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Nuclear genetic control of mtDNA copy 
number and heteroplasmy in humans


Rahul Gupta1,2,3 ✉, Masahiro Kanai2,3, Timothy J. Durham1,2, Kristin Tsuo2,3, Jason G. McCoy1,2, 
Anna V. Kotrys1,2, Wei Zhou2,3, Patrick F. Chinnery4,5, Konrad J. Karczewski2,3, Sarah E. Calvo1,2, 
Benjamin M. Neale2,3,7 ✉ & Vamsi K. Mootha1,2,6,7 ✉

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome 
required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a 
mixture of mtDNA alleles in an individual and has been associated with disease and 
ageing. Mechanisms underlying common variation in human heteroplasmy, and the 
influence of the nuclear genome on this variation, remain insufficiently explored. Here 
we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived 
whole-genome sequences from 274,832 individuals and perform genome-wide 
association studies to identify associated nuclear loci. Following blood cell composition 
correction, we find that mtCN declines linearly with age and is associated with variants 
at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA 
variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to 
arise somatically and accumulate sharply after the age of 70 years, whereas (2) 
heteroplasmic indels are maternally inherited as mixtures with relative levels associated 
with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. 
These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an 
illustrative example, we identify a length variant carried by more than 50% of humans at 
position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA 
transcription/replication switching2,3. We find that this variant exerts cis-acting genetic 
control over mtDNA abundance and is itself associated in-trans with nuclear loci 
encoding machinery for this regulatory switch. Our study suggests that common 
variation in the nuclear genome can shape variation in mtCN and heteroplasmy 
dynamics across the human population.

Human mitochondria contain a tiny, high-copy-number circular 
genome (mitochondrial DNA (mtDNA)). Sequencing of the human 
mtDNA in 1981 (ref. 1) revealed that it encodes 13 core protein compo-
nents of the oxidative phosphorylation system, as well as 2 ribosomal 
RNAs and 22 transfer RNAs required for their expression. Tissues can 
contain tens to thousands of copies of mtDNA per cell, depending on 
cell type. Variants in mtDNA can be maternally transmitted or arise 
somatically, and, when they co-exist with wild-type molecules, lead to a 
state called heteroplasmy. Notably, more than 99% of the mitochondrial 
proteome, including all proteins required for mtDNA maintenance, 
replication and transcription, is encoded by the nuclear DNA (nucDNA) 
and imported4 into the organelle.

Defects in mtDNA are associated with a spectrum of human diseases. 
Since the first identification of pathogenic mtDNA mutations5,6, scores 
of maternally inherited syndromes have been reported7. Mendelian 
forms of mitochondrial disease producing mtDNA deletion or deple-
tion were later identified and mapped to nuclear genes involved in 
mtDNA replication, maintenance and nucleotide balance8–10. More 

subtle declines in mtDNA copy number (mtCN) and an accumulation 
of somatic mtDNA mutations have both long been associated with age-
ing and age-associated disease11,12. Mutations in mtDNA accumulate in 
many cancers and in a small subset are even considered to be ‘drivers’ 
of tumorigenesis13.

The dynamics of heteroplasmy are complex and presumed to be 
shaped by mutation, drift and selection. The mtDNA mutation rate 
has been reported as 10–100× higher than for the nucDNA14, with the 
non-coding region (NCR) containing three hypervariable regions 
thought to be mutational hotspots15. The high copy number, elevated 
substitution rate and lack of recombination have made mtDNA NCR 
variants a valuable genetic tool in forensics and anthropology, even 
leading to the African mitochondrial ‘Eve’ hypothesis16,17. Heteroplasmy 
can vary across siblings, attributed to germline bottleneck effects, and 
between cell types and tissues, thought to be due to random segrega-
tion and selection18,19. Detailed mechanisms underlying heteroplasmy 
dynamics in humans remain obscure, although mouse studies20 predict 
a role for nuclear genetics.
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Here, we characterize the spectrum of mtCN and heteroplasmy 

across approximately 300,000 individuals spanning 6 ancestry 
groups in the UK Biobank (UKB) and AllofUs (AoU). We find that blood 
mtCN declines with age, is influenced by blood cell composition and 
is under the control of numerous nuclear genetic loci. We then turn to 
mtDNA variation, finding that about 1 in 192 individuals carries 1 of 10 
well-known pathogenic mtDNA variants. We characterize the landscape 
of mtDNA variation across this population and find that nearly every 
human harbours heteroplasmic mtDNA variants. Whereas heteroplas-
mic mtDNA single nucleotide variants (SNVs) tend to be somatic in 
origin and to accumulate with age, we find that heteroplasmic indels 
tend to be quantitatively maternally inherited, with their relative levels 
influenced by nuclear genetic variation. These loci provide insights 
into the mechanisms by which the mitochondrial and nuclear genomes 
genetically interact to maintain mtDNA homeostasis.

Calling mtCN and variants
We developed mtSwirl, a scalable pipeline for calling mtDNA variants 
and copy number from whole-genome sequencing (WGS) data (Methods  
and Supplementary Note 1). We extended a pipeline used to analyse  
mtDNA variation in gnomAD21, now constructing self-reference 
sequences for each sample using homoplasmic and homozygous calls 
on the mtDNA and reference nucDNA regions of mtDNA origin (NUMTs; 
Extended Data Fig. 1a). mtSwirl shows improved mtDNA coverage, 
particularly among African haplogroups (Extended Data Fig. 1b–e), 
and reduced variant calls at very low heteroplasmy (Extended Data 
Fig. 1f), indicating reduced ancestry- and NUMT-specific mis-mapping. 
We observe high concordance of heteroplasmy estimates with the pre-
vious method used in gnomAD (R2 = 0.996 for heteroplasmy > 0.05), 
with homoplasmies showing allele fractions now closer to 1, suggesting 
reduced NUMT artefact21 (Extended Data Fig. 1g). We used mtSwirl to 
quantify mtDNA traits across 274,832 individuals of diverse ancestry 
across UKB and AoU (Extended Data Fig. 2 and Supplementary Table 1), 
generating more than 7,800,000 mtDNA variant calls across all samples.

Determinants of variation in human mtCN
We began by identifying covariates of blood mtCN (mtCNraw) in UKB, 
observing a strong influence of blood cell composition (R2 ≈ 23%; Fig. 1a) 
as previously reported22,23 (Extended Data Fig. 3c). We identified sev-
eral more unexpected covariates including time of day, month of year 
and fasting duration (R2 ≈ 2.5%; Fig. 1a and Extended Data Fig. 3e–j). 
Following adjustment for all identified covariates (Methods and Sup-
plementary Notes 2 and 3), we found that covariate-adjusted mtCN 
(which we term mtCNadj) was unimodal in UKB across 178,134 subjects 
with an average of 61.66 copies per diploid nuclear genome (Extended 
Data Fig. 3d). We observed a linear decline in mtCNadj with age (Fig. 1c) 
of approximately 2% per decade among both males and females.

We next assessed the degree to which variation in mtCNadj is under 
nuclear genetic control. Our genome-wide association study (GWAS) 
identified 92 linkage disequilibrium (LD)-independent nucDNA associa-
tion signals across 46 loci (Fig. 1d) after cross-ancestry meta-analysis, 
with an estimated SNP-heritability of approximately 4% (Methods). By 
contrast, mtDNA haplogroup explained less than 0.5% of the variance 
in mtCNadj, with only a few associations of small magnitude observed 
(Extended Data Fig. 4a,b). Thirty-three nuclear loci showed variants 
with a posterior inclusion probability (PIP) of 0.1 or greater after 
fine-mapping (Methods); 11 of these had protein-altering variants in 
the 95% credible set (CS) at PIP > 0.1 (Fig. 1e) and 7 showed expression 
quantitative trait locus (eQTL) colocalization with the assigned gene 
at PIP > 0.1, including TFAM, MFN2, NDUFV3 and RRM1. Eight loci con-
tained genes implicated in disorders of mtDNA maintenance, six of 
which harboured variants with PIP > 0.1. Prioritized genes (Methods)  
encoded proteins that participate in the mtDNA nucleoid and replisome 

(TFAM, POLG2, TWINKLE, TOP1MT, LONP1), nucleotide metabolism 
(RRM1, RRM2B, DGUOK, AK3, SLC25A5) and mitochondrial fusion 
(MFN1, MFN2). The PNP–APEX1 locus was notable as these adjacent 
genes encode proteins in nucleotide metabolism and mtDNA repair, 
neither of which has been implicated in mtCN control. Fine map-
ping implicated both genes, even identifying a missense variant in 
APEX1 at PIP > 0.9 (Extended Data Fig. 5a). Several more loci included 
mitochondrial proteins with no previous links to mtDNA (SLC25A10, 
MCAT, NDUFV3). Telomerase (TERT) is in the vicinity of one locus; how-
ever, fine mapping did not provide further evidence for its causality  
(Supplementary Table 3).

We also performed a gene-based rare variant association study 
(RVAS) for mtCNadj in UKB (Methods and Supplementary Table 7). In 
several instances we find convergence with our GWAS, including asso-
ciations with ultra-rare (minor allele frequency (MAF) < 0.0001) mis-
sense or loss of function (LoF) variation in TWNK and TFAM (Extended 
Data Fig. 5c). RVAS provided clarity to other GWAS loci with uncertain 
gene assignments (for example, highlighting TOP3A in a locus contain-
ing several genes; Fig. 1d) and identified several associations with genes 
not identified by GWAS. For instance, we found associations with the 
burden of rare protein-altering variation in genes previously linked to 
Mendelian mtDNA deletion or depletion disease (OMA1, SAMHD1), as 
well as associations with genes unlinked to mitochondria (for example, 
MILR1) (Extended Data Fig. 5d).

We next tested mtCNadj for heritability enrichment in genes associ-
ated with organelles or organs using stratified LD-score regression24–26 
(S-LDSC; Methods). The most significant organelle enrichment was seen 
for the mitochondrion (Extended Data Fig. 4c). Across organs, skeletal 
muscle and whole blood were top scoring (Extended Data Fig. 4d). 
Whole blood enrichment is expected given the sampling site, but skel-
etal muscle enrichment was unexpected and may be due to shared pat-
terns of gene expression between blood and muscle, or could indicate 
non-cell autonomous control of blood mtCN.

Blood composition influences bulk mtCN
Although many previous studies have reported associations between 
low blood mtCN and common diseases27–30, we could not replicate these 
results using mtCNadj in UKB for type 2 diabetes, myocardial infarction, 
stroke, hypertension or dementia (Fig. 1f). When we repeated this analy-
sis using mtCNraw, that is, without adjusting for blood composition, we 
could recover these earlier associations (Fig. 1f). We extended these 
analyses to 24 more common diseases, finding that, in total, 20 showed 
significantly increased risk with reduced mtCNraw; after correction 
for blood cell composition, the inverse correlations disappeared for 
all traits except osteoarthritis (Extended Data Fig. 3k). Associations 
with four cardiovascular disease traits even changed direction with 
mtCNadj, now showing a positive correlation with increased risk. In all 
five cases, Mendelian randomization did not support a causal role for 
mtCNraw or mtCNadj after correcting for multiple tests (Extended Data 
Fig. 6). Even the oft-reported elevated mtCN in females31 appears to be 
largely driven by blood composition (Fig. 1b,c). Our GWAS analyses also 
underscore the confounding effects of blood composition in previous 
work. Using mtCNadj, we could replicate (at P < 5 × 10−5) 70 of the 96 previ-
ously reported mtCN GWAS loci32, with 37 at genome-wide significance 
(GWS) (Methods). Using mtCNraw, we could recover 12 more loci from 
this previous study at GWS including loci containing HBS1L-MYOB, C2, 
HLA, GSDMC and CD226, which are linked to blood cell types and inflam-
mation (Extended Data Fig. 4f). By contrast, associations near TFAM, 
a well-known mtCN-controlling gene33, encouragingly strengthen by 
about 40 orders of magnitude following blood composition adjustment.

It has long been known that inflammation is associated with car-
diometabolic disease34; indeed, elevations in inflammatory blood cell 
indices predict elevated risk for 26 of 29 tested diseases in UKB (Fig. 1f 
and Extended Data Fig. 3l). Bidirectional Mendelian randomization 
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showed that effect size loci at GWS for neutrophil count were strongly 
positively correlated with corresponding mtCNraw effect sizes (Fig. 1g), 
whereas the converse did not convincingly hold (Extended Data Fig. 4g),  
suggesting that changes in blood cell composition cause mtCNraw 
changes rather than the reverse. Importantly, neutrophil count effect 
sizes did not predict corresponding mtCNadj effect sizes (Fig. 1h and 
Extended Data Fig. 4h).

The most parsimonious explanation for our observations is that 
previously reported associations between low blood mtCN and elevated 
common disease risk are, in many cases, secondary to blood composi-
tion changes. For the few associations that survive blood composition 
corrections (Extended Data Fig. 3k), other mechanisms may be involved. 

Indeed, Mendelian randomization suggests reverse causation or shows 
high heterogeneity for these traits, arguing against simple forward 
causal relationships in these instances (Extended Data Fig. 6).

Nuclear control over mtDNA 7S coverage
We next aimed to use variation in sequencing coverage across the 
16,569 bases of the mtDNA to dissect specific molecular mechanisms 
of mtDNA replication. We observe a coverage dip by over 50% in the 
major NCR of the mtDNA (Fig. 2a), which contains the light strand pro-
moter (LSP), three conserved sequence blocks (CSBs), the heavy strand 
origin of replication (OH) and the D-loop, which contains a stable third 
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strand of DNA (7S DNA) (Extended Data Fig. 7). It is believed that mtDNA  
replication requires an ‘RNA primer’ which forms from the termination 
of LSP-initiated transcription at CSBII (red dashed arrow, Fig. 2a inset). 
Primed mtDNA synthesis begins at CSBII, with the nascent DNA between 
CSBII and OH forming a transient ‘DNA flap’ (black dashed arrow, Fig. 2a  
inset). Further replication can either continue to full-length or be ter-
minated prematurely to produce the persistent 7S DNA (black solid 
arrow, Fig, 2a inset; see also ref. 35). In theory, we expect the highest 
local WGS coverage in the persistently triple-stranded 7S DNA, lower 
coverage in the transiently triple-stranded DNA flap region and lowest 
coverage in the RNA primer region. This is what we observe (Fig. 2a).

