
760  |  Nature  |  Vol 621  |  28 September 2023

Article

Climate warming increases extreme daily 
wildfire growth risk in California

Patrick T. Brown1,2,3 ✉, Holt Hanley2,4,5, Ankur Mahesh6,7, Colorado Reed8, Scott J. Strenfel9, 
Steven J. Davis10, Adam K. Kochanski2,4 & Craig B. Clements2,4

California has experienced enhanced extreme wildfire behaviour in recent years1–3, 
leading to substantial loss of life and property4,5. Some portion of the change in 
wildfire behaviour is attributable to anthropogenic climate warming, but formally 
quantifying this contribution is difficult because of numerous confounding factors6,7 
and because wildfires are below the grid scale of global climate models. Here we use 
machine learning to quantify empirical relationships between temperature (as well as 
the influence of temperature on aridity) and the risk of extreme daily wildfire growth 
(>10,000 acres) in California and find that the influence of temperature on the risk is 
primarily mediated through its influence on fuel moisture. We use the uncovered 
relationships to estimate the changes in extreme daily wildfire growth risk under 
anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing 
background climatological temperatures and aridity conditions. We find that the 
influence of anthropogenic warming on the risk of extreme daily wildfire growth 
varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not 
climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa 
of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming 
has enhanced the aggregate expected frequency of extreme daily wildfire growth by 
25% (5–95 range of 14–36%), on average, relative to preindustrial conditions. But for 
some fires, there was approximately no change, and for other fires, the enhancement 
has been as much as 461%. When historical fires are subjected to a range of projected 
end-of-century conditions, the aggregate expected frequency of extreme daily 
wildfire growth events increases by 59% (5–95 range of 47–71%) under a low SSP1–2.6 
emissions scenario compared with an increase of 172% (5–95 range of 156–188%) under 
a very high SSP5–8.5 emissions scenario, relative to preindustrial conditions.

Physics-based models are typically the preferred means of quan-
tifying the contribution of increased greenhouse gas concentra-
tions to weather and climate extremes8. However, high-resolution 
physics-based models capable of simulating fire behaviour at daily 
timescales and kilometre spatial scales9 are too computationally 
expensive to easily incorporate into climate change studies. Many 
dynamic global vegetation models designed for climate change stud-
ies simulate fire characteristics10 but they output  at spatiotemporal 
resolutions too coarse to make inferences about the extreme daily 
growth of individual fires (Supplementary Information 22). These 
practical constraints have led much research to focus on the influence 
of anthropogenic forcing on conditions conducive to wildfires11–18 
calculated by global climate models (Supplementary Information 23). 
Studies often make use of fire-weather or fire-danger indices, which 
have the relationship between temperature and conduciveness to 
wildfires presupposed.

Here our goal is to isolate and quantify the influence of anthropo-
genic warming on the risk of extreme wildfire behaviour in California 
at the daily timescale and kilometre spatial scale. We also seek to make 
attribution statements at the level of individual fires. We overcome the 
aforementioned practical constraints of using physics-based models 
by using a machine learning approach19–22.

Rather than assuming a specific statistical or functional relation-
ship between temperature and extreme wildfire behaviour, using this 
approach we learn the relationship between temperature and wildfire 
behaviour directly from the data. Specifically, we use neural networks 
and random forests to learn the potentially nonlinear relationship 
between temperature and wildfire behaviour in ways that are highly 
conditional on the state of other environmental variables.

Extreme wildfire behaviour has many defining charecteristics23, 
and here we focus on just one of those aspects: extremely high rates 
of growth in burnt areas of 10,000 acres (about two-thirds of the size 
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of Manhattan) or more in a single day. We focus on this class of events 
because these events have been disproportionately responsible for 
the exponential increase in the observed annual burnt area1,2, and they 
are particularly challenging from a firefighting perspective, which 
increases the likelihood of loss of life and property.

