertainty by sampling 
many realizations from a banded age–depth model ensemble for each 
record28, thus propagating chronological uncertainty through subse-
quent analyses. For each iteration of the reconstruction ensemble, we 
randomly removed up to 15% of the available records to account for 
possible dependence of results on a particular subset of proxy records. 
Finally, we assessed reconstruction skill by creating a second set of 
reconstructions with a 1951–2000 calibration interval, then quantifying 
performance in an independent 1900–1950 interval (see Methods for 
a full description of the reconstruction methodology).
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Fig. 1 | Ensemble reconstruction of the PWC (in terms of the trans-Pacific 
ΔSLP) from 1200 to 2000 CE. a, ΔSLP anomalies relative to 1960–1990, with a 
5-year running mean applied. Grey shading represents the 2.5th/97.5th 
quantiles for the full ensemble (n = 4,800). Coloured lines show the ensemble 
median for each reconstruction method. Black lines show instrumental data 
for 1900–2010, from HadSLP25, ICOADS26 and ERA-20C (ref. 27). Triangles 
denote volcanic eruptions with reconstructed SAOD ≥ 0.05 (ref. 35). CPS, 
composite plus scale; CPScoa, CPS using only records in a tropical Pacific 
‘centre of action’; CPSns, CPS using only records without a known seasonal 
bias; fiPCA, ‘full-interval’ principal component analysis; opPCA, ‘overlap- 
period’ principal component analysis; PaiCo, pairwise comparison; PCRall, 

principal component regression using all proxy records; PCRcor, principal 
component regression using only records significantly (P < 0.1) correlated with 
the training ΔSLP index in the calibration window. b, Locations of proxy records 
used in the ΔSLP reconstruction. Shapes correspond to archive type; fill shows 
the absolute correlation of that record with the ΔSLP reconstruction ensemble 
median across the interval in which that record contributed to the reconstruction 
(that is, the temporal segments; see Methods). Point size scales with record 
length. Black outline denotes that the proxy record is significantly (P < 0.05) 
correlated with the ΔSLP reconstruction ensemble. Black rectangles show 
regions used to calculate ΔSLP. Map created in R, using coastlines from Natural 
Earth.
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The reconstruction closely tracks ΔSLP in the observational era 
(Extended Data Fig. 3); reconstruction ensemble median ΔSLP is 
highly correlated with mean ΔSLP from the three gridded SLP products 
(r = 0.81; Extended Data Table 1). The correlation remains high when 
assessing reconstructed ΔSLP against observed ΔSLP in an independent 
interval (r = 0.77; Extended Data Table 1). Uncertainty in the ensemble 
arises from uncertainties in the gridded SLP products (Extended Data 
Figs. 4a and 5a), as well as the statistical method used to calculate the 
reconstructions (Extended Data Figs. 4b and 5b). Skill decreases prior 
to around 1600 (Extended Data Figs. 4c and 5c); this decrease in skill 
back through time is because of decreased data coverage and increased 
chronological uncertainty (see Methods for a full accounting of recon-
struction skill). We restrict our main findings to those robust relative 
to the reconstruction uncertainty.

Preindustrial and industrial-era PWC variability
Our ΔSLP reconstruction demonstrates that large interannual to dec-
adal variability has been a feature of the PWC throughout the past mil-
lennium (Fig. 1a). A weak positive ΔSLP trend from around 1200–1750 
is followed by a slight decrease to around 1800, then a period of low 
inter-method agreement. Low inter-method agreement is also found 
in ENSO reconstructions over the same period29. In both cases, this 
disagreement may result from non-stationary climate covariation 
due to the presence of several volcanic eruptions over this period29. 
This in turn may drive inter-method differences owing to the different 
ways the reconstruction methods treat bias. The twentieth century is 
characterized by fluctuations around a stable mean, ending in a positive 

trend over the past two decades (Fig. 1a). ΔSLP is weakly to moderately 
anticorrelated with reconstructions of ENSO over the past millennium 
(Extended Data Fig. 6c,d). When considering only significant peaks 
in the power spectrum, the PWC reconstruction has highest spectral 
power in the interannual (2–9-year) band (Fig. 2a), as expected from 
ENSO. Approximately 10% of ensemble members also have significant 
power in decadal (10–12-year) and multidecadal (21–24-year) bands, 
possibly indicating influence of the 11-year solar cycle30. The low 
spectral power at decadal to multidecadal timescales is reflected in 
a weak correlation with an ice-core-based reconstruction of the Inter-
decadal Pacific Oscillation (IPO)31 (Extended Data Fig. 6b). Notably, 
there is a shift to higher power at lower frequencies in the industrial era 
(1850–2000) relative to the preindustrial past millennium (1200–1849; 
4–9-year rather than 2–9-year periods, with particularly high power 
in the 9-year band) (Fig. 2b,c; Methods). Both this shift and the low 
proportion of ensemble members with significant low-frequency vari-
ability are robust to our temporally nested reconstruction approach, 
although the proportion of ensemble members with power at each 
period is slightly different in a non-nested version of the reconstruc-
tion (Extended Data Fig. 7; Methods). The distribution of ΔSLP values in 
the industrial era is slightly skewed towards higher (more La Niña-like) 
values than in the preindustrial past millennium (Fig. 2d). However, 
the difference between preindustrial and industrial-era mean ΔSLP is 
not significant (P ≥ 0.05) in 81% of the 4,800 reconstruction ensemble 
members (Fig. 2d; Methods).

The lack of a significant PWC mean state change in response to 
anthropogenic forcing is an important result. Climate models sug-
gest that the thermodynamic effect of greenhouse-gas-driven rising 
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Fig. 2 | Temporal characteristics of ΔSLP throughout 1200–2000 CE.  
a, Proportion of the 4,800 ΔSLP reconstruction ensemble members with 
significant (P < 0.05) power in periods from 1 to 75 years. Significance is 
evaluated against a power-law null (Methods). Colours denote reconstruction 
method. b, As per a but for 1200–1849, in all possible 150-year segments. The 
division into 150-year segments was to enable direct comparison with the 
power spectrum in the industrial era (Methods). c, As per a but for 1850–2000. 
d, Left: distribution of ΔSLP anomalies for 1200–2000 (summarizing all values 

from all individual reconstruction ensemble members). Cyan distribution 
shows preindustrial values (1200–1849). Salmon distribution shows industrial- 
era values (1850–2000). Dashed black line shows the distribution for the full 
reconstruction interval (1200–2000). Right: box plot summarizing P values 
from two-sample Kolmogorov–Smirnov tests of whether the post-1850 mean is 
different from the pre-1850 mean, performed on all 4,800 ΔSLP reconstruction 
ensemble members. Box shows median and interquartile range (IQR), whiskers 
show IQR × 1.5, and points show outliers. Dashed red line denotes P = 0.05.
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global mean surface temperature (GMST) should weaken the PWC 
by the end of the twenty-first century11,32, and a negative ΔSLP trend 
is also present in historical simulations from most Coupled Model 
Intercomparison Project (CMIP5/6) models3. However, recent work 
suggests that global-warming-driven ocean–atmosphere dynami-
cal changes accelerate the Pacific trade winds, resulting in a stronger 
PWC14,33. Our findings demonstrate that, during the industrial era, nei-
ther greenhouse-gas-driven effect is emergent from the large intrinsic 
variability of the PWC. Nevertheless, the industrial-era shift in PWC vari-
ability towards lower frequencies is intriguing and possibly a response 
to anthropogenic forcing that has not previously been identified.

Recent strengthening not unprecedented
To determine whether the most recent PWC strengthening is anoma-
lous relative to intrinsic variability, and hence potentially anthropogen-
ically forced, we examined the 1992–2011 ΔSLP trend13 from the gridded 
SLP products in the context of all possible 20-year trends throughout 
the 1200–2000 reconstruction period (Fig. 3a). Because ERA-20C data 
only extend to 2010, we compared the most recent 19-year trend in 
ERA-20C (1992–2010) to all 19-year trends in reconstruction ensem-
ble members trained on ERA-20C data. Using trends calculated from 
ensemble members trained on HadSLP or ICOADS (with the 1992–2011 
ΔSLP trend calculated using the same products), the 1992–2011 trend 
is unusually large (99th and 98th percentiles, respectively), although 
not unprecedented, in the context of the past millennium (Fig. 3d,e). 
Using ERA-20C, the 1992–2010 trend is less anomalous but still on 
the high end of the distribution (94th percentile; Fig. 3c). Comparing 
the 1992–2011 ΔSLP trend with the full reconstruction ensemble, the 
recent trend is again unusually large but not unprecedented (98th 
percentile; Fig. 3b).

