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Mitochondrial integrated stress response 
controls lung epithelial cell fate

SeungHye Han1 ✉, Minho Lee2, Youngjin Shin2, Regina Giovanni1, Ram P. Chakrabarty1, 
Mariana M. Herrerias1, Laura A. Dada1, Annette S. Flozak1, Paul A. Reyfman1, Basil Khuder1, 
Colleen R. Reczek1, Lin Gao3, José Lopéz-Barneo3, Cara J. Gottardi1, G. R. Scott Budinger1 & 
Navdeep S. Chandel1,4 ✉

Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon 
dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a 
partially committed stem cell population, producing AT1 cells during postnatal 
alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1–6. 
Little is known about the metabolic regulation of the fate of lung epithelial cells. Here 
we report that deleting the mitochondrial electron transport chain complex I subunit 
Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal 
alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 
cell features, known as transitional cells. Mammalian mitochondrial complex I, 
comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional 
expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ 
without proton pumping7,8 was sufficient to correct abnormal alveolar development 
and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated 
stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or 
NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued 
lethality in the absence of mitochondrial complex I function. Notably, lung 
epithelial-specific loss of mitochondrial electron transport chain complex II subunit 
Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or 
lethality. These findings highlight an unanticipated requirement for mitochondrial 
complex I-dependent NAD+ regeneration in directing cell fate during postnatal 
alveolar development by preventing pathological ISR induction.

During mammalian lung development, the lung traverses through 
morphologically distinct developmental stages characterized by the 
progressive commitment of airway and alveolar epithelial progenitors 
to mature cell fates11. While the conducting airways develop prena-
tally during branching morphogenesis, development of the alveoli 
begins perinatally but is incomplete at birth, continuing for four to five 
weeks in mice and at least three years in humans. Although many of the 
molecular and transcriptional signals necessary for lung development 
have been elucidated11,12, the mechanisms by which metabolic cues may 
direct these processes remains unknown.

Development across organs is characterized by early reliance on 
glycolysis that progressively shifts toward oxidative phosphorylation 
with support from fatty acid oxidation13. Consistent with this paradigm, 
the lung epithelium expresses high levels of glycolytic genes during 
embryonic development, with increased expression of genes involved 
in oxidative phosphorylation at later postnatal stages14 (Extended Data 
Fig. 1a,b). We sought to determine whether a functional mitochondrial 
electron transport chain (ETC) was necessary for lung development 

by ablating mitochondrial complex I subunit NADH dehydrogenase 
(ubiquinone) iron-sulfur protein 2 (Ndufs2) in the distal lung epi-
thelium during development. We crossed surfactant protein C-Cre 
(SFTPC-Cre)15 mice with Ndufs2 fl/− mice16 and Cre-reporter mice (ROS
A26SorCAG-tdTomato), which are hereafter referred to as NDUFS2 condi-
tional knockout (cKO) mice (Ndufs2 fl/−SFTPC-Cre;ROSA26SorCAG-tdTomato). 
Because Sftpc is expressed in common distal lung epithelial progeni-
tors at embryonic day (E)10.5 in mice, genes harbouring floxed alleles 
(Ndufs2) and a loxP-STOP-loxP cassette (tdTomato) are deleted and 
expressed, respectively, in distal lung epithelial cell populations (club 
cells, alveolar epithelial type 2 (AT2) cells and alveolar epithelial type 
1 (AT1) cells) in these animals upon Cre-mediated recombination15.

NDUFS2 is a nuclear-encoded core subunit of mitochondrial complex 
I that is essential for its enzymatic activity. Depleting NDUFS2 causes 
mitochondrial complex I deficiency (Fig. 1a) and its global depletion 
results in embryonic lethality17. NDUFS2 cKO mice were viable despite 
decreased abundance of NDUFS2 protein (Fig. 1b) and decreased basal 
and coupled oxygen consumption rates (OCR) in lung epithelial cells 
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(Fig. 1c), compared with Ndufs2+/−SFTPC-Cre;ROSA26SorCAG-tdTomato mice  
(hereafter referred to as NDUFS2 control mice). We have previously 
reported that lung development and ageing at two years of life in 
Ndufs+/− mice is similar to what is observed in wild-type mice17. NDUFS2 
cKO mice displayed diminished postnatal weight gain and died between 
five to nine weeks after birth (median week 7) (Fig. 1d,e and Extended 
Data Fig. 1c,d).

Abnormalities at necropsy in NDUFS2 cKO mice were limited to the 
lung, where the alveolar airspaces were filled with a pink, homogenous 
material negative for periodic acid–Schiff stain (Extended Data Fig. 1e–g).  
These findings suggest death from respiratory failure. NDUFS2 cKO 
mice harvested before death showed hypercellular areas with thickened 
alveolar walls interspersed between enlarged alveolar spaces (Fig. 1f,g 
and Extended Data Fig. 1h–q) and disrupted spatial organization 
between alveolar epithelial cells and endothelial cells and/or fibroblasts 
(Extended Data Fig. 2a,b), indicating impaired alveolar development. 
Lung compliance, which developmentally reflects both lung size and 
lung elastic recoil, was significantly decreased in NDUFS2 cKO mice 
compared with NDUFS2 control mice (Fig. 1h). In contrast, we could 
not detect histologic differences between NDUFS2 cKO and NDUFS2 
control mice harvested at E13.5 and postnatal day (P) 0 (Extended Data 
Fig. 2c–g). These findings suggest that structural abnormalities of the 

lungs in NDUFS2 cKO mice develop postnatally and are largely limited 
to the alveolar space.

Surprisingly, we observed increased cellularity in postnatal NDUFS2 
cKO lungs compared with NDUFS2 control lungs. NDUFS2 cKO lungs 
had an increased number of hypertrophic cells expressing an AT2 
marker, surfactant protein C and/or the AT1 marker, podoplanin, com-
pared with NDUFS2 control lungs (Extended Data Fig. 1n–q). However, 
inflammatory cell infiltration and increased apoptosis were absent in 
NDUFS2 cKO lungs compared with NDUFS2 control lungs (Extended 
Data Fig. 1h,i,k,l,r,s). Instead, Ki67 expression, a proliferation marker, 
was increased in NDUFS2 cKO lungs compared with NDUFS2 control 
mice including in the Sftpc lineage (tdTomato)-positive cells (Extended 
Data Fig. 1j,m,t and Extended Data Fig. 4a). These findings argue against 
a bioenergetic crisis in NDUFS2 cKO mice causing epithelial cell death. 
The podoplanin-positive cells in the NDUFS2 cKO mice were thicker 
and rounder than those in the NDUFS2 control mice (Extended Data 
Fig. 1n–q). Likewise, some Sftpc-expressing cells in NDUFS2 cKO mice 
did not have the classic cuboidal shape of AT2 cells and instead exhib-
ited a linear and thin shape more typical of AT1 cells (Extended Data 
Fig. 2b inset and Extended Data Fig. 6f' inset). These findings suggest 
that the differentiation of epithelial cells in NDUFS2 cKO lungs may 
be arrested in an intermediate transitional state expressing both AT2 
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Fig. 1 | Mitochondrial complex I in lung epithelial cells is necessary for 
postnatal lung development. a, Schematic of the mitochondrial ETC in lung 
epithelial cells of NDUFS2 cKO mice. b, Immunoblot analysis of NDUFS2 protein 
normalized to vinculin in lung epithelial cells isolated from 11-day-old mice. Data 
represent mean ± s.d. (n = 4 mice in each genotype with technical replicates).  
c, Basal and coupled OCR of lung epithelial cells isolated from 43- to 46-day-old 
mice. Data represent mean ± s.d. (Ndufs2fl/fl n = 3; NDUFS2 control n = 4; NDUFS2 
cKO n = 5 mice with technical replicates). d, Body weight in grams (control n = 34; 
cKO n = 18 mice). Data represent mean ± s.d. **P = 0.0040, ***P = 0.0005 by 
Mann–Whitney test. e, Survival of NDUFS2 control (n = 21) and NDUFS2 cKO 
(n = 13) mice (P < 0.0001 by log-rank test). f, Representative images of lung 

histology on postnatal day 49 (haematoxylin and eosin stain). Scale bar, 100 μm. 
g, The frequency distribution of alveolar thickness measured in haematoxylin 
and eosin-stained lung histology of 46- to 48-day-old mice (n = 4 mice, two 
males and two females per genotype). Four to six randomly selected fields of 
view from each mouse were evaluated. The x axis shows alveolar thickness bins 
and the y axis shows the number of alveolar pixels that belong to the respective 
alveolar thickness bin normalized to the total alveolar pixel count in the image. 
Each animal is represented by its own colour. Statistical significance for 
genotype was calculated based on F-test for a linear model (P = 4.56 × 10−5).  
h, Box plots of lung compliance in 46- to 49-day-old mice (control n = 33; cKO 
n = 24 mice with technical replicates), P < 0.0001 by Mann–Whitney test.
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and AT1 canonical cell markers. Taken together, our findings sug-
gest a requirement of mitochondrial complex I for postnatal alveolar 
development.

Mammalian mitochondrial complex I is solely responsible for regen-
erating mitochondrial NAD+, which is necessary for maintaining oxida-
tive tricarboxylic acid cycle function. It also pumps protons across the 
mitochondrial inner membrane, contributing to the proton gradient 
necessary for ATP synthesis. Additionally, it generates superoxide that 
can control physiology and pathology in some biological contexts. The 
Saccharomyces cerevisiae single-subunit alternative internal NADH 
dehydrogenase (NDI1) protein regenerates NAD+ by passing electrons 
to ubiquinone without proton pumping or producing superoxide7,8 
(Fig. 2a). To determine the necessity of these distinct functions of mam-
malian mitochondrial complex I during lung development, we crossed 
Ndufs2 fl/−SFTPC-Cre mice with mice that have an NDI1LSL targeting 

construct inserted into the mouse Rosa26 locus7. The resulting mice, 
which are hereafter referred to as NDUFS2 cKO/NDI1 mice, condition-
ally delete Ndufs2 but express yeast NDI1 in the distal lung epithelium 
upon Cre-mediated recombination. Expressing NDI1 in normal lung 
epithelium (SFTPC-Cre;NDI1LSL) does not disrupt lung development 
or physiology (Extended Data Fig. 3a,b). NDI1 protein expression in 
lung epithelial cells from NDUFS2 cKO/NDI1 mice almost completely 
rescued the metabolite dysregulation observed in NDUFS2 cKO mice. 
NDI1-expressing NDUFS2 cKO lung epithelial cells have a comparable 
lactate level and ratio of NADH/NAD+ to NDUFS2 control lung epithelial 
cells (Fig. 2b,c and Extended Data Fig. 3c). NDI1 expression in NDUFS2 
cKO mice prevented mortality (Fig. 2d), reversed the histologic abnor-
malities in alveolar structures (Fig. 2e and Extended Data Fig. 3d) and 
restored lung compliance (Fig. 2f) a level that was indistinguishable 
from NDUFS2 control mice. NDUFS2 cKO/NDI1 mice did not have 
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Fig. 2 | Expression of the yeast NDI1, an alternative NADH dehydrogenase, 
in lung epithelial cells reverses abnormal postnatal alveolar development 
in NDUFS2 cKO mice. a, Schematic of the mitochondrial ETC with ectopic 
NDI1. b,c, Metabolomics analysis of lung epithelial cells isolated from 
35-day-old mice (NDUFS2 control n = 8; NDUFS2 control/NDI1 n = 7; NDUFS2 
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d, Survival of NDUFS2 cKO (n = 12) and NDUFS2 cKO/NDI1 (n = 22) mice 
(P < 0.0001 by log-rank test). e, Representative images of littermates’ lung 
histology (haematoxylin and eosin stain) in 46-day-old mice. Scale bar, 50 μm. 
f, Box plots of lung compliance of 46- to 50-day-old mice (NDUFS2 control 
n = 21; NDUFS2 cKO n = 11; NDUFS2 cKO/NDI1 n = 12 mice with technical 
replicates). P = 0.0016 by one-way analysis of variance. Adjusted P values by 
Šídák’s multiple comparisons test in the graph. a.u., arbitrary units.