We hypothesized that genetic variation in nuclear-encoded mtDNA 
replication machinery might influence the tendency of replication 
intermediates in the NCR to persist. To attempt to quantify these inter-
mediates, we computed the discordance in coverage between these 
three regions across individuals in UKB (that is, residuals; Fig. 2b,d and 
Methods). Upon performing GWAS and cross-ancestry meta-analysis 
for these traits, we find that nuclear genetic variants near MGME1 associ-
ate with the degree of coverage discordance between the RNA primer 
and the DNA flap (Fig. 2c), whereas variants near TFAM, POLG, MCAT and 
MGME1 associate with the discordance between 7S DNA and the DNA 
flap (Fig. 2e). All four genes encode mitochondrial-localized proteins, 

and MGME1 and POLG work in concert to resolve flap intermediates 
(that is, the DNA flap) through exonuclease activity during mtDNA 
replication36. Missense variants in POLG, MGME1 and MCAT all show 
PIP > 0.1 after fine-mapping, and the highest PIP variant at the MGME1 
locus causes p.Thr265Ile, which is in the MGME1 exonuclease domain 
(Fig. 2f). We also identify a variant causing p.Ala303Gly in MCAT, which 
has no previous connection to mtDNA maintenance and encodes a 
component of mitochondrial type II fatty acid synthase. RVAS identified 
further associations between the levels of missense or LoF variation 
in novel genes and the 7S DNA and DNA flap coverage discordance, 
including OMA1 (Supplementary Table 7).

Phenotypes caused by pathogenic mtDNA mutations
We next considered mtDNA sequence variation in UKB (Methods), 
with an initial focus on well-established, disease-associated mtDNA 
variants. We began by assessing the carrier rates for ten common 
pathogenic mtDNA variants associated with maternally inherited 
diseases, including Leber’s hereditary optic neuropathy; mitochon-
drial encephalomyopathy, lactic acidosis and stroke-like episodes 
(MELAS); and aminoglycoside-induced ototoxicity (Fig. 3). We find 
that approximately 1 in 192 individuals in UKB carries at least one of the 
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ten pathogenic mtDNA variants, in agreement with a previous estimate 
of 1 in 200 (ref. 37).

An open question is whether individuals carrying rare pathogenic 
mtDNA variants in the population exhibit intermediate disease 
phenotypes. We can now address this thanks to the rich phenotyp-
ing in UKB. We tested four phenotypes traditionally associated with 
these mtDNA variants: haemoglobin A1c (chrM:3243:A,G), triglyc-
eride levels (chrM:3243:A,G), hearing impairment (chrM:1555:A,G, 
chrM:3243:A,G, chrM:7445:A,G) and visual impairment (chrM:3460:G,A, 
chrM:11778:G,A, chrM:14484:T,C, chrM:14459:G,A). Individuals carrying 
the chrM:3243:A,G variant show elevated haemoglobin A1c, elevated 
triglycerides, and hearing and vision impairment (Fig. 3 and Methods)  
relative to individuals carrying none of these ten mtDNA variants. 
Owing to their low frequency of detection in the UKB sample, we do 
not have the statistical power to exclude the presence of more subtle 
intermediate phenotypes among the other tested variants.

mtDNA variation across 253,583 people
Next, we more broadly examined the entire spectrum of homoplasmic 
and heteroplasmic mtDNA variation. Our analysis across UKB and AoU 
yields the largest database of mtDNA SNVs and indels to date to our 
knowledge (Fig. 4a). Consistent with earlier gnomAD analyses21, we find 
that the number of homoplasmies per individual is closely related to 
haplogroup, with haplogroup H (closest to GRCh38 reference) show-
ing the fewest and haplogroup L0 showing the most (Extended Data 
Fig. 8a). Aggregate heteroplasmy distributions were highly consistent 
between UKB and AoU (Extended Data Fig. 8d), and most individu-
als carried 0–1 heteroplasmic SNVs and 0–2 heteroplasmic indels 
(Extended Data Fig. 8e). The hypervariable regions of the mtDNA, 
found in the NCR, contain an elevated heteroplasmic SNV rate and 
most heteroplasmic indel variants (Fig. 4a). Heteroplasmic indels pri-
marily arise near poly-C stretches (for example, chrM:302, chrM:567, 
chrM:955, chrM:16182) in the non-protein-coding mtDNA, whereas 
coding mtDNA shows a low indel rate despite the presence of many 
poly-C tracts (Fig. 4a), consistent with negative selection. We tested 
the most common heteroplasmies in UKB for association with risk of 
29 common diseases (Methods) and found no evidence of association, 
although sample sizes were limited (Extended Data Fig. 8g).

Heteroplasmy transmission and age accrual
We next investigated the patterns of transmission and age-dependence 
for mtDNA heteroplasmies. For analysis of age, we focused on AoU given 

the broader age range of participants (20–90 versus 40–70 for UKB). 
Although heteroplasmic SNVs tend to accumulate with age (particularly 
after age 70), this was not the case for indel heteroplasmies (Fig. 4b). 
Using siblings and parent–offspring pairs in UKB (Methods), we found 
that nearly all heteroplasmic indels were quantitatively maternally 
transmitted and shared between siblings, whereas most heteroplasmic 
SNVs were not (Fig. 4c). We also analysed WGS from 602 trios from the 
1000 Genomes Project (1000G), finding a similar pattern (Fig. 4d). 
Unlike UKB blood samples, 1000G samples underwent Epstein-Barr 
virus transformation to create cell lines before WGS38,39, implying that 
the maintenance of these heteroplasmic indels is robust and can be 
quantitatively maintained through both maternal transmission and cell 
culture, albeit with some added variance (Fig. 4d). The robust maternal 
transmission and stability across age leads us to conclude that most 
indel heteroplasmies are inherited as mixtures; by contrast, for het-
eroplasmic SNVs, the typical lack of transmission and accumulation 
with age strongly suggest that they typically arise by means of somatic 
mutagenesis. In contrast to earlier reports40, we find no evidence of 
paternal transmission (Fig. 4c,d). Over 80% of heteroplasmic SNVs 
were transitions, which showed a sharp increase in frequency in older 
age, consistent with the somatic mtDNA mutational spectrum seen 
in ageing brains41. Curiously, we observed a decline in heteroplasmic 
transversions in older individuals (Extended Data Fig. 8f).

Nuclear GWASs for mtDNA heteroplasmy
We then sought to determine the extent to which mtDNA heteroplasmy 
is influenced by nuclear genetic loci. To our knowledge, nuclear loci 
influencing individual mtDNA heteroplasmies have never been identi-
fied in humans. Given that most common heteroplasmies showed mater-
nal transmission (Extended Data Fig. 9), we restricted to individuals  
carrying each heteroplasmy and performed GWAS with the hetero-
plasmy level as a quantitative trait (Fig. 4e and Extended Data Fig. 8h).

We identified 42 LD-independent associations across 39 heteroplas-
mies after cross-ancestry meta-analysis of UKB GWASs (Supplementary 
Note 7). Our results revealed a shared nuclear genetic architecture 
for heteroplasmies across mtDNA sites, with 9 of 20 unique nuclear 
loci associated with more than one heteroplasmic variant (Fig. 4f 
and Extended Data Fig. 10a). Cross-mtDNA heterogeneity was also 
observed: chrM:302:A,AC and chrM:302:A,ACC appeared most associ-
ated with loci near SSBP1, TFAM, LONP1 and MCAT, whereas the other 
heteroplasmies were most strongly associated with loci containing 
DGUOK, PNP and POLG2. Although many genes implicated in hetero-
plasmy control were also identified in our mtCN GWAS, others were not 
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(for example, TEFM, MTPAP, SSBP1, ABHD10; Fig. 4f). Many associated 
loci were near genes with established roles in mtDNA replication and 
maintenance (Fig. 4g), with missense variants identified in the 95% CS 
in DGUOK, LONP1, POLRMT, MGME1 and POLG2, and eQTL colocaliza-
tion PIP > 0.1 seen for POLRMT, POLG2 and TFAM. Of the novel hits, we 
highlight a locus containing C7orf73 (Fig. 4f and Extended Data Fig. 10f), 
which encodes a protein recently linked to complex IV (ref. 42), suggest-
ing a moonlighting role for this short protein in mtDNA maintenance.

Zooming in, we see relatively large effect sizes from PIP > 0.9 variants 
in or near genes related to nucleotide metabolism (PNP, DGUOK) and 
DNA replication (POLG2). The probable causal variant for PNP (PIP 1, 
Extended Data Fig. 10g) is intronic and colocalizes with a strong negative 
cross-tissue eQTL43 (multi-tissue P ≈ 0; colocalization PIP 1; Extended 
Data Fig. 10h,i). PNP is not yet linked to mtDNA disease but performs 
an analogous reaction to TYMP (an mtDNA disease gene) on purines. 
The probable causal variant for DGUOK (PIP 0.99, Fig. 4h) results in a 
p.Gln170Arg missense change in the kinase domain, potentially affect-
ing the tertiary structure of the protein as this glutamine side chain 
participates in a number of hydrogen bonds and stacking interactions 
(Fig. 4i). The putative causal variant for POLG2 (PIP 1, Fig. 4j) results in 
p.Gly416Ala in a predicted anticodon binding domain. This amino acid 

is highly conserved (Extended Data Fig. 10j) and the mutation affects 
a loop near the POLG2 homodimer surface (Fig. 4k). These examples 
highlight protein-altering variants that appear to substantially affect 
the levels of specific heteroplasmic mtDNA variants.

To test whether heteroplasmy-associated nuclear loci act through 
mtDNA mutagenesis, we repeated our GWAS, re-coding heteroplasmy 
traits as ‘case/control’, in which for each mtDNA variant, cases showed 
detectable heteroplasmy and controls did not. We observed little signal 
(Extended Data Fig. 10b), arguing against a mutagenic origin influ-
enced by nucDNA variation and supporting the notion that maternal 
transmission determines the presence of each tested heteroplasmy, 
whereas nuclear variation can influence the subsequent relative het-
eroplasmic fraction.

We took several steps to validate our genetic findings. We performed 
a replication analysis in AoU across 96,698 diverse individuals and 
observed high concordance between cross-ancestry meta-analysis 
effect sizes in UKB and AoU (R2 = 0.79; Extended Data Fig. 10c and 
Supplementary Note 4) with limited attenuation (as expected with 
winner’s curse44). We investigated potential technical and biological 
confounders, observing little correlation between these variables and 
heteroplasmies (Extended Data Fig. 11a–e and Supplementary Note 2). 
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We explicitly tested the robustness of our results to the contaminating 
effects of NUMTs (Supplementary Notes 5 and 6), finding that GWAS 
effect sizes were not sensitive to mtDNA coverage as would be expected 
for NUMT-derived signals (Extended Data Fig. 11j–m). We found strong 
correlations between UKB meta-analysis effect sizes and those from 
individual ancestry groups in AoU despite small n (R2 = 0.49–0.78; 
Extended Data Fig. 10d), reducing the likelihood of confounding by 
recent polymorphic NUMTs. We tested all GWAS hits for LD R2 > 0.1 
with variants within 20 kilobase (kb) windows of 4,736 reference and 
polymorphic NUMTs, finding only 1 potentially concerning locus—
among the UKB EUR (European) group, the SSBP1 locus had LD R2 ≈ 1 
with variants in a reference NUMT. Importantly, this locus remained 
significant for chrM:302:A,AC among the AFR (African) group in AoU 
despite AFR showing much lower LD with NUMT variants (Extended 
Data Fig. 10k). Further, the levels of ultra-rare missense/LoF variation in 
SSBP1 were significantly associated with chrM:302:A,AC heteroplasmy 
(Fig. 5i and Supplementary Table 7).

CSBII variation across people and cells
The ‘length heteroplasmy’ at chrM:302, located in the CSBII region 
of the mtDNA NCR (Fig. 5a), is the most common heteroplasmic site 
we observed and occurs within a regulatory motif for mtDNA replica-
tion2. Although the reference genome corresponds to GmAG7 (nomen-
clature indicates the length of the poly-G stretch on the GRCh38 
opposite strand, Fig. 5a), we frequently observe individuals harbour-
ing GmAG8 (chrM:302:A,AC), GmAG9 (chrM:302:A,ACC) and GmAG10 
(chrM:302:A,ACCC). The fractions of mtDNA carrying these variants  
are quantitatively shared between siblings (Fig.  5b), indicating 
maternal transmission of mixtures of multiple mtDNA haplotypes at  
position 302.

Most of the 156,885 individuals assessed in UKB harbour a mixture of 
these length heteroplasmies (Fig. 5c), with individuals from different 
haplogroups showing different distributions (Fig. 5d). The observed 
quantitative maternal transmission of heteroplasmy implies that 
mtDNA mixtures exist in individual cells, and we indeed find mtDNA 
mixtures at chrM:302 in 171 single cells from one individual (Fig. 5e) by 
re-analysing previously reported single-cell data (Methods).

We find multiple lines of evidence linking mtDNA replication and 
length variation at chrM:302. Longer alleles at this site are associated 
with declining mtCNadj with an effect size comparable to the TFAM locus 
(Fig. 5f, PIP ≈ 1). Nuclear genetic analyses for chrM:302:A,AC, the most 
common length heteroplasmy, nominated several genes relevant for 
mtDNA replication and nucleotide balance (for example, SSBP1, identi-
fied by GWAS and corroborated by ultra-rare RVAS; Fig. 5g,i), including 
several genes not identified in GWASs for other heteroplasmic sites 
(CDA, MTPAP, TFAM, TEFM, LONP1, MCAT; Figs. 4f and 5g). mtCN and 
chrM:302:A,AC heteroplasmy even show colocalization at the two 
most significant mtCN loci: 10:60145079:A,G (a TFAM 5′ untranslated 
region (UTR) variant) and 19:5711930:C,T (a LONP1 missense variant); 
both show a PIP ≈ 1 for mtCN and have PIP > 0.3 for chrM:302:A,AC. 
It is notable that previous studies have suggested that the chrM:302 
site serves as a ‘rheostat’ for mtDNA replication versus transcription, 
which are functionally linked in mitochondria3,45. The G-quadruplex at 
CSBII (Fig. 5a) is a tertiary RNA/DNA hybrid structure that promotes 
DNA replication by impairing RNA polymerase progression, promoting 
the formation of interrupted RNA fragments subsequently used for 
primed replication2,46. Prior in vitro studies have suggested that CSBII 
G-quadruplex strength is a function of chrM:302 allele, altering the 
degree to which RNA transcription switches to DNA synthesis45 (Fig. 5a). 
We now report that nuclear variants in genes related to the mtDNA repli-
some can favour one length heteroplasmy over another—for example, 
variants near SSBP1 favour chrM:302:A,ACC (Fig. 5h). Taken together, 
our results propose that nuclear genetic variation can influence the 
replication efficiency of mtDNA molecules based on chrM:302 allele.