Previous work using observational data and model simulations 
suggested that the recent multidecadal PWC strengthening may 
be attributable to either anthropogenic aerosol forcing or a slow 
recovery from a negative ΔSLP anomaly following the 1991 Mount 
Pinatubo eruption5. To resolve these possible drivers, we compared 
the 1992–2011 trend with the full distribution of 20-year trends fol-
lowing eruptions of Mount Pinatubo magnitude or greater (Meth-
ods). The 1992–2011 trend remains unusually large even in this 
context (Extended Data Fig. 8). Hence the 1992–2011 strengthen-
ing is probably not the result of volcanic forcing, making anthro-
pogenic aerosols a more likely candidate if the trend is indeed a  
forced response.

PWC response to volcanic forcing
Although the eruption of Mount Pinatubo did not likely force the 
1992–2011 PWC strengthening, volcanic eruptions are the largest pre-
industrial forcing of the past millennium and their impact on tropical 
Pacific climate is contentious34. We performed superposed epoch 
analysis (SEA) to test whether volcanic eruptions trigger a transient 
response in the PWC. SEA determines the median response to all vol-
canic eruptions over a defined interval (Methods). We identified vol-
canic eruption years using global mean stratospheric aerosol optical 
depth (SAOD), a dimensionless metric for the stratospheric scattering 
of solar radiation by volcanic aerosols, calculated in ref. 16 from the 
‘eVolv2k’ reconstruction of Common Era volcanic sulfate aerosol load-
ing35. Following recent work36, we reassigned the major Kuwae erup-
tion from 1458 to 1452. Proxy-based and model-based studies suggest 
that a tropical Pacific response to explosive volcanism only occurs 
when the eruption is of sufficient magnitude, so we restricted erup-
tions to those with SAOD ≥ 0.05 (that of the 1982 El Chichón eruption; 
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n = 25). We performed SEA on all 4,800 ΔSLP reconstruction ensemble 
members and report the proportion of ensemble members that have a 
significant37 positive or negative ΔSLP response in the years following 
volcanic eruptions.

Figure 4 reveals a significant El Niño-like PWC weakening in the 
0–2 years following large volcanic eruptions, with a rapid recovery to 
the pre-eruption state. This result is insensitive to the reconstruction 
method (colours in Fig. 4) and the observational product used to calcu-
late the ΔSLP target index (colours in Extended Data Fig. 9). However, 
the PWC weakening in response to large eruptions is progressively 
obscured by including older eruptions—particularly those before the 
mid-nineteenth century (Fig. 4 and Extended Data Fig. 9). Chronological 
uncertainty is the probable source of this obfuscation, as it increases 
back through time, smoothing the ensemble-mean response to older 
eruptions (Extended Data Fig. 10). Further time-dependent uncer-
tainty may arise from temporal non-stationarities between the PWC 
and some proxy records38. As also found in previous studies assess-
ing SST in the Niño 3.4 region16,34, the magnitude of the post-eruption 
ΔSLP response does not scale with eruption magnitude (Extended 
Data Fig. 11). Negative ΔSLP anomalies 1 year before and 3 years after 
eruptions (Fig. 4d) are probably due to the chronological uncertainty 
incorporated into the reconstruction ensemble. Positive ΔSLP anoma-
lies 2 years before eruptions (Fig. 4c,d) are probably due to the narrower 
confidence intervals at this point (a feature of how these confidence 
intervals are calculated, with all composites centred on the pre-eruption  
mean37; Methods).

Importantly, El Niño events had initiated shortly before three of 
the twentieth-century eruptions (Mount Agung, 1963; El Chichón, 
1982; Mount Pinatubo, 1991)34,39. This probably influences the results 
in Fig. 4, given that volcanic forcing causes an atmospheric response 
on a similar timescale as ENSO39. Nevertheless, in a SEA with these three 
eruptions excluded, the response is similar albeit muted (not shown). 
Therefore, the significant post-eruption PWC weakening seen in Fig. 4 
is not driven entirely by the twentieth-century eruptions, for which the 
tropical Pacific may have already been in an El Niño state.

In climate model simulations, volcanic eruptions generally trigger 
an El Niño-like tropical Pacific SST response (see summary in ref. 15). To 
assess our findings in the context of this previous work, we used a suite 
of climate models to test whether an El Niño-like SST response to vol-
canic eruptions is associated with a significant negative ΔSLP anomaly, 
as observed in our reconstruction. We performed SEA on (1) ΔSLP and 
(2) SST anomalies in the Niño 3.4 region, using the most comprehensive 
single-model ensemble of simulations covering the reconstruction 
period: the Community Earth System Model Last Millennium Ensemble 
(CESM1 LME)40, which produces an El Niño-like SST response to volcanic 
forcing in the ensemble mean41. We also analysed data from eight Pale-
oclimate Modelling Intercomparison Project (PMIP3/4) models with 
a past1000 experiment, including an extra single-model ensemble of 
simulations from GISS-E2-R (refs. 42,43). When applying the above 
SEA approach to the CESM1 LME (using the 25 strongest eruptions; 
Methods), nine of the 13 CESM1 LME members produce a significant37 
negative ΔSLP anomaly the year following a volcanic eruption (Fig. 5a), 
with ΔSLP anomaly magnitudes similar to those occurring during an 
average El Niño event. As previously identified for SST in the Niño 3.4 
region16, the number of CESM1 LME members producing a significant 
response increases as the eruption size threshold increases (Fig. 5b,c). 
Notably, the ΔSLP response in the CESM1 LME is more consistent than 
the SST response (Fig. 5d–f). Fewer CESM1 LME ensemble members 
have a significant Niño 3.4 SST response in the year following erup-
tions than have a ΔSLP response and there is greater spread in the SST 
response across ensemble members.

Among the PMIP3/4 models, high inter-model variability is evi-
dent in both the ΔSLP and SST responses to volcanism. Nevertheless, 
the ΔSLP response is again more consistent than the SST response, 
with seven PMIP models (including three GISS-E2-R ensemble mem-
bers) having a significant ΔSLP response in the year following an 
eruption, versus five models (including one GISS-E2-R ensemble 
member) with a significant Niño 3.4 SST response (Fig. 5a,d). Recent 
palaeoclimate reconstructions covering this time period have not 
found a significant SST response to large volcanic eruptions16,34 and 
this analysis suggests that ΔSLP may be more sensitive to volcanic  
aerosol forcing.

Discussion
Our results demonstrate that the PWC has large intrinsic variability 
across timescales, highlighting the importance of a longer-term context 
when discussing trends in atmospheric circulation. Nevertheless, the 
two largest external forcings of the past millennium produce detectable 
PWC changes. Analysis of the ΔSLP reconstruction ensemble reveals a 
significant El Niño-like PWC weakening after volcanic eruptions. This 
response is reproduced in the CESM1 LME and PMIP3/4 models and is 
more consistent than the associated Niño 3.4 SST response. Although 
there is no significant PWC trend since the onset of anthropogenic 
forcing (around 1850), an anomalous PWC strengthening trend over 
the past couple of decades, as well as an industrial-era shift towards 
lower-frequency variability, suggests that the PWC may be respond-
ing to anthropogenic forcing, albeit in ways that are not consistently 
reproduced by climate model simulations.

Previous studies using observations and climate models identified 
a greenhouse-gas-driven PWC weakening through the twentieth and 
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twenty-first centuries11,32, following a thermodynamically driven decline 
in vertical mass flux over the tropical Pacific. If this effect is emergent 
relative to internal variability, then we might expect GMST and ΔSLP 
to be anticorrelated in the industrial era, that is, the interval with the 
largest increase in GMST. However, our ΔSLP reconstruction reveals 
no industrial-era PWC weakening relative to the preceding 650 years 
(Fig. 2d and Extended Data Fig. 12). In fact, comparison with recon-
structed GMST44 reveals that PWC strength is not reliably anticorrelated 
with GMST across timescales, including correlation tests restricted to 

the industrial era (Fig. 6a). A distribution of correlation coefficients 
between the two ensemble reconstructions over the full 1200–2000 
interval shows only a weak anticorrelation (Fig. 6b). Our results there-
fore imply that, if there is a thermodynamic influence of GMST on the 
strength of the PWC: (1) it is obscured by competing forcings (for exam-
ple, anthropogenic aerosol emissions9,45); (2) other thermodynamic 
and/or dynamic responses of the PWC to warming are operative as 
well33,46; or (3) the changes are too small to have emerged from intrinsic 
variability with the anthropogenic CO2 increase experienced so far. 
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Our findings do not discount the possibility that, with future changes 
in the relative magnitude of anthropogenic forcings (for example, a 
larger increase in atmospheric CO2), a thermodynamically driven PWC 
weakening may yet emerge.