Nature | Vol 620 | 24 August 2023 | 893

histological or functional differences compared with NDUFS2 control 
mice even at 18 to 25 months of life (Extended Data Fig. 3e,f). Previous 
studies in cancer cells reported that ETC inhibition triggers depletion 
of aspartate and asparagine, decreasing cell proliferation18–21. However, 
we did not observe decreases in aspartate and asparagine in lung epi-
thelial cells isolated from NDUFS2 cKO mice compared with those from 
NDUFS2 control mice (Extended Data Fig. 3g,h) and proliferation in the 
NDUFS2 cKO lung epithelium was preserved (Extended Data Fig. 4a). 
Collectively, these results indicate that mitochondrial complex I’s abil-
ity to regenerate NAD+ is the dominant function controlling postnatal 
alveolar development.

To further investigate the histologic abnormalities that we observed 
in NDUFS2 cKO lungs, we performed single-cell RNA sequencing 
(RNA-seq) on whole lung single-cell suspensions isolated from both 
NDUFS2 cKO and control mice at P21. Clustering analysis identified 29 
cell types in the whole lung (Fig. 3a and Extended Data Fig. 4b,c). Ndufs2 
was deleted in the distal epithelium in NDUFS2 cKO animals, which con-
firms proper Cre-mediated recombination in these cells (Extended Data 
Fig. 4d,e). Further clustering analysis with epithelial cells (that is, clus-
ters expressing the canonical epithelial cell marker Epcam) identified 
eight distinct epithelial cell types (Fig. 3d). We observed expansion of an 
epithelial subpopulation characterized by high expression of Cdkn1a, 
Krt8 and other cytokeratin genes in NDUFS2 cKO mice compared with 
NDUFS2 control mice (Fig 3b,e–g and Extended Data Figs. 4c and 5a,b). 

These cells share several transcriptional features with intermediate 
epithelial cell populations described in several settings where AT2 
cells are differentiating into AT1 cells, including postnatal mouse lung 
development14, mouse models of lung injury22–24, lung explants from 
patients with lung fibrosis, including patients with COVID-19 infec-
tion25–27, and differentiating lung organoids derived from mouse and 
human AT2 cells28,29. Accordingly, we refer to these cells as transitional 
cells hereafter. Transitional cells are Sftpc lineage-positive cells (Fig. 3c) 
and they express both AT2 (Sftpc, Sftpa1) and AT1 (Aqp5, Hopx) mark-
ers (Fig. 3g and Extended Data Fig. 5b). The overall expression of cell 
cycle-associated genes was similar across epithelial subpopulations, 
although the expression of Cdkn1a was increased in transitional cells 
(Extended Data Fig. 5c). Our histologic analysis suggested that AT1 
cells in NDUFS2 cKO mice were rounder and less mature than flat, thin 
mature AT1 cells in NDUFS2 control mice (Extended Data Fig. 1o′,q′). 
Indeed, we found that cells assigned to the AT1 cell cluster in NDUFS2 
cKO mice express higher levels of transitional cell marker genes such as 
Cdkn1a, Krt8 and Krt18 and a lower level of Igfbp2, which is known as a 
marker for mature, terminally differentiated AT1 cells30, compared with 
those in NDUFS2 control mice (Fig 3g and Extended Data Fig. 5d–h). 
Thus, the ability to capture more AT1 cells from NDUFS2 cKO mice 
than NDUFS2 control mice in single-cell RNA-seq is likely to result from 
enhanced liberation of these rounder, less mature cells during tissue 
dissociation. (Fig 3f and Extended Data Fig. 5a). Furthermore, the loss of 
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mitochondrial complex I function in the distal lung epithelium resulted 
in the emergence of a fibroblast subpopulation (Fig. 3b and Extended 
Data Fig. 4c) that includes populations of fibroblasts characterized by 
expression of Sfrp1 and Timp1 (Extended Data Fig. 6). In mouse models 
of lung injury and repair, another group identified a similar population 
of cells they labelled as transitional fibroblasts31. Taken together, these 
results suggest that the loss of mitochondrial complex I in epithelial 
cells disrupts epithelial and mesenchymal differentiation; thus, it 
changes cell fate during postnatal lung development.

To identify transcriptional networks that might underlie the accu-
mulation of transitional cells in the absence of mitochondrial com-
plex I function, we performed bulk RNA-seq on lung epithelial cells 
isolated from NDUFS2 cKO and NDUFS2 control mice at P35. Gene set 
enrichment analysis suggested an increase in MYC signalling, oxida-
tive phosphorylation and the unfolded protein response pathways in 
NDUFS2 cKO lung epithelium compared with NDUFS2 control lung 
epithelium (Extended Data Fig. 7a). Several groups have shown that 
the integrated stress response (ISR) is activated in response to mito-
chondrial ETC dysfunction in vitro and in vivo18,19,32–40. ISR activation 
increases phosphorylation of eukaryotic translation initiation factor 
2 subunit alpha (eIF2α), which inhibits protein synthesis globally but 
enhances the translation of selective genes as an adaptive mecha-
nism to counter metabolic stress. The paradoxically translated genes  
following ISR activation include those encoding transcription factors 
(ATF3, ATF4 and ATF5) and Ddit3 (which encodes CHOP), and they can 
induce the expression of their own genes and genes involved in one- 
carbon metabolism. Chronic ISR activation can be detrimental and we 
recently linked activation of the ISR to the development of pulmonary  
fibrosis41,42. Here, we identified induction of the ISR following the loss of 
mitochondrial complex I function as a potential pathogenic and causal 
mechanism to explain the impairment of proper epithelial cell differen-
tiation in NDUFS2 cKO mice. We observed an increase in the expression 
of ISR target genes including Atf4, Atf5 and Ddit3 in lung epithelial cells 
from NDUFS2 cKO mice compared with NDUFS2 control mice (Fig. 4a,b 
and Extended Data Fig. 7b). Analysis of our single-cell RNA-seq data 
revealed enrichment of Atf as well as other ISR target-gene transcripts 
in transitional cells relative to other epithelial cell populations  
in the lung (Fig. 4c–e and Extended Data Fig. 7c–e).

Next, we compared transitional cells from NDUFS2 cKO mice with 
transitional cell populations identified by other investigators. We found 
that postnatal transitional cells observed in a single-cell atlas of mouse 
lung development14 displayed higher expression of ISR signature genes 
than other epithelial cell types within the atlas (Extended Data Fig. 8a). 
Notably, transitional cells from the NDUFS2 cKO mice showed an even 
higher expression of ISR target genes compared with normal postnatal 
transitional cells (Extended Data Fig. 8b). We integrated our single-cell 
RNA-seq data from NDUFS2 cKO lungs with the single-cell atlas data 
from wild-type lungs during postnatal development and analysed 
RNA velocity. RNA velocity analysis identified postnatal transitional 
cells that emerged during normal development as differentiating into  
AT1 cells, but it did not predict a similar differentiation trajectory for tran-
sitional cells from NDUFS2 cKO mice, which implies a stalled epithelial  
differentiation process (Extended Data Fig. 8c,d). We also performed 
a similar analysis using single-cell RNA-seq data from epithelial cells 
isolated from hyperoxia-exposed postnatal lungs43. AT2 cells from 
hyperoxia-exposed mice expressed higher levels of ISR target genes 
compared with the AT2 cells from normoxia-exposed lungs, but these 
levels were not as high as in the NDUFS2 cKO transitional cells (Extended 
Data Fig. 8e,f). Similarly, our RNA velocity analysis data suggests that 
AT2 cells from hyperoxia-exposed mice are differentiating into AT1 cells, 
while transitional cells from NDUFS2 cKO mice are not (Extended Data 
Fig. 8g,h). Additionally, we evaluated adult transitional cells in adult 
lung injury models23,24,28 and compared them with the transitional cells 
from NDUFS2 cKO mice. All of the examined adult transitional cells dis-
played an enriched ISR signature compared with other epithelial cells 

within their single-cell RNA-seq datasets (Extended Data Fig. 8i,k,m). 
Notably, the expression of ISR genes in these adult lung injury and repair 
models was not as high as the expression of ISR genes in the NDUFS2 
cKO transitional cells (Extended Data Fig. 8j,l,n).

Remarkably, administration of the small-molecule ISR inhibitor 
(ISRIB) significantly extended the lifespan of NDUFS2 cKO mice and 
reversed most of the histologic abnormalities in alveolar structure 
observed in these mice (Fig. 4f and Extended Data Fig. 9a–e). Similarly, 
administration of nicotinamide mononucleotide (NMN), an NAD+ pre-
cursor, partially rescued the lethality of NDUFS2 cKO mice (Extended 
Data Fig. 9f–h). Both ISRIB and NMN decreased the ISR signatures in 
lung epithelial cells of NDUFS2 cKO mice (Extended Data Fig. 10a–c), 
while the increased NADH/NAD+ ratio in NDUFS2 cKO mice was only 
reduced significantly with NMN as expected (Extended Data Fig. 10d).

To determine whether the impaired alveolar epithelial differentiation 
we observed in NDUFS2 cKO mice were cell autonomous, we performed 
organoid and two-dimensional cultures with culture media supple-
mented with aspartate and asparagine. Postnatal transitional cells 
normally start to appear from P7 (ref. 14). Therefore, to evaluate early 
postnatal transcriptomic signatures, we performed bulk RNA-seq of 
lung epithelial cells isolated from NDUFS2 cKO and control mice at P6. 
The expression of ISR genes was slightly higher in NDUFS2 cKO lungs 
at P6 compared with NDUFS2 control lungs, but it was not as high as 
in P35 NDUFS2 cKO lungs (Extended Data Fig. 11a–c). Moreover, tran-
scriptomic signatures of NDUFS2 control and cKO lung epithelial cells 
at P6 were not clearly separated in principal component analysis (PCA), 
suggesting that the critical pathways are disrupted after P6 (Extended 
Data Fig. 11d,e). Next, we isolated lung epithelial cells from P6 wild-type 
mice, before transitional cells appear, and cultured them on 2D plastic 
culture plates, a system in which AT2 cells have long been recognized 
to spontaneously differentiate into cells resembling AT1 cells. Using 
RNA-seq, we confirmed that the isolated lung epithelial cells (that is, AT2 
cells) lose AT2 cell markers and express AT1 cell markers in this system 
72 h after isolation (Extended Data Fig. 11f). However, addition of the 
mitochondrial complex I inhibitor, piericidin A, to the culture media 
prevented AT2 cells from expressing AT1 cell markers, possibly through 
high ISR activation (Extended Data Fig. 11f–h). We then compared the 
development of three-dimensional organoids using AT2 cells from 
NDUFS2 control and NDUFS2 cKO mice at P6. Compared with AT2 cells 
from NDUFS2 control mice, AT2 cells from NDUFS2 cKO mice showed 
impaired differentiation, as measured by organoid size. Administration 
of ISRIB increased the organoid size for both genotypes without chang-
ing proliferation (Extended Data Fig. 12a–f). Previous results indicate 
that the mitochondrial protease OMA1 cleaves DELE1, which is released 
into the cytosol in response to ETC inhibition to activate the ISR through 
the haem-regulated eIF2α kinase (HRI)36. Using CRISPR–Cas9, we cre-
ated an Oma1 knockout mouse lung epithelial cell line (MLE-12 Oma1 
KO) and showed that piericidin A increased ATF4 protein abundance 
in an OMA1-dependent manner (Extended Data Fig. 12g–j). This result 
suggests that mitochondrial complex I inhibition in lung epithelial cells 
induces activation of the ISR through the OMA1–DELE1–HRI pathway. 
Collectively, our results indicate that abnormally high ISR activation 
causes a cell autonomous barrier to cell differentiation, which alters 
developmental cell fate in the setting of mitochondrial complex I loss.

