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Dissecting human population variation in 
single-cell responses to SARS-CoV-2
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Cheuk-Kwong Lee14, Kathy Leung15,16, Joseph T. Wu15,16, Malik Peiris17,18,19, Roberto Bruzzone18,19, 
Laurent Abel20,21,22, Jean-Laurent Casanova20,21,22,23,24, Sophie A. Valkenburg18,25, 
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Humans display substantial interindividual clinical variability after SARS-CoV-2 
infection1–3, the genetic and immunological basis of which has begun to be 
deciphered4. However, the extent and drivers of population differences in immune 
responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing 
data for peripheral blood mononuclear cells—from 222 healthy donors of diverse 
ancestries—that were stimulated with SARS-CoV-2 or influenza A virus. We show that 
SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene 
activity compared with influenza A virus, and a unique pro-inflammatory signature  
in myeloid cells. Transcriptional responses to viruses display marked population 
differences, primarily driven by changes in cell abundance including increased 
lymphoid differentiation associated with latent cytomegalovirus infection. Expression 
quantitative trait loci and mediation analyses reveal a broad effect of cell composition 
on population disparities in immune responses, with genetic variants exerting  
a strong effect on specific loci. Furthermore, we show that natural selection has 
increased population differences in immune responses, particularly for variants 
associated with SARS-CoV-2 response in East Asians, and document the cellular and 
molecular mechanisms by which Neanderthal introgression has altered immune 
functions, such as the response of myeloid cells to viruses. Finally, colocalization and 
transcriptome-wide association analyses reveal an overlap between the genetic basis 
of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into 
the factors contributing to current disparities in COVID-19 risk.

A notable feature of the COVID-19 pandemic is the substantial clini-
cal variation among individuals infected with SARS-CoV-2, ranging 
from asymptomatic infection to fatal disease1–3. Risk factors include 
advanced age1 as well as male sex5, comorbidities6 and host genetics4,7,8. 
Furthermore, variation in innate immunity9–11—including inborn errors 
or neutralizing auto-antibodies against type I interferons12–14—contri-
bute to variation in clinical outcome, and epidemiological and genetic 
data suggest differences between populations6,7,15,16. This, together with 
reports of ancestry-related differences in transcriptional responses 
to immune challenges17–19, calls for investigations of the magnitude 
and drivers of variation in immune responses to SARS-CoV-2 across 
populations worldwide.

Pathogen-imposed selection pressures have been paramount dur-
ing human evolution20. Human adaptation to RNA viruses, through 
selective sweeps or archaic admixture, has been identified as a source 
of population genetic differentiation18,21,22 and adaptation signals have 
been reported at coronavirus-interacting proteins in East Asians23,24. 

There is also evidence for links between archaic introgression and 
immunity25, with Neanderthal haplotypes associated with COVID-19 
severity26,27. However, the effects of natural selection and archaic admix-
ture on immune responses to SARS-CoV-2 remain to be investigated.

We addressed these questions by exposing peripheral blood mono-
nuclear cells (PBMCs) from individuals of Central African, West  
European and East Asian descent to SARS-CoV-2 and, for comparison, 
to influenza A virus (IAV). By combining single-cell RNA-sequencing 
(scRNA-seq) with quantitative and population genetics approaches, 
we delineate environmental and genetic drivers of population differ-
ences in immune responses to SARS-CoV-2.

Single-cell responses to RNA viruses
We characterized transcriptional responses to SARS-CoV-2 and IAV by 
performing scRNA-seq analysis of PBMCs from 222 SARS-CoV-2-naive 
donors originating from three geographical locations (Central Africa, 
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n = 80 male; West Europe, n = 80 male; East Asia, n = 36 female and 
26 male) and with different genetic ancestries (Supplementary Fig. 1 
and Supplementary Table 1). PBMCs were treated for 6 h (Supple-
mentary Note 1, Supplementary Fig. 2 and Supplementary Table 2) 
with a mock-control (non-stimulated), SARS-CoV-2 (ancestral strain, 
BetaCoV/France/GE1973/2020) or IAV (H1N1/PR/8/1934). We cap-
tured over 1 million high-quality single-cell transcriptomes (Fig. 1a, 
Supplementary Fig. 3 and Supplementary Table 3a). By combining 
transcriptome-based clusters with cellular indexing of transcriptomes 
and epitopes by sequencing (CITE-seq; Methods), we defined 22 cell 
types across myeloid, B, CD4+ T, CD8+ T and natural killer (NK) immune 
lineages (Fig. 1b, Supplementary Fig. 4 and Supplementary Table 3b–d). 
After virus exposure, most cell types showed moderate changes in 
abundance, with the strongest changes observed in the myeloid line-
age after IAV treatment (Supplementary Note 2 and Supplementary 
Table 3e).

After adjusting for technical factors (Methods and Supplementary 
Fig. 5), we found that lineage identity was the main driver of gene expres-
sion variation (around 32%), followed by virus exposure (around 27%) 
(Fig. 1b,c). Both viruses induced a strong transcriptional response, 
with 2,914 genes upregulated (false-discovery rate (FDR) < 0.01, 
log2[FC] > 0.5; out of 12,655 with detectable expression; Supplemen-
tary Table 3f). These responses were highly correlated across lineages 
and featured a strong induction of interferon-stimulated genes (ISGs) 
(Extended Data Fig. 1a). However, myeloid responses were markedly 
heterogeneous, with SARS-CoV-2 inducing a transcriptional network 
enriched in inflammatory-response genes (Gene Ontology (GO): 
0006954; fold-enrichment (FE) = 3.4, FDR < 4.9 × 10−8; Supplemen-
tary Table 3g). For example, IL1A, IL1B and CXCL8 were highly and 
specifically upregulated in response to SARS-CoV-2 (log2[FC] > 2.8, 
FDR < 2.3 × 10−36), consistent with in vitro and in vivo studies28,29.

To assess interindividual variability in the response to viruses, we 
summarized each individual’s response as a function of their mean 
ISG expression (Supplementary Table 3h). SARS-CoV-2 induced more 
variable ISG activity than IAV across lineages30, with myeloid cells dis-
playing the strongest differences (Levene test, P < 6.2 × 10−6; Extended 
Data Fig. 1b). We determined the contributions of the various inter-
ferons (IFNs) to variation of ISG activity using single-molecule arrays 
(SIMOA) to quantify the levels of secreted IFNα, IFNβ and IFNγ. In the 
SARS-CoV-2 condition, IFNα accounted for up to 57% of ISG variabil-
ity (Extended Data Fig. 2a,b), consistent with its determinant role in 
COVID-19 pathogenesis13. IFNA1-21 transcripts were mostly produced 
by infected CD14+ monocytes and plasmacytoid dendritic cells (pDCs) 
after IAV stimulation, whereas pDCs were the only important source 
of IFNA1-21 after SARS-CoV-2 stimulation (that is, producing 88% of 
transcripts; Extended Data Fig. 2c). IFNA1-21 expression by pDCs was 
weaker after stimulation with SARS-CoV-2 (log2[FC] = 6.4 versus 12.5 
for IAV, Wilcoxon’s rank-sum test, P = 1.2 × 10−16). Nevertheless, pat-
terns of interindividual variability for ISG activity were notably simi-
lar after virus treatment (r = 0.60, Pearson’s P < 1.2 × 10−22; Extended 
Data Fig. 2d), indicating that the IFN-driven response is largely shared 
between SARS-CoV-2 and IAV.

Cellular heterogeneity across populations
We assessed how immune responses differ across populations by com-
paring male individuals of African and European ancestries, who were 
sampled in a single recruitment effort thereby mitigating potential 
batch effects (Methods). As East Asian donors were recruited indepen-
dently and present distinct demographic characteristics (Supplemen-
tary Table 1), they were excluded from cross-population comparisons. 
Focusing on cellular proportions, we detected marked population 
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Fig. 1 | Population single-cell responses to SARS-CoV-2 and IAV. a, The study 
design. The diagram was created using BioRender. b,c, Uniform manifold 
approximation and projection (UMAP) embedding of 1,047,824 PBMCs: resting 
(non-stimulated; NS) or stimulated with SARS-CoV-2 (COV) or IAV for 6 h.  

b, The colours indicate the 22 cell types inferred. c, The distribution of cells  
in the NS, COV and IAV conditions on UMAP coordinates. The contour plot 
indicates the overall density of cells, and the coloured areas delineate regions 
of high cell density in each condition (NS (grey), COV (red) and IAV (blue)).
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differences in lineage composition, particularly for NK cells (Fig. 2a 
and Supplementary Table 4a). A subset identified as memory-like NK 
cells31 constituted 55.2% of the NK compartment in African-descent 
individuals, but only 12.2% in Europeans (Wilcoxon’s rank-sum test, 
P < 1.3 × 10−18; Extended Data Fig. 3a,b and Supplementary Fig. 6). African 
donors also presented higher proportions of CD16+ monocytes32 and 
memory lymphocyte subsets, such as memory B cells, effector CD4+ 
T cells and effector memory re-expressing CD45RA (EMRA) CD8+ T cells 
(Wilcoxon’s rank-sum test, P < 4.7 × 10−3).