Of particular relevance to point (1) above is the unusually large 1992–
2011 PWC strengthening, which is unlikely to solely represent a slow 
recovery from El Niño-like conditions following the Mount Pinatubo 
eruption. Model simulations suggest that anthropogenic aerosol emis-
sions concentrated in the Northern Hemisphere drive a La Niña-like SST 
response45,47,48. Given that the anthropogenic aerosol forcing over the 
past few decades has been concentrated in the Northern Hemisphere, 
this could be expected to drive a multidecadal trend towards a stronger 
PWC. However, although the 1992–2011 PWC strengthening is unusual, 
it is not unprecedented in the past 800 years, so it may also be due to 
unforced decadal variability.

Although evidence for a PWC response to anthropogenic forcing 
is subtle, the response to volcanic forcing is comparatively clear. A 
significant El Niño-like ΔSLP anomaly occurs in the year of volcanic 
eruptions, probably associated with El Niño-like easterly surface 
wind anomalies over the equatorial Pacific15. The significant anomaly 
lasts until 2–3 years after the eruption (Fig. 4d). An El Niño-like ΔSLP 
response is also evident in climate model simulations, although the 
significant anomaly is strongest in the 1 and 2 years following erup-
tion years, with large inter-model variation. Similar analyses per-
formed on palaeo-ENSO records mostly suggest either no significant 
SST response16,49 or a weak El Niño-like SST response34, with some 
exceptions showing a strong El Niño-like response—generally from 
tree-ring-based ENSO reconstructions50,51. We offer three possible 
explanations. First, the tropical Pacific response to explosive volcan-
ism seems to be stronger in the atmosphere than in SST (Fig. 5a–c versus 
Fig. 5d–f) and hence that intrinsic variability may mask the forced SST 
signal in some cases. Most studies investigating the tropical Pacific 
response to explosive volcanism use Pacific SST proxy records, whereas 
our reconstruction is based on globally distributed records that are 
directly affected by changes in atmospheric circulation22. Second, 
post-eruption El Niño-like temperature responses at individual proxy 
record locations may be masked by global cooling associated with vol-
canic eruptions52. Third, the signal is sensitive to loss of high-resolution 
signal back through time from the combined influences of increased 
reconstruction uncertainty and chronological uncertainty (Extended 
Data Fig. 10), which are not always accounted for.

Finally, our use of water-isotope proxy data to reconstruct atmos-
pheric variability, including explicit incorporation of uncertainty from 
the training dataset, reconstruction method, age–depth models, and 
change in availability of proxy records back through time, allowed us 
to quantify the PWC response to the two largest external forcings of the 
past millennium—anthropogenic forcing and volcanic eruptions—and 
the magnitude and sources of uncertainty in these responses. To our 
knowledge, this is the first climate mode reconstruction that directly 
addresses each of these uncertainty sources, providing a robust tool for 
further analyses. Although diagnosis of the dynamics underlying forced 
responses and intrinsic variability in the PWC was beyond the scope of 
this paper, the ΔSLP reconstructions provide the necessary empirical 
foundation for such future investigations. Detailed data-model com-
parisons may also lead to increased understanding of model biases 
in forced and intrinsic tropical Pacific variability on interannual to 
multidecadal scales.
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Methods

To reconstruct PWC variability through 1200–2000, we took a 
multi-method, multi-proxy approach. Modern global precipitation δ18O 
is highly correlated with the PWC, a result of various well-established 
mechanisms and teleconnections22. We leveraged that relationship 
using a globally distributed network of water-isotope proxy records 
from five different proxy archive types: glacier ice, wood, lake sedi-
ment, coral and speleothem. Using different archive types reduces 
the risk of archive-specific biases, for example, bias to ‘warm’ or ‘wet’ 
season values, while also allowing inclusion of the highest possible 
number of records. This is important, as networks of sites are more 
robust to non-stationary teleconnections than single sites38,54. We used 
eight statistical methods (‘Reconstruction methods’ section) to isolate 
the PWC signal, thereby accounting for method-specific biases. We 
also used several target datasets to account for the impact of observa-
tional uncertainties (‘Observational data sources’ section) and include 
a robust treatment of chronological uncertainty (‘Incorporation of 
chronological uncertainty’ section).

Data
Reconstruction target. The reconstruction target was the trans-Pacific 
equatorial ΔSLP, defined as anomalies in the difference between the 
area-mean SLP over the central-eastern Pacific Ocean (160°–80° W, 
5° S–5° N) and the western Pacific/eastern Indian oceans (80°–160° E, 
5° S–5° N), relative to 1960–1990. ΔSLP is closely related to the strength 
of the PWC8,9,11,22,47,55 and is highly correlated with more sophisticated 
circulation-based indices for the strength of the PWC, which are only 
available for 1950 to the present56.
Observational data sources. We calculated ΔSLP using two gridded 
observational products (HadSLP and ICOADS) and one atmospheric 
reanalysis product (ERA-20C). HadSLP is available at 5° resolution 
spanning 1850 to the present and is derived from quality-controlled 
marine and terrestrial SLP observations25. For 1900–2004, we used 
the ‘HadSLP2’ product; from 2005 onwards, we used the ‘Had-
SLP2r’ product. SLP data from ICOADS are available at 2° resolution 
spanning 1800 to the present and is derived from surface marine 
observational data26. ERA-20C assimilates surface pressure and 
marine wind anomalies into an atmospheric general circulation 
model27 and is available at approximately 1° resolution, spanning  
1900 to 2010.

Proxy data. Most proxy data are from the Iso2k database (n = 50), 
a multi-archive compilation of proxy records for the stable isotopic 
composition of water23. Following a broad literature search, we sourced 
nine further records in which the authors describe a strong relationship 
between the proxy record and either the PWC or ENSO. Speleothem 
δ18O data in this category were sourced from the SISAL database57. For 
Iso2k records, we only retained the designated ‘primary’ time series 
for each record23 and then considered only annually or sub-annually 
resolved proxy records with data extending to at least 2000. Primary 
references for all datasets are described in Supplementary Table 1  
(refs. 58–106).

Model simulations. We used data from the CESM1 LME (ref. 40) as 
well as five PMIP3 (ref. 42) and three PMIP4 (ref. 43) contributions, 
for comparison with our PWC reconstruction. We used past millen-
nium simulations of the following CMIP5/PMIP3 models: BCC-CSM1.1 
(ref. 107), CCSM4 (ref. 108), FGOALS-s2 (ref. 109), GISS-E2-R (ref. 110) 
and MRI-CGCM3 (ref. 111). We used past millennium simulations of the 
following CMIP6/PMIP4 models: INM-CM48 (ref. 112), MIROC-ES2L 
(ref. 113) and MRI-ESM2.0 (ref. 114).

We only used CESM1 LME members with all anthropogenic and 
natural external forcing factors applied, that is, fully forced ensem-
ble members (n = 13). The PMIP3 data include an extra single-model 
ensemble (GISS-E2-R, n = 8).

Reconstruction methods
We chose the 1200–2000 interval for reconstruction, as this struck the 
best balance between proxy data availability and sampling of long-term 
forced and internal variability.

Calibration window. We used two calibration windows. For the recon-
structions presented in the main text, we used 1900–2000, to minimize 
the influence of non-stationary teleconnections18. 1900 is the earliest 
year covered by ERA-20C and an end year of 2000 provided the best 
balance of maximizing the calibration window length and the number 
of included proxy records.

We recalculated the full ΔSLP reconstruction ensemble using a 
shorter calibration window (1951–2000), providing a minimum esti-
mate of reconstruction skill through independent validation tests 
performed over 1900–1950 (‘Assessing reconstruction skill’ section).