Our data showing that expression of yeast NDI1 can reverse the 
pathology of NDUFS2 cKO mice suggests that inhibition of NAD+ 
regeneration is the key driver of an abnormally high ISR activation 
and subsequent expansion of transitional cells. These findings are 
consistent with previous in vitro work that suggests that mitochondrial 
impairment of NAD+ regeneration activates the ISR18. Although inhibit-
ing the function of mitochondrial ETC complexes I, III, IV or V decreases 
NAD+ regeneration and alters the NADH/NAD+ ratio (Fig. 5a), inhibiting 
mitochondrial complex II function does not44. Thus, we ablated the 
mitochondrial complex II subunit succinate dehydrogenase subunit 
D gene (Sdhd) in the distal lung epithelium during development by 
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crossing SFTPC-Cre mice with Sdhd fl/fl mice45 (hereafter referred to 
as SDHD cKO mice, Sdhd fl/flSFTPC-Cre). SDHD is a nuclear-encoded 
subunit that is essential for the enzymatic activity of mitochondrial 
complex II. Lung epithelial cells isolated from SDHD cKO mice displayed 
a decrease in both basal and coupled OCR (Fig. 5b) and an increase 
in succinate levels without a change in lactate levels, compared with 
those from Sdhd fl/fl mice (hereafter referred to as SDHD control mice) 
(Fig. 5c,d), which indicates effective deletion of Sdhd in the lung epi-
thelial cells of our SDHD cKO mice. Unlike NDUFS2 cKO mice, SDHD 
cKO mice survived postnatally (Fig. 5e) and their lung compliance 

was comparable with that of SDHD control mice at P47–49 (Fig. 5f). 
Histology of SDHD cKO lungs showed slightly thicker alveolar septa 
compared with SDHD control lungs (Fig. 5g and Extended Data Fig. 13a). 
RNA-seq data revealed that lung epithelial cells from SDHD cKO mice 
displayed an induction of the ISR, but the degree of induction was less 
than that observed in the NDUFS2 cKO mice (Fig. 5h–j and Extended 
Data Fig. 13b). It is important to note that succinate levels, increased 
both in NDUFS2 cKO/NDI1 and SDHD cKO mice, were not elevated by the 
administration of ISRIB or NMN in NDUFS2 cKO mice (Extended Data 
Fig. 13c,d). These findings suggest that the ability to regenerate NAD+ 
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in the lung epithelial cells of SDHD cKO mice is sufficient to prevent 
abnormally high ISR induction and allows adequate postnatal alveolar 
development for survival.

In summary, we have demonstrated that mitochondrial complex 
I-dependent NAD+ regeneration controls lung epithelial cell differen-
tiation by preventing pathologic ISR activation. The ISR is transiently 
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activated during normal lung development and as an adaptive response 
to mitochondrial ETC inhibition-induced metabolic stress46. However, 
our data indicates that chronic high-level activation of the ISR can be 
pathologic, and thus alter cell fate during development. Pathologic 
activation of the ISR leads to the accumulation of transitional cells, 
characterized by high expression of cytokeratin and cell-cycle regu-
latory genes. This intermediate transitional cell population has been 
described in several settings where AT2 cells differentiate into AT1 cells 
during development and after injury14,22–29. Our data suggests that loss 
of mitochondrial complex I function activates high levels of the ISR, 
which prevents the successful differentiation of transitional cells into 
AT1 cells. The resulting failure in postnatal epithelial development 
causes respiratory failure and death of the animal. The rescue of the 
NDUFS2 cKO mouse phenotype with expression of NDI1 and the pre-
served lung development in SDHD cKO mice suggests that the ability 
of mitochondrial complex I to regenerate NAD+ is required to prevent 
pathologic ISR activation in lung epithelium during postnatal alveolar 
development. Thus, this study uncovers an unappreciated role of the 
ISR and the mitochondria, independent of their role in generating ATP, 
in dictating lung epithelial cell fate in vivo.
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Methods

Animal models
Ndufs2 fl/fl mice16, Sdhd fl/fl mice45, SFTPC-Cre mice15 and NDI1LSL mice7 
have previously been described. ROSA26SorCAG-tdTomato (Ai14, stock no. 
007908) mice were obtained from Jackson Laboratory. All the strains 
were backcrossed for three generations to C57BL/6J mice in house 
before breeding and confirmed to be greater than 96% C57BL/6J per 
the SNP analysis by DartMouse. Animals were housed at Northwestern 
University animal facility, where the animals were on a 14-h on, 10-h off 
light cycle, the room temperature range was 21–23 °C and humidity 
was within a 30–70% range compliant with the guidelines. Our breed-
ing strategies allow only one copy of maternally inherited Cre in all 
experimental mice. ISRIB (AdooQ, A14302) was dissolved in DMSO at 
6.25 mg ml−1 and subsequently diluted in sterile saline at 0.25 mg ml−1 
and delivered intraperitoneally to mice at a dose of 2.5 mg kg−1 per 
day every other day in the afternoon from P11 to P99. NMN (Sigma, 
catalogue no. N3501) was dissolved in sterile saline at 50 mg ml−1 and 
delivered intraperitoneally to mice at a dose of 500 mg kg−1 per day 
four times a week between 5 p.m. and 7 p.m. local time, from P11 to 
P90. Both male and female mice were used in all experiments. All ani-
mal procedures were approved by Institutional Animal Care and Use 
Committee (IACUC) at Northwestern University.

Lung cell isolation
After mice were euthanized, the pulmonary vasculature was per-
fused through the right ventricle with Hanks’ balanced salt solution 
(HBSS) until clear. The trachea was cannulated with a 20–24 gauge 
catheter depending on the mouse’s age and/or size, and the lungs were 
removed en bloc and gently inflated with dispase (Corning, catalogue 
no. 354235). The trachea and bilateral main bronchi were removed 
from the inflated lungs before they were incubated in dispase with 
gentle rocking for 30 min at room temperature. The digested lungs were 
placed in a petri dish with 25 mM HEPES (Gibco, catalogue no. 15630) 
buffered DMEM media (Corning, catalogue no. 10-013-CV) with 0.02% 
DNase I (Sigma, catalogue no. D4513). Any visible proximal airways 
were removed, and then tissue was torn apart and minced to make a 
single-cell suspension. The resulting suspension was passed through a 
70 μm filter and subsequently a 40 μm filter to remove residual tissue 
fragments and centrifuged at 250g for 5 min at 4 °C. The pelleted cells 
were resuspended and incubated in BD Pharm Lyse (BD Biosciences, 
catalogue no. 555899) to remove erythrocytes. The resulting whole 
lung single-cell suspension was kept in complete DMEM media (DMEM 
media supplemented with 10% dialyzed fetal bovine serum (FBS) (Peak, 
catalogue no. PS-FB2), 1x Penicillin-streptomycin (Gibco, catalogue 
no. 15140), 2 mM l-glutamine (Gibco, catalogue no. 25030), 1x MEM 
NEAA (Gibco, catalogue no. 11140) and 25 mM HEPES) at 4 °C for further 
process. For the epithelial cell isolation, the cells were incubated with 
anti-mouse biotin-conjugated CD45 (BD Biosciences, catalogue no. 
553078), CD31 (BD Biosciences, catalogue no. 553371) and CD16/CD32 
(BD Biosciences, catalogue no. 553143) antibodies and subsequently 
with magnetic beads (Promega, catalogue no. Z5482) for negative 
selection. CD45−CD31−CD16/CD32− cells were further incubated with 
EpCAM microbeads (Miltenyi Biotec, catalogue no. 130-105-958) for 
positive selection. For mice who were 11-days-old or younger, cells were 
processed for EpCAM positive selection without negative selection. 
The ages of mice used in cell isolation were selected to evaluate early 
molecular drivers of the phenotype in the mutant strains and to avoid 
survivor bias in the assays.

Lung histology and immunohistochemistry
For embryonic time points, timed mating was performed; the noon 
on the day of appearance of vaginal plugging in the mother was taken 
as embryonic day (E) 0.5. Individual embryos were also staged by fetal 
crown-rump length at the time of euthanasia. The embryos were fixed in 

10% neutral-buffered formalin (NBF) for more than 48 h and processed 
to be embedded in paraffin. For mice who were 11 days or older, after 
euthanasia and perfusion, the trachea was cannulated and the lungs 
were inflated with 10% NBF for fixation. Fixed lungs were dehydrated 
and embedded in paraffin. All paraffin-embedded tissues were pre-
pared for 4 μm thick sections. Immunohistochemistry was performed 
using primary antibodies against the following epitopes: pro-SftpC 
(rabbit, Millipore, catalogue no. AB3786; 1:500), podoplanin (Syrian 
hamster, Abcam, catalogue no. ab11936; 1:2,000), Ki67 (rabbit, Abcam, 
catalogue no. ab16667; 1:100) and CD45 (rabbit, Abcam, catalogue no. 
ab10558; 1:1,500). Before primary antibody incubation, sections were 
incubated with a sodium citrate buffer (pH = 6) at 110 °C for 20 min in 
a pressure cooker for antigen retrieval. 3,3′-diaminobenzidine was 
used for chromogenic detection. All staining was completed on an 
automated platform (IntelliPATH by Biocare Medical). TUNEL assay 
was performed with terminal transferase (New England BioLabs, cata-
logue no. M0315L) and Biotin-16-dUTP (Millipore Sigma, catalogue 
no. 11093070910). Images were acquired using a Nikon microscope 
and Tissue Gnostics.

Alveolar thickness quantification
Haematoxylin and eosin-stained images, obtained by TissueGnos-
tics (×20 with a numerical aperture (NA) of 0.50), were processed and 
quantified using ImageJ/Fiji software (NIH) to measure alveolar sep-
tal thickness. Four to six randomly selected fields of view from each 
mouse lung histology were analysed. The images with proximal airways 
were excluded. Each colour image was converted to a greyscale image. 
For segmentation, we performed thresholding with the Huang algo-
rithm. Holes in the segmentation smaller than 1.38 μm (5 pixels) were 
filled to analyse only the distance to the outside of the vessel (alveolar 
septal wall). The distance map was then calculated and we counted 
the number of pixels belonging to the respective alveolar thickness 
bin and the total pixel count of all alveolar septal walls in each image. 
Relative frequency was calculated as follows: (number of foreground 
pixels that belong to respective alveolar thickness bin)/(total number 
of foreground pixels). To test statistical significance for genotype, we 
calculated average alveolar thickness in each image (Source Data). 
Statistical significances were then calculated by F-test for the following 
linear model, where Condition (genotype) denotes whether or not the 
corresponding mouse was cKO.