Across lineages, we found 3,389 genes displaying population differ-
ences in expression in the basal state (popDEGs; FDR < 0.01, |log2[fold 
change (FC)]| > 0.2) and 898 and 652 displaying differential responses 
between populations (popDRGs; FDR < 0.01, |log2[FC]| > 0.2) after 
stimulation with SARS-CoV-2 and IAV, respectively (Fig. 2b and Sup-
plementary Table 4b,c). popDRGs included key immunity regulators, 
such as the IFN-responsive GBP7 and the gene coding for the mac-
rophage inflammatory protein MIP-3, CCL23, both of which were more 
strongly upregulated in Europeans (Fig. 2c). The GBP7 response was 
common to both viruses and all lineages (log2[FC] > 0.88, Student’s 
t-test, adjusted P (Padj) < 1.4 × 10−3), but that of CCL23 was specific to 
SARS-CoV-2-stimulated myeloid cells (log2[FC] = 0.72, Student’s t-test, 

Padj = 5.3 × 10−4). We estimated that population differences in cellular  
composition accounted for 15–47% of popDEGs and for 7–46% of  
popDRGs, with the strongest impact on NK cells (Fig. 2b,d and Extended 
Data Fig. 3c). Variation in cellular composition mediated pathway-level 
differences in response to viral stimulation between populations (Sup-
plementary Table 4d). For example, in virus-stimulated NK cells, genes 
involved in the promotion of cell migration, such as CSF1 or CXCL10, 
were more strongly induced in Europeans (normalized enrichment 
score > 1.5, gene set enrichment analysis, Padj < 0.009). However, the 
loss of this signal after adjustment for cellular composition (Fig. 2e) 
indicates that fine-scale cellular heterogeneity drives population dif-
ferences in immune responses to SARS-CoV-2.

Repercussions of CMV infection
We next investigated the sources of population differences in cellular 
composition. We found no strong genetic effects on cellular propor-
tions (Supplementary Note 3 and Supplementary Table 4e), suggesting 
a predominantly environmental origin to such population differences. 
As latent cytomegalovirus (CMV) infection alters cellular propor-
tions33–35 and its prevalence varies across populations36, we determined 
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of cell migration (GO:0030335) in the NK lineage. For each stimulus, gene set 
enrichment analysis enrichment curves are shown before and after adjusting 
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the centre line shows the median; the notches show the 95% confidence intervals 
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the whiskers show 1.5× interquartile range. The number (n) of independent 
biological samples is indicated where relevant.
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the CMV+/− serostatus of the samples. All but one of the African-descent 
individuals were CMV+ (99%), versus 31% of Europeans, and CMV+ was 
associated with higher proportions of memory-like NK and CD8+ EMRA 
T cells in Europeans (Fig. 2f and Extended Data Fig. 3d). Using mediation 
analysis, we estimated that CMV serostatus accounts for up to 73% of the 
differences in the proportion of these cell types between Africans and 
Europeans; these differences substantially impact the transcriptional 
response to SARS-CoV-2 (Supplementary Table 4f,g, Supplementary 
Notes 4 and 5 and Supplementary Fig. 7). However, other than its effects 
on cellular composition, CMV+ had a limited direct effect on SARS-CoV-2 
responses, with only one gene presenting significant expression dif-
ferences in response to this virus (ERICH3 in CD8+ T cells, log2FC = 1.7, 
FDR = 0.007; Supplementary Table 4h). These findings highlight how 
differing environmental exposures, such as CMV infection, may lead 
to population differences in the responses to SARS-CoV-2 through 
changes in the lymphoid composition.

Genetic basis of the leukocyte response
To assess the effects of human genetic variants on transcriptional varia-
tion, we mapped expression quantitative trait loci (eQTLs) jointly in all 
three populations, focusing on cis-regulatory variants. At an FDR of 1%, 
we identified 1,866–4,323 independent eQTLs per lineage, affecting 
5,198 genes (Fig. 3a and Supplementary Table 5a). Among the 9,150 
eQTLs detected, 11% were ancestry specific (n = 973; Supplementary 
Note 6), underscoring the importance of including diverse ancestries 
in genomics research. Increasing the resolution to 22 cell types revealed 
an additional 3,603 eQTLs (Extended Data Fig. 4a,b and Supplementary 
Table 5b). We found that 79% of eQTLs were replicated (P < 0.01) in at 
least three cell types, but only 22% were common to all lineages. In total, 
812 eQTLs were cell-type-specific, around 45% of which were detected 
in myeloid cells (Extended Data Fig. 4b), including a pDC-specific eQTL 
(rs114273142) at MIR155HG—hosting a micro RNA that promotes sensitiv-
ity to type I IFNs37 (Extended Data Fig. 4c and Supplementary Note 7). 
Broadly, eQTL effect sizes were more correlated across ontogenetically 
related cell types (mean correlation within and between lineages of 
r = 0.60 and 0.47, Wilcoxon’s rank-sum test, P = 6.2 × 10−6; Extended 
Data Fig. 4d).

Focusing on variants that altered responses to viral stimuli (reQTLs), 
we identified 1,505 reQTLs affecting 1,213 genes (Supplementary 
Table 5c,d). Supporting the replicability of the results, our IAV reQTLs 
are enriched in genes that are reported to contain IAV-specific eQTLs19 
(OR > 3.2, Fisher’s exact test, P < 9.4 × 10−4), with more than 98% of 
replicated eQTLs affecting expression in the same direction (Supple-
mentary Note 8, Supplementary Fig. 8 and Supplementary Table 5e). 
The correlation of reQTL effect sizes across ontogenetically related 
cell types was weaker than for eQTLs (r = 0.36 and 0.50, respectively, 
Wilcoxon’s rank-sum test, P < 5.6 × 10−13; Extended Data Fig. 4d). Fur-
thermore, the proportion of virus-dependent reQTLs differed across 
cell types. In lymphoid cells, only 7.7% of reQTLs differed in effect size 
between viruses (interaction P < 0.01; Fig. 3b,c), whereas 49% of myeloid 
reQTLs were virus dependent (interaction P < 0.01), with 46 and 185 
reQTLs displaying specific, stronger effects after SARS-CoV-2 and IAV 
stimulation, respectively. The strongest SARS-CoV-2 reQTL (rs534191, 
Student’s t-test, P = 1.96 × 10−16 (SARS-CoV-2) and P = 0.05 (IAV); Fig. 3d) 
was identified in myeloid cells at MMP1, encoding a biomarker of  
COVID-19 severity38. These analyses reveal that the effects of virus- 
induced reQTLs are cell-type dependent and highlight the virus speci-
ficity of the genetic basis of the myeloid response.

Ancestry effects on immune responses
To evaluate the contribution of genetic variation to population differ-
ences in immune responses, we focused on popDEGs and popDRGs. We 
found that 11–24% of the genes expressed in each lineage had at least one 

eQTL, but this proportion increased up to 56% and 60% for popDEGs  
and popDRGs that were not explained by cellular heterogeneity, 
respectively (Fisher’s exact test, P < 1.4 × 10−6; Fig. 3e and Extended Data  
Fig. 5a). The popDEGs and popDRGs displaying the largest population 
differences were more likely to be under genetic control and associated 
with large-effect (r)eQTLs (Extended Data Fig. 5b–d). We used media-
tion analysis to assess, for each gene, immune lineage and virus, the frac-
tion of population differences explained by genetics (that is, the most 
significant eQTL) or cellular heterogeneity (Supplementary Table 6 and 
Supplementary Note 9). Cellular composition had a broad effect on 
population differences in gene expression and viral responses (explain-
ing 16–62% of differences per lineage and virus, with the strongest effect 
in NK cells), whereas genetics had a weaker effect (explaining 13–35% 
of population differences; Fig. 3f and Extended Data Fig. 5e). However, 
genetics had strong effects on a gene subset (141–433 genes per line-
age) for which they accounted for 32–58% of population differences. 
For example, 81–100% of the differences in GBP7 expression between 
Africans and Europeans were explained by a single variant displaying 
strong population differentiation (rs1142888, derived allele frequency 
(DAF) = 0.13 and 0.53 in Africans and Europeans, respectively, fixation 
index (FST) = 0.26, |βeQTL| > 1.7 across lineages after stimulation). Thus, 
population variation in immune responses is driven largely by cellular 
heterogeneity, but genetic variants with marked allele frequency vari-
ation contribute to population differences at specific loci.

Natural selection and SARS-CoV-2 responses
To investigate the contribution of natural selection to population dif-
ferences in immune responses, we first searched for overlaps between 
(r)eQTLs and genome-wide signals of local adaptation, measured by 
the population branch statistic (PBS)39. We identified 1,616 eQTLs 
(1,215 genes) and 180 reQTLs (166 genes) displaying strong popula-
tion differentiation (empirical P < 0.01), 90 of which were ancestry 
specific (Supplementary Table 7a and Supplementary Note 6). Among 
genes harbouring putatively adaptive (r)eQTLs, we found key players  
in IFN-mediated antiviral immunity, such as DHX58 and TRIM14 in 
Africans, ISG20, IFIT5, BST2 and IFITM2-3 in Europeans, and IFI44L and 
IFITM2 in East Asians.