Data preparation. We reconstructed annual ΔSLP, allowing char-
acterization of both long-term interannual PWC variability and 
lower-frequency variability. Most reconstruction methods require 
data on a common time step, so sub-annually resolved records were 
annually binned to calendar years ( January to December). After bin-
ning, we retained records with data in two-thirds of the bins within the 
calibration window (1900–2000). We estimated any missing years in the 
calibration window using the Data Interpolating Empirical Orthogonal 
Functions (DINEOF) method, which interpolates missing values in such 
a way that underlying commonalities are maintained115.

Three of our reconstruction methods require that contributing 
records are correlated with the target index. In this case, we retained 
only records significantly (P < 0.1) correlated with ΔSLP over the cali-
bration window.
Reconstructing ΔSLP from palaeoclimate proxy data. Reconstruc-
tion steps common to all methods. Because the number of available 
records that extend to 2000 decreases with increasing record length 
(Extended Data Figs. 1 and 2), we performed all reconstructions over 
five temporal subsets: 1860–2000, 1800–2000, 1600–2000, 1400–
2000, and 1200–2000, following the ‘nested’ approach of previous 
studies24,116,117.

For each subset, we only included records with data in greater than or 
equal to two-thirds of the years spanning the entire interval. All methods 
except one require continuous data, so we interpolated missing data 
using the DINEOF method (Extended Data Fig. 1). To avoid spurious 
jumps when appending segments, we aligned each older segment (for 
example, 1400–2000) with the adjacent newer segment (for example, 
1600–2000) by matching the mean of the first 20 years of the newer 
segment with the mean of the corresponding interval in the adjacent 
older segment (for example, 1600–1620). This nested approach allowed 
us to incorporate proxy records that do not span the full reconstruc-
tion interval.

All reconstructions except pairwise comparison (MATLAB) were 
performed in R (ref. 118).
Incorporation of chronological uncertainty. For each proxy record 
included in the reconstructions, we used the ‘simulateBam’ function 
from the geoChronR package119 to calculate a 100-member banded 
age–depth model28, assuming a 1% counting error. We explicitly incor-
porated this chronological uncertainty and its influence on the vari-
ance structure of the reconstruction by calculating the 800-year ΔSLP 
reconstruction 200 times, at each iteration randomly sampling one 
realization from the age–depth model ensemble for each record. This 
was done separately for each combination of reconstruction method 
and gridded product used to calculate the observational ΔSLP target 
index (hereafter ‘target index’; eight reconstruction methods, three 
target indices, 200 age–depth model iterations = 4,800 ensemble mem-
bers). This incorporates the probability distribution of the age–depth 
model ensembles, providing a robust treatment of age uncertainty.
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Uncertainty arising from outsized influence of particular records. 
To incorporate uncertainty arising from the possibility that some 
records have an outsized influence on the reconstruction, before each 
iteration, we randomly removed up to 15% of all possible contributing 
records.
Reconstruction methods. To quantify uncertainty arising from the 
ΔSLP reconstruction method, we used eight different methods. These 
have various requirements for the input data—some require proxy 
records correlated with the target index (‘Data preparation’ section), 
whereas others use all available records. Records significantly cor-
related with the target indices in the calibration interval are denoted 
with a black outline in Extended Data Fig. 2.

PCA: Reconstructions based on PCA assume that the underlying 
gradient common to a group of time series significantly correlated 
with ΔSLP in the calibration window should be equivalent to ΔSLP 
(refs. 117,120,121). For PCA-based reconstructions, we therefore only 
used records that are correlated with ΔSLP in the calibration window.

For opPCA reconstructions, we performed PCA on the calibration 
window (that is, in which we know that the proxy records are correlated 
with the PWC) and then multiplied the loading of each proxy record on 
PC1 by the complete time series of the proxy records. The contribution 
of each record to the PCA was weighted according to the strength of 
its correlation with ΔSLP.

The direction of a PC axis is arbitrary. To align the temporal sub-
sets, we flipped (if necessary) PC1 of the 1860–2000 subset to make 
it positively correlated with the target index and then aligned PC1 of 
subsequent temporal subsets to be positively correlated with their 
predecessors.

The fiPCA reconstructions were performed identically to the opPCA, 
except that PC1 was calculated over the full length of the proxy time 
series for each temporal subset.

CPS: The CPS method has been used in many multi-proxy palaeo-
climate reconstructions24,122–124. In our implementation, all proxy 
records were scaled to unit variance and zero mean and then weighted 
according to their correlation with ΔSLP in the calibration window. 
The scaled and weighted records were composited and the composite 
was scaled to match the mean and variance of the ΔSLP in the calibra-
tion window. CPS reconstructions were performed using all available 
proxy records.

For CPSns, we repeated all steps for the CPS method but first filter-
ing to only include records preserving an annually integrated signal  
(33 records; Supplementary Table 1). For Iso2k records, this determina-
tion was made on the basis of the ‘isotopeInterpretation1_seasonality’ 
metadata field23. For all other records, this was inferred from the pri-
mary publications. We only excluded records with a known (reported) 
seasonal bias.

For CPScoa, we repeated all steps for the CPS method but first filter-
ing to only include records in a tropical Pacific ‘centre of action’, that is, 
only records between 40° S and 40° N, and 50° E and 50° W (42 records). 
This removes records with a higher potential for non-stationary tel-
econnections.

PCR: PCR is a multivariate regression method that has been used 
for palaeoclimate reconstructions of the past millennium44,125,126. PCR 
targets ΔSLP by performing PCA, calculating a linear regression of ΔSLP 
on the PCs and then retaining the minimum number of PCs required 
to maximize the correlation with ΔSLP. The number of retained PCs 
was determined using root mean squared error (RMSE) of prediction, 
estimated from cross-validation127. We chose the model with the fewest 
PCs that was still less than one sigma from the overall best model128. We 
performed PCR reconstructions using all proxy records (PCRall) and 
also on a subset that only included records significantly (P < 0.1) cor-
related with ΔSLP in the calibration window (PCRcor). We performed 
PCR reconstructions using the ‘pls’ R package128. Models were fitted to 
data in the calibration window and then values predicted for the full 
length of each temporal subset.

PaiCo: The non-linear PaiCo method was developed for use with 
multi-proxy palaeoclimate datasets129. The underpinning assumption 
of PaiCo is that an increase in a proxy record indicates an increase in 
the target index (ΔSLP) and the strength of agreement among proxy 
records on the change between two time points relates to the magni-
tude of reconstructed change in the target129. PaiCo reconstructions 
were performed in MATLAB, using records significantly (P < 0.1) cor-
related with ΔSLP in the calibration window.
Post-reconstruction steps common to all methods. The mean and 
variance of all reconstructed temporal subsets was adjusted so that:
•	The mean variance across the reconstruction matches the variance 

of ΔSLP in the calibration window, and
•	The mean ΔSLP of each reconstruction ensemble member during 

1900–2000 matches the mean observational ΔSLP in the calibra-
tion window.
For ease of comparison, we adjusted all reconstruction time series to 

match the mean and variance of ΔSLP calculated from HadSLP, although 
the results are not sensitive to this choice. When adjusting the variance 
of each reconstruction time series, we applied a single variance-scaling 
factor to the entire time series. That is, temporal variability in variance 
was maintained, potentially allowing for similar changes as seen in 
reconstructions of tropical Pacific SST130,131.
Influence of trends in the calibration window. We repeated all 
reconstruction steps but with all correlations calculated on detrended 
datasets. This did not make any meaningful difference to the ΔSLP recon-
struction ensemble, reconstruction skill or post-reconstruction analyses.
Assessing reconstruction skill. Reconstruction validation. We cal-
culated the following skill metrics for the reconstruction ensemble 
presented in the main text:
•	Correlation coefficient (r),
•	RMSE and
•	Reduction of error (RE)132.

We performed skill tests on all 4,800 ensemble members, which 
are reported by reconstruction method and ΔSLP index (Extended 
Data Fig. 4a,b).

For ease of comparison with existing reconstructions of tropical 
Pacific variability, we calculated all skill metrics for the reconstruction 
median (Extended Data Table 1), as well as r for the median reconstruc-
tions for each reconstruction method and target index (Extended Data 
Fig. 3b). To estimate changes in reconstruction skill back through time, 
we calculated the same validation statistics for each temporal subset 
(Extended Data Fig. 5c).