Discussion
Given that all protein machinery for mtDNA replication and main-
tenance is nucDNA-encoded, it is plausible that commonly occur-
ring nuclear variants can influence mtDNA heteroplasmy, although 
this has never been demonstrated in humans. Here, by leveraging 
WGS across two large biobanks, we report pervasive nuclear genetic 
control of mtDNA abundance and heteroplasmy variation in humans. 
Many of these nuclear quantitative trait loci (QTLs) correspond to 
machinery responsible for mtDNA maintenance, which may influence 
heteroplasmy by directly acting on mtDNA and altering the relative 
replication efficiency of mtDNA molecules based on mtDNA sequence, 
whereas several others correspond to genes never before linked to 
mtDNA biology. High statistical resolution allows us to gain detailed 
molecular insights into the mechanisms underlying an entire battery 
of mito-nuclear interactions, with implications for basic physiology, 
human disease and evolution.

Our ability to dissect the genetic architecture of mtCN and hetero-
plasmy was possible both because of the statistical power afforded by 
the scale of large biobanks and because of careful attention given to 
technical and biological confounders. We analysed mtDNA sequences 
across 274,832 individuals of diverse ancestries from two biobanks. We 
were particularly attentive to contamination by mtDNA pseudogenes in 
the nuclear genome (NUMTs, Supplementary Notes 5 and 6). We explic-
itly tested many potential confounders of mtDNA traits, finding that 
correction of mtCN for blood cell composition had a profound effect on 
the observed association landscape. Many previously reported associa-
tions between blood mtCN and cardiometabolic traits27,28 disappear or 
reverse direction after adjustment for blood cell composition (Fig. 1f). 
Our corrections reduce and even eliminate certain recently reported 
GWAS hits32 near genes suspiciously related to blood cell composi-
tion and inflammation (for example, HLA, HBS1L). Our data suggest 
that, in many cases, an inflammatory state in cardiometabolic disease 
influences blood cell composition, driving the previously observed 
decline in mtCN.

The resulting GWASs of mtCNadj and mtDNA heteroplasmies provide 
molecular insights into mtDNA maintenance. The nuclear loci we iden-
tify, including those with fine-mapped missense variation (for example, 
MGME1, POLG, POLG2, DGUOK, LONP1), are enriched for roles in the 
mtDNA nucleoid, mtDNA replication and nucleotide balance. We show 
how population-level genetic analysis can produce detailed, mecha-
nistic insights into mtDNA replication: GWAS of the relative mtDNA 
coverage in the 7S DNA ‘flap’ region highlights missense variants in both 
MGME1 and POLG, whose products have exonuclease activity that can 
resolve this replication ‘flap’ intermediate. We speculate that the puta-
tively causal variant in MGME1, p.Thr265Ile, may act by directly affecting 
DNA binding by disrupting a hydrogen bond within a helix-forming 
part of the DNA binding pocket of the MGME1 exonuclease domain 
(Fig. 2f). We observe notable differences in the genetic architecture of 
mtCNadj versus heteroplasmy: although TFAM, LONP1, DGUOK and PNP 
are associated with both traits, the former two (encoding components 
of the mtDNA nucleoid) were the most significant associations for 
mtCNadj, whereas the latter two (involved in nucleotide balance) were 
among the strongest associations across many heteroplasmies. QTLs 
corresponding to TWNK were identified only for mtCNadj, whereas asso-
ciations near SSBP1, TEFM and POLRMT were specific to heteroplasmy, 
suggesting that genetic variation in different mtDNA replication genes 
can have effects specific to mtCN or heteroplasmy. We spotlight many 
loci with no previous links to mtDNA biology, such as C7orf73, MCAT, 
ABHD10, NDUFV3, CDA and ADA, implying new roles for their protein 
products. Future studies are required to evaluate the specific impacts 
of the candidate causal variants on the function of proteins involved 
in mtDNA replication and maintenance.

Our study has implications for rare mitochondrial diseases. First, 
our GWAS nominates candidate genes for unsolved mitochondrial 
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disease. PNP is an excellent example: it has not previously been linked 
to mtDNA disease; however, we now show that it is associated with 
mtCNadj and the levels of 13 length heteroplasmic variants at 3 mtDNA 
sites. It participates in purine catabolism, and defects in analogous 
steps in pyrimidine catabolism are linked to mtDNA deletion/deple-
tion syndromes. Second, we confirm an earlier estimate that about 1 in 
200 individuals carries a known pathogenic mtDNA variant37, but now 
also report intermediate phenotypes in such individuals—for example, 
the MELAS A3243G variant is associated with an increased risk for dia-
betes. Interestingly, the heteroplasmy distribution observed for the 
MELAS variant appears to be left-shifted, potentially suggesting nega-
tive selection as previously observed18. Third, because the number of 
wild-type mtDNA molecules is key for healthy physiology, it is tempting 
to speculate that individuals with a higher mtCN polygenic score may 
be more resilient to pathogenic, heteroplasmic mtDNA mutations, 
helping to explain some of the striking phenotypic variability observed 
between family members that carry the same maternally transmitted 
pathogenic mtDNA mutations47. Larger, rare disease-focused studies 
will be required to determine the extent to which the nuclear variants 
we have identified can modify the penetrance of mtDNA mutations.

A striking finding from our work is that nearly every human har-
bours heteroplasmic mtDNA variants obeying two key principles: (1) 
heteroplasmic SNVs are typically somatic and accrue with age sharply 
after age 70, whereas (2) heteroplasmic indels are found in more than 
60% of individuals, do not accrue with age and are usually inherited as 
mixtures in the same maternal lineage. The accrual of point mutations 
with age has been reported11; however, to our knowledge the stability 
of indels with age has not previously been appreciated. Consistent with 
earlier work15, heteroplasmic SNVs tend to occur more in the mtDNA 
hypervariable regions, but we find that most heteroplasmies detected 
here are actually inherited indels. Most heteroplasmic indels appear 
to occur next to poly-C stretches in the non-protein-coding mtDNA; 
heteroplasmic indel rates are orders of magnitude lower next to poly-C 
stretches in coding regions, suggesting negative selection in these 
regions. Strikingly, for any given common indel, we find that maternal 
heteroplasmy levels quantitatively predict offspring heteroplasmy 
levels, suggesting neutral transmission. We show that these hetero-
plasmy levels are also under nuclear genetic control, with associated 
loci enriched for genes involved in mtDNA biology and nucleotide bal-
ance. These loci are similar across heteroplasmies at multiple mtDNA 
sites, suggesting a shared genetic architecture.

In theory, the nuclear QTLs we identify for mtDNA length hetero-
plasmies could operate by one of two mechanisms: (1) the associated 
nuclear variants are ‘mutagenic’ and impair mtDNA copying fidelity 
resulting in somatic indels due to slippage in poly-C tracts48, or (2) 
these nuclear variants confer a replicative advantage to maternally 
inherited mtDNA molecules carrying certain length variants. Our data 
favour the latter. Case/control GWAS showed very little signal com-
pared with case-only analysis; in concert with the observed maternal 
transmission this strongly suggests that the identified nuclear QTLs 
modify existing indel heteroplasmy levels rather than acting through 
mutagenesis, potentially by altering the replicative efficiency of the 
mtDNA molecules carrying different alleles.

Our work provides insight into mechanisms by which the nuclear 
genotype may be able to confer a replicative advantage to specific 
mtDNA variants. This is perhaps best illustrated by length heteroplasmy 
at chrM:302. This heteroplasmy occurs within the G-quadruplex in 
CSBII in the mtDNA NCR, which may induce switching from transcrip-
tion to replication by blocking transcription progression. Previous 
in vitro studies have shown that the chrM:302 length polymorphism 
affects the strength of this G-quadruplex, hence modifying the tran-
scription/replication switch3,45. We find that mixtures of mtDNA with dif-
ferent chrM:302 length variants are found in over half of the population 
and are maternally inherited. Once inherited, we show that chrM:302 
alleles influence mtDNA abundance (acting in cis), and we find that the 

resulting heteroplasmy levels are influenced (in-trans) by nuclear QTLs 
(for example, SSBP1, POLG2, TEFM) whose protein products are thought 
to directly operate this regulatory switch45. In sum, our results indicate 
that the associated nuclear variants alter chrM:302 heteroplasmy by 
influencing factors that interact with the chrM:302 G-quadruplex, thus 
privileging the replication of mtDNA templates carrying a particular 
chrM:302 genotype. Recent experiments in embryonic stem cells led 
to speculation that CSBII length variants may contribute to mtDNA 
reversion after mitochondrial replacement therapy49 owing to replica-
tive advantage of carryover mtDNA from the intending mother. Our 
results may provide mechanistic insight into nuclear genetic control 
of this reversion.

An open question is why mtDNA heteroplasmy is so common in 
humans, and whether a selective advantage preserves this variation and 
the observed mito-nuclear interactions. In the current paper, we have 
shown that quantitative mtDNA traits in the population can be under 
both cis-acting control (through mtDNA variation) and trans-acting 
control (through nucDNA variation), and it is possible that these effects 
balance each other to maintain stable heteroplasmy across generations. 
As the mtDNA has high mutation rates with little or no recombination, 
it is prone to the accumulation of disabling mutations that could lead to 
its ‘meltdown’ through Mueller’s ratchet50. However, mtDNA mutation 
followed by heteroplasmy is a requisite step in evolutionary adaptation. 
Nuclear QTLs for mtDNA heteroplasmy may represent mechanisms 
by which a reservoir of such variation can be tolerated and harnessed 
over evolutionary time-scales.
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Methods

Overview of mtSwirl
Here we develop mtSwirl, a scalable pipeline for mtCN and variant call-
ing which makes calls relative to an internally generated per-sample 
consensus sequence before mapping all calls back to GRCh38. In addi-
tion to GRCh38 reference files and WGS data, the mtSwirl pipeline takes 
as input nuclear genome reference intervals that represent regions with 
high homology to the mtDNA (reference NUMTs). We constructed a 
set of 385 putative NUMTs by using a BLAST-based inventory of refer-
ence NUMTs published previously51, extending the boundaries of each 
interval by 500 bases, and merging any overlapping intervals. Initial 
variant calls in the mtDNA and reference NUMT regions are made from 
mapped WGS data using Mutect2 and HaplotypeCaller, respectively 
(using GATK v.4.2.6.0), and haplogroup inference is performed using 
Haplogrep52. Consensus sequences are subsequently constructed using 
homoplasmies (mtDNA) and homozygous alternative (nucDNA) calls. 
Reads are realigned to the new consensus sequence and variants are 
called on the mtDNA using Mutect2. To avoid the artificial coverage 
depression at the ends of the mtDNA reference genome, we call vari-
ants in the control region after alignment to a shifted mtDNA molecule. 
All variant calls and per-base coverage estimates are then returned to 
GRCh38 coordinates and output from the pipeline. See Supplemen-
tary Note 1 for more details. We release two versions of our pipeline 
on GitHub (https://github.com/rahulg603/mtSwirl): mtSwirlSingle, 
a single-sample pipeline intended for use with Cromwell and on plat-
forms with high worker limits such as Terra and the AoU Workbench, 
and mtSwirlMulti, a multi-sample version that processes multiple sam-
ples serially per machine, intended for use on platforms with a smaller 
parallel worker limit such as the UKB Research Analysis Platform.

Cohorts
UKB. The UKB is a large prospective cohort study of approximately 
500,000 individuals in the UK53, about 200,000 of whom had WGS 
performed at the time of this study. Samples were selected for the 
first round of WGS using a pseudorandom approach to ensure that 
included samples were representative of the full cohort. Sequencing 
data were generated using DNA extracted from buffy coat obtained 
from participants; more details have been reported previously54. All 
UKB data were accessed under application 31063 and mtDNA variant 
calling was performed on the UKB Research Analysis Platform.

AoU. AoU is a large longitudinal cohort study based in the USA, with 
a central goal of enroling a diverse cohort of participants providing 
electronic health record data over time, specimens for genetic analysis,  
survey responses and standardized biometric measurements55.  
At the time of this study, 98,590 individuals had completed WGS on 
samples obtained from whole blood. DNA extraction was completed  
at the Mayo Clinic, and sequencing was performed at three sequencing 
centres (Baylor College of Medicine, Broad Institute and University of 
Washington) using harmonized protocols. Post-sequencing variant 
and sample QC was performed by the AoU Data and Research Center 
(DRC). All mtDNA analyses were performed using the AoU Researcher 
Workbench in the Controlled Tier v6 workspace: ‘Genetic determinants 
of mitochondrial DNA phenotypes’, using data from the Q2 2022 release. 
See https://support.researchallofus.org/hc/en-us/article_attachments/ 
7237425684244/All_Of_Us_Q2_2022_Release_Genomic_Quality_Report.
pdf for more details on genomics QC and preprocessing.

gnomAD v.3.1 subset. gnomAD v.3.1 is a database aggregating WGS 
data from 76,156 samples from several experiments and projects around 
the world, as part of which an mtDNA variant call-set was recently pro-
duced21. Samples were sourced from several study designs including 
case–control studies for common diseases, population-based cohorts 
and observational studies. Individuals with inborn severe paediatric 

disease were excluded. Most data were sourced from sequencing 
performed on either blood samples extracted using study-specific 
methodologies or cell lines21. We made use of a subset of the gnomAD 
v.3.1 samples to prototype our pipeline (mtSwirl) and compare its per-
formance with previous mtCN and variant calls (‘Vanilla’). We excluded 
samples with very high mtCN as done previously21, as these are most 
likely to be cell line samples rather than whole blood samples; we used 
a more stringent threshold of 350 as we wanted to maximally enrich for 
whole blood samples for this analysis. We also removed samples with 
mtCN < 50 due to elevated NUMT contamination in these samples21 
(Extended Data Fig. 8c). We selected approximately 6,300 samples 
from gnomAD v.3.1 to maximize inclusion of diverse haplogroups  
including those underrepresented in UKB (Extended Data Fig. 2a). We 
specifically supplemented samples belonging to the L haplogroups 
and enforced a cap on the number of samples assigned to either NFE 
(Non-Finnish European) or FIN (Finnish). For other larger haplogroups 
we performed random subsampling proportional to the original com-
position of the gnomAD dataset to achieve our final sample size. All 
analyses were performed using Terra (https://app.terra.bio/), and all 
analyses were performed using the mtSwirl pipeline deployed using 
Cromwell in Terra.