We then used CLUES40 to identify rapid changes in (r)eQTL frequency 
over the last 2,000 generations (that is, 56,000 years) in each popula-
tion (Supplementary Fig. 9 and Supplementary Table 7b). We found sig-
nals of rapid adaptation (maximum |Z| > 3) targeting the same (IFITM2, 
IFIT5) or different (ISG20, IFITM3, TRIM14) eQTLs at highly differentiated 
genes, suggesting repeated adaptations targeting IFN-mediated anti-
viral immunity (Supplementary Note 10, Supplementary Table 7c and 
Supplementary Fig. 10). We determined whether selection had altered 
gene expression in specific cell types or in response to SARS-CoV-2 or 
IAV by testing for increased population differentiation (PBS) at (r)eQTLs 
within each cell type, relative to random single-nucleotide polymor-
phisms (SNPs) matched for allele frequency, linkage disequilibrium (LD) 
and distance to the nearest gene. In the basal state, eQTLs were more 
strongly differentiated in Europeans, the strongest signal observed for 
γδ T cells (Extended Data Fig. 6a). Among popDEGs for which genetics  
mediates more than 50% of the differences between Africans and  
Europeans, 34% presented signals of rapid adaptation in Europeans 
(versus 21% in Africans, Fisher’s exact test, P = 7.7 × 10−6). For example,  
population differences at GBP7 have been driven by a frequency 
increase, over the last 782–1,272 generations, of the rs1142888-G allele 
in Europeans (maximum |Z| > 4.3, Extended Data Fig. 6b).

Focusing on responses to viruses, SARS-CoV-2 reQTLs displayed 
increased population differentiation in East Asians (FE = 1.24, one-sided 
resampling, P < 2 × 10−4; Extended Data Fig. 6c) and were enriched in 
East-Asian-specific variants (OR > 4.2, Fisher’s exact test, P < 2.3 × 10−6; 
Supplementary Note 6 and Supplementary Table 7d). Furthermore, 
among SARS-CoV-2-specific reQTLs, 28 reQTLs (5.3%) displayed 
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signals of adaptation in East Asians starting 770–970 generations ago 
(around 25,000 years)—a timeframe associated with genetic adapta-
tion at SARS-CoV-2-interacting proteins23 (OR relative to other popu-
lations = 2.6, Fisher’s exact test, P = 7.3 × 10−4; Fig. 4a and Extended 
Data Fig. 7a–c). An example is the immune mediator LILRB1, which 
has a SARS-CoV-2-specific reQTL (rs4806787) in pDCs (Extended Data 
Fig. 7d). However, the selection events making the largest contribution 
to the differentiation of SARS-CoV-2 responses in East Asia (top 5% PBS) 
began before this period (more than 970 generations ago, OR = 1.94, 
Fisher’s exact test, P = 0.019; Fig. 4b). For example, the rs1028396-T 
allele (80% frequency in East Asia versus 16–25% elsewhere), associated 
with a weaker response of SIRPA to SARS-CoV-2 in CD14+ monocytes, 

presents a selection signal beginning more than 45,000 years ago 
(Fig. 4b and Extended Data Fig. 7e). SIRPα inhibits infection by endo-
cytic viruses, including SARS-CoV-241. These results suggest recurrent 
genetic adaptation targeting antiviral immunity over the last 50,000 
years, contributing to present-day population differences in immune 
responses to SARS-CoV-2.

Neanderthal heritage on immune functions
We investigated the effects of Neanderthal introgression on immune 
responses to viruses by defining 100,345 ‘archaic’ variants (aSNPs) 
and testing for biased eQTL representation among aSNPs relative to 
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random, matched SNPs (Methods). We found that archaic haplotypes 
were 1.4–1.5 times more likely to alter gene expression in the basal 
state (one-sided permutation test, P = 3 × 10−4) and after stimulation 
with SARS-CoV-2 or IAV (one-sided permutation test, P = 9 × 10−4 and 
3 × 10−3, respectively) in Europeans, and this trend was only marginally 
significant in East Asians after viral stimulation (FE > 1.2, one-sided 
permutation test, P < 2 × 10−2; Extended Data Fig. 8a and Supplemen-
tary Table 8a–c). Enrichment was strongest in SARS-CoV-2-stimulated 
CD16+ monocytes from Europeans, suggesting that archaic haplo-
types altering myeloid responses have been preferentially retained in 
their genomes. Archaic haplotypes with eQTLs are generally present 
at higher frequencies compared with archaic haplotypes without eQTLs 
(Δf(introgressed allele) >3.2%, Student’s t-test, Padj < 8 × 10−3; Extended 
Data Fig. 8b and Supplementary Table 8d,e), even after adjustment for 
minor allele frequency (MAF) to ensure similar power for eQTL detec-
tion, supporting the adaptive nature of Neanderthal regulatory alleles.

To characterize the functional consequences of archaic introgression 
at the cell-type level, we focused on introgressed eQTLs for which the 
archaic allele was found at its highest frequency in Eurasians (that is, 5% 
most frequent). These included known adaptively introgressed variants 
at OAS1-3 or PNMA1 in Europeans and TLR1, FANCA or IL10RA in East 
Asians18,42–46, for which we delineated the cellular and molecular effects 

(Extended Data Figs. 8c and 9a and Supplementary Table 8f). Yet, we 
identified previously unreported signals of Neanderthal introgression 
affecting immunity phenotypes. For example, an introgressed reQTL 
(rs58964929-A, 38% of Europeans versus 22% of East Asians) decreases 
UBE2F responses to SARS-CoV-2 and IAV in monocytes (Extended Data 
Fig. 9b). UBE2F is involved in neddylation, a post-translational modifi-
cation that is required for the nuclear translocation of IRF7 by myeloid 
cells after RNA virus infection and, therefore, for the induction of type 
I IFN responses47. Likewise, an introgressed eQTL (rs11119346-T, 43% in 
East Asians versus less than 3% in Europeans) downregulates TRAF3IP3—
a negative regulator of the cytosolic RNA-induced IFN response48—
in IAV-infected monocytes, thereby favouring IFN release after viral 
infection (Extended Data Fig. 9c,d). We also identified a 35.5 kb Nean-
derthal haplotype reaching 61% frequency in East Asians (versus 24% 
in Europeans, tagged by rs9520848-C allele) that is associated with 
higher basal expression of the cytokine gene TNFSF13B by MAIT cells 
(Extended Data Fig. 9e,f). Collectively, these results reveal how archaic 
introgression has altered immune functions in present-day Eurasians 
at the molecular and cellular level.

Contribution of eQTLs to COVID-19 risk
We investigated the contributions of genetic variants altering responses 
to SARS-CoV-2 ex vivo to COVID-19 risk in vivo by determining whether 
(r)eQTLs were more strongly associated with COVID-19 GWAS hits8 
than random, matched SNPs (Methods). We observed an enrichment in 
eQTLs at loci associated with susceptibility (reported cases) and sever-
ity (hospitalized or critical cases) (FE = 4.1 and FE > 3.8, respectively, 
one-sided resampling, P < 10−4), and a specific enrichment in reQTLs at 
severity loci (FE > 3.7, one-sided resampling, P < 3 × 10−3; Fig. 5a). This 
trend was observed across most cell lineages (Extended Data Fig. 10a). 
Colocalization analyses identified 40 genes at which there was a high 
probability of (r)eQTL colocalization with COVID-19 hits (posterior 
probability that both traits are linked to the same SNP (PPH4 ) > 0.8) and 
transcriptome-wide association studies (TWASs) linked predicted gene 
expression with COVID-19 risk for 30 of these genes (FDRTWAS < 0.01; 
Supplementary Table 9a). These included direct regulators of innate 
immunity, such as IFNAR2 in non-stimulated CD4+ T cells, IRF1 in 
non-stimulated NK and CD8+ T cells, OAS1 in lymphoid cells stimu-
lated with SARS-CoV-2 and IAV, and OAS3 in SARS-CoV-2-exposed CD16+ 
monocytes (Fig. 5b and Extended Data Fig. 10b,c). These results support 
a contribution of immunity-related (r)eQTLs to COVID-19 risk.

Focusing on the evolutionary factors affecting COVID-19 risk, we 
identified 20 eQTLs that (1) colocalized with COVID-19 hits (PPH4 > 0.8) 
and (2) presented positive selection signals (top 1% PBS, n = 13 eQTLs) 
or evidence of archaic introgression (n = 7 eQTLs), 14 of which regulate 
genes of which the expression is correlated with COVID-19 susceptibility 
and/or severity (FDRTWAS < 0.01) (Fig. 6). For example, two variants in 
high LD at DR1 (rs569414 and rs1559828, r2 > 0.73) displayed extremely 
high levels of population differentiation, probably due to selection 
outside Africa (DAF = 0.13 in Africa versus higher than 0.62 in Eurasia; 
Extended Data Fig. 10d). DR1 suppresses type I IFN responses49 and 
the selected alleles, which decrease COVID-19 severity, reduce DR1 
expression in most immune cells (Fig. 6). Likewise, an approximately 
39 kb Neanderthal haplotype, spanning the MUC20 locus in Eurasians, 
contains the rs2177336-T allele that increases MUC20 expression in 
SARS-CoV-2-stimulated cells, particularly for CD4+ T cells, and decreases 
COVID-19 susceptibility (Fig. 6). Together, these results reveal how 
past selection or Neanderthal introgression have impacted immune 
responses that contribute to present-day disparities in COVID-19 risk.