To provide a minimum independent estimate of reconstruction skill, 
we calculated the same validation statistics across the 1900–1950 inter-
val, using an otherwise exactly equivalent reconstruction ensemble cal-
culated using a shorter calibration window (1951–2000) (Extended Data 
Fig. 5a,b and Extended Data Table 1). We also calculated the coefficient 
of efficiency for the reconstruction medians (Extended Data Table 1).
Internal consistency. To assess internal consistency among recon-
struction ensemble members, we considered all possible combina-
tions of reconstruction method and ΔSLP training data and calculated 
the 30-year running correlation among each pair of ΔSLP time series 
(Extended Data Fig. 4c). When agreement is high among reconstruc-
tion ensemble members, this probably reflects a strong ΔSLP signal 
in the proxy datasets regardless of reconstruction method and target 
index choice.

Estimating contribution of each palaeoclimate record to the recon-
struction. To estimate the overall contribution of individual palaeocli-
mate records, we calculated the correlation of each component record 
(on its published chronology) with the ΔSLP reconstruction ensemble 
median across the interval to which that record contributed (Fig. 1b). 
Correlations were deemed significant if P < 0.05, and were calculated 
from the start of the earliest temporal segment to which each record 
contributed.



Assessing temporal variability in the reconstructions. We calculated 
the full distribution of values in the 4,800-member ΔSLP reconstruction 
ensemble as well as for the preindustrial (1200–1849) and industrial-era 
(1850–2000) sections of the reconstruction (Fig. 2d). We performed 
two-sample Kolmogorov–Smirnov tests on the preindustrial versus 
industrial-era segments of all 4,800 individual ensemble members. 
We adjusted the P values to account for false discovery rate133. For 81% 
of ensemble members, the difference between the two time periods 
was not significant (P ≥ 0.05; Fig. 2d).
Spectral character. We calculated the temporal power spectrum for 
each ensemble member and determined frequencies at which each 
ensemble member has significant (P < 0.05) power. Our spectral analy-
sis was based on the geoChronR (ref. 119) implementation of multitaper 
spectral analysis, by means of the ‘mtmPL’ function from the R package 
'astrochron' (ref. 134). Significance of spectral peaks was established 
through a power-law null135. We report the proportion of ensemble 
members with a significant peak at each period below 75 years. Beyond 
75 years, a maximum of 3% of ensemble members have significant power 
at lower frequencies (maximum n = 122 ensemble members, at period 
length 148 years). For comparison, we performed the same analysis on 
instrumental ΔSLP (Extended Data Fig. 7b).

To determine whether the industrial-era power spectrum is dif-
ferent from that of the preindustrial, we assessed the distribution of 
spectral power in only the most recent 150 years of the reconstruc-
tion (1850–2000) (Fig. 2c). To ensure a fair comparison with spectral 
densities in the preindustrial, we compared this with the distribution 
of spectral power in all possible 150-year periods before 1850 (Fig. 2b), 
still showing the proportion of ensemble members with power in  
each period.

To assess whether the power spectra are influenced by the ‘nesting’ 
reconstruction approach, we repeated the above analysis across the 
1600–2000 interval, using a reconstruction ensemble derived only 
from proxy records with full coverage across that interval (otherwise 
identically constructed). In this way, we test (1) whether our nesting 
approach dampens low-frequency (decadal to multidecadal) vari-
ability and (2) whether differences between the power spectra of the 
preindustrial and industrial era are because of changing contributions 
from different proxy records (Extended Data Fig. 7).
Calculating distribution of 20-year trends. To assess whether the 
1992–2011 PWC strengthening13 is anomalous, we calculated the dis-
tribution of 20-year trends in the 4,800-member ΔSLP reconstruction 
ensemble, for comparison with the observed trend from 1992–2011. 
We provide the full distribution, as well as individual distributions for 
reconstructions trained on each gridded SLP product. The observed 
1992–2011 trend is shown as a red bar on each distribution in Fig. 3b–e. 
ERA-20C data only go to 2010, so for the ERA-20C-only distribution, we 
show the distribution of 19-year trends.

To isolate potential influence of the 1991 Mount Pinatubo eruption 
on the 1992–2011 strengthening, we also calculated the distribution of 
20-year trends that start in the year following volcanic eruptions equal 
to or greater in magnitude than the Mount Pinatubo eruption. We simi-
larly compared the recent observed trends with these post-eruption 
distributions (Extended Data Fig. 8). We identified volcanic eruption 
years using global mean SAOD, a dimensionless metric for the scatter-
ing of solar radiation by aerosol particles, calculated in ref. 16 from the 
‘eVolv2k’ ice-core reconstruction of volcanic sulfate aerosol loading35. 
Eruption years are defined as the maximum of each SAOD peak. Follow-
ing findings from several recent studies36,136, we reassigned the year of 
the major Kuwae eruption to 1452 (as opposed to 1458 as per eVolv2k). 
The 1991 eruption of Mount Pinatubo had an estimated maximum 
SAOD of around 0.1.
Preindustrial versus industrial-era trends. For each ensemble mem-
ber, we calculated the linear trend (regression coefficient) across two 
time intervals: 1200–1849 and 1850–2000. We show the distribution 
of trends in Extended Data Fig. 12; panel a shows the full distributions 

and panels b–d split the results according to the ΔSLP target index. We 
did not differentiate between significant and non-significant trends.

Assessing the PWC response to volcanic eruptions. To assess the 
PWC response to volcanic forcing, we composited the ΔSLP response 
to all large volcanic eruptions intersecting the reconstruction interval. 
This technique, known as SEA, treats volcanic eruptions as replicate 
cases of the same process. This allows assessment of whether the PWC 
responds in a consistent manner to volcanic forcing. SEA is commonly 
used to assess the ENSO response to volcanic eruptions16,34.

For each time series (that is, each ΔSLP reconstruction ensem-
ble member), we isolated 10-year segments spanning each erup-
tion—3 years before and 6 years following each eruption. This resulted 
in n ten-year segments, in which n is the number of volcanic eruptions 
included in the SEA. We centred each 10-year segment according to its 
3-year pre-eruption mean and then took the mean of all n segments. This 
provided a single 10-year composite time series, in which any consistent 
response in a particular year relative to the eruptions is concentrated 
and intrinsic variability should cancel out to an anomaly around zero. 
This replicates the SEA parameters of ref. 16, although our results are 
insensitive to the addition of several years either side.

We identified eruption years using SAOD as described in the ‘Cal-
culating distribution of 20-year trends’ section. We restricted erup-
tions to those with SAOD ≥ 0.05. We performed SEA on all 4,800 ΔSLP 
reconstruction ensemble members and determined the significance 
of the results using the ‘double-bootstrap’ method of ref. 37. Specifi-
cally, we used the ‘random-bootstrapping’ approach, with confidence 
intervals generated from 1,000 pseudo-composite matrices. These 
pseudo-composites are also centred on the pre-eruption mean, result-
ing in relatively narrow confidence intervals before the eruption year. 
In Fig. 4 and Extended Data Figs. 9 and 11, we report the proportion of 
ensemble members with a significant (P < 0.05) positive or negative 
ΔSLP response to volcanic eruptions in each year of the analysis.

Twenty-five volcanic eruptions between 1203 and 1993 exceeded 
our 0.05 SAOD cutoff. We performed SEA using all 25 eruptions, as 
well as two sequences:
1.	 Sequentially removing the weakest eruption until only the six strong-

est eruptions remained (Extended Data Fig. 11).
2.	Sequentially removing the oldest eruption until only the six most 

recent of the 25 eruptions remained (Fig. 4 and Extended Data Fig. 9).
We also repeated sequence 2 but first removing the three most recent 

eruptions.
Assessing the PWC response to volcanic eruptions in model simu-
lations. To directly compare the reconstructed and model-simulated 
tropical Pacific response to volcanic forcing, we replicated the analysis 
described in the previous section ('Assessing the PWC response to 
volcanic eruptions'), using data from all fully forced CESM1 LME mem-
bers and eight PMIP3/4 models. ΔSLP calculated from climate models 
was scaled to match the variance of ΔSLP calculated from HadSLP. We 
performed SEA on three subsets of eruptions. In the first subset, we 
retained the same number of eruptions as input to the SEA performed 
on the ΔSLP reconstruction, that is, the 25 strongest eruptions during 
1200–2000. We assessed two further subsets, the 12 strongest erup-
tions and the four strongest eruptions, allowing for comparison with 
the similar analysis performed in ref. 16, that is, Fig. 4B,C in that refer-
ence (although note that this reconstruction covered a different time 
interval). Eruption magnitudes were determined using the volcanic 
forcing reconstruction used to drive the model. For the CESM1 LME 
and PMIP3 models, this is ref. 53. For PMIP4 models, this is ref. 35.