Our approach can be summarized in two steps. (1) We train an ensem-
ble of machine learning models to learn the relationships between 
environmental conditions (predictors) and the risk of extreme daily fire 
growth (response), given an active fire (Fig. 1a,b and Supplementary 
Information 1). (2) We then alter the predictor values based on global 
climate model simulations of anthropogenic warming and recalculate 
the risk (Fig. 1c–e). Thus, we hold everything about historical conditions 
during fire-days constant (that is, fuel characteristics, ignitions, winds, 

precipitation and absolute humidity) except for the background cli-
matological temperature. This approach, similar to the pseudo-global 
warming24 or storyline approaches8,25 of the extreme event attribution 
literature26, enables us to investigate the influence of warming on risk 
at the granularity of individual days for historical fires. We choose to 
isolate the influence of temperature on the risk of extreme daily fire 
growth because temperature is the variable in the wildfire-behaviour 
triangle (Fig. 1a) that is by far the most directly related to increasing 
greenhouse gas concentrations and, thus, the most well-constrained 
in future projections. Furthermore, it has been demonstrated that 
interannual temperature variations are strongly associated with vari-
ations in wildfire activity, especially in forests where fires are aridity 
limited (as opposed to fuel limited)12,27–29.
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Fig. 1 | Illustration of the method. a–e, An ensemble of neural networks and 
random forests learn the relationships between environmental predictor 
variables (Supplementary Table 2; there are two predictor variables for 
vegetation and two for dead fuel moisture and the probability of occurrence of 
daily wildfire growth of more than 10,000 acres. VPD, vapour-pressure deficit; 
Wind, wind speed. c–e, The probability of occurrence of extreme growth is 
recalculated, incorporating shifts in background climatological temperature 
produced from global climate models (Supplementary Fig. 2). Temperature 
changes are also propagated into aridity variables that have a direct relationship 
with temperature (Supplementary Information equations 3–10). e, Predicted 
probability of extreme daily growth for present (red) compared with 
preindustrial (black) conditions with each event connected by a black line.  

For clarity, a random sampling of only 2,000 (out of 17,910) fire-days is shown.  
f, Probability ratios for the two probabilities shown in e (Supplementary 
Information equation 1). g, Fraction of the risk of extreme daily growth 
attributable to anthropogenic warming (Supplementary Information 
equation 2). All results in e–g are calculated outside of the training set so that 
predictive skill can be assessed along with the results. These are calculated 
using leave-3-years-out cross-validation (Supplementary Fig. 3). All results in 
e–g are averages of the top 10% of machine learning model configurations in 
terms of their log-loss scores (black dots in Supplementary Figs. 3a,b and 4). 
See Supplementary Information 1 and a video explanation of the method for 
further details (https://youtu.be/lHztGWzghRI).

https://youtu.be/lHztGWzghRI
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It is already well established that the influence of temperature 
on wildfire behaviour is not primarily through temperature30, but 
through the influence of temperature on aridity12,13,31. Thus, we also 
propagate changes in temperature into the three other predictor 
variables that have the most direct relationships with temperature 

(Fig. 1c). These variables are vapour-pressure deficit and the two calcu-
lated dead fuel moisture variables (100 h and 1,000 h; Supplementary  
Information 5).

The central results of this study compare the calculated risks under 
preindustrial conditions and the calculated risks under warmed 
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Fig. 2 | Influence of anthropogenic warming on the risk of extreme wildfire 
behaviour historically and in the future. a, Probability ratios for all fire-days 
in the present relative to preindustrial, averaged over the 10% of machine 
learning model configurations that performed the best on out-of-sample 
historical data (Supplementary Information 10–17). b, Same as a but for the 
fraction of risk attributable to anthropogenic warming and only those fire-days 
with daily growth of more than 10,000 acres considered. a and b show the same 
information as Fig. 1f and 1g, respectively, but the information is displayed in 
space rather than in time. c–f, Probability ratios for all fire-days in the dataset 
for mid-century (c,e) and end century (d,f) and for a low-emissions scenario 
(SSP1–2.6; c,d) and a very-high-emissions scenario (SSP5–8.5; e,f). Fires notable 
for causing large damage are highlighted (August refers to the August Complex 
Fire; North to the North Complex Fire; LNU to the LNU Lightning Complex fires; 

and CZU to the CZU Lightning Complex fires). The probability ratios for these 
fires are calculated as a mean daily probability of extreme growth over the 
lifetime of fire in the altered climate divided by the mean daily probability over 
the lifetime of fire in the preindustrial climate (as opposed to the mean of the 
daily probability ratios; Supplementary Information equations 19 and 20). 
Insets, kernel density estimates fit to the probability ratio distributions across 
all fire-days. Vertical lines in the insets are the distribution means. The historical 
distribution (black) is reproduced in c–f for context. g, Poisson distributions  
for the expected aggregate frequency of extreme growth days for historical 
fire-days under different background climatological temperatures. The values 
reported in this study refer to the median and 5th and 95th percentiles of these 
Poisson distributions where the historical and end-of-century SSP1–2.6 and 
SSP5–8.5 scenarios are compared with the preindustrial conditions.
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conditions using the probability ratio32 (Fig. 1f and Supplementary 
Information Equation 1). For historical extreme growth events, we 
also calculate the fraction of the risk of that event occurring that can 
be attributed to anthropogenic warming33 (Fig. 1g and Supplementary 
Information Equation 2. See Supplementary Information 1 as well as 
a video description of the method (https://youtu.be/lHztGWzghRI).