∑β β βThickness = + Condition(genotype) + Mouse
i

i i0 1

RNA in situ hybridization
Multiplex fluorescent in situ hybridization was performed using 
RNAscope (Advanced Cell Diagnostics (ACD)). As described above, 
mouse lungs were inflated and fixed with 10% NBF for 24 h at room 
temperature. Lungs were paraffin embedded and prepared for 4 μm 
thick sections. Slides were baked for 1 h at 60 °C, deparaffinized in 
xylene, dehydrated in 100% ethanol and air-dried for 5 min at 60 °C. 
Sections were treated with hydrogen peroxide (ACD, catalogue no. 
322330) for 10 min at room temperature and then heated to mild boil 
(98–102 °C) in 1x Target Retrieval Reagent (ACD, catalogue no. 322001) 
for 15 min. Protease plus (ACD, catalogue no. 322330) was applied to sec-
tions for 30 min at 40 °C in a HybEZ Oven (ACD, catalogue no. 241000). 
Hybridization with target probes, preamplifier, amplifier, fluorescent 
labels and wash buffer (ACD, catalogue no. 320058) were carried out 
according to ACD instructions for Multiplex Fluorescent Reagent Kit 
v2 (ACD, catalogue no. 323100). Parallel mouse tissue sections were 
incubated with positive (ACD, catalogue no. 321811) and negative (ACD, 
catalogue no. 321831) control probes. Sections were mounted under a 
no. 1.5 coverslip with ProLong Gold Antifade (Thermo, catalogue no. 
P36930). Probes used were mouse Sftpc (ACD, catalogue no. 314101-C3, 
NM_011359.2), Pdgfra (ACD, catalogue no. 480661-C2, NM_011058.2), 

https://www.ncbi.nlm.nih.gov/nuccore/A14302
https://www.uniprot.org/uniprot/P36930
https://www.ncbi.nlm.nih.gov/nuccore/NM_011359.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_011058.2


Car4 (ACD, catalogue no. 468421, NM_007607.2) and Sfrp1 (ACD, cata-
logue no. 404981, NM_013834.3). Opal fluorophores (Opal 520 (cata-
logue no. FP1487001KT), Opal 620 (catalogue no. FP1495001KT) and 
Opal 690 (catalogue no. FP1497001KT) (Perkin Elmer) were used at 
1:1,500 (for 620 and 690) and 1:9,000 (for 520) dilution in Multiplex 
TSA buffer (ACD, catalogue no. 322809). Images were captured on a 
Nikon A1C confocal microscope with a ×40 objective and NA of 1.30 
(NU-Nikon Cell Imaging Facility). Wavelengths used for excitation 
included 405 nm, 488 nm, 561 nm and 640 nm.

Mouse AT2 cell culture
Mouse lung AT2 cells were isolated from 6-day-old mice with EpCAM 
positive selection as described above. For the classic two-dimensional 
culture, isolated cells were plated in 48-well cell culture plate (Corn-
ing, catalogue no. 353230) at 1.25 × 105 cells per well and cultured in 
complete DMEM media (DMEM media supplemented with 10% dia-
lyzed FBS, 1x penicillin-streptomycin, 2 mM l-glutamine, 1x MEM NEAA 
and 25 mM HEPES). The remaining cells were processed for RNA-seq 
(culture 0 h). After 56 h of culture, new culture media with or without 
piericidin A (Cayman, catalogue no. 15379) was added to the cultures 
to achieve a final concentration of 0.5 μM piericidin A. After 16 h  
(a total of 72 h of culture), cells in each well were processed for RNA-seq 
(culture 72 h).

The three-dimensional alveolar organoid cultures were performed as 
previously described2,42,47 with modifications. In brief, lung fibroblasts 
were isolated from 7-week-old wild-type mice with CD45 depletion 
and cultured for 4–5 passages to expand in DMEM media with 4.5 g l−1 
d-glucose, 2 mM l-glutamine, 10% FBS and 1% penicillin-streptomycin 
as previously described5. Immediately before use in organoid cul-
ture, fibroblasts were treated with mitomycin-C (Millipore Sigma, 
catalogue no. M4287) for 2 h. AT2 cells were isolated from 6-day-old 
mice as described above. AT2 cells and lung fibroblasts (1:10) were 
suspended in 50% Matrigel (Corning, catalogue no. 356231) and 50% 
organoid growth media (alpha-MEM media (Thermo Fisher, cata-
logue no. 41061029) supplemented with 2 mM l-glutamine, 10% FBS, 
1% penicillin-streptomycin, 1% Insulin-Transferrin-Selenium (Thermo 
Fisher, catalogue no. 41400045), 0.002% Heparin, 0.25 ug ml−1 Ampho-
tericin B (Millipore Sigma, catalogue no. A2942) and 2.5 μg ml−1 ROCK 
inhibitor Y24632 (Selleckchem, catalogue no. S1049)). Then 100 μl of 
the cell-media-matrigel mixture (5 × 103 tdTomato+ AT2 cells and 5 × 104 
lung fibroblasts per insert) was plated in a 24-well 0.4 μm Transwell 
insert (Corning, catalogue no. 3470) and solidified at 37 °C for 5 min 
before 500 μl of organoid growth media was added under the insert. 
The next day, organoid growth media was switched to fresh media 
containing either 1 μM ISRIB or DMSO and changed every other day. 
After 10 days of culture, organoids were imaged on a Nikon Ti2 Wide-
field in brightfield and red fluorescent protein (RFP) channels with the 
objective of ×20 and NA of 0.45. Alveolar organoids were defined as a 
clonal colony with a minimum diameter of 50 microns. Images were 
processed in Nikon Elements (v.5.11.00) and quantified using ImageJ/
Fiji software to evaluate organoid diameters and colony counts. All 
culture media contained aspartate and asparagine.

Mitochondrial OCR
The OCR of lung epithelial cells was measured in a Seahorse XF96 extra-
cellular flux analyser (Agilent Bioscience) with Wave v.2.6.3.5 software. 
Isolated lung epithelial cells as described above were immediately 
seeded at 7.5 × 104 cells per well using cell adhesive, Cell-Tak (Corn-
ing, catalogue no. 354240) according to the manufacturer’s instruc-
tions. Basal mitochondrial respiration was assessed by subtracting 
the non-mitochondrial OCR, measured with 1 μM antimycin A (Sigma, 
catalogue no. A8674) and 1 μM piericidin A (Cayman, catalogue no. 
15379), from baseline OCR. Coupled respiration was determined by 
subtracting the OCR in the presence of 2 μΜ oligomycin (Sigma, cata-
logue no. 75351) from the basal mitochondrial respiration.

Cell line culture
A mouse lung epithelial cell line (MLE-12; ATCC, CRL-211) was cultured 
in HITES media (DMEM/F12 (1:1) (Gibco, catalogue no. 11320033), 1x 
Insulin-Transferrin-Selenium (Gibco, catalogue no. 41400045), 10 nM 
Hydrocortisone (Sigma, catalogue no. H4001), 10 nM β-oestradiol 
(Sigma, catalogue no. E2758), 10 mM HEPES (Corning, catalogue 
no. 25-060-CI), 1x GlutaMAX (Gibco, catalogue no. 35050061)) sup-
plemented with 4% FBS (Atlas Biologicals, catalogue no. F0500A), 
1 mM methyl-pyruvate (Sigma-Aldrich, catalogue no. 371173), 400 μM 
uridine (Sigma-Aldrich, catalogue no. U3003), 50 μM l-Asparagine 
(Sigma-Aldrich, catalogue no. A4284; in addition to 50 μM l-asparagine 
in the basal medium), 1x antibiotic-antimycotic solution (Gibco, 
catalogue no. 15240062) and 2.5 μg ml−1 Plasmocin Prophylactic 
(Invivogen, ant-mpp)). Cells were incubated at 37 °C, 5% CO2 and  
95% humidity.

Generation of cell lines with knockouts and ectopic expression
A single-guide RNA (sgRNA) oligonucleotide targeting Oma1 or 
a non-targeting control sgRNA was cloned into the pSpCas9(BB)-
2A-GFP (PX458) plasmid (Addgene, 48138; a gift from F. Zhang at the 
Massachusetts Institute of Technology), according to the provider’s 
instructions. Oligonucleotide sequences were as follows: sgOma1: 
5′-CGTGTGCGATCTCATGGCCC-3′ (targeting the ‘+’ strand in exon 5);  
non-targeting sgRNA: 5′-GCGAGGTATTCGGCTCCGCG-3′. Both 
sgRNA-Cas9-2A-GFP vectors were then transfected into MLE-12 cells 
using jetOPTIMUS transfection reagent (Polyplus). Forty-eight hours 
after transfection, the GFP+ cells were single-cell sorted into 96-well 
plates using a BD FACSAria cell sorter. The sorted cells were grown in 
culture for 2–3 weeks and the resultant clonal cell lines were expanded. 
Knockout of Oma1 was confirmed by immunoblotting.

Oma1 coding sequence (NM_025909) was cloned into the pLV-EF1-RFP 
vector (VectorBuilder) using GenScript service. The pLV-Oma1-EF1-RFP 
vector or empty vector control, along with pMD2.G and psPAX2 lenti-
viral packaging vectors, were then transfected into 293T cells (ATCC, 
CRL-3216, using jetOPTIMUS (Polyplus) to generate Oma1-RFP or empty 
vector control-RFP lentivirus, respectively. Oma1 KO MLE-12 cells were 
transduced with empty vector control-RFP or Oma1-RFP lentivirus and 
then RFP+ cells were sorted using a BD FACSAria cell sorter. The cells 
were periodically sorted to maintain high RFP expressions. Oma1 over-
expression was confirmed by immunoblotting. Cells were incubated 
with 500 nM piericidin A (Cayman, catalogue no. 15379) or 100 nΜ 
oligomycin (Sigma, catalogue no. 75351) for 16 h, respectively, before 
collection for immunoblotting analysis.

Immunoblot blot analysis
Lung epithelial cells were isolated from 11-day-old mice as described 
above, washed with ice-cold phosphate buffered saline and stored  
at −80 °C until processed. Cells were lysed in NP40 cell lysis buffer 
(ThermoFisher, catalogue no. FNN0021) supplemented with Halt pro-
tease inhibitor cocktail (ThermoFisher, catalogue no. 78430). Protein 
concentrations were measured using the Pierce BCA Protein Assay 
Kit (Thermo Fisher Scientific, catalogue no. 23225). Immunoblots 
were performed using the Protein Simple WES/Sally Sue platform 
(Bio-Techne), a capillary electrophoresis immunoassay, according to 
the manufacturer’s instructions. Protein abundance was quantified 
using Compass software. Primary antibodies used were anti-NDUFS2 
(Abcam, ab192022, 1:200 dilution), anti-Vinculin (Abcam, ab129002, 
1:500 dilution; as an NDUFS2 protein loading control), anti-Oma1 
(SCBT, sc-515788, 1:50 dilution), anti-ATF4 (CST, 11815S,1:50 dilution) 
and anti-cofilin (CST, 5175T, 1:30,000, as an OMA1 loading control and 
1:10,000 as an ATF4 loading control). Relative abundances of NDUFS2, 
OMA1 and ATF4 protein were quantified as the peak area of NDUFS2, 
OMA1 and ATF4 over the peak area of VINCULIN (for NDUFS2) and 
COFILIN (for OMA1 or ATF4) in each capillary lane, respectively.

https://www.ncbi.nlm.nih.gov/nuccore/NM_007607.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_013834.3
https://www.ncbi.nlm.nih.gov/nuccore/Y24632
https://www.ncbi.nlm.nih.gov/nuccore/NM_025909
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Static lung compliance analysis
Mice were anesthetized and tracheotomized. Respiratory mechan-
ics were assessed using the flexiVent FX equipped with a module 1 
(flexiVent FX, SCIREQ Scientific Respiratory Equipment).

Metabolite measurements
Metabolomics were carried out as previously described7,48,49 with modi-
fications. Briefly, 35-day-old mice were euthanized and lung epithelial 
cells were isolated as described above. Cells were washed once with 
ice-cold HBSS and divided into two dry cell pellets, one of which was 
frozen and stored at −80 °C for metabolites extraction until all sam-
ples were collected. The remaining cell pellet, if any, was processed 
for RNA-seq (RNA sequencing). To extract metabolites, samples were 
suspended in 225 μl ultra-cold HPLC-grade methanol/water (80/20, v/v) 
per one million cells (333 μl ultra-cold HPLC-grade acetonitrile/water 
(80/20, v/v) per one million cells for SDHD control and SDHD cKO mice) 
and went through three complete freeze-thaw cycles in −80 °C and 4 °C 
before high-speed centrifugation at 4 °C. The supernatants, which 
contained metabolites, were collected and dried in a SpeedVac concen-
trator (Thermo Savant). The dried metabolites were reconstituted in 
50% acetonitrile in analytical-grade water (50/50, v/v) and centrifuged 
to remove debris. Samples were analysed by ultra-high-performance 
liquid chromatography and high-resolution mass spectrometry 
and tandem mass spectrometry (UHPLC-MS/MS). The metabolites 
extracted with 80% acetonitrile were directly injected into the mass 
spectrometry without drying and reconstitution. Data were acquired 
with Xcalibur software (v.4.1; ThermoFisher Scientific). The resulting 
data were analysed using the MetaboAnalyst software v.5.0 (refs. 50,51) 
and the MetaboAnalystR package v.4.1.2 (ref. 52). Metabolites were 
normalized by total ion count for each sample. Significantly different 
metabolites among groups were identified by one-way analysis of vari-
ance followed by Fisher’s least significant difference post hoc analysis 
with FDR < 0.05 and then plotted as a heat map. NADH/NAD+ ratios were 
calculated from the peak area values of NADH and NAD+ within the 
same individual sample and compared between groups. Our extraction 
method may allow interconversion between the reduced and oxidized 
forms during extraction53. Some metabolites were reported as zero 
because the metabolite levels were low and below the detection limit. 
Normalized peak areas of individual metabolites (lactate, aspartate, 
asparagine and succinate) were graphed as arbitrary units (a.u).