We performed SEA on ΔSLP calculated from the PSL field of the 
atmospheric models, as well as relative SST (RSST) in the Niño 3.4 
region (5° S–5° N, 170° W–120° W). RSST is the residual signal after 
removing mean tropical (20° N–20° S) SST anomalies from raw SST 
anomalies. We used RSST rather than raw SST anomalies because of 
the expectation that volcanic aerosols will cause cooling globally and 
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mask the tropical Pacific response52,137. This allowed us to compare 
our findings with previous work investigating the effect of explosive 
volcanism on ENSO (in terms of SST anomalies), as well as comparing 
the oceanic and atmospheric responses over the tropical Pacific. We 
acknowledge that SEA is a suboptimal method for assessing the climatic 
response to explosive volcanism in climate models, which have full 
spatial and temporal data coverage and hence allow more nuanced 
analyses. However, performing the same analysis on model-derived 
and proxy-derived ΔSLP allows us to directly compare results.

Comparing palaeo-PWC with palaeo-GMST. We evaluated the rela-
tionship of the PWC with GMST by comparing our ΔSLP reconstruction 
ensemble with the PAGES 2k multi-proxy, multi-method ensemble 
(n = 7,000) reconstruction of GMST throughout the Common Era122. To 
assess temporal variability in the relationship between ΔSLP and GMST, 
we calculated correlations between the ΔSLP and GMST ensemble 
medians in many different time periods, starting between 1200 and 
1990, spanning 10 to 800 years in duration (Fig. 6a).

We assessed uncertainty in the long-term relationship between ΔSLP 
and GMST by computing correlations between 4,000 unique com-
binations of individual members from both ensembles, over the full 
1200–2000 interval (Fig. 6b).

Comparing palaeo-PWC with palaeo-ENSO and palaeo-IPO. We 
compared our ΔSLP reconstruction with published annually resolved 
reconstructions of tropical Pacific variability extending back to at least 
1600 (Extended Data Fig. 6). Reconstructed climate modes include 
ENSO117,125,138–142 and the IPO31. ENSO reconstructions have different 
targets, for example, Niño 3, Niño 3.4 or ENSO indices incorporating 
several regions. If a study provided reconstructions of SST in several 
regions, we used the Niño 3.4 reconstruction. For the Last Millennium 
Reanalysis139, we used the Niño 3.4 reconstruction median. We clipped 
reconstructions to their common time period 1600–1978. Note that 
reconstructions have different reconstruction target seasons. We calcu-
lated 30-year running correlations between each ENSO reconstruction 
and the ΔSLP reconstruction median (Extended Data Fig. 6c), as well as 
correlations between all reconstructions across the 1600–1978 interval 
(Extended Data Fig. 6d). To compare ΔSLP with the IPO, we applied a 
13-year Gaussian kernel low-pass filter to all ΔSLP ensemble members 
(following ref. 31) and then calculated the correlation of each smoothed 
ensemble member with the IPO reconstruction (1) over 1200–2000 and 
(2) only 1900–2000. For comparison, we correlated mean smoothed 
observational ΔSLP (from ERA-20C, ICOADS and HadSLP) with observed 
IPO variability over the 1900–2000 period (Extended Data Fig. 6b). In 
Extended Data Fig. 6b, we only show significant (P < 0.05) correlations.

Assessment of reconstruction skill
Reconstruction skill scores. The ensemble approach to this recon-
struction allows estimation of reconstruction skill at several levels of 
detail. The simplest possible tests compare ensemble median recon-
structed ΔSLP with mean ΔSLP from the three observational prod-
ucts (Extended Data Table 1). In this test, the reconstruction is highly 
correlated with observations. There is only a small difference in skill 
scores for tests on reconstructions using the entire calibration win-
dow (r = 0.81, P < 0.05) versus independent calibration-validation tests 
(r = 0.77, P < 0.05), whereby validation is performed on a 1900–1950 
window, using reconstructions trained only on observational data from 
1951–2000. The RMSE is low in both cases (0.27 for the full calibration 
window and 0.26 on the independent validation window). RE can range 
from negative infinity to one; reconstructions are generally considered 
skilful if RE > 0. RE is positive in all cases.

Comparing sub-ensemble medians for unique combinations of 
target index (n = 3) and reconstruction method (n = 8) reveals differ-
ences in correlations with the relevant target index and varying agree-
ment between sub-ensemble medians (Extended Data Fig. 3b). For 

all three target indices, the PCRall sub-ensemble median is the most 
highly correlated with observations. The fiPCA sub-ensemble median 
is consistently among the least correlated with observations. The PaiCo 
sub-ensemble median generally shows the lowest correlations with the 
other reconstruction medians.

There are minimal differences between skill-score distributions 
for ensemble members calculated using different training indices 
(Extended Data Fig. 4a) but larger differences among the reconstruc-
tion methods (Extended Data Fig. 4b). As seen in the sub-ensemble 
medians (Extended Data Fig. 3b), ensemble members calculated using 
PaiCo tend to perform worst, whereas ensemble members calculated 
using PCR-based methods tend to perform best. All other methods 
have similar medians and interquartile ranges, although PCA-based 
methods have the largest overall distributions (skewed to low scores).

When skill scores are calculated on an independent window (calibra-
tion 1951–2000, validation 1900–1950), the PCR-based methods still 
perform best (Extended Data Fig. 5b), but the two PCA-based meth-
ods perform worst, with particularly long low score tails (Extended  
Data Fig. 5b).
Change in reconstruction skill through time. By calculating skill 
scores for the individual temporal subsets contributing to the recon-
struction (‘Reconstruction steps common to all methods’ section), we 
estimate the change in reconstruction skill through time (Extended 
Data Fig. 5c). Skill decreases with increasing age, which is not surprising 
given that proxy data availability drops off rapidly from around 1600 
(Extended Data Figs. 1 and 2).
Influence of proxy location and seasonality on skill. By comparing 
skill scores for the CPS reconstruction method variants, we estimate 
the influence of (1) proxy archives that are located far from the tropical 
Pacific (hence relying heavily on teleconnections) and (2) proxies with 
known bias towards a particular season. When calculated across the 
full 1900–2000 interval, skill scores for sub-ensemble medians (that 
is, medians for reconstruction ensemble members calculated using 
CPS, CPScoa and CPSns) are very similar (Extended Data Table 1, first 
column). There are larger differences between skill scores when cal-
culated on the independent 1900–1950 validation window (Extended 
Data Table 1, fourth column). Independent CPScoa reconstructions 
have higher r and RE and lower RMSE than either of the other two vari-
ants. This suggests that incorporation of records far from the tropi-
cal Pacific may negatively influence reconstruction skill. However, 
exclusion of records that have a known seasonal bias does not improve 
reconstruction skill.

Notably, the CPSns reconstructions are typically the least similar to 
reconstructions from the other methods, often with a greater ampli-
tude of variability, and sometimes showing change of opposite sign to 
reconstructions from other methods (Fig. 1a). This could be owing to: 
(1) substantial influence of record seasonality on the reconstructions; 
(2) loss of many records from a particular archive (tree cellulose); or 
(3) the reduced number of records contributing to the reconstruction.
Estimating ΔSLP signal strength. Extended Data Fig. 4c demonstrates 
the degree of agreement between ΔSLP reconstruction ensemble mem-
bers changes through time, with a step change in intra-ensemble agree-
ment at approximately 1600, coinciding with decreased proxy data 
availability (Extended Data Fig. 1). We can use this agreement to esti-
mate the degree to which ΔSLP is recoverable from this combination of 
proxy data. Reasonably strong agreement between 1600 and 2000 sug-
gests that the ΔSLP signal strongly underpins the proxy data during this 
interval. Before 1600, there is less agreement between ensemble mem-
bers, possibly indicating the presence of temporal non-stationarities 
in the relationship between ΔSLP and some proxy records.