Probability ratios for the historical period, relative to preindustrial, 
range from slightly below 1 to more than 5 but have a mean of 1.33 
(Figs. 1f and 2a). For the 380 extreme daily growth events that took 
place from 2003 to 2020 (out of 17,910 total fire-days), the fraction 
of the risk attributable to anthropogenic warming was as high as 65% 
and had a mean of 19% (5–95 range of +16–22%) (Figs. 1g and 2b and 
Supplementary Fig. 3).

By mid-century, the mean probability ratio continues to increase 
from 1.33 and ranges from 1.93 in the SSP1–2.6 low-emissions scenario 
to 2.48 in the SSP5–8.5 very-high-emissions scenario (Fig. 2c,e). In the 
low-emissions scenario, the mean probability ratio is essentially stabi-
lized from mid-century onwards as it increases to only 1.96 by the end 
of the century (Fig. 2d). By contrast, under the very-high-emissions 
scenario, the average probability ratio reaches 5.88 by the end of the 
century (Fig. 2f), indicating that future emissions have large leverage 
on future extreme wildfire behaviour.

The shifts in daily risk indicate that the historical period has expe-
rienced an aggregate expected increase in extreme daily growth fre-
quency of 25% relative to preindustrial (362 versus 289, Fig. 2g). Going 
forward, the expected frequency of occurrence continues to increase 
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through mid-century, but it can be stabilized at an average of +59% (459 
versus 289) at the end of the century under low SSP1–2.6 emissions, 
compared with +90% (550 versus 289) under middle SSP2–4.5 emis-
sions and +172% (786 versus 289) at the end of the century under very 
high SSP5–8.5 emissions (Fig. 2g). Stating those projections relative 
to what was observed over the 2003–2020 period, they are +21% (459 
versus 380) at the end of the century under low SSP1–2.6 emissions, 
+45% (550 versus 380) under middle SSP2–4.5 emissions, and +107% 
(786 versus 380) at the end of the century under very high SSP5–8.5 
emissions (Fig. 2g). It must be emphasized that these are idealized 
calculations that hold fire-days constant and isolate the influence of 
temperature and the direct impact of temperature on aridity. They 
do not incorporate potentially exacerbating factors such as changes 

in ignition proclivity, fire-season length or fire lifetimes, nor do they 
incorporate potentially mitigating factors such as enhanced fire sup-
pression efforts or intentional management of fuels.

Figure 3a,b shows the effect of propagating temperature into all 
combinations of the four predictor variables with the most direct 
relationships with temperature (Supplementary Information 5). The 
highest probability ratios and fractions of attributable risk are calcu-
lated when temperature change is propagated into all three aridity 
predictors in addition to temperature itself (Fig. 3a,b, far-left column). 
When propagating into only three variables, the three aridity variables 
have the largest impact. When propagating into only two variables, 
vapour-pressure deficit and 100-h dead fuel moisture have the largest 
impact, and when propagating into only one variable, 100-h dead fuel 
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moisture has the largest impact. In all combinations, the direct effect of 
temperature is the least important variable, confirming that the impact 
of temperature is felt primarily through its effect on the atmospheric 
capacity for water vapour and, thus, fuel moisture12,13,31.

We highlight several fires that were notable for causing a large 
amount of structural damage (labelled fires in Figs. 2, 3c,d and 4 and 
Supplementary Figs. 10–12). We find that the influence of anthropo-
genic warming on the risk of extreme daily growth varies markedly 
between these fires (Fig. 2). For example, the mean probability ratio 
over the lifetime of the North Complex Fire was 1.4 at the time of occur-
rence and would reach 2.96 under very high emissions at the end of the 
century, whereas the mean probability ratio over the lifetime of the Carr 
Fire was only 1.06 at the time of occurrence and would reach only 1.34 
under very high emissions at the end of the century. Similarly, for the 
days that did see extreme growth, the fraction of risk attributable to 
warming was 26% for the North Complex Fire and only 6% for the Carr 
Fire. The influence of warming on risk varies substantially between days 
for the same fire (Fig. 4). For example, the probability ratios for very 
high emissions at the end of the century range from below 2 to more 
than 12 for the North Complex Fire over its lifetime (Fig. 4f).