RNA sequencing
Mouse lung epithelial cells were isolated as described above and 
washed with ice-cold HBSS. The cell pellet was lysed with RLT Plus buffer  
(Qiagen, catalogue no. 74134) with 1% β-mercaptoethanol and stored 
at −80 °C until all samples were collected for RNA extraction. RNA 
was extracted using the RNeasy Plus Mini Kit (Qiagen, catalogue no. 
74134), according to the manufacturer’s protocol. The quantity and 
quality of the extracted RNA were assessed using TapeStation 4200 
(Agilent). mRNA libraries were prepared using NEBNext Ultra Kit with 
polyA selection (New England BioLabs, catalogue nos. E7530 and E7490) 
and sequenced on NextSeq 500 High output for 75 cycles (Illumina) or 
NextSeq 2000 P2 or P3 100 cycles (Illumina).

RNA sequencing data analysis
The sequencing data was demultiplexed using bcl2fastq v.2.20.0 pro-
vided by Illumina and trimmed using Trimmomatic v.0.39 (ref. 54). 
Reads were then aligned to the GRCm39 reference genome using the 
STAR aligner v.2.7.7 (ref. 55) and counts were calculated using HTseq 
v.0.11.0 (ref. 56). The ComBat-seq57 package was used to adjust for 
batch effect on RNA-seq count data related to the multiple library 
preparations and sequencing from different days. The DESeq2 (ref. 58)  
package was used to generate a PCA plot to visualize the clustering pat-
terns of the samples based on their gene expression profiles after data 

transformation. The edgeR59 package was used for identifying differen-
tially expressed genes. Using the filterByExpr function in edgeR, lowly 
expressed counts were filtered out before library normalization. An 
additive model was created to adjust for sex differences in the samples 
and the counts were fit to a negative binomial generalized linear model 
for comparison. The CPM (counts per million reads mapped) matrix 
was generated using the cpm function in edgeR. Heat maps visualizing 
expression levels of ATF genes, ISR signature genes and cell marker 
genes in each sample by genotypes or conditions were generated by 
pheatmap package (https://github.com/raivokolde/pheatmap/). Gene 
set enrichment analysis was performed using the gene set enrichment 
analysis software v.4.2.1 (ref. 60) with hallmark gene sets61 or a curated 
list of ISR genes62 (Supplementary Table 1; a gift from C. Sidrauski at 
the Calico Life Sciences).

Single-cell RNA sequencing
Whole lung single-cell suspensions from 21-day-old mice were prepared 
as described above. Cell concentrations were counted using Cellom-
eter K2 (Nexcelom) with AOPI staining solution (Nexelom, CS2-0106-
5mL). Single-cell RNA-seq libraries were prepared using Chromium 
Next GEM Single Cell 3’ Reagent Kits v.3.1 (10x Genomics) aiming to 
capture around 6,000–10,000 cells per library. After quality checks, 
single-cell RNA-seq libraries were pooled at an equimolar ratio and 
sequenced shallowly on MiniSeq High Output 150 cycles (Illumina) to 
rebalance the pool to adjust for different numbers of cells per library 
and to achieve even sequencing depth coverage (reads per cell) across 
libraries on deep sequencing. Deep sequencing was performed on the 
HiSeq 4000 instrument (Illumina).

Analysis of single-cell RNA sequencing data
Raw sequencing reads were processed using CellRanger v.6.0.1. Reads 
were aligned onto GRCm39 reference genome with tdTomato gene 
inserted. Doublets were removed using Scrublet v.0.2.1 (ref. 63) from 
each library. All downstream analysis of single-cell RNA-seq data was 
performed using Seurat v.4.0.6 (ref. 64) (in R v.4.1.2), except for the part 
of the analysis of integrated data with other single-cell datasets14,43 (see 
below). Quality control was performed by removing cells with more 
than 25% of reads from mitochondrial genes and cells with less than 
500 detected genes. SCTransform65 was used to normalize and stabi-
lize the variance of molecular count data before performing PCA on 
the top 3,000 most variable genes. Cells were then clustered with the 
FindClusters function based on the Louvain algorithm66 and UMAP 
embedding was generated with the RunUMAP function. Cell types of 
the clusters were manually annotated with known cell-type marker 
genes based on differentially expressed genes in each cluster detected 
by the FindAllMarkers function. To further classify major cell-type 
subsets at high resolution, specifically epithelial and mesenchymal 
cells, we assessed the expression of each canonical cell marker Epcam 
(epithelial cells), Pecam1 (endothelial cells), Col1a1 (mesenchymal 
cells) and Ptprc (immune cells) and identified each major cell subset 
accordingly. Cells co-expressing markers of different cell types were 
removed as they were likely to be rare doublets that were not removed 
during the initial data processing. Each subset was then re-processed 
with the same normalization and dimensionality reduction approach 
as described above. For the epithelial (Epcam+ clusters), AT1 cells (anno-
tated from epithelial subset), or mesenchymal subset (Col1a1+ clusters 
except mesothelium), the subset cells were re-clustered. Identified 
epithelial or mesenchymal sub-cell types were annotated with known 
sub-cell-type markers, respectively, based on gene expression markers 
in each subcluster generated by the FindAllMarkers function. To evalu-
ate differentially expressed genes by mouse genotype within the AT1 
cell type, pseudobulk differential expression analysis was performed 
using the AggregateExpression function in Seurat64 and the edgeR59 
package. To evaluate the ISR gene signature, we calculated ISR gene 
signature scores with the UCell algorithm67 which calculates gene 

https://github.com/raivokolde/pheatmap/


enrichment scores for single-cell RNA-seq data based on the Mann–
Whitney U statistic without being affected by dataset composition. 
The ISR gene signature is defined by the same curated list of ISR genes62 
(Supplementary Table 1) as in the above RNA-seq data analysis. The 
enrichment scores for glycolysis and oxidative phosphorylation gene 
signatures, retrieved from hallmark gene sets61, were also calculated 
with the UCell algorithm. The cell cycle stage for each cell was identi-
fied by calculating cell cycle phase scores using the CellCycleScoring 
function.

Integration with other single-cell datasets and RNA velocity 
analysis
To compare the ISR gene enrichment of transitional cells from our 
dataset with those identified by other investigators, we integrated our 
count matrices with those from Strunz et al. (high-resolution datasets 
in GSE141259)23, Choi et al. (Bleomycin-treated SPC-CreERT2; R26RtdTomato 
mice cells in GSE145031)24 and Kobayashi et al. (GSE141634)28. We used 
the SCTransform integration68 method to perform data integration 
between the epithelial cells.

Raw sequencing reads in Negretti et  al. (PRJNA674755 and 
PRJNA693167, except P64)14 and Hurskainen et al. (PRJNA637911)43 
were processed using CellRanger v.6.0.1 and aligned onto a GRCm39 
reference genome, respectively, with the same parameters as 
described above. Only postnatal epithelial cells were included for 
data integration. Each processed epithelial dataset was combined 
with the epithelial dataset in our current study using the SCTrans-
form integration68. Then UMAP embedding was conducted with 
Scanpy v.1.8.1 (ref. 69) and batch balancing was conducted by 
BBKNN70. For the analysis of RNA velocity, spliced and unspliced 
mRNA count matrices were constructed by using velocyto v.0.17 
(ref. 71) and RNA velocity was predicted with scVelo v.0.2.4 (ref. 72) 
in Python v.3.8.3. All charts and visualization plots were generated  
with ggplot2 and dittoSeq73.

Statistics and reproducibility
All data analysis and statistical tests, other than those specified above, 
were performed using GraphPad Prism software (v.9.5.0). All statisti-
cal tests were performed as two-sided. Descriptive data is presented 
as mean ± s.d. unless stated otherwise. All box plots are displayed as 
follows: minimum and maximum are the smallest and largest values, 
respectively, excluding outliers and the box is drawn from the 25th to 
75th percentile with the median in the centre. Numbers of biological 
replicates are indicated in the figure legends. The investigators were not 
blinded during experiments and outcome assessments. No statistical 
method was used to predetermine sample size and experiments were 
not randomized. P values less than 0.05 were considered as significant 
unless stated otherwise and depicted as following: *P < 0.05; **P < 0.01; 
***P < 0.001. Representative images of lung histology are shown from 
at least n = 3 mice.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All raw sequencing data (.fastq) generated in this study are available at 
the NCBI BioProject with the following Accession IDs: PRJNA865889, 
PRJNA940730, PRJNA940746, PRJNA940973, PRJNA940986 and 
PRJNA940992. Data from Strunz et al. (GSE141259)23, Choi et al. 
(GSE145031)24, Kobayashi et  al. (GSE141634)28, Negretti et  al. 
(PRJNA674755 and PRJNA693167)14 and Hurskainen et al. (PRJNA637911)43 
were re-analysed. Molecular Signatures Database (MSigDB)61 and 
GRCm39 reference genome were used for analysis. Source data are 
provided with this paper.

Code availability
All codes used for analysis are available at https://github.com/
MinhoLee-DGU/2023.Han.et.al.Nature.
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Extended Data Fig. 1 | Loss of mitochondrial complex I in lung epithelial 
cells during development induces aberrant hypercellular lung structure 
with thickened alveolar walls resulting in postnatal death. a–b, Changes  
in metabolism-related gene signatures during murine lung epithelial 
development. Re-analysis of epithelial cells from single-cell RNA-seq data  
from a mouse lung development atlas14 (n = 13,445 cells). Violin plots showing 
enrichment scores of glycolysis (a) and oxidative phosphorylation gene 
signatures (b) measured by UCell algorithm67. A higher score indicates higher 
enrichment of the gene signature. The gene lists are retrieved from hallmark 
gene sets in the Molecular Signatures Database (MSigDB)61. Glycolysis gene 
signatures at E12 and E15 are more enriched than those at P0 – P14, while 
oxidative phosphorylation gene signature at P14 is more enriched than those at 
P0 – P7 (*** adjusted p < 1.0 x 10−5 by post-hoc pairwise Mann-Whitney test with 
Holm method, p values are in the Source Data). p < 2.2 x 10−16 by Kruskal-Wallis 
test for both glycolysis and oxidative phosphorylation gene enrichment 
scores. c, Survival of male NDUFS2 control (n = 9) and male NDUFS2 cKO (n = 8) 
mice (p < 0.0001 by log-rank test). d, Survival of female NDUFS2 control (n = 12) 