1000G. The expanded 1000G cohort is a foundational collection of 
3,202 diverse samples from 26 populations with recently completed 
high-coverage WGS and 602 trios38,39. Unlike the other cohorts, for 
which sequencing was performed directly on whole blood or whole 
blood subfractions, sequencing for 1000G was performed on lympho-
blastoid cell cultures which were established from peripheral blood 
mononuclear cells at the Coriell Cell Repositories39. The expanded 
1000G cohort, which includes the full set of unrelated samples from 
1000G phase 3 as well as additional samples to complete 602 trios, 
was recently sequenced with more details elsewhere38. All data were 
accessed through the ‘1000G-high-coverage-2019’ workspace in Terra, 
and all analyses were performed using mtSwirl deployed using Crom-
well in Terra.

Computing mean nucDNA coverage in UKB
As mean nucDNA coverage was not available for UKB, we used sam-
tools v.1.9 idxstats56, samtools flagstat and GATK v.4.2.6.0 CollectQuali-
tyYieldMetrics as part of the mtSwirlMulti pipeline to efficiently and 
economically estimate mean coverage on the nucDNA. Idxstats-based 
counts of total mapped reads were computed over autosomes with the 
subsequent formula applied to get average nucDNA coverage after 
removing contributions from duplicate reads:

Mean coverage =

(total mapped reads − singletons − reads with discordant mate

− duplicates) × read length
genome length

Computing mtCN
Across all cohorts we used the following formula to compute mtCN:

2 ×
mean or median mtDNA coverage

mean nucDNA coverage

We defaulted to use of mean mtDNA coverage for the main 
mtCN-related analyses.

Post-calling mtDNA phenotype QC
To integrate our variant calls and perform sample and variant QC, we 
extended a previously developed pipeline21. Single-sample variant call 
format files (VCFs) emitted from mtSwirl were merged into a single 
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Hail MatrixTable (v.0.2.98 (ref. 57)) upon which all downstream steps 
were conducted.

For sample QC, any samples showing homoplasmic variant overlap 
(Supplementary Note 1) were removed. We observed a significant eleva-
tion in heteroplasmic SNV calls among samples with mtCN below 50, 
with a stabilization of heteroplasmic calls above 50 mtDNA copies per 
cell (Extended Data Fig. 8c), highly suggestive of elevated NUMT con-
tamination in the low copy number samples. Thus, to avoid contamina-
tion of our results, all samples with mtCN < 50 were removed. Finally, all 
samples with evidence of contamination more than 2% were removed, as 
estimated by (1) mtDNA contamination using Haplocheck 0124 (ref. 58) 
in mtSwirl, (2) nucDNA contamination or (3) the presence of multiple 
haplogroup-defining variants at abnormally low allele fraction. Given 
the small count of samples processed in 2006 and abnormally elevated 
mtCN estimates in these samples (Extended Data Fig. 3e), we excluded 
these samples from all UKB analyses.

For variant QC, (1) variants with a very low heteroplasmy (less than 
0.01) were called as reference with a heteroplasmy of 0, (2) variants 
with heteroplasmy below 0.05 were flagged and removed as these are at 
high risk of being enriched for NUMT-derived signals and (3) all variant 
calls flagged by Mutect2 were removed (Supplementary Note 1). For 
all sites, a minimum coverage threshold of 100 was used to distinguish 
between homoplasmic reference calls and sites without variant calls 
due to low variant calling confidence as done previously21. mtDNA vari-
ants were annotated using the Variant Effect Predictor v.101 (ref. 59) 
and dbSNP v.151 (ref. 60). Variants with at least 0.1% of samples passing 
filters and showing a heteroplasmy between 0 and 0.5 were annotated 
as ‘common low heteroplasmy’. Variant calls failing QC were coded with 
a missing heteroplasmy.

For mtCN, we removed the samples identified during variant call-set 
sample QC as showing signs of contamination or abnormal overlap-
ping homoplasmy calls, or which were processed in 2006. Because we 
expect mtDNA-wide coverage measures, such as mtCN, to be robust 
to NUMTs, we do not enforce hard cut-offs on mtCN measurements.

Construction of mtDNA heteroplasmy phenotypes
We defined our set of common heteroplasmies in UKB as ‘common low 
heteroplasmy’ variants (Methods) which are present as heteroplasmies 
in at least 500 individuals, resulting in 39 variants. We produced two 
main sets of phenotypes: (1) a ‘case-only’ dataset consisting of hetero-
plasmy values for these variants in which any individuals without the 
variant detected were coded as missing and (2) a ‘case–control’ dataset 
in which cases consisted of those with any detectable heteroplasmy 
and controls consisted of those with the variant not detected. In both 
phenotype schemes, samples identified as homoplasmic for each 
variant were always coded as missing. For the case–control dataset, 
only samples that could be accurately inferred as a reference for each 
variant were labelled as controls—specifically, the sample was coded 
as missing for a variant if it had a coverage less than 100 at the site or 
showed the variant call as QC-fail (Methods).

For sensitivity analyses, we produced several further case-only 
heteroplasmy datasets: (1) in which any variant calls supported by an 
alternative allele depth (AD alt) of less than the mean nucDNA coverage 
of the sample were made missing; (2) in which heteroplasmy estimates 
were corrected for the depth of mtDNA coverage at the variant site 
after re-alignment; and (3) in which length heteroplasmy estimates at 
chrM:302 were corrected for median coverage at CSBII. All corrections 
were performed by obtaining residuals from the linear regression of 
the heteroplasmy onto the covariate for each variant across all samples 
before genetic analysis.

mtDNA phenotype covariate adjustment approach
We investigated time of day of blood draw, fasting time, assessment date 
and assessment centre as technical covariates for mtDNA traits. As draw 
time and assessment date are continuous, we used natural splines in the 

correction model to flexibly model nonlinear relationships between 
these covariates and the mtDNA phenotype. For assessment date, we 
used knots placed roughly seasonally to model seasonal variation in 
mtDNA phenotypes—these corresponded to 3 month increments start-
ing on 1 July 2007 and ending on 1 July 2010. For draw time, we used 
a natural spline basis with 5 degrees of freedom. Assessment month 
and assessment centre were modelled as indicator variables. Fasting 
times were provided in increments of 1 h and thus were modelled as 
indicator variables; fasting times of more than 18 h were labelled as 
18 and fasting times of 0 were labelled as 1. All terms were included in 
a joint model for correction.

We also investigated the relationship between mtDNA pheno-
types and blood cell type percentages and mean blood cell volumes.  
We selected all non-redundant traits available: white blood cell leuco-
cyte count, haematocrit percentage, platelet crit, monocyte percentage,  
neutrophil percentage, eosinophil percentage, basophil percentage, 
reticulocyte percentage, high light scatter reticulocyte percentage, 
immature reticulocyte fraction, mean corpuscular volume, mean retic-
ulocyte volume, mean sphered cell volume, mean platelet thrombocyte 
volume. We did not include nucleated red blood cell percentage as only 
approximately 1% of the entire UKB cohort has non-zero values for this 
measure, and we excluded lymphocyte percentage given collinearity 
with neutrophil percentage (r = 0.92) and the sum-to-1 property of the 
white blood cell differential measurements. To avoid excess leverage  
from outlying blood cell measurements, we removed any blood meas-
urements with a Z-score > 4. All terms were included in a joint model 
for correction.

For both the technical covariate and blood cell type models, 
F-test P values were obtained for each of the 40 mtDNA phenotypes  
(39 case-only heteroplasmies and mtCN). For any phenotypes that 
showed F-test P < 0.05/40 (Bonferroni corrected), we produced cor-
rected versions of the phenotype by obtaining the residuals from 
the regression of the mtDNA phenotype onto covariates of interest 
before genetic analysis. For mtCN, adjustments were performed with 
log(mtCN) as the response variable. For heteroplasmy estimates, 
adjustments were performed with case-only heteroplasmies as the 
response variable. The specific corrections implemented were (where 
‘ns’ refers to the natural spline function):

log(mtCN) ns(blood draw time, 5) + assessment centre
+ fasting time + ns(assessment date, SEASONAL KNOTS)
+ month of assessment + blood cell variables

As sensitivity analyses for case-only heteroplasmy phenotypes, 
residuals from the following models were produced:

chrM:567:A,ACCCCCC ns(blood draw time, 5) + assessment centre
+ fasting time + ns(assessment date, SEASONAL KNOTS)
+ month of assessment



(chrM:16093:T,C; chrM:16182:A,ACC; chrM:16183:A,AC) blood cell

variables

For each response variable, residuals were generated using 
residuals (lm(model)) as implemented in R v.4.2.1. In all visualizations 
of covariate-adjusted variables (for example, mtCNadj), we rescaled the 
residualized variable by adding the pre-adjustment mean. In the case 
of mtCNadj, we rescaled and exponentiated the residualized variable 
to return adjusted values back to an absolute scale. See Supplementary 
Notes 2 and 3 for more details.

mtDNA principal component analysis and predictive power for 
mtDNA haplogroups
To construct a high-quality variant genotype matrix for principal com-
ponent analysis (PCA), we obtained the set of homoplasmic variants 



(heteroplasmy ≥ 0.95) passing QC identified at a MAF ≥ 0.001 in UKB. 
Any samples with a QC-pass homoplasmy detected were coded as 1 
for each respective variant; all others were coded as 0. This binary 
genotype matrix was subsequently filtered to the set of unrelated 
samples upon which we computed the first 50 principal components 
after centring and scaling using the efficient truncated singular value 
decomposition algorithm implemented in the irlba v.2.3.5.1 package 
in R. Related samples were projected onto these principal components 
(PCs) to produce a set of mtDNA PC coordinates for each sample. The 
set of related samples were defined previously in the Pan UK Biobank 
(Pan UKBB) project61. In brief, PC-relate was used as implemented 
in Hail within each assigned genetic ancestry group in UKB and the 
maximal set of unrelated samples were identified using the maximal 
independent set algorithm implemented in Hail.

To assess the goodness of fit of mtDNA PCs for the prediction of 
top-level mtDNA haplogroups, we fit a multinomial model with top-level 
haplogroup as the response variable and the first 30 mtDNA PCs as 
explanatory variables as implemented in the nnet v.7.3-17 package in 
R62. We included only samples belonging to haplogroups with at least 
30 samples in UKB. For assessment of the predictive power of mtDNA 
PCs for ‘level 2’ haplogroups, we fit multinomial models using a similar 
approach for each top-level haplogroup, with ‘level 2’ haplogroups as 
the response variable. In all cases, a null model was fit in parallel with 
the same response variable with only an intercept term. We computed 
McFadden’s pseudo R2 for each model with the following formula:

RPseudo = 1 −
log likelihood

null model log likelihood
2

Correlations between mtCN, mtCNadj, blood cell composition, 
heteroplasmies and disease phenotypes
We obtained 29 common disease diagnoses from UKB from a previously 
curated set of phecodes and International Classification of Disease–10 
(ICD10) codes corresponding to major common diseases61 along with 
demographic variables (age, sex) and blood cell composition pheno-
types (Methods). We obtained mtCNraw, mtCNadj, common (N > 500) 
case-only heteroplasmies (Methods) and three major blood cell com-
position traits (platelet crit, monocyte count and neutrophil count), 
and performed Z-score transformation for each. To test for associa-
tions with disease phenotypes, we implemented a logistic regression 
model using the glm function in R, including age, sex, age2, age2 × sex, 
age × sex, top-level haplogroup and genetic ancestry group assign-
ment as covariates:

Disease phenotype ≈ trait + age + sex + age + age × sex + age × sex

+ population + top level haplogroup

2 2

We included haplogroups with at least 30 individuals represented 
in UKB. Haplogroup was included in the model only when the trait was 
mtDNA-derived (for example, it was not included for blood composi-
tion phenotypes). Odds ratios were obtained as βexp( )trait , and the 95% 
CI was obtained as βexp( ± 1.96 × s.e. )trait trait .

Derivation of mtDNA coverage discrepancy phenotypes
We obtained mtDNA intervals corresponding to the 7S DNA, 
heavy strand origin, CSBII, CSBIII and the LSP45,63,64. We computed 
per-individual median mtDNA coverages in the regions corresponding 
to the first third of the 7S DNA (termed ‘7S DNA’), the region between 
CSBII and the heavy strand origin (‘7S DNA flap’), and the region 
between CSBIII and the LSP (‘7S RNA primer’). To generate coverage 
discrepancy phenotypes, we regressed DNA flap coverage onto either 7S 
DNA coverage or 7S RNA primer coverage. To avoid coverage discrepan-
cies attributable to inherited mtDNA variation in the regions of interest, 
we included indicator variables for all top-level haplogroups with at 

least 30 samples as well as their interactions with 7S DNA or 7S RNA 
primer coverage. We also included terms corresponding to the same 
blood cell composition and technical variables used for adjustment of 
mtCN (Methods and Supplementary Note 2) to reduce the degree of 
variation attributable to these factors. The residuals from the following 
model were used as the coverage discrepancy phenotype for GWAS:

7S DNA flap coverage ≈ (7S RNA primer or 7S DNA coverage)
+ haplogroup + (7S RNA primer or 7S DNA coverage)
× haplogroup + blood cell composition + technical variables

Relatedness analyses in UKB
Relatedness was computed and sibling–sibling and parent–offspring 
pairs were inferred as previously described in UKB65. For the assessment 
of transmission of all QC-pass mtDNA variants, we restricted to only 
variants found in five or more samples.

Determination of chrM:302 length heteroplasmy composition
To construct length heteroplasmy compositional profiles, we obtained 
all pre- and post-QC variant calls made at position chrM:302. We  
generated a ‘QC-fail’ heteroplasmy estimate at position 302 for each 
individual by summing pre-QC heteroplasmies that failed post- 
calling QC; all other alleles included in the composition passed QC 
(Methods). We defined a ‘reference’ call at chrM:302 for each sample 
as 1 − sum(heteroplasmy of any allele at chrM:302), in which the sum 
included all QC-pass alleles as well as the ‘QC-fail’ estimate. All samples 
without variant calls at chrM:302 were assigned a reference fraction 
of 1, and samples with a depth of less than 100 at chrM:302 (after local 
re-alignment during variant calling) were excluded. For each sample, 
we combined all heteroplasmies from calls other than reference, 
chrM:302:A,AC, chrM:302:A,ACC and chrM:302:A,ACCC into an ‘Other’ 
category. The ‘QC-fail’ fraction was included in the ‘Other’ category. 
Any calls with a missing value for a chrM:302 allele (that is, because the 
allele was removed due to filtering) were imputed as a heteroplasmy 
of 0 for the purposes of visualizations and analyses. As a final step, any 
calls with a heteroplasmy fraction less than 0.05 were labelled ‘Other’ 
as we use this heteroplasmy cut-off throughout our study to avoid 
contamination from potential NUMT-derived artifact.