Data availability
The ΔSLP reconstructions generated in this study are available 
at https://doi.org/10.5281/zenodo.7742760. All data used in this 

https://doi.org/10.5281/zenodo.7742760


manuscript are available from online repositories, with the excep-
tion of two palaeoclimate proxy datasets. Palaeoclimate proxy data 
(Supplementary Table 1) incorporated into the reconstruction are 
available from the following sources: Iso2k data from https://lipdverse.
org/iso2k/current_version/; SISAL data from https://researchdata.
reading.ac.uk/256/; Humanes-Fuente et al. (2020) from https://www.
cr2.cl/datos-dendro-amazonas-peru/; Lough (2007) from https://
www.ncei.noaa.gov/access/paleo-search/study/15188; Lough et al. 
(2015) from https://www.ncdc.noaa.gov/paleo/study/18917; Chen 
et al. (2016) and Pumijumnong et al. (2020): data available on request 
from the authors. Gridded observational and reanalysis datasets 
used in this study are available from the following sources: ERA-20C 
from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis
-20th-century; ICOADS from https://icoads.noaa.gov/products.html; 
HadSLP from https://www.metoffice.gov.uk/hadobs/hadslp2/. Recon-
structions of volcanic forcing are available from the following sources: 
Toohey and Sigl (2017) ‘eVolv2k’ from https://www.wdc-climate.de/
ui/project?acronym=eVolv2k and Supplementary Material of Dee 
et al. (2020) https://www.science.org/doi/10.1126/science.aax2000; 
Gao et al. (2008) from http://climate.envsci.rutgers.edu/IVI2/. PAGES 
2k reconstructions of GMST through the Common Era are avail-
able from https://www.ncei.noaa.gov/pub/data/paleo/pages2k/neu-
kom2019temp/recons/. Reconstructions of tropical Pacific variability 
available from the following sources: Niño 3.4 from https://www.ncei.
noaa.gov/access/paleo-search/study/8704, https://www.ncei.noaa.
gov/access/paleo-search/study/11749, https://www.ncei.noaa.gov/
access/paleo-search/study/29050 and https://atmos.washington.
edu/~hakim/lmr/LMRv2/; Niño 3 from https://www.ncei.noaa.gov/
access/paleo-search/study/6250; Niño 4 from https://www.ncei.noaa.
gov/access/paleo-search/study/28417; ‘Proxy ENSO’ from https://www.
ncei.noaa.gov/access/paleo-search/study/8409; IPO from https://data.
aad.gov.au/metadata/AAS_4537_2000y-Interdecadal-Pacific-Oscillat
ion-Reconstruction. PMIP3/CMIP5 and PMIP4/CMIP6 simulations are 
publicly available from Earth System Grid Federation nodes, https://
esgf.llnl.gov/index.html. The CESM1 LME is available from the Earth 
System Grid, https://www.earthsystemgrid.org/. Processed time series 
are also provided in the repository associated with this submission, 
https://doi.org/10.5281/zenodo.7742760.

Code availability
The code that supports the findings of this study is available at https://
doi.org/10.5281/zenodo.7742760.
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Extended Data Fig. 1 | Temporal coverage of the 59 palaeoclimate proxy 
records contributing to the temporal segments of the ΔSLP reconstruction. 
Data values shown for each time series have been scaled to zero mean and unit 
variance (‘z-scores’). Grey space within time series denotes missing values; 
these gaps were filled using the DINEOF method before incorporation into the 

reconstruction (Methods). If a record extended past the start of a temporal 
segment, but not far enough to be included in the next-oldest segment, we 
truncated the values to match the oldest segment to which that record 
contributed.
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Extended Data Fig. 2 | Maps showing the correlation of each component 
proxy record with instrumental ΔSLP in the calibration interval  
(1900–2000). a, Location of proxy records contributing to the 1200–2000 
section of the reconstruction. b, Location of proxy records contributing to  
the 1400–2000 section of the reconstruction. c, Location of proxy records 
contributing to the 1600–2000 section of the reconstruction. d, Location of 
proxy records contributing to the 1800–2000 section of the reconstruction.  

e, Location of proxy records contributing to the 1860–2000 section of the 
reconstruction. Symbol colour corresponds to the mean correlation of the 
proxy record with ΔSLP calculated from HadSLP25, ICOADS26 and ERA-20C 
(ref. 27). Symbol shape denotes the proxy archive type. Black outline denotes 
that the proxy record is significantly (P < 0.1) correlated with instrumental 
ΔSLP. Maps created in R, using coastlines from Natural Earth.



Extended Data Fig. 3 | Correspondence between reconstructed ΔSLP and 
instrumental ΔSLP in the calibration interval (1900–2000). a, Ensemble 
reconstruction of the PWC (in terms of the trans-Pacific SLP gradient; ΔSLP) 
from 1900 to 2000 (that is, Fig. 1a, zoomed in on the period of overlap with 
instrumental data). ΔSLP anomalies calculated with respect to 1960–1990.  
Grey shading represents the 2.5th/97.5th quantiles for the full ensemble  
(n = 4,800). Solid coloured lines show ΔSLP for 1900–2010, calculated from 
three gridded products ERA-20C (ref. 27), ICOADS26 and HadSLP25. Dashed 
coloured lines show ΔSLP reconstruction sub-ensemble medians for ensemble 
members trained on each of those products, for example, dashed yellow line 
shows median ΔSLP from ensemble members trained on data from HadSLP (n = 
1,600). Mean RMSE between observed ΔSLP and ensemble median ΔSLP is 0.27. 

For comparison, mean RMSE between ΔSLP calculated from the three gridded 
products is 0.3. Triangles denote volcanic eruptions with reconstructed 
SAOD ≥ 0.05 (ref. 35). b, Correlation of the median of ΔSLP reconstruction 
ensemble members calculated with each reconstruction method with medians 
from each of the other reconstruction methods, as well as instrumental ΔSLP 
(first column, bold). Correlations are for the 1900–2000 interval and all are 
significant (P < 0.05). Correlations are shown for reconstruction method 
medians for ensemble members trained on ΔSLP calculated from HadSLP, 
ICOADS and ERA-20C (left to right). Colours scale with the significance of the 
correlation coefficients. Mean correlations of reconstructed versus instrumental 
ΔSLP for each reconstruction method are as follows: PaiCo, 0.56; PCRall, 0.92; 
PCRcor, 0.87; CPScoa, 0.73; CPSns, 0.74; CPS, 0.72; fiPCA, 0.58; opPCA, 0.71.
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Extended Data Fig. 4 | Comprehensive assessment of reconstruction skill. 
a,b, Violin-and-box plots (‘voxplots’) summarizing ΔSLP reconstruction skill in 
terms of correlation coefficient (r), RMSE and RE (ref. 132). These voxplots 
show the skill tests for the ΔSLP reconstruction ensemble shown in the main 
text. All tests were performed on all 4,800 ΔSLP reconstruction ensemble 
members. Voxplots show the distribution of scores; boxes shows median and 
interquartile range (IQR), whiskers show IQR × 1.5, points show outliers. Each 
individual ensemble member was assessed against ΔSLP used to train that 

particular ensemble member, that is, ΔSLP calculated from HadSLP, ICOADS or 
ERA-20C. a, Skill scores split according to the gridded SLP product used to 
calculate the ΔSLP training data. b, Skill scores split according to the 
reconstruction method. c, Running 30-year correlations between the 
ensemble medians for each possible combination of reconstruction method 
and gridded SLP product used to calculate the ΔSLP training data. Thick black 
line shows the median running correlation. Lines are coloured according to 
unique combinations of reconstruction method.



Extended Data Fig. 5 | Comprehensive assessment of reconstruction skill, 
performed on separate calibration and validation intervals. ΔSLP 
reconstruction ensemble members trained on a 1951–2000 calibration interval 
and assessed against instrumental ΔSLP in an independent (1900–1950) interval. 
These scores provide a minimum independent estimate of reconstruction skill; 
in reality, skill is probably higher, as we used a longer calibration interval.  
a,b, Violin-and-box plots (‘voxplots’) summarizing ΔSLP reconstruction skill  
in terms of correlation coefficient (r), RMSE and RE (ref. 132). All tests were 
performed on all 4,800 ΔSLP reconstruction ensemble members. Voxplots 
show the distribution of scores; boxes shows median and interquartile range 