and female NDUFS2 cKO (n = 5) mice (p < 0.0001 by log-rank test). e–g, 
Representative images of lung necropsy from NDUFS2 cKO (n = 4 mice). 
Alveolar airspaces are filled with pink, homogenous material (hyaline 
membranes), suggesting the mice died from respiratory failure (e). The pink 
homogenous materials are negative for Periodic acid–Schiff (PAS) stain (f). 
Positive PAS stain (arrowhead) in a different region from the same lung 
histology section staining (g). Scale bar, 100 μm. h–q, Lung histology of 
49-day-old mice stained for TUNEL assay (apoptosis), CD45 (leukocyte marker), 
Ki67 (proliferation), surfactant protein C (SPC, AT2 marker), and podoplanin 
(PDPN, AT1 marker). n′–q′, high-magnification images. Scale bars, 100 μm (h–m), 
20 μm (n–q), and 10 μm (n′–q′). r–t, Quantification of percent CD45+, TUNEL+, 
and Ki67+ cells (mean ± SD) in 35-day-old mouse lungs. p = 0.2286 (TUNEL+), 
p = 0.2571 (CD45+) and p = 0.0286 (Ki67+) by Mann-Whitney test. (n = 2540–4930 
cells evaluated from at least three randomly selected fields of view in each 
mouse; NDUFS2 control n = 6 (CD45+), n = 3 (TUNEL+), n = 4 (Ki67+); NDUFS2 cKO 
n = 4 (CD45+), n = 4 (TUNEL+), n = 4 (Ki67+) mice, both male and female).
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Extended Data Fig. 2 | In situ RNA hybridization with amplification 
confirms the postnatal disruption of spatial organization between 
different cell types in NDUFS2 cKO lungs. a–b, Lung sections from 21-day-old 
NDUFS2 control and NDUFS2 cKO mice (n = 3 each genotype, both male and 
female) were hybridized with the indicated target probes (RNAscope®). 
Magnified images (boxed region) are shown on the right. Representative lung 
sections (a) showing alveolar type 2 (AT2) cells by Sftpc (gray) have 1:1 direct 
contact with Pdg fra+ fibroblasts (magenta) in NDUFS2 control lungs, whereas 
1:1 relationship between Sftpc+ cells and Pdg fra+ fibroblasts are lost in NDUFS2 
cKO lungs. Hypertrophic Sftpc+ cells in NDUFS2 cKO lungs cluster next to each 
other along the alveolar walls while Sftpc+ AT2 cells in NDUFS2 control lungs 
locate individually at the corner of alveolar sacs. Representative lung sections 
(b) showing Car4+ endothelial cells (cyan, arrows) locate next to linear thin 

Sftpc- AT1 cells in NDUFS2 control mice. However, in NDUFS2 cKO lungs, Car4+ 
endothelial cells (cyan) are located next to linear thin Sftpc+ cells (gray, asterisk). 
Please note that Sftpc is an AT2 marker (cuboidal) that does not normally 
express in linear thin AT1 cells. Scale bars, 50 μm and 20 μm (magnified inset). 
c–g, Mitochondrial complex I in lung epithelial cells is dispensable for 
antenatal lung development. Representative images of littermates’ lung 
histology (hematoxylin-eosin stain) at different time points (E, embryonic day; 
P, postnatal day). Branching morphogenesis during antenatal development is 
not grossly disrupted in NDUFS2 cKO mice compared to NDUFS2 control mice 
(c,d). The subtle differences in alveolar structure between NDUFS2 cKO and 
NDUFS2 control mice at P11 become apparent by P21 (e–g). Scale bars, 200 μm 
(c,d), 50 μm (e–g).



Extended Data Fig. 3 | Expression of the yeast NDI1 protein in lung epithelial 
cells does not disrupt lung development or physiology, and restores 
abnormal alveolar structures in NDUFS2 cKO mice. a, Representative images 
of lung histology (hematoxylin-eosin stain) from 48-day-old mice. NDI1LSL mice 
and SFTPC-Cre;NDI1LSL mice are referred to as WT and NDI1, respectively (scale 
bar, 50 μm). b, Box plots of static lung compliance in 48–49-day-old mice (WT 
n = 12; NDI1 n = 10 mice with technical replicates), p = 0.6744 by Mann-Whitney 
test. c, Intracellular NADH/NAD+ ratios from metabolomics analysis of lung 
epithelial cells isolated from 35-day-old mice (NDUFS2 control n = 8; NDUFS2 
control/NDI1 n = 7; NDUFS2 cKO n = 7; NDUFS2 cKO/NDI1 n = 8 mice). p = 0.0006 
by Kruskal-Wallis test. d, The frequency distribution of alveolar thickness 
measured in hematoxylin-eosin stained lung histology of 46–49-day-old mice 
(n = 4 mice, two males and two females per genotype). 4–6 randomly selected 
fields of view from each mouse were evaluated. The x axis shows alveolar 

thickness bins, and the y axis shows the number of alveolar pixels that belong to 
the respective alveolar thickness bin normalized to the total alveolar pixel 
count in the image. Each animal is represented by its own color. Statistical 
significance for genotype was calculated based on F-test for a linear model 
(p = 4.66 x 10−5). e, Representative images of lung histology (hematoxylin-eosin 
stain) from 2-year-old mice (scale bar, 50 μm), f, Box plots of lung compliance in 
18–25-month-old mice (NDUFS2 control n = 4; NDUFS2 control/NDI1 n = 5; 
NDUFS2 cKO/NDI1 n = 15 mice with technical replicates), p = 0.3847 by 
Kruskal-Wallis test. g–h, Metabolomics analysis of lung epithelial cells isolated 
from 35-day-old mice (NDUFS2 control n = 8; NDUFS2 control/NDI1 n = 7; 
NDUFS2 cKO n = 7; NDUFS2 cKO/NDI1 n = 8 mice). Lines represent median. 
Relative abundance of aspartate. p = 0.7515 by Kruskal-Wallis test (g). Relative 
abundance of asparagine. p = 0.0253 by Kruskal-Wallis test. * p = 0.0259 by 
Dunn’s multiple comparisons test (h).
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Extended Data Fig. 4 | Single-cell RNA-sequencing analysis confirms that 
Ndufs2 deletion is specific to distal lung epithelium in NDUFS2 cKO mice.  
a, Mki67 expression by genotype in each tissue type or in Sftpc lineage 
(tdTomato)-positive cells. Mki67 + cells were defined as cells with normalized 
UMI (unique molecular identifier) counts of Mki67 > 0 using sctransform.  

p values by Pearson’s chi-squared test. b, Heatmap showing expression of 
selected hallmark identifier genes for each clustered cell type. c, Relative 
contributions to each clustered cell type from NDUFS2 control and NDUFS2 
cKO lungs. d–e, Expression of Ndufs2 gene in all clusters (d) and epithelial 
subclusters (e). Ndufs2 was deleted only in the distal lung epithelium.



Extended Data Fig. 5 | Postnatal transitional cells express early basal cell 
markers. a, Bar plots demonstrating the composition of epithelial subclusters 
in each individual mouse (n = 8 mice). The transitional cell cluster was 
consistently expanded in all four NDUFS2 cKO mice compared with NDUFS2 
control mice. M, male; F, female. b, Heatmap showing expression of hallmark 
identifier genes for each epithelial cell type. Early basal cell marker genes (Krt8, 
Krt18, Krt7, Krt19) are highly expressed in transitional cells and some of the AT1 
cluster. c, Cell-cycle score analysis of epithelial cells was performed and plotted 
on a UMAP embedding. Cells predicted to be in G0/G1, G2/M, and S phases are 
shown in separate UMAPs, respectively. No subcluster of epithelial cells was 

predicted to be in a specific cell-cycle phase. d, Volcano plots visualizing the 
differential gene expression results by mouse genotype in the AT1 cluster from 
single-cell RNA sequencing analysis. x axis shows average log2 fold change, and 
y axis shows −log10 false discovery rate (FDR) q value. e, UMAP embedding of 
AT1 cells (n = 723 cells) colored by subcluster. f, UMAP plot depicting AT1 cell 
origins with respect to the mouse genotype. g, Bar plots demonstrating the 
composition of AT1 subclusters in NDUFS2 control and NDUFS2 cKO mice.  
h, Heatmap showing expression of epithelial marker genes in AT1 subclusters. 
Cells in the AT1_1 cluster express higher level of transitional cell marker genes 
compared to those in other AT1 subclusters.
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Extended Data Fig. 6 | Sfrp1+ mesenchymal cells emerge in NDUFS2 cKO 
lungs. Single-cell RNA-seq subclustering analysis with mesenchymal cells 
(Col1a1+ clusters except mesothelial cells, n = 6,252 cells) shows expansion of 
Sfrp1+ cell populations in NDUFS2 cKO mice compared to NDUFS2 control mice. 
a, UMAP embedding of lung mesenchymal cells, colored by cell type. 
Annotation per the recently published 3-axes classification system74. b, UMAP 
plot depicting mesenchymal cell origins in regard to the mouse genotype.  
c, Bar plots demonstrating the composition of mesenchymal subclusters in cells 
from NDUFS2 control and NDUFS2 cKO mice. d, Heatmap showing selected 
marker gene expression in different mesenchymal cellular subsets. e–g, Lung 
sections from 21-day-old NDUFS2 control and NDUFS2 cKO mice (n = 3 each 

genotype, both male and female) were in situ RNA hybridized with indicated 
target probes (RNAscope®). Magnified images (boxed region) are shown on the 
right. Representative lung sections (e–f) showing subpopulations of fibroblasts, 
double positive for Pdg fra+ (magenta, arrow) and Sfrp1+ (cyan, arrow), emerge in 
NDUFS2 cKO lungs. Scale bars, 50 μm and 20 μm (magnified inset). f′, Magnified 
images of dotted line boxed region shows a fibroblast, double positive for 
Pdg fra+ (magenta, arrow) and Sfrp1+ (cyan, arrow) is located next to a linear thin 
Sftpc+ cell (gray, asterisk). Representative images (g) of lung sections in situ 
RNA hybridized with negative control probes. Scale bars, 50 μm and 20 μm 
(magnified inset). h–i, UMAP plots showing expression of Sfrp1 (h) and Timp1 (i) 
in subclusters of mesenchymal cells. Darker color indicates higher expression.



Extended Data Fig. 7 | Postnatal transitional cells are characterized by 
increased ISR. a, Gene set enrichment analysis of top gene signatures that  
are up-regulated (blue) or down-regulated (red) in lung epithelial cells from 
NDUFS2 cKO mice (n = 7) compared to NDUFS2 control mice (n = 8). FDR ≤ 0.05. 
b, Enrichment plot of the ISR signature genes in lung epithelial cells from 
NDUFS2 cKO mice (n = 7) compared to NDUFS2 control mice (n = 8) (normalized 
enrichment score; 2.80, false discovery rate q value <0.0001). c, Expression 
levels of Atf genes in epithelial subclusters are plotted in violin plots. d, Violin 

plots of ISR enrichment scores across all the cell clusters. p < 2.2 × 10−16 by 
Kruskal-Wallis test. Transitional cells have more enriched ISR gene signature 
than any other cell types (*** adjusted p < 2.0 x 10−16 by post-hoc pairwise 
Mann-Whitney test with Holm method, p values are in the Source Data).  
e, Heatmap of ISR signature genes by epithelial subclusters. Results are from 
RNA-sequencing analysis of lung epithelial cells isolated from fifteen 35-day-old 
mice (a–b, related to Fig. 4a-b), and single-cell RNA sequencing analysis from 
eight 21-day-old mice (c–e).
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Postnatal transitional cells from NDUFS2 cKO mice 
display distinct features compared to those identified in other postnatal or 
adult lung injury and repair models. a–d, Re-analysis of postnatal lung 
epithelium from Negretti et al. (mouse lung development atlas, n = 11,807 
cells)14 integrated with our single-cell RNA-seq data of epithelium (9,322 cells). 
ISR enrichment scores across the postnatal epithelial cell types within the 
single-cell mouse lung development atlas (a). Higher score indicates higher 
enrichment of the ISR signature genes. p < 2.2 × 10−16 by Kruskal-Wallis test. 
Transitional cells have more enriched ISR gene signatures than other epithelial 
cells (** adjusted p < 0.01 by post-hoc pairwise Mann-Whitney test with Holm 
method, p values are in the Source Data). Violin plots (b) showing ISR 
enrichment score in transitional cells from two single-cell RNA-seq data. 
p < 2.2 × 10−16 by Mann-Whitney test. UMAP embedding of integrated postnatal 
lung epithelial cells (c) colored by the cell types as annotated in original 
analyses. RNA-velocity vectors (d) were calculated and overlaid on the UMAP 
embedding. While normal postnatal transitional cells are predicted to 
differentiate to AT1 cells by RNA velocity analysis, transitional cells in NDUFS2 
cKO mice are not. Please note that RNA velocity estimates should be 
interpreted with caution as they can be biased by a low-dimensional 
representation75. e–h, Re-analysis of lung epithelium from Hurskainen et al. 
(postnatal hyperoxia model, n = 9,975 cells)43 integrated with our single-cell 
RNA-seq data of epithelium (9,322 cells). ISR enrichment scores in AT2 cells 
from hyperoxia-exposed lungs and normoxia-exposed lungs are shown in 
violin plots (e). p = 1.3 × 10−12 by Mann-Whitney test. Violin plots showing ISR 
enrichment scores in transitional cells from NDUFS2 cKO mice and AT2 cells 
from hyperoxia-exposed mice (f). p < 2.2 × 10−16 by Mann-Whitney test. UMAP 
embedding of integrated lung epithelial cells (g) colored by the same cell type 
as annotated in original analyses. RNA-velocity vectors were calculated and 