Discussion
Here we show that cell type composition is a major driver of population 
differences in immune responses to SARS-CoV-2. The higher proportions 
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of memory cells in lymphoid lineages from individuals of African 
descent, along with their association with CMV infection, highlight 
how previous environmental exposures can contribute to population 
disparities in cellular activation states. Neglecting socioenvironmental 
factors that covary with ancestry may therefore inflate the estimated 
effects of genetic ancestry on phenotypic variation. One such factor is 
CMV, affecting leukocyte responses to SARS-CoV-2, but the impact of 
other exposures on population variation in immune responses remains 
to be determined. Common genetic variants can also contribute to 
immune response variation, but their effects primarily apply to a subset 
of genes showing strong population differentiation. This is illustrated 
by the rs1142888-G allele, which accounts for the greater than 2.8-fold 
higher levels of GBP7 expression in response to viral stimulation in  
Europeans compared with in Africans. The higher frequency of this 
allele in Europe probably results from selection occurring 21,900–
35,600 years ago. GBP7 facilitates IAV replication by suppressing innate 
immunity50, but also regulates host defence to intracellular bacteria 
such as Listeria monocytogenes and Mycobacterium tuberculosis51, 
providing a plausible mechanism for positive selection at this locus.

This study also shows that natural selection and Neanderthal intro-
gression contributed to differentiate present-day immune responses to 
SARS-CoV-2. We found traces of selection targeting SARS-CoV-2-specific 
reQTLs around 25,000 years ago in the ancestors of East Asians, coin-
ciding with the proposed timing of an epidemic that affected the evo-
lution of host coronavirus-interacting proteins23,24. However, there is 
little overlap between alleles selected during this period and variants 
underlying COVID-19 risk, suggesting changes in the genetic basis of 
infectious diseases over time, possibly due to the evolution of viruses 
themselves. Nevertheless, we identified cases (for example, DR1, 
OAS1-3, TOMM7, MUC20) in which selection or archaic introgression 
contributed to changes in both SARS-CoV-2 immune responses and 
COVID-19 outcome. Studies based on ancestry-aware polygenic risk 
scores from cross-population GWAS will be required to establish a 
formal link between past adaptation and present-day population dif-
ferences in COVID-19 risk.

Finally, the genetic dissection of variation in transcriptional 
responses to SARS-CoV-2 provides mechanistic insights into the effects 
of alleles that are associated with COVID-19 risk. Variants of IRF1, IFNAR2 
and DR1 associated with lower COVID-19 severity increase type I IFN 
signalling in lymphoid cells by upregulating IRF1 and IFNAR2 or down-
regulating DR1, attesting to the importance of efficient IFN signalling 
for a favourable clinical outcome4,12–14. Another example is MUC20, at 
which we identified a Neanderthal-introgressed eQTL that increases 
MUC20 expression in SARS-CoV-2-stimulated CD4+ T cells and decreases 
COVID-19 susceptibility. Given the role of mucins in forming a barrier 
against infection in the respiratory tract, the high MUC20 expression 
in ciliated epithelial cells from the bronchus52 and the detection of the 
MUC20 eQTL in pulmonary tissue (Supplementary Note 11), we suggest 
that the greater resistance to infection conferred by the Neanderthal 
haplotype may result from a similar effect on MUC20 expression in 
the respiratory tract.

We note two main limitations of our results. First, our samples mostly 
originate from male individuals, so the impact of sex on immune vari-
ation was not addressed. Sex has a widespread yet moderate effect on 
both transcriptional responses to microbial threats53 and the genetic 
regulation of gene expression54, supporting the transferability of our 
main conclusions. Nonetheless, examining sex-balanced cohorts will 
enable the characterization of possible sex-specific differences at 
the population scale. Second, given the sample sizes and cell counts 
needed to accurately define population variation in immune activity, we 
focused on a single system (PBMCs) and selected viral strains. Although 
PBMCs constitute a valuable model to characterize peripheral immune 
activation by SARS-CoV-29,10, they provide an incomplete representation 
of the pulmonary epithelium—the primary infection site for respiratory 
viruses. However, we found that 38% of the eQTLs identified in this 

study are also detected in lung tissue55, rising to 72% for eQTLs shared 
across immune lineages (Supplementary Note 11 and Supplementary 
Table 9b). Further studies are needed to examine the transferability 
of our findings to other cell types and to investigate how diverse viral 
strains affect the dynamics of host responses to SARS-CoV-2.

Overall, our results highlight the value of single-cell approaches in 
capturing the full diversity of peripheral immune responses to RNA 
viruses, particularly SARS-CoV-2, and provide insights into environ-
mental, genetic and evolutionary drivers of immune response variation 
across individuals and populations.
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Methods

Sample collection
The individuals of self-reported African (AFB) and European (EUB) 
descent studied are part of the EVOIMMUNOPOP cohort18. In brief, 
390 healthy male donors (188 AFB and 202 EUB) were recruited between 
2012 and 2013 in Ghent (Belgium), thus, before the COVID-19 pandemic. 
Blood was obtained from the healthy volunteers, and the PBMC fraction 
was isolated and frozen. Inclusion in the current study was restricted 
to 80 nominally healthy individuals of each ancestry, aged between 19 
and 50 years at the time of sample collection. Donors of African descent 
originated from West Central Africa, with >90% being born in either 
Cameroon or the Democratic Republic of Congo. For this study, 71 addi-
tional individuals of East Asian descent (ASH) were included, of whom 62 
were retained after quality control (see the ‘scRNA-seq library prepara-
tion and data processing’ section). ASH individuals were recruited at the 
School of Public Health, University of Hong Kong, and were included in a 
community-based sero-epidemiological COVID-19 study (research pro-
tocol number JTW 2020.02). Inclusion for the study described here was 
restricted to nominally healthy ASH individuals (30 men and 41 women) 
aged between 19 and 65 years of age and seronegative for SARS-CoV-2. 
Samples were collected at the Red Cross Blood Transfusion Service 
(Hong Kong) where the PBMC fraction was isolated and frozen. Target 
sample sizes were determined to ensure >80% power for the detection 
of eQTLs with R2 higher than 0.2, at a P < 5 × 10−9 threshold.

In this study, we refer to individuals of Central African (AFB), West 
European (EUB) and East Asian (ASH) ancestries to describe individuals 
who are genetically similar (that is, lowest FST values) to populations 
from West-Central Africa, Western Europe and East Asia, using the 
1000 Genomes (1KG) Project56 data as a reference (Supplementary 
Fig. 1a). Notably, the AFB, EUB and ASH samples present no evidence 
of recent genetic admixture with populations originating from another 
continent, besides two AFB donors who respectively present 22% of 
Near Eastern- and 25% of European-ancestries. Such a moderate level 
of admixture in fewer than 1% of individuals is unlikely to have any  
significant impact on the results presented.

All of the samples were collected after written informed consent 
was obtained from the donors, and the study was approved by the 
ethics committee of Ghent University (B670201214647), the Insti-
tutional Review Board of the University of Hong Kong (UW 20-132), 
and the relevant French authorities (CPP, CCITRS and CNIL). This 
study was also monitored by the Ethics Board of Institut Pasteur 
(EVOIMMUNOPOP-281297).

Genome-wide DNA genotyping
The AFB and EUB individuals were previously genotyped at 4,301,332 
SNPs, using the Omni5 Quad BeadChip (Illumina) with processing as 
previously described18. The additional 71 ASH donors were genotyped 
separately at 4,327,108 SNPs using the Infinium Omni5-4 v.1.2 BeadChip 
(Illumina). We updated SNP identifiers based on Illumina annotation files 
(https://support.illumina.com/content/dam/illumina-support/docu-
ments/downloads/productfiles/humanomni5-4/v1-2/infinium-omni5-
4-v1-2-a1-b144-rsids.zip) and called the genotypes of all ASH individuals 
jointly on GenomeStudio (v.2011.1; https://www.illumina.com/tech-
niques/microarrays/array-data-analysis-experimental-design/genom-
estudio.html). We then removed SNPs with (1) no ‘rs’ identifiers or with 
no assigned chromosome or genomic position (n = 14,637); (2) dupli-
cated identifiers (n = 5,059); or (3) a call rate of <95% (n = 10,622). We 
then used the 1KG Project Phase 3 data56 as a reference for merging 
the ASH genotyping data with that of AFB and EUB individuals and 
detecting SNPs misaligned between the three genotype datasets. Before 
merging, we removed SNPs that (1) were absent from either the Omni5 
or 1KG datasets (n = 469,535); (2) were transversions (n = 138,410);  
(3) had incompatible alleles between datasets, before and after allele 
flipping (n = 1,250); and (4) had allele frequency differences of more 

than 20% between the AFB and Luhya from Webuye, Kenya (LWK) and 
Yoruba from Ibadan, Nigeria (YRI), or between the EUB and Utah resi-
dents with Northern and Western European ancestries (CEU) and British 
individuals from England and Scotland (GBR), or between the ASH and 
Southern Han Chinese (CHS) (n = 777). Once the data had been merged, 
we performed principal component analysis (PCA) using PLINK (v.1.9)57 
and ensured that the three study populations (that is, AFB, EUB and 
ASH) overlapped with the corresponding 1KG populations, to exclude 
batch effects between genotyping platforms (Supplementary Fig. 1a). 
The final genotyping dataset included 3,723,840 SNPs.