Associations between pathogenic variant carrier status and 
continuous phenotypes in UKB
We obtained continuous phenotypes available in UKB corresponding 
to classic symptoms of MELAS—diabetes-like symptoms (elevated 
triglycerides (ID 30870), elevated haemoglobin A1c (ID 30750)) and 
hearing impairment (by means of the speech-reception threshold 
assessment (IDs 20019 and 20021))—as well as the results from the 
visual acuity test for analysis of known pathogenic variants for Leber’s 
hereditary optic neuropathy (logMAR from visual acuity test (IDs 5201 
and 5208)). All obtained phenotypes were filtered to samples with 
available mtDNA variant calls and corrections were applied for age, 
sex, age2, age2 × sex, age × sex and genetic ancestry group assignment 
by obtaining residuals from the following linear regression model using 
residuals (lm(model)) in R:

Measurement ≈ age + sex + age + age × sex + age × sex

+ population

2 2

As blood biomarkers tend to have log-normal distributions, correc-
tions were applied after log transformation of haemoglobin A1c and 
triglyceride levels. Post-adjustment, all measurements were returned 
to their original scale by adding the pre-adjustment dataset-wide 
means for each measurement modality. Final estimates for the 
speech-recognition threshold and vision logMAR were generated by 
averaging measurements for the left and right ear and eye, respectively.
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Carriers of known pathogenic mtDNA variants were defined as indi-

viduals carrying the variant post-QC at any fraction. We defined a set of 
controls as individuals with none of the ten known pathogenic mtDNA 
variants tested. Only samples that could be accurately inferred as  
reference for all ten variants were labelled as controls—the sample was 
excluded if, for any of the ten variants, it had a coverage of below 100 
at the site or showed a QC-fail variant call (Methods).

Comparisons between residual phenotype values among variant 
carriers versus global controls were performed only for variant–phe-
notype pairs with more than ten defined phenotype values among 
variant carriers. P values were obtained by performing a two-sample 
t-test between phenotype values among variant carriers and the set 
of global controls, and Q values were obtained by applying the Benja-
mini–Hochberg procedure.

Creation of mutational spectrum categories
Heteroplasmic SNV mutation types in AoU were constructed using 
the set of QC-pass heteroplasmic SNVs. For each SNV type, the set of 
individuals without any heteroplasmic variants was identified as those 
with no QC-pass variant call of that type; these individuals were included 
as zeros in estimates of the mean SNV count of each type.

chrM:302 length heteroplasmy inference in single cells
Single-cell mitochondrial single-cell assay for transposase-accessible 
chromatin with sequencing (mtscATAC-seq) data18 were obtained and 
analysed with Massachusetts General Hospital Institutional Review 
Board (IRB) approval under protocol no. 2016P001517. We used the 
BedTools66 intersect tool (v.2.29.2) to identify read alignments com-
pletely spanning the chrM:300–318 locus in the mtscATAC-seq data. 
We then iterated over these reads and classified their chrM:302 length 
variant by extracting the poly-C/G tracts using a regular expression, 
‘AA(CCC+[CT]CC+)GC’, anchored on the two constant base pairs on 
either side of the variant region to detect the canonical variant struc-
ture of two poly-C/G tracts with or without a single intervening A/T. 
Alleles in matching reads were classified based on the length of their 
poly-C/G tracts, whereas alleles in the reads that did not match the 
regular expression were classified as missing. Next, we filtered out any 
reads with cell barcodes that were not in the published list of cell calls, 
and further restricted our analysis to only the cells with at least 20 reads 
at the chrM:300–318 locus. For each of these high-coverage cells, we 
calculated the fraction of reads showing each of the top three most 
common length variants (G6AG8, G6AG9 and G6AG10) and aggregated 
any other detected alleles into the remainder (Other) for display as a 
stacked bar plot. We also estimated bulk heteroplasmy by summing 
the allele counts from the high-coverage cells and re-calculating the 
fractions for the top three length variants, again with all other alleles 
being aggregated into the remainder ‘Other’ category.

UKB GWAS approach
All GWASs were performed in UKB using approaches as performed in 
the Pan UKBB initiative61. In brief, ancestry assignment was performed 
by first projecting UKB samples into genotype PC-space constructed 
from reference samples from 1000G phase 3 and the Human Genome 
Diversity Project (HGDP), and subsequently using a random forest 
classifier to assign continental labels trained on the 1000G + HGDP 
reference data. In each ancestry group, PCA was performed among 
unrelated samples with related samples projected onto this PC-space. 
Further sample QC was performed as described as part of the Pan 
UKBB initiative61, including removal of ancestry outliers using a 
centroid-based metric, and filtering of individuals with high genotype 
missingness, sex discordance and sex chromosome aneuploidies. 
Variant QC was also performed on UKB-provided imputed v3 variants 
(GRCh37) as part of the Pan UKBB initiative61, including only those with 
INFO scores greater than 0.8 on autosomes and the X-chromosome. 
Association tests were performed only on variants with a minor allele 

count (MAC) > 20. We have constructed and released a mapping from 
our QC-pass UKB GRCh37 variants to GRCh38 coordinates, built using 
the bcftools +liftover tool (https://github.com/freeseek/score) with 
default parameters.

For GWAS, SAIGE v.1.1.5 (ref. 67) was used to perform association tests 
for each assigned ancestry group using the first ten per-population 
PCs, age, age × sex, age2 and age2 × sex as covariates (referred to as 
‘baseline’). Ancestry groups were included only if at least 50 individuals 
had the phenotype defined. The use of the SAIGE GRM-based approach 
allowed for the inclusion of related samples in the GWAS, and we ena-
bled leave-one-chromosome-out fitting in all steps. For all continuous 
phenotype GWASs (case-only mtDNA heteroplasmy traits and mtCN), 
phenotypes were inverse rank normalized before genetic analysis.

For all main mtDNA heteroplasmy analyses, top-level mtDNA hap-
logroup was included as an extra set of covariates in the GWAS model 
as a set of 24 indicator variables with haplogroup A as reference. Any 
samples belonging to top-level haplogroups with fewer than 30 sam-
ples represented were excluded. The same GWAS model was used for 
sensitivity analysis of case-only heteroplasmies after removing calls 
with AD alt less than mean nucDNA coverage, after correction for local 
variant coverage, after correction for CSBII coverage, and after cor-
rection for technical or blood trait covariates (Methods). For the main 
mtCN analyses, we used only the baseline covariates to perform genetic 
associations with mtCNraw and mtCNadj.

We performed two extra sensitivity analyses for case-only hetero-
plasmy GWASs: (1) inclusion of 30 mtDNA PCs as covariates in the GWAS 
model instead of top-level haplogroup for seven variants which showed 
relatively high heterogeneity across level two haplogroups, and (2) 
inclusion of mtCNadj as a covariate in the GWAS model for all case-only 
heteroplasmies in addition to top-level haplogroup. We also tested the 
effects of including top-level haplogroup indicator variables as extra 
covariates in GWASs for mtCNraw and mtCNadj.

AoU GWAS approach
We performed a GWAS in AoU as a replication for our main case-only 
heteroplasmy analyses in UKB. Ancestry inference was performed 
upstream by the AoU DRC. In brief, AoU samples were projected into 
the PCA space of genotypes from chromosomes 20 and 21 from HGDP 
and 1000G, and a random forest classifier trained to identify ances-
try labels in 1000G + HGDP was used to assign continental ancestry 
labels to AoU samples.

We performed sample and variant QC after WGS variant calls 
(GRCh38) were imported into Hail. Multi-allelic sites were split and 
sites with very low precomputed allele frequency were removed 
(MAF > 0.0001 retained). For sample QC, samples flagged by the DRC 
as population outliers for several metrics or identified as related by the 
DRC were excluded. For variant QC, we removed any variants filtered by 
the DRC, which occurred in brief because of no high-quality genotypes 
for the variant (defined as GQ ≥ 20, DP ≥ 10, AB ≥ 0.2 for heterozygotes), 
excess heterozygotes or a low-quality score for the variant. We further 
removed any variants not in Hardy–Weinberg equilibrium (one-sided 
P ≤ 1 × 10−10) and variants with a call rate ≤ 0.95. Finally, we removed any 
variants with MAC < 20 in each assigned ancestry group.

We next extracted covariates relevant for our GWAS model. We used 
an SQL query to obtain date of birth in the controlled data repository 
and used the provided QC flat files to obtain sex assigned at birth. As 
date of sample collection was not provided, approximate age was con-
structed for all analyses by subtracting the year of birth from the year 
2021. To address residual stratification in assigned ancestry groups, 
we produced PCs in each ancestry group using a very similar approach 
as used in UKB (Methods) as we found that the provided PCs did not 
appropriately handle stratification among positive control phenotypes 
such as height, blood glucose, diastolic blood pressure and systolic 
blood pressure (Supplementary Note 4). We included 20 recomputed 
PCs, in addition to approximate age, age2, age × sex and age2 × sex as 

https://github.com/freeseek/score


covariates in the final GWAS model. We did not perform genetic asso-
ciation analysis for the MID (Middle Eastern) group as fewer than 400 
samples with available WGS data were assigned MID.

We used Hail with the hl.linear_regression_rows()  method to per
form GWAS after all QC. As described in the Methods, we performed  
genetic analysis for all QC-pass case-only mtDNA heteroplasmies with 
homoplasmic calls set to missing. As this analysis is intended for rep-
lication, we included any mtDNA variants found in 300 or more samples 
across any ancestry group, resulting in 41 variants for genetic analysis. 
Of these, 36 were also analysed in UKB; 3 UKB variants were not suffi-
ciently common in AoU for genetic analysis. As in UKB, for the analysis 
of case-only mtDNA heteroplasmies, top-level mtDNA haplogroup was 
included as covariates in the GWAS model as a set of 27 indicator vari-
ables in addition to age, sex and PC covariates. Samples belonging to 
top-level haplogroups with fewer than 30 samples in AoU were 
excluded. All case-only mtDNA heteroplasmy phenotypes were inverse 
rank normalized before analysis.

See the AoU genotype quality report for more information on 
upstream genotype data and sample QC, ancestry inference and 
relatedness inference (https://support.researchallofus.org/hc/ 
en-us/article_attachments/7237425684244/All_Of_Us_Q2_2022_Release_ 
Genomic_Quality_Report.pdf).

UKB rare variant analysis approach
Gene-based and single-variant testing of rare variants was performed 
using SAIGE-GENE+ (ref. 68) as implemented in SAIGE v.1.1.5. Given the 
analysis of low-frequency variants and the small sizes of the other 
populations, we focused on the EUR (European) genetic ancestry group 
for this analysis. Covariates and phenotypes were identical to those 
used for the common variant GWASs in all cases (Methods). Genetic 
data were obtained from the UKB OQFE 450k exomes release. We ena-
bled leave-one-chromosome-out fitting in all steps, with default param-
eters used for estimation of categorical variance ratios. SKAT-O69 was 
used for set-based testing, with burden and SKAT70 P values reported 
for each test. Gene- and variant-consequence annotations were used 
as constructed elsewhere68. For each gene, synonymous, missense, 
LoF, missense + LoF and synonymous + missense + pLoF variants with 
maximum MAF 1 × 10−4, 1 × 10−3 and 1 × 10−2 were included in combina-
torial sets (12 variant sets per gene) with aggregate P values combined 
per gene using the Cauchy combination test71. Rare variant associations 
from first assessed using P values from the Cauchy test which combines 
information across all evaluated categories, with subsequent evalua-
tion of associated variant groups (for example, missense versus syn-
onymous, MAF cut-offs) performed only for results at GWS from the 
Cauchy test. Thus, for a given phenotype, we defined our GWS thresh-
old based on the primary assessment of the singular Cauchy test (that 
is, 0.05

≈ 18000 genes
).

Heritability estimation and enrichment analyses for mtCN
S-LDSC25 was used for heritability estimation and enrichment analy-
ses for mtCN in UKB as performed previously24. In brief, we analysed 
EUR summary statistics in UKB, restricting variants to those in Hap-
Map3 (HM3). We estimated overall SNP-heritability, controlling for 
97 annotations corresponding to coding regions, enhancer regions, 
MAF bins and others72 (referred to as baselineLD v.2.2). For enrichment 
analyses, we obtained gene-sets corresponding to (1) the top 10% of 
genes specifically expressed in major tissues from GTEx26 and (2) genes 
producing protein products that localize to each major organelle with 
high confidence using COMPARTMENTS73. Variants were mapped to 
each gene with a 100 kb symmetric window and LD scores for each 
gene-set annotation were computed using the 1000G EUR reference 
panel (https://alkesgroup.broadinstitute.org/LDSCORE/). Heritability 
enrichment for all gene-sets was tested using S-LDSC atop the baseline 
v.1.1 model, controlling for 53 annotations including coding regions 
and 5′ and 3′ UTRs25.

Cross-ancestry meta-analysis in UKB and AoU
We conducted a fixed-effect meta-analysis across ancestries in each 
cohort (UKB and AoU) based on inverse-variance weighted betas and 
standard errors74. For each ancestry, we excluded low-confidence vari-
ants defined as MAC ≤ 20 in either biobank. We computed effect size 
heterogeneity P values across ancestries using Cochran’s Q-test75. All 
computation was done using Hail v.0.2.

All visualizations of main GWASs (for example, mtCN, cover-
age discrepancy traits, heteroplasmy traits) are of cross-ancestry 
meta-analyses after restriction to the set of ‘high-quality’ variants as 
defined previously61.

Identification of LD-independent lead SNPs and locus definitions
Clumping was performed using Plink v.1.90 (ref. 76) in Hail Batch for 
GWAS results obtained in UKB after filtering to high-quality variants. 
We used significance thresholds of 1 for both the index and clumped 
SNPs, set the LD threshold for clumping at 0.1 and set the distance 
threshold at 500 kb. We used single-ancestry and multi-ancestry LD 
reference panels corresponding to the ancestry groups included in the 
final multi-ancestry meta-analyses for each mtDNA phenotype as well 
as for blood cell traits. Reference panels were constructed by randomly 
sampling 5,000 individuals from all samples in any given set of ancestry 
groups in the UKB. For single-ancestry LD panels corresponding to 
ancestry groups with fewer than 5,000 individuals assigned (EAS (East 
Asian) and MID), the full sample available for each ancestry group was 
used. More details on the LD reference panels can be found as part of 
the Pan UKBB project61. Clumping output files from Plink were con-
verted to Hail Tables and then combined into MatrixTables using the 
multi-way-zip-join method as implemented in Hail.

We defined distinct loci conservatively by starting with 
LD-independent lead SNPs at GWS and merging any SNPs within 
2 megabases (Mb) of one another.