overlaid on the UMAP plots depicting cell identity by experimental conditions 
(h). i–j, Re-analysis of lung epithelium from Strunz et al. (adult bleomycin injury 
model, n = 32,559 cells)23 integrated with our single-cell RNA-seq data of 
epithelium (9,322 cells). ISR enrichment scores across the epithelial cell types 
within Strunz et al. dataset (i). p < 2.2 × 10−16 by Kruskal-Wallis test. ISR gene 
signatures of Krt8+ ADI cells are more enriched compared to other cell types 
(*** adjusted p < 2.0 × 10−16 by post-hoc pairwise Mann-Whitney test with Holm 
method, p values are in the Source Data). Violin plots ( j) showing ISR enrichment 
score in transitional cells from two single-cell RNA-seq data. p < 2.2 × 10−16 by 
Mann-Whitney test. k–l, Re-analysis of lung epithelium from Choi et al. (adult 
bleomycin injury model, n = 12,179 cells)24 integrated with our single-cell RNA-seq 
data of epithelium (9,322 cells). ISR enrichment scores across the epithelial  
cell types within Choi et al. dataset (k). p < 2.2 × 10−16 by Kruskal-Wallis test.  
ISR gene signatures of DATPs are more enriched than primed AT2, cycling AT2, 
and AT1 (*** adjusted p < 2.0 × 10−16 by post-hoc pairwise Mann-Whitney test 
with Holm method, p values are in the Source Data). Violin plots (l) showing 
ISR enrichment score in transitional cells from two single-cell RNA-seq data. 
p < 2.2 × 10−16 by Mann-Whitney test. m–n, Re-analysis of lung epithelium from 
Kobayashi et al. (mouse lung organoids, n = 5,705 cells)28 integrated with our 
single-cell RNA-seq data of epithelium (9,322 cells). ISR enrichment scores 
across the epithelial cell types within Kobayashi et al. dataset (m). p < 2.2 × 10−16 
by Kruskal-Wallis test. ISR gene signatures of PATS are more enriched than those 
of other epithelial cells (* adjusted p < 0.05, *** adjusted p < 1.0 × 10−14 by post-
hoc pairwise Mann-Whitney test with Holm method, p values are in the Source 
Data). Violin plots (n) showing ISR enrichment scores in transitional cells from 
two single-cell RNA-seq data. p < 2.2 × 10−16 by Kruskal-Wallis test. *** adjusted 
p < 2.0 × 10−16 by post-hoc pairwise Mann-Whitney test with Holm method.
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Extended Data Fig. 9 | Inhibiting the ISR improves structural abnormalities 
in NDUFS2 cKO mice. Representative images of lung histology (hematoxylin- 
eosin stain) from a, 5-month-old NDUFS2 control mice, b, 49-day-old NDUFS2 
cKO mice that did not receive ISRIB, prior to death, and c, 5-month-old NDUFS2 
cKO mice that received ISRIB. Scale bars, 1 mm (whole lung images) and 50 μm 
(close-up images). d, Survival of male NDUFS2 cKO mice with or without ISRIB 
(NDUFS2 cKO n = 7; NDUFS2 cKO + ISRIB n = 14 mice; p = 0.0002 by log-rank 
test) and male NDUFS2 control mice with ISRIB (NDUFS2 control + ISRIB n = 8 
mice). e, Survival of female NDUFS2 cKO mice with or without ISRIB (NDUFS2 
cKO n = 8; NDUFS2 cKO + ISRIB n = 13 mice; p < 0.0001 by log-rank test) and 

female NDUFS2 control mice with ISRIB (NDUFS2 control + ISRIB n = 6 mice).  
f, Survival of NDUFS2 cKO mice with or without NMN (NDUFS2 cKO n = 18; 
NDUFS2 cKO + NMN n = 22 mice; p = 0.0010 by log-rank test) and NDUFS2 control 
mice with NMN (NDUFS2 control + NMN n = 13). g, Survival of male NDUFS2 cKO 
mice with or without NMN (NDUFS2 cKO n = 9; NDUFS2 cKO + NMN n = 10 mice; 
p = 0.0087 by log-rank test) and male NDUFS2 control mice with NMN (NDUFS2 
control + NMN n = 7). h, Survival of female NDUFS2 cKO mice with or without NMN 
(NDUFS2 cKO n = 9; NDUFS2 cKO + NMN n = 12 mice; p = 0.0284 by log-rank test) 
and female NDUFS2 control mice with NMN (NDUFS2 control + NMN n = 6).



Extended Data Fig. 10 | Administration of ISRIB or NMN decreases the 
pathologic ISR activation observed in NDUFS2 cKO mice. a–c, RNA-sequencing 
analysis of lung epithelial cells isolated from 35-day-old mice (WT n = 6; NDUFS2 
control n = 21; NDUFS2 control + ISRIB n = 8; NDUFS2 control + NMN n = 11; 
NDUFS2 control/NDI1 n = 7; NDUFS2 cKO n = 13; NDUFS2 cKO + ISRIB n = 9; 
NDUFS2 cKO + NMN n = 11; NDUFS2 cKO/NDI1 n = 8 mice). Data in Fig. 4a-b were 
included in the analysis. Heatmaps of Ndufs2 and ISR signature gene transcripts 
(a). Enrichment plots of the ISR signature genes in lung epithelial cells from 

NDUFS2 cKO mice with vs. without ISRIB (b) (normalized enrichment score; 
−2.51, false discovery rate q value <0.0001), and NDUFS2 cKO mice with vs. 
without NMN (c) (normalized enrichment score; −2.39, false discovery rate q 
value <0.0001). d, Intracellular NADH/NAD+ ratios in lung epithelial cells from 
35-day-old mice (NDUFS2 control n = 13; NDUFS2 control + ISRIB n = 8; NDUFS2 
control + NMN n = 9; NDUFS2 cKO n = 7; NDUFS2 cKO + ISRIB n = 9; NDUFS2 cKO 
+ NMN n = 9; WT n = 6 mice). p < 0.0001 by ANOVA. Adjusted p values by Šídák’s 
multiple comparisons test were provided in the graph.
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Extended Data Fig. 11 | Inhibition of mitochondrial complex I prevents AT2 
to AT1 differentiation in vitro. a–e, RNA sequencing analysis of lung epithelial 
cells isolated from 6-day-old mice and 35-day-old mice (P6 NDUFS2 control n = 6, 
P6 NDUFS2 cKO n = 6; P35 NDUFS2 control n = 8; P35 NDUFS2 cKO n = 7 mice). 
P35 data is from Fig. 4a,b. Heatmaps of ATF and ISR signature gene transcripts 
(a). b, Enrichment plot of the ISR signature genes in lung epithelial cells from P6 
NDUFS2 cKO vs. P6 NDUFS2 control mice (normalized enrichment score; 3.10, 
false discovery rate q value <0.0001). c, Enrichment plot of the ISR signature 
genes in lung epithelial cells from P6 NDUFS2 cKO vs. P35 NDUFS2 cKO mice 
(normalized enrichment score; −2.71, false discovery rate q value <0.0001). 

d–e, Principal components analysis (PCA) shows transcriptomic signatures of 
NDUFS2 control and NDUFS2 cKO lung epithelial cells at P6 were not clearly 
separated. f–h, RNA sequencing analysis of 2-D cultured AT2 cells isolated from 
6-day-old wild-type (WT) mice. Cells were incubated with the mitochondrial 
complex I inhibitor, piericidin A (500 nM) for 16 h before processed for RNA 
isolation. Heatmaps of expression of cell type marker genes (f), and ISR 
signature genes including ATF transcripts (g). Enrichment plot of the ISR 
signature genes (h) in 2-D cultured AT2 cells with vs. without piericidin A 
(normalized enrichment score; 2.92, false discovery rate q value <0.0001).



Extended Data Fig. 12 | ISRIB improves limited cell growth of NDUFS2 cKO 
AT2 cells in 3-D organoid culture. a–f, 3-D alveolar organoid cultures with AT2 
cells isolated from 6-day-old Sftpc lineage traced (tdTomato) NDUFS2 control 
and NDUFS2 cKO mice (n = 6 mice (three males and three females) per genotype 
with technical replicates). Representative images of alveolar organoid cultures 
(a–b). Scale bar, 500 μm. Violin plots of organoid diameters (c–e), a proxy for 
alveolar organoid differentiation. The diameters of NDUFS2 cKO organoids 
were smaller than those of NDUFS2 control organoids, which was improved by 
ISRIB administration. p values by Šídák’s multiple comparisons test. Colony 
forming efficiency (CFE), a proxy for organoid proliferation, is shown (f). 
Proliferation is preserved in NDUFS2 cKO AT2 cells. Lines represent median. 

p = 0.9652 by Kruskal-Wallis test. g, Immunoblot analysis of OMA1 protein 
adjusted by COFILIN in mouse lung epithelial cell line (MLE-12). Data represents 
mean ± S.D. of three independent experiments. q values by two-stage linear 
step-up procedure of Benjamini, Krieger and Yekutieli. h–j, Immunoblot 
analysis of ATF4 protein adjusted by COFILIN in MLE-12. Data represents mean 
± S.D. of three independent experiments. Cells were incubated with piericidin 
A (500 nM) or oligomycin (100 nM) for 16 h to inhibit complex I or V (positive 
control), respectively. q values by two-stage linear step-up procedure of 
Benjamini, Krieger and Yekutieli. EV, empty vector; NT, non-targeting control. 
All cell culture media contained aspartate and asparagine.
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Extended Data Fig. 13 | Loss of mitochondrial complex II in lung epithelial 
cells induces mild ISR, which is lower than the ISR induction due to loss of 
mitochondrial complex I. a, The frequency distribution of alveolar thickness 
measured in hematoxylin-eosin stained lung histology of 47–49 day-old mice 
(n = 4 mice, two males and two females per genotype). 4–6 randomly selected 
fields of view from each mouse were evaluated. The x axis shows alveolar 
thickness bins, and the y axis shows the number of alveolar pixels that belong to 
the respective alveolar thickness bin normalized to the total alveolar pixel 
count in the image. Each animal is represented by its own color. Statistical 
significance for genotype was calculated based on F-test for a linear model 

(p = 4.65 x 10−3). b, RNA-seq analysis of lung epithelial cells from 35-day old mice 
(SDHD control n = 6; SDHD cKO n = 7; NDUFS2 control n = 8; NDUFS2 cKO n = 7 
mice). Heatmap of ATF transcripts in lung epithelial cells. c, Relative abundance 
of succinate in lung epithelial cells isolated from 35-day old mice (NDUFS2 
control n = 8; NDUFS2 control/NDI1 n = 7; NDUFS2 cKO n = 7; NDUFS2 cKO/NDI1 
n = 8 mice). d, Relative abundance of succinate in lung epithelial cells isolated 
from 35-day old mice (NDUFS2 control n = 13; NDUFS2 control + ISRIB n = 8; 
NDUFS2 control + NMN n = 9; NDUFS2 cKO n = 7; NDUFS2 cKO + ISRIB n = 9; 
NDUFS2 cKO + NMN n = 9; WT n = 6 mice). Lines represent median. p = 0.2333 by 
Kruskal-Wallis test.