Haplotype phasing and imputation
After merging genotypes from AFB, EUB and ASH donors, we filtered 
genotypes for duplicates with bcftools norm --rm-dup all (v.1.16)58 
and lifted all genotypes over to the human genome assembly GRCh38 
with GATK’s (v.4.1.2.0) LiftoverVcf using the RECOVER_SWAPPED_ALT_
REF=TRUE option59. We then filtered out duplicated variants again 
before phasing genotypes with SHAPEIT4 (v.4.2.1)60 and imputing 
missing variants with Beagle5.1 (v.18May20.d20)61, treating each 
chromosome separately. For both phasing and imputation, we used 
the genotypes of 2,504 unrelated individuals from the 1KG Project 
Phase 3 data as a reference (downloaded from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502 and lifted over to GRCh38) and 
downloaded genetic maps from the GitHub pages of the associated 
software (that is, SHAPEIT4 for phasing and Beagle5.1 for imputation). 
A third round of duplicate filtering was performed after phasing and 
before imputation using Beagle5.1 (v.18May20.d20)61. Phasing was 
performed using the setting --pbwt-depth=8 and imputation was 
performed assuming an effective population size (Ne) of 20,000. The 
quality of imputation was assessed by cross-validation; specifically, we 
performed 100 independent rounds of imputation excluding 1% of the 
variants and compared the imputed allelic dosage with the observed 
genotypes for these variants (Supplementary Fig. 1b,c). The results 
obtained confirmed that imputation quality was satisfactory, with 
98% of common variants (that is, MAF > 5%) having an r2 > 0.8 for the 
correlation between observed and imputed genotypes (>95% con-
cordance for 96% of common variants). After imputation, variants 
with a MAF < 1% or with a low predicted quality of imputation (that is, 
DR2 < 0.9) were excluded, yielding a final dataset of 13,691,029 SNPs 
for downstream analyses.

Viruses used in this study
To evaluate population differences in the immune responses to 
SARS-CoV-2, we chose the viral strain that circulated in France at 
the time of our experiments (Autumn 2020). This reference strain  
(BetaCoV/France/GE1973/2020) was supplied by the National Reference 
Centre for Respiratory Viruses hosted by Institut Pasteur and headed 
by S. van der Werf. The human sample from which the strain was iso-
lated was provided by L. Andreoletti from the Robert Debré Hospital. 
To characterize the distinctive features of SARS-CoV-2 responses, we 
included in our study the IAV as a reference comparison of another 
respiratory RNA virus. Specifically, we chose the PR8 strain (IAV, PR/8, 
H1N1/1934) based on our previous experience with this virus, its avail-
ability in the laboratory and its ability to trigger IFN responses in healthy 
human donors53,62. The PR8 strain used was purchased from Charles 
River Laboratories (3X051116) and provided in ready-to-use aliquots 
that were stored at −80 °C.

SARS-CoV-2 stock production
To produce SARS-CoV-2, we used African green monkey kidney Vero 
E6 cells that were tested for mycoplasma contamination and main-
tained at 37 °C in 5% CO2 in Dulbecco’s minimum essential medium 
(DMEM) (Sigma-Aldrich) supplemented with 10% fetal bovine serum 
(FBS, Dutscher) and 1% penicillin–streptomycin (Gibco, Thermo Fisher 
Scientific). Vero E6 cells were plated at 80% confluence in 150 cm2 flasks 
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and infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.01 
in DMEM supplemented with 2% FBS and 1% penicillin–streptomycin. 
After 1 h, the inoculum was removed and replaced with DMEM supple-
mented with 10% FBS and 1% penicillin–streptomycin, and cells were 
incubated for 72 h at 37 °C in 5% CO2. The cell culture supernatant was 
collected and centrifuged for 10 min at 3,000 rpm to remove cellular 
debris, and polyethylene glycol (PEG; PEG8000, Sigma-Aldrich) precipi-
tation was performed to concentrate the viral suspension. In brief, 1 l of 
viral stock was incubated with 250 ml of 40% PEG solution (that is, 8% 
PEG final) overnight at 4 °C. The suspension was centrifuged at 10,000g 
for 30 min at 4 °C and the resulting pellet was resuspended in 100 ml of 
RPMI medium (Gibco, Thermo Fisher Scientific) supplemented with 10% 
FBS (hereafter R10) and viral aliquots were stored at −80 °C. SARS-CoV-2 
viral titres were determined using a focus-forming unit assay as previ-
ously described63. In brief, Vero E6 cells were plated in a 96-well plate 
with 2 × 104 cells per well. The cellular monolayer was infected with 
serial dilutions (1:10) of viral stock and overlaid with a semi-solid 1.5% 
carboxymethylcellulose (Sigma-Aldrich) and 1× MEM medium for 36 h at 
37 °C. Cells were then fixed with 4% paraformaldehyde (Sigma-Aldrich), 
and permeabilized with 1× phosphate-buffered saline, 0.5% Triton 
X-100 (Sigma-Aldrich). Infectious foci were stained with a human 
anti-SARS-CoV-2 spike antibody (H2-162, Hugo Mouquet’s laboratory, 
Institut Pasteur) and the corresponding HRP-conjugated secondary anti-
body (Sigma-Aldrich). Foci were stained using a 3,3′-diaminobenzidine 
staining solution (DAB, Sigma-Aldrich) and counted using the BioSpot 
suite of the C.T.L. ImmunoSpot S6 Image Analyzer.

In vitro peripheral blood mononuclear cell stimulation
We performed scRNA-seq analysis of SARS-CoV-2-, IAV- and mock- 
stimulated (referred to as the non-stimulated condition) PBMCs from 
healthy donors (80 AFB, 80 EUB and 71 ASH) in 16 experimental runs. 
We first performed a kinetic experiment (run 1) on samples from 4 AFB 
and 4 EUB individuals stimulated for 0, 6 and 24 h to validate our in vitro 
model across different timepoints (Supplementary Note 1, Supplemen-
tary Fig. 2 and Supplementary Table 2). The 6 h timepoint was identi-
fied as the optimal timepoint for the analysis (Supplementary Note 1). 
We then processed the rest of the cohort, over runs 2 to 15. Finally, we 
reprocessed some samples (run 16) to assess the technical variability 
in our setting and to increase in silico cell counts (see the ‘scRNA-seq 
library preparation and data processing’ section). Ancestry-related 
batch effects were minimized by scheduling sample processing to 
ensure a balanced distribution of AFB, EUB and ASH donors within 
each run.  Donors used for feach run were randomly selected within 
each population.

For each run, cryopreserved PBMCs were thawed in a 37 °C water 
bath, transferred to 25 ml of R10 medium (that is, RPMI 1640 supple-
mented with 10% heat-inactivated FBS) at 37 °C, and centrifuged at 300g 
for 10 min at room temperature. Cells were counted, resuspended 
at 2 × 106 cells per ml in warm R10 in 25 cm2 flasks, and rested over-
night (that is, 14 h) at 37 °C. The next morning, PBMCs were washed 
and resuspended at a density of 3.3 × 106 cells per ml in R10; 120 µl 
of a suspension containing 4 × 105 cells from each sample was then 
plated in a 96-well untreated plate (Greiner Bio-One) for each of the 
three sets of stimulation conditions. We added 80 µl of either R10 
(non-stimulated), SARS-CoV-2 or IAV stock (corresponding to 4 × 105 
focus-forming units diluted in R10) to the cells, so as to achieve a mul-
tiplicity of infection (MOI) of 1 and an optimal PBMC concentration of 
2 × 106 cells per ml. Cells were incubated at 37 °C for 0, 6 or 24 h for the 
kinetic experiment (run 1), and for 6 h for all subsequent runs (runs 2 
to 16), in a biosafety level 3 (BSL-3) facility at Institut Pasteur, Paris. The 
plates were then centrifuged at 300g for 10 min and supernatants were 
stored at −20 °C until use (see ‘Supernatant cytokine assays’ section). 
All of the samples from the same run were resuspended in Dulbecco’s 
phosphate-buffered saline (Gibco), supplemented with 0.04% bovine 
serum albumin (BSA, Miltenyi Biotec), and multiplexed in eight pools 

according to a pre-established study design (Supplementary Fig. 3a 
and Supplementary Table 3a). The cells from each pool were counted 
using the Cell Countess II automated cell counter (Thermo Fisher  
Scientific) and the cell density was adjusted to 1,000 viable cells per µl 
of 0.04% BSA in phosphate-buffered saline. When performing stimula-
tions, researchers were blinded to the genotype and environmental 
exposures of the individual.

scRNA-seq library preparation and data processing
We generated scRNA-seq cDNA libraries using the Chromium Control-
ler (10x Genomics) according to the manufacturer’s instructions for 
the Chromium Single Cell 3′ Library and Gel Bead Kits (v.3.1). Library 
quality and concentration were assessed using the Agilent 2100 Bio-
analyzer and a Qubit fluorometer (Thermo Fisher Scientific). The final 
products were processed for high-throughput sequencing on a HiSeqX 
platform (Illumina).