Replication of previous mtCN GWAS with our study
We performed a comparison of significant loci identified in a previous 
GWAS of mtCN in UKB32 with our own by performing LD clumping on 
previously released summary statistics as described (Methods) using 
1000G phase 3 EUR reference data for LD. We defined distinct loci as 
described (Methods), merging any SNPs within 2 Mb of one another, 
arriving at 96 loci previously identified. We defined a replicated locus 
with mtCNraw or mtCNadj as one in which our GWAS showed a signal at 
P < 5 × 10−5 or 5 × 10−8 within 2 Mb of the most significant variant identi-
fied in the previous study at each locus.

Bidirectional Mendelian randomization between UKB mtCN and 
selected traits
GWAS effect sizes and LD-independent loci from the UKB cross-ancestry 
meta-analysis for mtCNraw and mtCNadj were obtained. Summary sta-
tistics and LD-independent loci from GWAS among EUR for neutrophil 
count (ID 30140) and case/control disease traits that showed correla-
tion with mtCNadj: osteoarthritis (categorical_20002_both_sexes_1465), 
angina (categorical_20002_both_sexes_1473), myocardial infarction 
(phecode_411.2_both_sexes), ischaemic heart disease (phecode_411_
both_sexes) and high cholesterol (categorical_20002_both_sexes_1473), 
were obtained from the Pan UKBB project61. Loci for effect-size com-
parison were restricted to those passing variant QC as performed in 
UKB (Methods). For each mtCN phenotype, neutrophil count and dis-
ease trait, GWAS effect sizes were obtained for all variants at GWS in 
the mtCN GWAS, and, vice versa, mtCN, neutrophil count and disease 
trait GWAS effect sizes were obtained for all neutrophil count and dis-
ease trait variants at GWS. We assessed the relationship between pre- 
and post-adjustment mtCN GWAS effect sizes and neutrophil  
count/disease trait GWAS effect sizes using inverse-variance  
weighted linear regression using weights corresponding to 

https://support.researchallofus.org/hc/en-us/article_attachments/7237425684244/All_Of_Us_Q2_2022_Release_Genomic_Quality_Report.pdf
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s.e.(mtCN)

1

s.e.(trait of interest)2 2 , in which effect size standard errors were 

obtained from the respective GWAS.

Fine-mapping in UKB
To identify putative causal variants in associated loci, we conducted 
statistical fine-mapping of mtDNA traits in UKB using cross-ancestry 
meta-analysis summary statistics. Although we previously showed that 
fine-mapping a meta-analysis is often miscalibrated due to heterogene-
ous characteristics of constituent cohorts (for example, genotyping 
or imputation)77, a within-cohort cross-ancestry meta-analysis such as 
the present study is a notable exception given no such heterogeneity 
systematically exists across ancestries.

We used FINEMAP-inf and SuSiE-inf, which model infinitesimal 
effects78, with cross-ancestry meta-analysis summary statistics (Meth-
ods) and a covariate-adjusted in-sample dosage LD matrix79. We defined 
fine-mapping regions based on a 3 Mb window around each lead variant 
and merged regions if they overlapped as described previously79. We 
excluded the major histocompatibility complex (MHC) region (chr 6: 
25–36 Mb) from analysis due to extensive LD structure in the region. 
For each method, we allowed up to ten causal variants per region and 
derived PIPs of each variant using a uniform prior probability of cau-
sality. To achieve better calibration, we computed min(PIP) across the 
methods and derived up to 10 independent 95% CSs from SuSiE-inf as 
described elsewhere79. All reported PIPs are min(PIP) values between 
the two methods.

Enrichment of functional categories among fine-mapped variants
We computed functional enrichment of fine-mapped variants across 
the mtDNA traits in UKB. We first annotated each variant with seven 
functional categories (pLoF, missense, synonymous, 5′ UTR, 3′ UTR, 
promoter, cis-regulatory element (CRE) and non-genic) as described 
previously79. We then estimated functional enrichment for each cat-
egory as a relative risk (that is, a ratio of proportion of variants) between 
being in an annotation and fine-mapped (PIP ≤ 0.01 or PIP > 0.1). That 
is, a relative risk = (proportion of variants with PIP > 0.1 that are in the 
annotation)/(proportion of variants with PIP ≤ 0.01 that are in the anno-
tation). The 95% CIs were calculated using bootstrapping with 5,000 
replicates. We note that, to increase statistical power, we combined 
pLoF/missense and 5′/3′ UTR into single categories, respectively, and 
used a more lenient threshold (PIP > 0.1 versus >0.9) compared with 
our previous analysis79.

Gene- and variant-prioritization
To nominate genes using GWAS results for each phenotype, we used 
the following approach to balance clarity with confidence in the gene 
assignment.
1.	 If the locus had a CS, for each CS:
a.	Filter to variants in the CS and retain variants from the CS that are 

either minimal PIP or coding, or have PIP > 0.7.
b.	If the variant has PIP > 0.9 and is a coding variant for a gene, assign 

that gene to the CS.
c.	Otherwise, assign genes within 3 kb of the variant or, if no genes are 

within 3 kb, assign the nearest gene to the CS.
2.	If the locus had multiple CSs and at least one had a variant with 

PIP > 0.1, we retained assignments corresponding only to variants 
with PIP > 0.1.

3.	If the locus did not have a CS, we assigned the gene with a boundary 
nearest to the most significant variant in the locus.

4.	We also used RVAS to nominate additional, or support existing, gene 
assignments for all GWAS loci containing genes with SKAT-O Cauchy 
RVAS P values at GWS for the same phenotype.

If a variant is inside a gene body (but is non-coding), we considered 
that gene to be nearest. For case-only heteroplasmy GWASs, when the 

same locus was significant across multiple heteroplasmy phenotypes, 
we performed manual integration to arrive at a set of genes supported 
by the most compelling genetic evidence across variants for each locus. 
The SSBP1 locus was particularly complex, so we assigned SSBP1 (which 
harbours the max PIP variant) and provided visualization of the full 
locus (Extended Data Fig. 10k). We did not use fine-mapping evidence 
from variants with PIP > 0.1 that are not assigned to a CS. All assignments 
were manually reviewed. In all GWAS visualizations, we labelled the 
strength of evidence supporting the gene assignment (for example, 
if supported by moderate- or high-PIP fine-mapped variants, coding 
variants, RVAS gene-based test association).

Colocalization with eQTLs
We conducted colocalization of fine-mapped variants of mtDNA 
phenotypes and cis-eQTL associations from GTEx v.8 (ref. 43) and 
eQTL catalogue release 4 (ref. 80) as described previously79. Briefly, 
we retrieved fine-mapping results of cis-eQTL associations that were 
fine-mapped using SuSiE81 with covariate-adjusted in-sample dosage 
LD-matrices79. We then computed a PIP of colocalization for a variant as 
a product of PIP for GWAS and for cis-eQTL (CLPP = PIPGWAS × PIPcis-eQTL)82. 
When displaying colocalization across heteroplasmy traits, we indicate 
colocalization if we see a colocalization PIP > 0.1 for the assigned gene 
and any variant in the CS for any tissue and for any heteroplasmy trait.

Replication of UKB heteroplasmy results in AoU
To perform replication analysis in AoU, we used LD-independent lead 
SNPs from all case-only heteroplasmy GWASs originally performed in 
UKB (Methods). We filtered association statistics from AoU (Methods) 
to these lead variants and compared effect sizes when the variants 
were identified in AoU with MAC > 20. We used Deming regression 
implemented in the deming v.1.4 package in R to assess the relationship 
between effect sizes for these lead SNPs in cross-ancestry meta-analyses 
in the two biobanks while accounting for standard errors in both83,84. 
We coded alleles such that effect sizes were always positive in UKB.

Assessment of LD with known polymorphic and reference NUMTs
We collated an extensive database of polymorphic and reference NUMT 
intervals using BLAST, known reference NUMTs51,85 and published 
polymorphic NUMTs inferred using mate-pair mapping discordance86,87. 
To search for regions of homology to the mtDNA within the reference 
nucDNA, we used BLASTn 2.13.0 with the GRCh37 reference genome 
with a word size of 11, an expected threshold of 0.05, short queries 
enabled and default values for the other parameters. In total, we 
obtained 4,736 overlapping reference and polymorphic NUMT inter-
vals. We constructed a 20 kb window around each nucDNA NUMT region 
(10 kb up, 10 kb down) and then conservatively tested for LD R2 > 0.1 
between any SNP in the window and each lead variant at GWS for our 
UKB case-only heteroplasmy GWAS using in-sample genome-wide EUR 
LD-matrices generated in UKB61. All LD values used to examine  
individual loci in either biobank were computed in-sample—for exam-
ple, in AoU we computed LD using the post-QC genotype MatrixTable 
(Methods) used for GWAS with the Hail function hl.ld_matrix().

Multiple alignment of POLG2 protein sequence
POLG2 homologues were detected using the best bidirectional BlastP 
hit (expected < 1 × 10−3) from humans and were aligned using MUSCLE88.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
In terms of data processed or generated as part of this study, we pro-
vide per-population mtDNA heteroplasmic and homoplasmic allele 



frequencies and counts in UKB and AoU (Supplementary Tables 5  
and 6), genetic association statistics for LD-independent lead SNPs and 
fine-mapped variants in UKB in addition to colocalization results (Sup-
plementary Tables 2–4) and gene-based RVAS association statistics for  
genes at GWS for the Cauchy test (Supplementary Table 7). All GWAS 
sample sizes for each genetic ancestry group, meta-analysis and phe-
notype can be found in Supplementary Table 1. All GWAS summary sta-
tistics from UKB cross-ancestry meta-analyses (used here in discovery 
analyses) have been deposited in the GWAS Catalog (ID: GCP000614). 
Summary statistics containing all per-ancestry association statistics 
as well as cross-ancestry meta-analyses can be accessed through the 
Google Cloud Platform (bucket: gs://mito-wgs-public-2023). Full 
GWAS summary statistics from AoU (used here as a replication 
cohort) have been deposited in a workspace available on the AoU 
workbench (titled ‘Nuclear genetic control of mtDNA copy number 
and heteroplasmy in humans’; https://workbench.researchallofus.
org/workspaces/aou-rw-3273c7f0/nucleargeneticcontrolofmtd-
nacopynumberandheteroplasmyinhumans/data). Individual-level 
data generated as part of UKB (mtCN and mtDNA variant calls) have 
been returned to UKB to enable utilization of the full individual-level 
data by the broader scientific community through the UKB data 
showcase. Individual-level data generated as part of AoU have been 
deposited in the same workspace containing summary statistics 
on the AoU Research Workbench. Please see our GitHub repository 
(https://github.com/rahulg603/mtSwirl) for more information on 
accessing these data. At the time of publication, access to the AoU 
workbench controlled tier is restricted to US-based academic insti-
tutions, government entities, health care institutions and non-profit 
organizations. Please also note that as of the time of publication, the 
only method to gain access to the AoU workspace containing the 
data generated here is to contact us to be added to the workspace. 
For information about access to the Researcher Workbench as a reg-
istered researcher, please visit https://www.researchallofus.org. In 
terms of external data used in this study, we leveraged GWAS summary 
statistics, and ancestry-specific LD-matrices, and a curated list of 29 
common, high-quality disease phenotypes generated as part of the 
Pan UKBB project61. Paths for these summary statistics (https://pan.
ukbb.broadinstitute.org/docs/per-phenotype-files) and LD-matrices 
(https://pan.ukbb.broadinstitute.org/docs/ld) can be found on the 
Pan UKBB project website (https://pan.ukbb.broadinstitute.org); 
these were accessed through the Google Cloud Platform as part 
of this study. UKB phenotype and whole-genome sequencing data 
can be accessed through the UKB Research Analysis Platform after 
completing a UKB access application (https://ukbiobank.dnanexus.
com/landing). AoU phenotype and genotype data can be accessed 
through the Controlled Tier v6 on the AoU researcher workbench 
(https://workbench.researchallofus.org). gnomAD v.3.1.2 (https://
gnomad.broadinstitute.org) WGS was accessed through a custom 
Terra workspace (titled ‘gnomad_subsampled_mitopipeline_head_
to_head’). High-coverage WGS data from 1000G were accessed 
using the public ‘1000G-high-coverage-2019’ workspace in Terra. 
Published mtscATAC-seq data used for chrM:302 analysis can be 
obtained with dbGaP approval. Gene-sets for enrichment analyses 
can be obtained using COMPARTMENTS (https://compartments.
jensenlab.org) and MitoCarta 2.0 (https://www.broadinstitute.org/
files/shared/metabolism/mitocarta/human.mitocarta2.0.html) as 
described previously24. The GRCh37 and GRCh38 reference genomes 
as well as other standard reference data are available through the GATK 
resource bundle (https://gatk.broadinstitute.org/hc/en-us/articles/
360035890811-Resource-bundle). Annotations for the baseline v.1.1 
and BaselineLD v.2.2 models for S-LDSC as well certain other relevant 
reference data, including the HapMap3 SNP list, can be obtained from 
https://alkesgroup.broadinstitute.org/LDSCORE/. Known reference 
and polymorphic NUMTs were obtained from supplemental data as 
provided in published work51,85–87.