(IQR), whiskers show IQR × 1.5, points show outliers. Each individual ensemble 
member was assessed against ΔSLP used to train that particular ensemble 
member, that is, ΔSLP calculated from HadSLP, ICOADS or ERA-20C. a, Skill 
scores split according to the gridded SLP product used to calculate the ΔSLP 
training data. b, Skill scores split according to the reconstruction method. c, As 
per a and b, but with panels showing skill scores for each temporal subset that 
contributed to the full reconstruction interval. This provides an estimate of the 
decrease in reconstruction skill back through time (as the number of available 
proxy records decreases; see Extended Data Figs. 1 and 2).
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Extended Data Fig. 6 | Comparison of ΔSLP reconstruction with published 
reconstructions of SST-based tropical Pacific variability. a, Coloured lines 
show published reconstructions of ENSO or the IPO across the common time 
period 1600–1978. Dashed black line shows our ΔSLP reconstruction median. 
For visualization purposes, all records have been scaled to zero mean and unit 
variance and had a 5-year running mean applied. b, Correlations of individual 
ΔSLP reconstruction ensemble members with a reconstruction of the IPO31. To 
match the IPO reconstruction, a 13-year Gaussian smoothing filter was applied 
to the ΔSLP reconstruction ensemble members. Yellow distribution shows 
significant (P < 0.05) correlations over the full 1200–2000 interval; purple–
grey distribution shows significant correlations over the calibration interval 

(1900–2000). Dotted vertical line shows the correlation between instrumental 
IPO143 and mean ΔSLP calculated from ERA-20C (ref. 27), ICOADS26 and 
HadSLP25, with a 13-year Gaussian smoothing filter applied, across 1900–2000 
(P < 0.05). c, 30-year running correlations between the ΔSLP reconstruction 
ensemble median and published reconstructions of SST-based tropical Pacific 
variability. d, Correlations between reconstructions of tropical Pacific 
variability (ENSO, IPO, ΔSLP) across their common 1600–1978 interval. 
Correlations in bold are significant (P < 0.05). Reconstructions are as follows: 
aNiño 3 (DJF)140; b‘proxy ENSO’138; cNiño 3.4 (ref. 142); dNiño 3.4 (ref. 125); eNiño 4 
(ref. 141); fNiño 3.4 (DJF, running PC1)117; gNiño 3.4 (ensemble median)139; hIPO31.



Extended Data Fig. 7 | Power spectral densities of ΔSLP reconstruction 
(1600–2000, non-nested) and observations. a, Proportion of the 4,800 ΔSLP 
reconstruction ensemble members with significant (P < 0.05) power in all 
periods from 1 to 75 years. Significance is evaluated against a power-law null135. 
Colours denote reconstruction method. ΔSLP reconstructed using only records 
with full coverage across 1600–2000, that is, without the temporal nesting 

approach (see Methods). b, Power spectra for ΔSLP calculated from ERA-20C 
(ref. 27), ICOADS26 and HadSLP25. Solid lines show the power spectra calculated 
from annual ΔSLP (1900–2010); dashed lines show the 95% confidence limit. c, 
As per a but for 1600–1849, in all possible 150-year segments. The division into 
150-year segments was to enable direct comparison with the power spectrum in 
the industrial era (Methods). d, As per a but for 1850–2000.
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Extended Data Fig. 8 | Distribution of 20-year trends in ΔSLP anomalies 
following all volcanic eruptions with SAOD equal to or greater than that of 
the 1991 Mount Pinatubo eruption (SAOD ≥ 0.1) during the 1200–2000 
interval. a, Full distribution of the magnitude of post-eruption 20-year trends 
in ΔSLP anomalies across 1900–2000 (from all individual reconstruction 
ensemble members, n = 4,800). Dark grey tails show the 2.5th and 97.5th 
percentiles. Red bar shows the mean magnitude of the 1992–2011 ΔSLP trend 
from instrumental data (following the 1991 eruption of Mount Pinatubo).  

b–d, As per a but only showing trends in reconstruction ensemble members 
trained on ΔSLP calculated from ERA-20C (ref. 27), ICOADS26 and HadSLP25, 
respectively. Red bar shows the magnitude of the 1992–2011 ΔSLP trend (from 
HadSLP and ICOADS) or the 1992–2010 ΔSLP trend (from ERA-20C) calculated 
from instrumental data. Volcanic eruption years taken from the ‘eVolv2k’ 
ice-core sulfate-based reconstruction of Common Era volcanic sulfate aerosol 
loading16,35. Note that differences between the panels arise mainly from 
differences between the three observational products.



Extended Data Fig. 9 | SEA for ΔSLP reconstruction, with volcanic eruption 
years as defined in the volcanic forcing reconstruction of ref. 35. Bars show 
the proportion of the 4,800 ΔSLP reconstruction ensemble members that have 
a significant positive (La Niña-like) or negative (El Niño-like) ΔSLP anomaly in 
the −3 to +6 years relative to each eruption composite (see Methods). Starting 
with the 25 strongest eruptions of the 1200–2000 period, each panel shows 
results from the SEA calculated using a different number of these eruptions 

(showing the change in the result when removing progressively older 
eruptions). The top-left panel shows results from an SEA using all 25 eruptions. 
Going left to right row-wise and downward column-wise, the oldest eruption is 
sequentially removed, until the SEA is performed using only the six most recent 
of the 25 original eruptions (bottom right). Colour blocks on each bar show the 
proportion of responses from ensemble members calculated using each 
gridded SLP product used to calculate the ΔSLP training index.
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Extended Data Fig. 10 | Ensemble ΔSLP response to the 25 strongest 
volcanic eruptions of the 1200–2000 period. These are the 25 eruptions used 
in the SEA described in the main text. In each panel, the black line shows the 
ensemble median response to the eruption and the coloured windows show the 
upper and lower 5th percentiles of the ensemble response. We also show 20 
randomly chosen individual ensemble members as thin coloured lines for 

comparison. Before calculating the summary statistics describing the 
ensemble response to each eruption, the responses of individual ensemble 
members were centred on the pre-eruption mean. The vertical red line on each 
panel shows the eruption year (listed in the title strip of each panel, along with 
the reconstructed SAOD16,35). Colours correspond to eruption magnitude.



Extended Data Fig. 11 | SEA for ΔSLP reconstruction, with volcanic eruption 
years as defined in the volcanic forcing reconstruction of ref. 35. Bars show 
the proportion of the 4,800 ΔSLP reconstruction ensemble members that have 
a significant positive (La Niña-like) or negative (El Niño-like) ΔSLP anomaly in 
the −3 to +6 years relative to each eruption composite (see Methods). Starting 
with the 25 strongest eruptions of the 1200–2000 period (top left), each panel 
shows results from the SEA calculated using a different number of these 
eruptions (showing the change in the result with different SAOD thresholds). 

Going left to right row-wise and downward column-wise, the weakest eruption 
is sequentially removed from the analysis (that is, the SAOD threshold for 
inclusion is raised) until the SEA is performed using only the six largest 
eruptions of the 1200–2000 interval (bottom right). Colour blocks on each bar 
show the proportion of responses from ensemble members calculated using 
each reconstruction method. Note that the y-axis scale is half that of Fig. 4, that 
is, showing a maximum proportion of 0.5.
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Extended Data Fig. 12 | Violin-and-box plots (‘voxplots’) showing the 
distribution of linear trends (regression coefficients) in the 4,800-member 
ΔSLP reconstruction ensemble. Voxplots show the distribution of trends 
across all ensemble members; boxes shows median and interquartile range 
(IQR), whiskers show IQR × 1.5, points show outliers. a, Linear trends for the 
preindustrial (1200–1849) and industrial-era (1850–2000) intervals of the full 

reconstruction. b, As per a but only showing trends from ensemble members 
trained on ΔSLP calculated from ERA-20C. c, as per a but only showing trends 
from ensemble members trained on ΔSLP calculated from ICOADS. d, As per a 
but only showing trends from ensemble members trained on ΔSLP calculated 
from HadSLP. These plots include all trends, regardless of significance.



Extended Data Table 1 | Summary of ΔSLP reconstruction skill in terms of correlation coefficient (r), RMSE, RE (ref. 132) and 
coefficient of efficiency (CE)144

Values in the second column are for the ΔSLP reconstruction ensemble shown in the main text, that is, calculated with the full 1900–2000 calibration interval. The third column shows values 
for the ΔSLP reconstruction ensemble calculated with the shorter (1951–2000) calibration interval. The fourth column shows validation values for the ΔSLP reconstruction ensemble calculated 
with the 1951–2000 calibration interval, assessed against instrumental ΔSLP in an independent interval (1900–1950). Rows 1 to 4 show skill scores calculated for the ΔSLP ensemble median, 
assessed against mean ΔSLP from HadSLP, ICOADS and ERA-20C. Rows 5 to 16 show scores for ensemble members calculated using variants on the CPS method (see Methods). Skill scores are 
calculated for ΔSLP ensemble medians, assessed against mean ΔSLP from HadSLP, ICOADS and ERA-20C.
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