Paired-end sequencing reads from each of the 133 scRNA-seq cDNA 
libraries (13 libraries from the kinetic experiment and 120 from the 
population-level study) were independently mapped onto the concat-
enated human (GRCh38), SARS-CoV-2 (hCoV-19/France/GE1973/2020) 
and IAV (A/Puerto Rico/8/1934(H1N1)) genome sequences using the 
STARsolo aligner (v.2.7.8a)64 (Supplementary Fig. 3b). We obtained a 
mean of 10,785 cell-containing droplets per library, and each droplet 
was assigned to its sample of origin with Demuxlet (v.0.1)65, based on 
the genotyping data available for each individual. Singlet/doublet calls 
were compared with the output of Freemuxlet (v.0.1)65 to ensure good 
agreement (Supplementary Fig. 3c–e). We loaded feature-barcode 
matrices for all cell-containing droplets identified as singlets by Demux-
let in each scRNA-seq library onto a SingleCellExperiment (v.1.14.1) 
object66. Data from barcodes associated with low-quality or dying cells 
were removed with a hard threshold-based filtering strategy based 
on three metrics: cells with fewer than 1,500 total unique molecular 
identifier (UMI) counts, 500 detected features or a mitochondrial gene 
content exceeding 20% were removed from each sequencing library 
(Supplementary Fig. 3f). We also discarded samples from nine ASH 
donors from whom fewer than 500 cells were obtained in at least one 
condition (Supplementary Fig. 3g).

We then log-normalized raw UMI counts with a unit pseudocount 
and library size factors (that is, the number of reads associated with 
each barcode) were calculated with quickClusters and computeSum-
Factors from the scran package (v.1.20.1)67. We then calculated the 
mean and variance of log-transformed counts for each gene and broke 
the variance down into a biological and a technical component with 
the fitTrendPoisson and modelGeneVarByPoisson functions of scran. 
This approach assumes that technical noise is Poisson-distributed 
and simulates Poisson-distributed data to derive the mean-variance 
relationship expected in the absence of biological variation. Excess 
variance relative to the null hypothesis is considered to correspond 
to the biological variance. We retained only those genes for which the 
biological variance component was positive with an FDR below 1%. We 
used this filtered feature set and the technical variance component 
modelled from the data to run PCA with denoisePCA from scran, thus 
discarding later components more likely to capture technical noise. 
Doublets (that is, barcodes assigned to cells from different individuals 
captured in the same droplet) are likely to be in close neighbourhoods 
when projected onto a subspace of the data of lower dimensionality. 
We therefore used a k-nearest neighbours approach to discard cryptic 
doublets (that is, barcodes associated to different cells from the same 
individual captured in the same droplet). Barcodes identified as singlets 
by Demuxlet but having over 5 out of 25 doublet nearest neighbours in 
the PCA space were reassigned as doublets and excluded from further 
analyses (Supplementary Fig. 3h).

After data preprocessing, we performed a second round of UMI count 
normalization, feature selection and dimensionality reduction on the 
cleaned data to avoid bias due to the presence of low-quality cells and 



cryptic doublets. Differences in sequencing depth were equalized 
between batches (that is, sequencing libraries) using multiBatchNorm 
from batchelor (v.1.8.1) to scale library size factors according to the 
ratio of mean counts between batches68 (Supplementary Fig. 3i). We 
accounted for the different mean-variance trends in each batch, by 
applying modelGeneVarByPoisson separately for each sequencing 
library, and then combining the results for all batches with combi-
neVar from scran67. We then bound all 133 separate preprocessed 
feature-barcode matrices into a single merged SingleCellExperiment 
object, log-normalized UMI counts according to the scaled size fac-
tors and selected genes with mean log-expression values over 0.01 or 
a biological variance compartment exceeding 0.001 (Supplementary 
Fig. 3j). On the basis of this set of highly variable genes and the variance 
decomposition, we then performed PCA on the whole dataset using 
denoisePCA, and then used Harmony (v.0.1.0) on the PCs to adjust for 
library effects69.

Clustering and cell type assignment
We performed cluster-based cell type identification in each stimula-
tion condition, according to a four-step procedure. We first performed 
low-resolution (res. parameter = 0.8) shared nearest-neighbour 
graph-based (k = 25) clustering using FindClusters from Seurat (v.4.1.1) 
with assignment to one of three meta-clusters (that is, myeloid, B lym-
phoid and T/NK lymphoid) on the basis of the transcriptional profiles 
of the cells for canonical markers (for example, CD3E-F, CD14, FCGR3A, 
MS4A1) (Supplementary Fig. 4a,b). We next performed a second round 
of clustering at higher resolution (res. parameter = 3) within each 
meta-cluster and stimulation condition (Supplementary Fig. 4c). We 
systematically tested for differential expression between each cluster 
and the other clusters of the same meta-cluster and stimulation condi-
tion. This made it possible to define unbiased markers (|log2FC| ≠ 0, 
FDR < 0.01) for each cluster (Supplementary Fig. 4d). We then used 
these expression profiles of these genes to assign each cluster manu-
ally to one of 22 different cell types (Supplementary Fig. 4e), which, for 
some analyses, were collapsed into five major immune lineages. This 
step was performed in parallel by three investigators to consolidate 
consensus assignments. We also used cellular indexing of transcrip-
tomes and epitopes by sequencing (CITE-seq) data, generated for a 
subset of cells (2% of the whole dataset), to validate our assignments 
and redefine clusters presenting ambiguous transcriptional profiles 
(for example, memory-like NK cells; Supplementary Fig. 4f).

By calling cell types from high-resolution, homogeneous clusters, 
assigned independently for each lineage and stimulation condition 
(that is, non-stimulated, SARS-CoV-2, and IAV), we were able to preserve 
much of the diversity in our dataset, while avoiding potential confound-
ing effects due to the stimulation conditions. However, some clusters 
were characterized by markers associated with different cell types. 
Most of these clusters corresponded to mixtures of similar cell types 
(for example, the expression of CD3E, CD8A, NKG7 and CD16 suggested 
a mixture of cytotoxic CD8+ T and NK cells) and were consistent with 
the known cell hierarchy. Other, less frequent clusters expressed a com-
bination of markers usually associated with lineages originating from 
different progenitors (for example, CD3E and CD19, associated with T 
and B lymphocytes, respectively). These clusters were considered to 
be incoherent and were discarded. In the fourth and final step of our 
procedure, we used linear discriminant analysis to resolve within each 
condition the mixtures that were consistent with the established cell 
hierarchy, to obtain a final cell assignment (Supplementary Fig. 4g,h). 
For clusters of mixed identity AB, we built a training dataset from 10,000 
observations sampled from the set of cells called as A or B, preserving 
the corresponding frequencies of these cells in the whole dataset. We 
then used a model trained on these data to predict the specific cellular 
identities within the mixed cluster.

Cell abundance from each immune lineage/cell type was compared 
between non-stimulated and SARS-CoV-2-/IAV-stimulated conditions, 

using Wilcoxon’s signed-rank test matching on the individual. FDR 
was calculated across all conditions and lineages with the Benjamini–
Hochberg procedure (p.adjust function with the ‘fdr’ method). Viral 
stimulation had a moderate effect on the estimated cell proportions 
and, although significant differences were detected, the total number 
of cells per cell type was generally consistent across conditions (Sup-
plementary Note 2 and Supplementary Table 3e).

Cellular indexing of transcriptomes and epitopes by sequencing
To confirm the identity of specific cell types expressing ambiguous 
markers at the RNA level, during the last experimental run (run 16), 
half the cells from each experimental condition were used to per-
form CITE-seq, according to the manufacturer’s instructions (10x 
Genomics). PBMCs were washed, resuspended in chilled 1% BSA in 
phosphate-buffered saline and incubated with human TruStain FcX 
blocking solution (BioLegend) for 10 min at 4 °C. Cells were then stained 
with a cocktail of TotalSeq-B antibodies (BioLegend) previously centri-
fuged at 14,000g for 10 min (Supplementary Table 3b). The cells were 
incubated for 30 min at 4 °C in the dark and were then washed three 
times. Cell density was then adjusted to 1,000 viable cells per µl in 1% 
BSA in phosphate-buffered saline. We generated scRNA-seq libraries 
and cell protein libraries (L131–L134) with the Chromium Single Cell 
3′ Reagent Kit (v.3.1), using the Feature Barcoding technology for Cell 
Surface Proteins (10x Genomics).