Extended Data Table 1 | Identified cell populations

Cell types identified from single-cell RNA sequencing analysis in Fig. 3a are listed.
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Software and code
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Data collection Oxygen consumption data was collected using Wave 2.6.3.5 software. Immunoblot data was collected using a Wes by ProteinSimple and 
Compass for SW software 5.0.1. Nikon A1C confocal microscope, Nikon Ti2 Widefield microscope, and TissueGnostics imaging software 
system (TissueFAXS 7.1) were used to obtain images. RNA-seq data was collected using Illumina NextSeq 500 system. Raw BCL read files were 
demultiplexed using bcl2fastq V2.20.0 (Illumina), and trimmed using Trimmomatic (version 0.39). For metabolomics, high-resolution HPLC–
tandem mass spectrometry was performed on a Q-Exactive (ThermoFisher Scientific) in line with an electrospray source and an UltiMate 3000 
(ThermoFisher Scientific)  and data were collected using Xcalibur 4.1 software.  Single-cell RNA-seq data was obtained from HiSeq 4000 
instrument (Illumina), and raw sequencing reads were processed using CellRanger v6.0.1. 

Data analysis Image processing and analysis was performed using freely (ImageJ/Fiji 1.53 [NIH]) or commercially available software (Nikon Elements 
(5.11.00)). Immunoblot data were analyzed using Compass for SW software 5.0.1 (ProteinSimple). 
RNA-seq data was analyzed using the R package edgeR.  Reads were then aligned to the GRCm39 reference genome using the STAR aligner 
V2.7.7, and counts were calculated using HTseq V0.11.0.  The ComBat-seq package was used to adjust for batch effect on RNA-seq count data. 
Metabolomic data were analyzed using the MetaboAnalyst software V5.0 and the MetaboAnalystR package V4.1.2.   Single-cell RNA-seq data 
analyses were performed using Seurat v4.0.6 in R v4.1.2 and Scanpy v1.8.1 in Python v3.8.3. Doublets were removed using Scrublet v0.2.1 
from each library.  RNA velocity was calculated with velocyto v0.17 and scVelo v0.2.4.  UCell algorithm was used to evaluate gene signature in 
single-cell datasets.  All code used for analysis is available at https://github.com/MinhoLee-DGU/2023.Han.et.al.Nature 
All other statistical analyses were performed using GraphPad Prism 9.5.0. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All raw sequencing data (.fastq) generated in this study are available at the NCBI BioProject with the following Accession IDs: PRJNA865889, PRJNA940730, 
PRJNA940746, PRJNA940973, PRJNA940986, and PRJNA940992. 
Strunz et al. (GSE141259), Choi et al. (GSE145031), Kobayashi et al. (GSE141634), Negretti et al. (PRJNA674755 and PRJNA693167), Hurskainen et al. 
(PRJNA637911), Molecular Signatures Database (MSigDB), and GRCm39 reference genome were used for analysis.
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Sample size All experiments were performed using sample sizes based on standard protocols in the field. We made every effort to avoid excessive or 
needless use of animals. No statistical tests were used to predetermine sample sizes. We used sample sizes commonly used in literature in the 
field. We used statistical analysis consistent with the sample size for each experiment and found sufficient statistical power with the sample 
sizes used in our study.

Data exclusions No animal data were excluded from analyses.  
Single-cell RNA-seq: Poor quality cells with less than 500 detected genes and a high percentage of mitochondrial genes (>25%) were excluded 
from analyses. 

Replication All experimental data were reliably reproduced in multiple independent experiments as indicated in the figure legends. For in vivo 
experiments, multiple mice were used in at least two independent cohorts to ensure reproducibility.

Randomization Experiments were not randomized. Transgenic mice were predetermined by mouse genotype and therefore could not be randomized.  All 
mice were sex- and age-matched, and littermates when possible.

Blinding Investigators were not blinded. Blinding was not relevant in this study, as groups consisted of previously genotyped mice or treated cell lines 
in order to have correct experimental and control groups. 
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms
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Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies used for immunoblot: anti-Vinculin (abcam, ab129002, clone EPR8185; 1:500 dilution); anti-NDUFS2 (abcam, ab192022, 

clone EPR16266; 1:200 dilution); anti-Oma1 (SCBT, sc-515788, clone H-11; 1:50 dilution), anti-ATF4 (CST, 11815S, clone D4B8; 1:50 



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021

dilution), and anti-Cofilin (CST, 5175T, clone D3F9; 1:10,000 or 1:30,000 dilution).  
 
Antibodies used for immunohistochemistry: anti-CD45 (abcam, ab10558, 1:1500 dilution), anti-Ki67 (abcam, ab16667, clone SP6; 
1:100 dilution), anti-proSftpC (Millipore, AB3786; 1:500 dilution), anti-Podoplanin (abcam, ab11936, clone RTD4E10; 1:2000 dilution). 
 
Antibodies used for cell isolation: anti-mouse biotin-conjugated CD45 (BD Biosciences, 553078, clone 30-F11), anti-mouse biotin-
conjugated CD31 (BD Biosciences 553371, clone MEC 13.3), anti-mouse biotin-conjugated CD16/CD32 (BD Biosciences 553143, clone 
2.4G2), and anti-mouse EpCAM microbeads (Miltenyi Biotec, 130-105-958) without dilution.

Validation The antibodies used in this study were tested by the manufacturer. 
-anti-Vinculin (abcam, ab129002, clone EPR8185). This antibody can be found in 206 citations. The manufacturer also provides 
antibody testing data: https://www.abcam.com/vinculin-antibody-epr8185-ab129002.html 
 
-anti-NDUFS2 (abcam, ab192022, clone EPR16266). This antibody can be found in 3 citations. The manufacturer also provides 
antibody testing data and knockout validation: https://www.abcam.com/ndufs2-antibody-epr16266-ab192022.html 
 
-anti-Oma1 (SCBT, sc-515788, clone H-11). This antibody can be found in 31 citations. The manufacturer also provides antibody 
testing data: https://www.scbt.com/p/oma1-antibody-h-11 
 
-anti-ATF4 (CST, 11815S, clone D4B8). This antibody can be found in 661 citations. The manufacturer also provides antibody testing 
data: https://www.cellsignal.com/products/primary-antibodies/atf-4-d4b8-rabbit-mab/11815 
 
-anti-Cofilin (CST, 5175T, clone D3F9). This antibody can be found in 245 citations. The manufacturer also provides antibody testing 
data: https://www.cellsignal.com/products/primary-antibodies/cofilin-d3f9-xp-rabbit-mab/5175 
 
-anti-CD45 (abcam, ab10558). This antibody can be found in 282 citations. The manufacturer also provides antibody testing data: 
https://www.abcam.com/cd45-antibody-ab10558.html 
 
-anti-Ki67 (abcam, ab16667, clone SP6). This antibody can be found in 1744 citations. The manufacturer also provides antibody 
testing data and knockout validation: https://www.abcam.com/ki67-antibody-sp6-ab16667.html 
 
-anti-proSftpC (Millipore, AB3786). This antibody can be found in 16 citations. The manufacturer also provides antibody testing data:  
https://www.emdmillipore.com/US/en/product/Anti-Prosurfactant-Protein-C-proSP-C-Antibody,MM_NF-AB3786 
 
-anti-Podoplanin (abcam, ab11936, clone RTD4E10). This antibody can be found in 65 citations. The manufacturer also provides 
antibody testing data:  https://www.abcam.com/podoplanin--gp36-antibody-rtd4e10-bsa-and-azide-free-ab11936.html 
 
-anti-mouse biotin-conjugated CD45 (BD Biosciences, 553078, clone 30-F11). This antibody can be found in 4 citations. The 
manufacturer also provides antibody testing data: https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-
reagents/research-reagents/single-color-antibodies-ruo/biotin-rat-anti-mouse-cd45.553078 
 
-anti-mouse biotin-conjugated CD31 (BD Biosciences 553371, clone MEC 13.3). This antibody can be found in 14 publications. The 
manufacturer also provides antibody testing data: https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-
reagents/research-reagents/single-color-antibodies-ruo/biotin-rat-anti-mouse-cd31.553371 
 
-anti-mouse biotin-conjugated CD16/CD32 (BD Biosciences 553143, clone 2.4G2). This antibody can be found in 15 citations. The 
manufacturer also provides antibody testing data: https://www.bdbiosciences.com/en-lu/products/reagents/flow-cytometry-
reagents/research-reagents/single-color-antibodies-ruo/biotin-rat-anti-mouse-cd16-cd32.553143 
 
-anti-mouse EpCAM microbeads (Miltenyi Biotec, 130-105-958). The antibody can be found in 5 publications. The manufacturer 
provides antibody testing data: https://www.miltenyibiotec.com/US-en/products/cd326-epcam-microbeads-
mouse.html#130-105-958

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) MLE-12 and 293T were purchased from ATCC. 

Authentication Neither of the cell lines used were authenticated.

Mycoplasma contamination Cell lines tested negative for mycoplasma contamination. Cells were checked periodically. 

Commonly misidentified lines
(See ICLAC register)

These cell lines are not listed in the database of commonly misidentified cell lines maintained by ICLAC. 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Genetically modified mice on C57Bl/6J background were used. The age of the mice used in this study is ranged from newborn to 25-
month-old, and specified in figure legends for each experiment. Both male and female mice were used in all experiments. Animals 
were housed at Northwestern University animal facility, where the animals were on a 14-h on, 10-h off light cycle, room temperature 
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range was 21-23°C, and humidity was within 30-70 % range compliant to the guidelines.   
Ndufs2 floxed mice were genotyped using the following primers: Forward 5' - ATAAGAGTGGATAGGATGTTT - 3' ; flox reverse 5' - 
CATTTCTCCCTTCCCGTC - 3' ; and null reverse 5ʹ-AGTGGCAGAACAATAGAGTGATCCAGGG-3ʹ 
Sdhd floxed mice were genotyped using the following primers: Sdhd Forward 5’ - GGAAGGCTCCAAGGGTGCAG - 3’ ; and Sdhd Reverse 
5’ - CACATACACGCAGGCACTGG - 3’ 
SFTPC-Cre mice were genotyped using the following primers: Cre Forward: 5’-GCAGAACCTGAAGATGTTCGCGAT-3’ ; Cre Reverse: 5’-
AGGTATCTCTGACCAGAGTCATCC-3’ ; Internal Control Forward: 5’-CTAGGCCACAGAATTGAAAGATCT-3’ ; and Internal Control Reverse: 
5’-GTAGGTGGAAATTCTAGCATCATCC-3’ 
NDI1-LSL mice were genotyped using the following primers: Rosa26 Fwd  5’ – GAGTTCTCTGCTGCCTCCTG; Rosa26 Rev 5’ – 
CCGACAAAACCGAAAATCTG; and WPRE B Fwd 5’ – GACGAGTCGGATCTCCCTTT.  
ROSA26Sor CAG-tdTomato mice were genotyped using the following primers: 5’-GGC ATT AAA GCA GCG TAT CC-3’ ;  5’-CTG TTC CTG 
TAC GGC ATG G-3’ ; 5’-CCG AAA ATC TGT GGG AAG TC-3’ ; and  5’-AAG GGA GCT GCA GTG GAG TA-3’

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All mouse work was done in accordance with Northwestern University Institutional Animal Care and Use Committee (IACUC).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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