Code availability
We release the full WDL pipelines and associated input files for 
mtDNA analysis from whole-genome sequencing data on GitHub 
(https://github.com/rahulg603/mtSwirl; https://doi.org/10.5281/
zenodo.8067503). We also provide the code we used to run the pipe-
line on the UKB Research Analysis Platform, AoU and Terra; consolidate 
all data; perform mtDNA sample and variant QC; and run GWAS. See 
the Methods and the README in the GitHub repository for more infor-
mation on how to use the pipeline. Several tools were used as part of 
mtSwirl, including GATK v.4.2.6.0 (https://gatk.broadinstitute.org/), 
samtools v.1.9 (https://github.com/samtools/samtools) and bcftools 
v.1.16 (https://github.com/samtools/bcftools), Haplochecker 0124  
https://github.com/genepi/haplocheck), R v.3.1.1 (https://r-project.org),  
Hail v.0.2.84 (https://hail.is) and UCSC kent tools source v.430 
(genome-source.soe.ucsc.edu/kent.git and https://hgdownload.soe.
ucsc.edu/admin/exe/linux.x86_64/). We used several published tools 
and scripts to perform downstream analysis of the mtDNA call-set in 
this study. All data wrangling, statistical analysis and figure genera-
tion was performed using Hail v.0.2.98 (https://hail.is), python v.3.7.10 
(https://www.python.org) or R v.4.2.1 (https://r-project.org). Paralleliza-
tion of tasks in UKB was performed using Hail Batch (in Hail v.0.2.98) 
(https://batch.hail.is) and in AoU using Cromwell v.77 (https://crom-
well.readthedocs.io). GWAS was performed in UKB using SAIGE v.1.1.5 
(https://saigegit.github.io). For scaling of UKB GWAS, a custom modifi-
cation of the GWAS pipeline from the Pan UKBB pan-ancestry GWAS was 
implemented (https://github.com/atgu/ukbb_pan_ancestry). Linear 
regression GWAS was performed in AoU using Hail. We release the 
code used for GWAS on both UKB and AoU on GitHub (https://github.
com/rahulg603/mtSwirl). mtDNA PCA was performed in R using the 
irlba v.2.3.5.1 package (https://cran.r-project.org/web/packages/irlba/
index.html). Multinomial models were trained using the nnet v.7.3-17 
package in R (https://cran.r-project.org/web/packages/nnet/index.
html). Circos plots were made using the circlize package v.0.4.15 in 
R (https://jokergoo.github.io/circlize_book/book/). For analysis of 
chrM:302 in single-cell data, we used BedTools v.2.29.2 (https://bed-
tools.readthedocs.io). LD clumping was performed using Plink v.1.90 
(https://www.cog-genomics.org/plink/). Fine-mapping was performed 
using FINEMAP-inf v.1.3 and SuSiE-inf v.1.2 (https://github.com/Finu-
caneLab/fine-mapping-inf). eQTL data were obtained from GTEx v.8 
(https://gtexportal.org) and the eQTL catalogue release 4 (https://www.
ebi.ac.uk/eqtl/). For replication analysis effect size comparisons, the 
deming v.1.4 package was used in R (https://cran.r-project.org/web/
packages/deming/index.html). Heritability estimates and enrichment 
analyses were performed using stratified LD-score regression (https://
github.com/bulik/ldsc). BLASTn v.2.13.0 was used as available from 
the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). MUSCLE v.3.8.31 
was used for protein sequence alignment (https://drive5.com/muscle/
downloads_v3.htm). 
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Extended Data Fig. 1 | Copy number and heteroplasmy estimation 
improvements using mtSwirl pipeline. a. Overview of mtSwirl pipeline 
workflow. Colors represent genomic region analyzed (blue = chrM and NUMTs; 
yellow = chrM only); border style represents coordinate system (solid = GRCh38; 
dashed = self-reference coordinates). All output is in GRCh38. b. Percent change 
in mtCN estimated using ”vanilla” pipeline versus mtSwirl as a function of inferred 
nuclear ancestry. c. Percent change in mtCN among AFR individuals as a function 
of mtDNA haplogroup. d. Example of per-base coverage improvement with 
mtSwirl near a homoplasmic indel, likely due to use of mtDNA self-reference 

sequence. Arrows highlight homoplasmic indels. e. Example per-base coverage 
improvement likely due to reduced mis-mapping to nucDNA. Arrows highlight 
coverage improvements. f. Variant calls found using both pipelines (green), 
only in mtSwirl (red), and only in “vanilla” (blue). Inset corresponds to zoomed 
view of low heteroplasmy variants. g. 2D histogram showing relationship 
between heteroplasmy estimates using mtSwirl with ”vanilla”. Left panel 
corresponds to overall heteroplasmy space; middle is zoomed to low 
heteroplasmy variants; right is zoomed to high heteroplasmy variants.
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Extended Data Fig. 2 | Composition of cohorts used in this study. a. Top-level 
haplogroups represented in each analyzed cohort. Labeled haplogroups 
comprise > 1.5% of the samples in at least one cohort. Haplogroups are mapped 
to broad ancestral categories as indicated by the text below the plot with colors 
corresponding to the colors of the labeled haplogroups. b. Inferred nuclear 

genetic ancestry groups in each analyzed cohort. Ancestry group assignment 
was completed within each cohort. The NFE and FIN groups in gnomAD were 
combined under “EUR” for the purposes of this comparison. In both panels, 
numbers at the top of each bar indicate the number of samples with generated 
mtDNA callsets passing QC with completed genetic ancestry assignment.



Extended Data Fig. 3 | mtCN shows substantial correlations with technical 
and biological covariates. a. Bivariate mean coverage distributions across 
nucDNA and mtDNA in AoU and UKB. b. Distributions of mtCN per diploid 
nuclear genome across AoU and UKB. c. Correlations between log mtCN and 
blood cell traits in UKB. Line corresponds to ordinary least squares fit; line color 
corresponds to the raw coefficient p-value of a joint model regressing log 
mtCNraw on all blood cell phenotypes. Inset is Pearson correlation coefficient.  
d. Distribution of mtCNadj in UKB. Color corresponds to sequencing center; black 
is the combined density. e. Mean mtCNraw versus assessment date, binned into 
months. Total N = 196,372. Pilot month samples are removed from subsequent 
analyses. f. Mean blood-corrected mtCN as a function of assessment date; line is 

a natural spline with knots positioned seasonally; total N = 179,626. g. Mean 
blood-corrected mtCN as a function of assessment month; total N = 179,626.  
h. Mean blood-corrected mtCN as a function of self-reported fasting time; total 
N = 179,623. i. Mean blood-corrected mtCN as a function of draw time; line 
corresponds to natural spline with 5 knots; total N = 179,601. j. Mean blood- 
corrected mtCN as a function of assessment center; total N = 179,626. k. OR of 
raw and corrected mtCN in predicting 29 common diseases in UKB. l. OR of top 
blood cell composition traits in predicting any of 29 common diseases in UKB. 
For e-j error bars correspond to mean +/− 1 s.e.m.. For k-l error bars correspond 
to 95% CI around the OR, and sample sizes for each comparison can be found in 
Supplementary Table 8. All tests are two-sided.



Article

Extended Data Fig. 4 | The genetic architecture of mtDNA copy number is 
influenced by blood cell traits but not haplogroup. a. log10 mtCNadj per 
diploid nuclear genome as a function of major top-level haplogroup. Points 
have been downsampled to at most 1,000 per haplogroup. Color and inset 
represents two-sided raw regression coefficient p-value from a joint linear 
model regressing log mtCN onto top-level haplogroup. b. Mean mtCNcorr as a 
function of “level 2” haplogroup. Colors correspond to two-sided coefficient 
p-values for a joint model regressing log mtCN onto level 2 haplogroups within 
each top-level haplogroup, corrected for multiple testing using the Bonferroni 
approach across 25 top-level haplogroups. c. Enrichment of genome-wide 
signal near genes annotated to localize to each organelle and d. near genes 
highly expressed in each tissue. e. GWAS Manhattan plot of mtCNadj additionally  

corrected for top-level haplogroup. f. GWAS Manhattan plot of mtCNraw.  
Labels indicate genes proximal to a non-exhaustive set of selected loci with 
substantially less-significant p-values in the corrected analysis. g. Correlation 
between effect sizes for lead SNPs at GWS detected for raw mtCN between 
mtCNraw and neutrophil count. h. Correlation between effect sizes for lead 
SNPs at GWS detected for mtCNadj between mtCNadj and neutrophil count. In 
panels g-h, error bars represent effect size +/− 1 s.e., dotted line corresponds to 
inverse variance weighted least squared regression line; inset corresponds to 
regression p-value. Regression fits were performed separately for loci genome- 
wide significant for both mtCNraw and mtCNadj (black) and for loci specific to 
each (red).



Extended Data Fig. 5 | Fine-mapping and RVAS of UKB mtCNadj. a. Upper 
panel shows UKB mtCNadj GWAS meta-analysis p-values at the chromosome 14 
locus, visualized in GRCh38. Middle panel shows variants in the two 95% 
credible sets identified at this locus, with large diamonds corresponding to the 
highest PIP variants in each credible set. Bottom panel shows protein-coding 
gene annotations at this locus. Variant overlapping APEX1 is a missense variant 

in APEX1. b. Distribution of sizes of credible sets identified via fine-mapping  
for mtCNadj. Numbers atop shaded region correspond to size of CS; numbers 
within shaded region corresponds to the count of credible sets of that size. 
RVAS gene-based Manhattan plot showing SKAT-O p-values using missense + 
LoF variation restricted to variants with MAF c. < 0.0001 and d. < 0.01. Red line 
is genome-wide significant at 0.05/number of genes tested.
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Extended Data Fig. 6 | Bidirectional Mendelian randomization within UKB 
between mtCN and associated disease traits. Correlation between effect 
sizes for lead SNPs detected for raw (left) and adjusted (right) mtCN between 
the respective mtCN phenotype and a. Osteoarthritis, c. Angina, e. Myocardial 
infarction, g. Ischemic heart disease, i. High cholesterol. Correlation between 
effect sizes for lead SNPs detected for b. Osteoarthritis, d. Angina, f. Myocardial 
infarction, h. Ischemic heart disease, j. High cholesterol and raw (left) and 
adjusted (right) mtCN. A zoomed-in version of j is shown in panel k. In all panels, 

points are GWAS effect sizes, error bars represent effect sizes +/− 1 s.e., dotted 
line corresponds to inverse variance weighted least squared regression line; 
inset corresponds to regression p-value. Regression fits were performed 
separately for loci genome-wide significant for both mtCNraw and mtCNadj 
(black) and for loci specific to each (red) for the analysis of mtCN effect on 
disease traits. Overall GWAS sample sizes are: Osteoarthritis – 420,473, Angina 
– 420,473, Myocardial infarction – 397,117, Ischemic heart disease – 419,724, 
High cholesterol – 420,473, mtCN raw – 163,372, mtCN adjusted – 163,372.



Extended Data Fig. 7 | Organization of the mtDNA non-coding region. 
Colors indicate annotation type. Yellow, rRNA gene; steel, tRNA gene; purple, 
coding genes; green, non-coding region (also referred to as the control region); 
midnight, conserved sequence boxes (CSB); salmon stripe pattern, hyper- 

variable regions (HVR). The mtDNA D-loop refers to the region within the 
non-coding region often showing triple-stranded DNA due to the persistence 
of the 7S DNA. Annotations are oriented with the rCRS reference genome.
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Extended Data Fig. 8 | Overview of mtDNA variation across >250,000 
individuals. a. Box-and-whisker plots of homoplasmies per mtDNA haplogroup. 
Colors correspond to biobank. Outliers are suppressed to prevent visualizing 
AoU individual-level data. Total N = 95,343 (AoU) and 156,822 (UKB). b. Projection 
of UKB samples into mtDNA PC space computed using homoplasmies (MAF > 
0.001). c. Mean heteroplasmic SNV count as a function of mtCN in UKB and AoU. 
Dotted lines correspond to mean number of heteroplasmic SNVs per person for 
individuals with mtCN > 50. Plot is truncated at mtCN < 200 for viewability. Error 
bars correspond to +/− 1 s.e.m. Total N = 79,873 (AoU) and 199,832 (UKB). d. 

Heteroplasmy distributions restricted to between 0.05 and 0.95 across UKB and 
AoU. e. Histogram of heteroplasmy counts per person for indels (top) and SNVs 
(bottom). f. Mean SNV count identified per-person in AoU as a function of  
variant type and age group. Error bars are +/− 1 s.e.m. g. Quantile-quantile plot  
of p-values from logistic regression tests predicting case/control status of 29 
common diseases in UKB using each of 39 common case-only heteroplasmies 
(see panel h). Black line is null expectation, ribbon is 95% CI around null 
expectation. h. Case-only heteroplasmy distributions of 39 variants detected  
in >500 UKB samples.



Extended Data Fig. 9 | Transmission patterns of mtDNA heteroplasmic 
variants used for nuclear genetic analysis. a. Heteroplasmy correlations for 
39 common heteroplasmies (see Extended Data Fig. 8h). Inset text corresponds 
to the number of familial pairs included in the analysis. b. Heteroplasmy 
correlations for all tested variants at position 567. c. Heteroplasmy correlations 

for all tested variants at position 955. d. Heteroplasmy correlations for all 
tested variants at positions 16179–16183. For panels a, b, and d, individual  
plots correspond to mother-offspring (left), father-offspring (middle), and 
sibling-sibling pairs (right). For panel c, the single plot corresponds to 
sibling-sibling pairs. For all panels, corresponding legend is on the right.
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Extended Data Fig. 10 | The full landscape of nuclear genetic associations  
to common mtDNA heteroplasmies. a. Lead SNP p-values across all 39 tested 
case-only mtDNA heteroplasmies in the style of Fig. 4f. b. Lead SNP p-values 
across all 39 tested mtDNA heteroplasmies when coded as case-control 
phenotypes. c. Replication of lead SNP-variant pairs tested in both the UKB 
meta-analysis and AoU meta-analysis for case-only heteroplasmy. d. Replication 
of lead SNP-variant pairs tested in the UKB meta-analysis with each AoU 
continental ancestry group. For c-d, error bars correspond to effect size +/− 
1 s.e.; colors correspond to nuclear chromosome; overall GWAS sample sizes 
can be found in Supplementary Table 1. e. The distribution of 95% credible set 
sizes from all heteroplasmy GWAS. Numbers atop shaded region correspond to 
size of CS; numbers within shaded region corresponds to the count of credible 

sets of that size. f. chrM:955:A,AC heteroplasmy as a function of lead SNP 
genotype near C7orf73. g. chrM:567:A,ACCCCCCC heteroplasmy as a function 
of highest PIP SNP genotype in PNP. h. Whole blood PNP expression as a 
function of the same highest PIP SNP genotype in GTEx. i. Colocalization 
between chrM:16183:AC,A at the PNP locus and PNP eQTL in whole blood, 
shown in GRCh38. j. Multiple sequence alignment across vertebrates of best 
bidirectional hits for POLG2 (BLASTP E<1e-3) displayed with ClustalW colors 
with effect of putative causal variant labeled. k. GWAS results in AoU for AFR 
and EUR in the vicinity of SSBP1 for chrM:302:A,AC, shown in GRCh38. Large 
points correspond to 95% CS from UKB meta-analysis, blue ribbon is region 
with LD R2 > 0.8 to lead SNP, dark red ribbon is a reference NUMT, light red 
ribbon is a 20kb window around the reference NUMT.