This variation in the change in risk is not primarily because of geo-
graphic or seasonal variation in the magnitude of anthropogenic warm-
ing, which is relatively uniform (Fig. 1 and Supplementary Fig. 2). Rather, 
differences arise because some fire-days are very near critical aridity 
thresholds that have an outsized impact on the risk of extreme growth. 
In particular, crossing about 10% 100-h dead fuel moisture from above 
and/or crossing approximately 1.5 kPa vapour-pressure deficit from 
below (the two predictor variables most responsible for relative shifts in 
probability; Fig. 3a,b) greatly enhances the risk of extreme daily growth 
(Fig. 3c,d, red arrows). Fire-days safely on the moist side or far on the 
dry side of these thresholds (Fig. 3c,d, black arrows) do not experience 
large relative shifts in probability from anthropogenic warming and 
drying. Moreover, although it is often noted in this context that satura-
tion vapour pressure increases exponentially with temperature, dead 
fuel moisture decreases asymptotically with temperature, indicating 
diminishing returns for the impact of warming on fuel moisture (anti-
clockwise turning of arrows as the vapour-pressure deficit increases 
in Fig. 3c,d).

The influences of critical thresholds and diminishing returns are 
seen over the lifetimes of fires as well (Fig. 4). For example, the Carr Fire 
occurred under very dry conditions, such that its daily mean probability 
of extreme growth was larger under preindustrial conditions than that 
of the North Complex Fire for very high emissions at the end of the cen-
tury (Fig. 4c,d). Thus, even under preindustrial conditions, the Carr Fire 
maintained 100-h dead fuel moistures below 10% and vapour-pressure 
deficits above 1.5 kPa over its entire life (Fig. 4g,i, respectively), result-
ing in low probability ratios from anthropogenic warming (Fig. 4e). By 
contrast, the North Complex Fire occurred under conditions straddling 
the critical thresholds (that is, its growth was weather limited34), so 
anthropogenic warming had a much larger impact on its probability 
ratios (Fig. 3f). Correspondingly, as day-to-day weather variability 
moves the entire ensemble of time series away from the thresholds, 
probability ratios dip to local minimums (for example, 3–12 September 
2020 for the North Complex Fire; Fig. 4f,h,j).

Overall, our results indicate that anthropogenic warming (and the 
influence of warming on aridity, holding all else constant) increases the 
risk of extreme daily wildfire growth in California. Our findings, however,  
must be interpreted narrowly as idealized calculations because tem-
perature is only one of the dozens of important variables that influences 
wildfire behaviour. Nonetheless, temperature is the variable in the 
wildfire behaviour triangle (Fig. 1a) that is the most directly related 
to increasing greenhouse gas concentrations and, in our judgement, 
there is no expert or model consensus on the magnitude or even the 
direction of change of many other variables relevant to the projec-
tion of wildfire behaviour35. Despite this, our calculations may result 

in conservative estimates of changes in risk because at least several 
important variables that we hold constant (for example, precipitation36, 
wind11, absolute humidity18,37, tree mortality38, fire-season length15,39,40 
and lifetimes of fires2) may be changing in a way that would exacer-
bate the enhanced risk caused by warming rather than ameliorate it. 
A more comprehensive assessment of future risk would also account 
for changes in fuel characteristics (from intentional fuel management 
as well as in response to climate change), changes in fire suppression 
efforts and changes in ignition patterns.
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Data availability
The Weather Research and Forecasting model used for the predic-
tor data (Supplementary Information 3) is an open source and can 
be downloaded from GitHub (https://github.com/wrf-model/WRF/
releases). MODIS fire products that were used for the predictand 
data (Supplementary Information 2) can be downloaded from FIRMS 
(https://firms.modaps.eosdis.nasa.gov/active_fire/) and the CMIP6 
climate model data (Supplementary Information 4) can be downloaded 
from IPCC WGI Interactive Atlas (https://interactive-atlas.ipcc.ch/
regional-information). Source data are provided with this paper.

Code availability
The code for this study is archived at GitHub (https://github.com/
ptbrown31/Climate-Driven-Risk-of-Extreme-Wildfire-in-California).
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