Extended Data Fig. 11 | mtDNA heteroplasmy estimates and genetic 
associations are robust to potential confounders. a. R2 and adjusted R2 for 
technical covariate model and R2 for blood trait model for common mtDNA 
heteroplasmies and log mtCNraw. Color corresponds to model F-test p-value < 0.05 
(df = N-14 for blood, N-67 for technical; N in Supplementary Table 1) after 
Bonferroni correction. Sensitivity analyses for the GWASs of b. chrM:567:A, 
ACCCCCCC before and after technical covariate correction, c. chrM:16093:T,C 
before and after blood trait correction d. chrM:16182:A,ACC before and after 
blood trait correction e. chrM:16183:A,AC before and after blood trait correction. 
Mean case-only heteroplasmy as a function of top-level haplogroup for f. 
chrM:302:A,AC and g. chrM:16179:CA,C. Bar color corresponds to two-sided 
coefficient p-value for the regression of heteroplasmy onto top-level haplogroup, 
Bonferroni corrected for 39 tested heteroplasmies. h. McFadden’s pseudo-R2 
for a multinomial model of top-level haplogroup versus mtDNA PCs (left) and 
”level 2” haplogroup versus mtDNA PCs within each top-level haplogroup. i. 

GWAS lead SNP effect size estimate correlation when correcting for 30 mtDNA 
PCs vs correcting for only top-level haplogroup for selected variants showing 
high haplogroup heterogeneity (302:A,AC; 302:A,ACC; 302:A,ACCCC; 567:A, 
ACCCCCC; 955:A,ACC; 16179:CA,C; 16183:A,C). GWAS lead SNP effect size 
estimate correlation between case-only GWASs at baseline and j. GWASs after 
removing heteroplasmy calls supported by allele depth < median nuclear 
coverage, k. GWASs after correcting for variant coverage depth, l. GWASs after 
correcting for mtCN, m. length heteroplasmy GWASs after correcting for CSBII 
median coverage. For panels i-m, colors correspond to nuclear chromosome, 
points correspond to GWAS effect sizes for lead SNPs from baseline case-only 
GWASs with top-level haplogroup covariates, error bars represent effect sizes 
+/− 1 s.e., main GWAS sample sizes (x-axis) are found in Supplementary Table 1 
(EUR), and sensitivity analysis GWAS sample sizes (y-axis) can be found in 
Supplementary Table 9.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No data was collected in this study as we analyzed existing whole genome sequencing data.

Data analysis We release the full WDL pipelines and associated input files for mtDNA analysis from whole genome sequencing data on GitHub (https://
github.com/rahulg603/mtSwirl; DOI: 10.5281/zenodo.8067503). We also provide the code we used to run the pipeline on the UKB Research 
Analysis Platform, AoU, and Terra, consolidate all data, perform mtDNA sample and variant QC, and run GWAS. See Methods and the README 
in the GitHub repository for more information on how to use the pipeline. Several tools were used as part of mtSwirl, including GATK v4.2.6.0 
(https://gatk.broadinstitute.org/), samtools v1.9 (https://github.com/samtools/samtools) and bcftools v1.16 (https://github.com/samtools/
bcftools), Haplochecker 0124 https://github.com/genepi/haplocheck), R v3.1.1 (https://r-project.org), Hail v0.2.84 (https://hail.is), and UCSC 
kent tools source version 430 (genome-source.soe.ucsc.edu/kent.git and https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/). 
 
We used several published tools and scripts to perform downstream analysis of the mtDNA callset in this study. All data wrangling, statistical 
analysis, and figure generation was performed using either Hail v0.2.98 (https://hail.is), python v3.7.10 (https://www.python.org), or R v4.2.1 
(https://r-project.org). Parallelization of tasks in UKB was performed using Hail Batch (in Hail v0.2.98) (https://batch.hail.is) and in AoU using 
Cromwell v77 (https://cromwell.readthedocs.io). GWAS was performed in UKB using SAIGE v1.1.5 (https://saigegit.github.io). For scaling of 
UKB GWAS, a custom modification of the GWAS pipeline from the Pan UKBB pan-ancestry GWAS was implemented (https://github.com/atgu/
ukbb_pan_ancestry). Linear regression GWAS was performed in AoU using Hail. We release the code used for GWAS on both UKB and AoU on 
GitHub (https://github.com/rahulg603/mtSwirl). mtDNA PCA was performed in R using the irlba v2.3.5.1 package (https://cran.r-project.org/
web/packages/irlba/index.html). Multinomial models were trained using the nnet v7.3-17 package in R (https://cran.r-project.org/web/
packages/nnet/index.html). Circos plots were made using the circlize package v0.4.15 in R (https://jokergoo.github.io/circlize_book/book/). 
For analysis of chrM:302 in single cell data, we used BedTools v2.29.2 (https://bedtools.readthedocs.io). LD clumping was performed using 
Plink v1.90 (https://www.cog-genomics.org/plink/). Finemapping was performed using FINEMAP-inf v1.3 and SuSiE-inf v1.2 (https://
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github.com/FinucaneLab/fine-mapping-inf). eQTL data was obtained from GTEx v8 (https://gtexportal.org) and the eQTL catalogue release 4 
(https://www.ebi.ac.uk/eqtl/). For replication analysis effect size comparisons, the deming v1.4 package was used in R (https://cran.r-
project.org/web/packages/deming/index.html). Heritability estimates and enrichment analyses were performed using stratified LD-score 
regression (https://github.com/bulik/ldsc). BLASTn v2.13.0 was used as available from the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 
MUSCLE v3.8.31 was used for protein sequence alignment (https://drive5.com/muscle/downloads_v3.htm). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

In terms of data processed or generated as part of this study, we provide per-population mtDNA heteroplasmic and homoplasmic allele frequencies and counts in 
UKB and AoU (Supplementary tables 5, 6), genetic association statistics for LD-independent lead SNPs and fine-mapped variants in UKB in addition to colocalization 
results (Supplementary tables 2-4), and gene-based RVAS association statistics for genes passing genome-wide significance for the Cauchy test (Supplementary 
table 7). All GWAS sample sizes for each genetic ancestry group, meta-analysis, and phenotype can be found in Supplementary table 1.  All GWAS summary statistics 
from UKB cross-ancestry meta-analyses (used here in discovery analyses) have been deposited in GWAS Catalog (ID: GCP000614). Summary statistics containing all 
per-ancestry association statistics as well as cross-ancestry meta-analyses can be accessed via Google Cloud Platform (bucket: gs://mito-wgs-public-2023). Full 
GWAS summary statistics from AoU (used here as a replication cohort) have been deposited in a workspace available on AoU workbench (titled “Nuclear genetic 
control of mtDNA copy number and heteroplasmy in humans”; https://workbench.researchallofus.org/workspaces/aou-rw-3273c7f0/
nucleargeneticcontrolofmtdnacopynumberandheteroplasmyinhumans/data). Individual level data generated as part of UKB (mtDNA copy number and mtDNA 
variant calls) have been returned to UKB to enable utilization of the full individual-level data by the broader scientific community via the UKB data showcase. 
Individual level data generated as part of AoU have been deposited in the same workspace containing summary statistics on the AoU Research Workbench. Please 
see our Github repository (https://github.com/rahulg603/mtSwirl) for more information on accessing these data. At the time of publication, access to the AoU 
workbench controlled-tier is restricted to US-based academic institutions, government entities, health care institutions, and non-profit organizations. Please also 
note that as of the time of publication, the only method to gain access to the AoU workspace containing the data generated here is to contact us to be added to the 
workspace. For information about access to the Researcher Workbench as a registered researcher, please visit https://www.researchallofus.org. 
 
In terms of external data used in this study, we leveraged GWAS summary statistics, and ancestry-specific LD-matrices, and a curated list of 29 common, high-
quality disease phenotypes generated as part of the Pan UKBB project 62. Paths for these summary statistics (https://pan.ukbb.broadinstitute.org/docs/per-
phenotype-files) and LD-matrices (https://pan.ukbb.broadinstitute.org/docs/ld) can be found on the Pan UKBB project website (https://
pan.ukbb.broadinstitute.org); these were accessed via Google Cloud Platform as part of this study. UKB phenotype and whole genome sequencing data can be 
accessed via the UKB Research Analysis Platform after completing a UKB access application (https://ukbiobank.dnanexus.com/landing). AoU phenotype and 
genotype data can be accessed via access to the Controlled Tier v6 on the AoU researcher workbench (https://workbench.researchallofus.org). gnomAD v3.1.2 
(https://gnomad.broadinstitute.org) WGS was accessed via a custom Terra workspace (titled “gnomad_subsampled_mitopipeline_head_to_head”). High coverage 
WGS from 1000G was accessed using the public “1000G-high-coverage-2019” workspace in Terra. Published mtscATACseq data used for chrM:302 analysis can be 
obtained via approval from dbGaP. Gene-sets for enrichment analyses can be obtained using COMPARTMENTS (https://compartments.jensenlab.org) and MitoCarta 
2.0 (https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta2.0.html) as described previously 24. The GRCh37 and GRCh38 reference 
genomes as well as other standard reference data are available via the GATK resource bundle (https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-
Resource-bundle). Annotations for the baseline v1.1 and BaselineLD v2.2 models for S-LDSC as well certain other relevant reference data, including the HapMap3 
SNP list, can be obtained from https://alkesgroup.broadinstitute.org/LDSCORE/. Known reference and polymorphic NUMTs were obtained from supplemental data 
as provided in published work 51,86–88. 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We did not perform new recruitment in this study and used existing cohorts and datasets. Sex was determined based on 
variables provided by UKB or via genetic inference in AllofUs. Sex is an important correlate with several observed phenotypes 
and has been used as a covariate for most analyses in this study.

Population characteristics We did not perform new recruitment in this study and used existing cohorts and datasets. We did not filter on any relevant 
population characteristics in our analysis. 
 
Regarding the characteristics of the datasets used in this study, briefly: UKB is a population-based cohort comprising 
~500,000 individuals from ages 40-69 in the UK, recruited from sites across the country to cover a variety of socioeconomic 
settings and ensure an urban-rural mix (Sudlow et al. 2015 PLOS Medicine). AllofUs (AoU) is a population-based longitudinal 
cohort study in the US, enrolling participants age 18 or greater. AoU attempts to represent individuals otherwise 
underrepresented in biomedical research, and thus incorporates variables such as race, ethnic group, age, sex, gender 
identity, sexual orientation, disability status, income, and more in the recruiting strategy (“The ‘All of Us’ Research Program,” 
2019 NEJM). 1000G sampled participants across 26 populations around the world, assessing ~5 subgroups within each of 5 
major continental populations to build a reference of genetic variation (“The 1000 Genomes Project Consortium” 2015 
Nature, Byrska-Bishop et al. 2022 Cell). Phenotype data from this cohort was not used in this study. gnomAD v3 comprised 
opportunistically collected WGS data primarily from case-control studies of adult-onset common diseases, including 
cardiovascular disease, type 2 diabetes, and psychiatric disorders. Individuals with severe pediatric disease, or those with 
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known first degree relatives of those with severe pediatric disease, were excluded from the cohort (Chen et al. 2022 bioRxiv, 
Karczewski et al. 2020 Nature). Phenotype data from this cohort was not used in this study. mtscATAC-seq data was obtained 
from one individual sequenced as part of recently analyzed MELAS cases (Walker et al. 2020 NEJM). Individuals were selected 
on the basis of a known diagnosis of carrying the m.3243A>G pathogenic variant, and not for population. All individuals from 
Walker et al. 2020 NEJM were male. 
 
Neither AllofUs nor UKB select explicitly on diagnoses/treatment characteristics. Both sexes were represented in all cohorts 
except in mtscATAC-seq data. No filtering was performed on genotype information. The populations represented in our 
primary analyses are available in Supplementary table 1 and in Extended data figure 2. All datasets contained whole genome 
sequencing data, which was the focus of this study. More details can be found in Methods and in the relevant publications.

Recruitment We did not perform new recruitment in this study and used existing cohorts and datasets. See previously published literature 
for more information on the recruitment of individuals for the published datasets in this work: UK Biobank – Sudlow et al. 
2015 PLOS Medicine; UK Biobank WGS – Halldorsson et al., 2022 Nature; AllofUs – “The ‘All of Us’ Research Program,” 2019 
NEJM; mtscATAC-seq data – Walker et al. 2020 NEJM.

Ethics oversight We did not perform new recruitment in this study and used existing cohorts and datasets. Analysis of UK Biobank data was 
performed under UKB Application 31063. Analysis of AllofUs data was performed under Controlled Tier authorization in the 
workspace “Genetic determinants of mitochondrial DNA phenotypes”. Institutional Review Board authorization of analysis of 
previously published single cell data was provided by Massachusetts General Hospital under protocol #2016P001517.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size This was a biobank-scale analysis making use of all available whole genome sequencing samples in UK Biobank and AllofUs after quality 
control. Thus, no a priori sample size calculation was completed. This study comprises the largest analysis of mtDNA to date.

Data exclusions Data were excluded during the study procedure for quality control or power purposes only. In brief, we excluded samples with evidence of 
contamination and with abnormal overlapping homoplasmy variant calls from all analysis. The former could produce incorrect mtDNA 
phenotype estimation or nucDNA genotype calls; the latter may indicate abnormalities in variant calling. We also excluded samples collected 
in the UKB pilot in 2006 as these samples had abnormal mtDNA copy number estimates. For variant analysis, we additionally excluded 
samples with low mtDNA copy number due to an established risk of NUMT contamination. We developed the “overlapping homoplasmy” 
filter and the “UKB pilot” filter during the study; the others were used previously (Laricchia et al. 2022 Genome Res) and pre-established. For 
genetic analyses, we restricted to samples with high confidence continental ancestry assignments in UKB (see http://
pan.ukbb.broadinstitute.org) and AllofUs, and only performed GWAS for ancestry groups with enough measurements for interpretability. See 
Methods for more details.

Replication We attempted replication for the two major components of the study: nuclear genetic analyses of (1) mtDNA copy number and (2) 
heteroplasmy. For (1), we obtained loci identified by the largest GWAS of mtCN previously completed by Longchamps et al. 2022; we 
successfully identified the vast majority of previously identified loci in our study (>85% at a stringent threshold of p < 5e-5). For (2), we used 
AoU to perform independent replication of heteroplasmy associations identified in UKB. We saw strong effect size concordance between 
cross-ancestry meta-analyses performed in either biobank (R2 = 0.79).

Randomization We did not perform experimental group assignment in this study and performed genetic analysis using data from all samples that passed QC. 
Thus, as most of this work is population-based, this is not relevant for most of our work. In general, we extensively address potential 
confounders by leveraging the deep phenotyping in UK Biobank, testing and correcting for confounders such as blood cell composition, blood 
draw time, blood draw season, haplogroup, and others – see Methods. All genetic analyses included further corrections for population 
stratification by including genotype PCs computed within each genetic ancestry group, as well as age, sex, age2, age*sex, and age2*sex. 
Finally, for case/control disease trait associations with mtDNA phenotypes, we corrected for haplogroup, genetic ancestry group, and the 
aforementioned age and sex covariates. See Methods for more details.

Blinding Blinding was not relevant for this study as experimental group assignment was not performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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