Supernatant cytokine assays
Before protein analysis, sample supernatants were treated in the BSL-3 
facility to inactivate the viruses, according to a published protocol for 
SARS-CoV70, which we validated for SARS-CoV-2. In brief, all of the sam-
ples were treated with 1% (v/v) Triton X-100 (Sigma-Aldrich) for 2 h at 
room temperature, which effectively inactivated both SARS-CoV-2 and 
IAV. The protein concentration was then determined with a commercial 
Luminex multi-analyte assay (Biotechne, R&D Systems) and the SIMOA 
Homebrew assay (Quanterix). For the Luminex assay, we used the XL 
Performance Kit according to the manufacturer’s instructions, and pro-
teins were determined using the Bioplex 200 (Bio-Rad) system. Further-
more, IFNα, IFNγ (duplex) and IFNβ (single-plex) protein concentrations 
were quantified in SIMOA digital ELISA tests developed as Quanterix 
Homebrews according to the manufacturer’s instructions (https://
portal.quanterix.com/). The SIMOA IFNα assay was developed with 
two autoantibodies specific for IFNα isolated and cloned (Evitria) from 
two patients with autoimmune polyglandular syndrome type 1 (also 
known as autoimmune polyendocrinopathy-candidiasis-ectodermal 
dystrophy)71 and covered by patent application WO2013/098419. 
These antibodies can be used for the quantification of all IFNα sub-
types with a similar sensitivity. The 8H1 antibody clone was used to 
coat paramagnetic beads at a concentration of 0.3 mg ml−1 for use as a 
capture antibody. The 12H5 antibody was biotinylated (biotin/antibody 
ratio = 30:1) and used as the detector antibody, at a concentration of 
0.3 µg ml−1. The SBG enzyme for detection was used at a concentration 
of 150 pM. Recombinant IFNα17/αI (PBL Assay Science) was used as 
calibrator. For the IFNγ assay, the MD-1 antibody clone (BioLegend) was 
used to coat paramagnetic beads at a concentration of 0.3 mg ml−1 for 
use as a capture antibody. The MAB285 antibody clone (R&D Systems) 
was biotinylated (biotin/antibody ratio = 40:1) and used as the detec-
tor antibody at a concentration of 0.3 µg ml−1. The SBG enzyme used 
for detection was used at a concentration of 150 pM. Recombinant 
IFNγ protein (PBL Assay Science) was used as a calibrator. For the IFNβ 
assay, the 710322-9 IgG1, kappa, mouse monoclonal antibody (PBL 
Assay Science) was used to coat paramagnetic beads at a concentra-
tion of 0.3 mg ml−1, for use as a capture antibody. The 710323-9 IgG1 
kappa mouse monoclonal antibody was biotinylated (biotin/antibody 
ratio = 40:1) and used as the detector antibody at a concentration of 
1 µg ml−1. The SBG enzyme for detection was used at a concentration 
of 50 pM. Recombinant IFNβ protein (PBL Assay Science) was used 

https://portal.quanterix.com/
https://portal.quanterix.com/
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as a calibrator. The limit of detection of these assays was 0.8 fg ml−1 
for IFNα, 20 fg ml−1 for IFNγ and 0.2 pg ml−1 for IFNβ, considering the 
dilution factor of 10.

Flow cytometry
Frozen PBMCs from three AFB (CMV+) and six EUB (three CMV+, 
three CMV-) donors were thawed and allowed to rest overnight, as 
previously described. For each donor, 106 cells were resuspended in 
phosphate-buffered saline supplemented with 2% FBS and incubated 
with human Fc blocking solution (BD Biosciences) for 10 min at 4 °C. 
Cells were then stained with the following antibodies for 30 min at 
4 °C: CD3 VioGreen (BW264/56, Miltenyi Biotec), CD14 V500 (M5E2, BD 
Biosciences), CD57 Pacific Blue (HNK-1, BioLegend), NKp46 PE (9E2/
NKp46, BD Biosciences), CD16 PerCP-Cy5.5 (3G8, BD Biosciences), CD56 
APC-Vio770 (REA196, Miltenyi Biotec), NKG2A FITC (REA110, Miltenyi 
Biotec) and NKG2C APC (REA205, Miltenyi Biotec). The cells were then 
washed and acquired on the MACSQuant cytometer (Miltenyi Biotec), 
and the data were analysed using FlowJo (v.10.7.1)72.

Quantification of batch effects and replicability
Once all the samples had been processed, we used the kBET metric 
(v.0.99.6)73 to assess the intensity of batch effects and to quantify the 
relative effects of technical and biological variation on cell clustering. 
This made it possible to confirm that the variation across libraries, and 
across experimental runs, remained limited relative to the variation 
across individuals or across conditions (Supplementary Fig. 5a). We 
used technical replicates to assess the replicability of our observations 
across independent stimulations. Agreement was good between the cell 
proportions and the ISG activity scores inferred across independent 
runs (r > 0.82, P < 7.6 × 10−13) (Supplementary Fig. 5b,c).

Pseudobulk estimation, normalization and batch correction
Individual variation in gene expression was quantified at two resolu-
tions: five major immune lineages and 22 cell types. We aggregated 
raw UMI counts from all high-quality single-cell transcriptomes 
(n = 1,047,824) into bulk expression estimates by summing gene 
expression values across all cells assigned to the same lineage/cell 
type and sample (that is, individual and stimulation conditions) using 
the aggregateAcrossCells function of scuttle (v.1.2.1)74. We then nor-
malized the raw aggregated UMI counts by library size, generating 
3,330 lineage-wise (222 donors × 3 sets of conditions × 5 lineages) 
and 14,652 cell type-wise (666 samples × 22 cell types) pseudobulk 
counts-per-million (CPM) values, for all genes in our dataset. CPM  
values were then log2-transformed, with an offset of 1 to prevent non- 
finite values and to stabilize variation for weakly expressed genes. 
Genes with a mean CPM < 1 across all conditions and lineages/cell types 
were considered to be non-expressed and were discarded from further 
analyses, leading to a final set of 12,667 genes at the lineage level (12,672 
genes when increasing granularity to 22 cell types), including 12 viral 
transcripts. To quantify the experimental variation induced by the 
experimental run, library preparation and sequencing, and to remove 
unwanted batch effects, we first used the lmer function of the lme4 
package (v.1.1-27.1)75 to fit a linear model of the following form in each 
stimulation condition and for each lineage/cell type:

α εlog(1 + CPM ) = + IID + LIB + RUN + FLOW + (1)i i i i i i

where CPMi is the gene expression in sample i (that is, one replicate of 
a given individual and set of experimental conditions); α is the intercept; 

 σIID (0, )i IND
2N  captures the effect of the corresponding individual on 

gene expression; N σLIB (0, )i LIB
2  captures the effect of 10x Genomics 

library preparation; N σRUN (0, )i RUN
2  captures the effect of the experi-

mental run; N σFLOW (0, )i Flowcell
2  captures the effect of the sequenc-

ing flow cell; and εi captures residual variation between samples.  
We then subtracted the estimated value of the library, experimental 

run and flow cell effects (as provided by the ranef function) from the 
transformed CPMs of each sample, to obtain batch-corrected CPM 
values. Finally, we averaged the batch-corrected CPM values obtained 
across different replicates for the same individual and set of stimulation 
conditions, to obtain final estimates of gene expression.

For each cell type and stimulation condition, an inverse-normal 
rank-transformation was applied to the log2[CPM] of each gene, before 
testing for differences in gene expression between populations and 
mapping eQTL. Within each lineage and set of stimulation condi-
tions, we ranked, for each gene, the pseudobulk expression values 
of all individuals, assigning ranks at random for ties, and replaced 
each observation with the corresponding quantile from a normal 
distribution with the same mean and s.d. as the original expression 
data. This inverse-normal rank-transformation rendered downstream 
analyses robust to zero-inflation in the data and outlier values, while 
maintaining the rank-transformed values on the same scale as the 
original data.

Variance explained by lineage identity and viral exposure
We used CAR scores76 to quantify the fraction of gene expression vari-
ance that is explained by variation across immune lineages and stimu-
lation conditions. First, we built per-gene linear models regressing 
pseudobulk expression levels on two sets of dummy variables, encoding 
both lineage identity and stimulation condition. Specifically, we used 
a model of the form:

∑ ∑ ∑α β I γ I εExpr = + + + (2)ils
l

l
l s

ls ils
=2

5

{lineage=l}
=2

5

=2,3
{lineage=l and stim=s}

Where Exprils is the log-transformed expression of the target gene for 
donor i, in lineage l and in the condition of stimulation s; α is the inter-
cept measuring the mean expression of the reference lineage (CD4+ 
T cells) in the non-stimulated state; βl are parameters that capture the 
mean difference (log-fold change) in expression between lineage l 
and the reference lineage; I is an indicator variable equal to 1 when the 
subscript condition is met, and 0 otherwise; γls are parameters that 
capture the mean log-fold change in expression of lineage l in response 
to stimulus s; and εils are normally distributed residuals. We then ran 
the carscore function from care R package (v.1.1.11)76 on each model, 
setting λ = 0 (that is, no shrinkage), to obtain the CAR score associated 
with each parameter. In brief, care decorrelates a set of predictors using 
a Mahalanobis whitening transformation and computes CAR scores as 
marginal correlations between these decorrelated predictors and the 
response variable. This enables direct estimation of the contribution 
of each predictor to the variance of the response variable as the square 
of its CAR score. The variance explained by cellular identity (lineage) 
and stimulation is then computed as:

∑ ∑ ∑β γVar = CAR( ) and Var = CAR( ) (3)
l

l
l s

lslineage
=2

5
2

stim
=2

5

=1,2

2

ISG activity calculation
ISGs strongly respond to both viruses across all lineages/cell types. 
We therefore evaluated each donor’s ISG expression level in the basal 
state or after stimulation with either SARS-CoV-2 or IAV by construct-
ing an ISG activity score. For the human genes in our filtered gene set 
(n = 12,655), we defined as ISGs (n = 174) those genes included in the 
union of GSEA’s hallmark (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp?collection=H) IFNα response and IFNγ response gene 
sets, but excluded those from the inflammatory response set. We then 
used AddModuleScore from Seurat (v.4.1.1)77 to measure ISG activity 
as the mean pseudobulk expression level of ISGs in each sample minus 
the mean expression for one hundred randomly selected non-ISGs 
matched for mean magnitude of expression. In all analyses, ISG activity 

https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=H
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scores were adjusted for cell mortality of the sample by fitting a model 
of the form:

α β β εISG = + Population + CellMortality + (4)i p i m i i

and subtracting the effect of cell mortality from the raw ISG scores. In 
this model, ISGi denotes the ISG activity score of individual i; α is the 
intercept, Populationi and CellMortalityi are variables reflecting the 
donor’s population and the cell mortality of the sample; βp and βm are 
parameters capturing the effect of the population and cell mortality on 
ISG activity; and εi are normally distributed residuals. The difference 
in variance of ISG activity between SARS-CoV-2 and IAV was assessed 
using Levene’s test. For comparisons with SIMOA-estimated IFN levels, 
the carscore function from the care R package76 was used to model ISG 
activity as a function of levels of IFNα, IFNβ and IFNγ, adjusting for 
population, age, sex and cell mortality. The percentage of ISG variance 
attributable to each IFN (α, β, or γ) was estimated as the square of the 
resulting CAR scores.

Testing for differences in lineage/cell type abundance between 
populations
We compared immune cell abundance between donors of African and 
European ancestries by contrasting the average number and percentage 
of cells assigned to each lineage/cell type between donors from both 
populations. To assess the statistical significance of population dif-
ferences in cell type frequency, we first corrected cellular frequencies 
for the confounding effects of age, cell mortality and total number of 
cells in each sample (that is, donor × condition) using a linear model 
of the form

(5)
α β β

β β ε

CellularFrequency = + Population + Age

+ CellMortality + NCells +
cis p i a i

m i c is i

and subtracting the effect of these three covariates from the raw cell 
frequencies. In this model, CellularFrequencycis denotes the frequency/
number of the lineage/cell type c under consideration in individual i 
and condition s; α is the intercept; Populationi, Agei, CellMortalityi and 
NCellsis are variables reflecting the donor’s age and population, the 
cell mortality of the sample and the total number of cells recovered 
in condition s; βp, βa, βm and βc are parameters capturing the effect of 
these covariates on cellular composition; and εi are normally distributed 
residuals. The adjusted cell frequencies were then compared between 
populations using Wilcoxon’s rank-sum tests.

Mapping the genetic determinants of immune cell composition
We performed genome-wide association studies of the proportions of 
each immune lineage/cell type in the different stimulation conditions. 
In brief, we used PLINK (v.1.9)78 to estimate at each locus the additive 
effect of each copy of the alternate allele on two quantitative traits:  
(1) the number of cells of each lineage relative to total number of cells 
in the sample and (2) the number of cells of each cell type relative to 
the lineage under consideration. In total, we performed 79 GWASs: 
one for each of the 27 immune classes (5 lineages and 22 cell types), 
in each of the 3 experimental conditions (except for the IAV-infected 
CD14+ monocytes, which are only present in the IAV condition). In each 
GWAS, we modelled cell type frequencies across individuals as

(6)
α β β β β

β β ε

CellularFrequency = + SNP + Population + Sex + Age

+ CellMortality + NCells +
cis i p i s i a i

m i c is i

where the CellularFrequencycis is the rank-transformed percentage 
of lineage/cell type c in the sample (that is, among cells from donor i 
in condition s); SNPi is the number of alternative alleles of donor i for 
the target SNP; Populationi, Sexi and Agei are variables reflecting the 
donor’s characteristics (population of origin, genetic sex and age); 

CellMortalityi and NCellsis are variables reflecting technical parameters 
(respectively, the percentage of dead cells after thawing the cryopre-
served PBMCs and the count of high-quality cells in the sample); β, βp, 
βs, βa, βm and βc are parameters capturing the effect of these variables 
on cellular composition; and εi are normally distributed residuals. 
For each SNP, we used Bonferroni correction to adjust for the number 
cell types and the condition tested and considered Padj < 5 × 10−8 as 
genome-wide significant. Winner’s curse-adjusted Z-score and R2 were 
computed using FDR inverse quantile transformation79.

Effect of CMV infection on cell composition
We determined the CMV serostatus of AFB (n = 78), EUB (n = 80) and 
ASH (n = 49) donors with a human anti-IgG CMV ELISA kit (Abcam) on 
plasma samples, according to the manufacturer’s instructions. We 
assessed the contribution of CMV infection to differences in cellular 
composition between Africans and Europeans using mediation analysis. 
Specifically, we used the mediate function of the mediation package 
of R (v.4.5.0)80 to model the frequency of each cell type, as a function 
of population, CMV serostatus and covariates :

α β δ I Z εCellularFrequency = + CMV + + ⋅ + (7)i i i i
T

i
EUB γ

γα δ I Zlogit(Prob(CMV = 1)) = ′ + ′ + ⋅ ′ (8)i i i
TEUB

where CellularFrequencyi corresponds to the basal state frequency of 
the cell type under consideration; α and α′ are two intercepts; β is the 
effect of the CMV serostatus (CMVi) on cellular proportions; δ and δ′ 
are the (direct) effect of population (captured through the indicator 
variable Ii

EUB) on cell type frequency and CMV serostatus; γ and γ′ cap-
ture the confounding effect of covariates (that is, age and cell mortal-
ity) on both gene expression and CMV serostatus; and εi are normally 
distributed residuals. Under this model, we implicitly assumed that 
the effect of CMV serostatus is the same across populations. Although 
this assumption cannot be tested due to the lack of CMV− individuals 
in the African group, we used an interaction test to evaluate whether 
the effect of CMV serostatus on cell composition is similar between 
European and East Asian donors (Supplementary Note 4 and Supple-
mentary Fig. 7). To do so, we defined the following model, with the 
same notations as before

γα β δ I θ I Z εCellularFrequency = + CMV + + CMV + ⋅ + (9)i i i i i i
T

i
ASH ASH

and performed a Student’s t-test for the null hypothesis that the effect 
of CMV is the same in Europeans and East Asians (H θ: = 00 ).

Modelling population effects on the variation of gene expression
To estimate population effects on gene expression while mitigating any 
potential batch effect relating to sample processing, we first focused 
exclusively on AFB and EUB individuals, as all these individuals were 
recruited during the same sampling campaign and their PBMCs were 
processed at the same time, with the same experimental procedure18. 
For each immune lineage, cell type, stimulation condition and gene, 
we then built a separate linear model of the form:

α β I Z εExpr = + + ⋅ + (10)i r i i
T

i
EUB γ

where Expri is the rank-transformed gene expression (log-normalized 
CPM) for individual i in the lineage/cell type and condition under con-
sideration; Ii

EUB is an indicator variable equal to 1 for European-ancestries 
individuals and 0 otherwise; and Zi represents the set of core covariates 
of the sample that includes the individual’s age and cellular mortality 
(that is, the proportion of dying cells in each thawed vial, as a proxy of 
sample quality). Moreover, εi are the normally distributed residuals and 
α,βr,γ are the fitted parameters of the models. In particular, α is the inter-
cept, βr indicates the log2-transformed fold change difference in 
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expression between individuals of European and African ancestries, and 
γ captures the effects of the set of core covariates on gene expression.

We reasoned that differences in the variance of gene expression 
between populations might inflate the number of false positives. We 
therefore used the vcovHC function of sandwich (v.2.5-1)81 with the 
Type=‘HC3’ option to compute sandwich estimators of variance that 
are robust to residual heteroskedasticity. We estimated the βr coeffi-
cients and their standard error with the coeftest function of lmtest 
(v.0.9-40)82. The FDR was calculated across all conditions and lineages 
using the Benjamini–Hochberg procedure (p.adjust function with the 
‘fdr’ method). Genes with an FDR < 1% and |βr| > 0.2 were considered to 
be differentially expressed between populations (that is, ‘raw’ pop-
DEGs). We adjusted for cellular composition within each lineage L by 
introducing into model (10) a set of variables F( )j j L⋅ ∈  encoding the fre-
quency in the PBMC fraction of each cell type j comprising the lineage 
(for example, naive, effector and regulatory subsets of CD4+ T cells).

∑α β I Z δ F εExpr = ′ + + ⋅ + + (11)i a i i
T

j L j j i i
EUB

∈ ,γ′

The notation is as above, with α,βa,γ′ the fitted parameters of 
the model. In this model, δj is the effect on gene expression of a 1% 
increase in cell type j and βa indicates the cell composition-adjusted 
log2-transformed fold change in the difference in expression between 
AFB and EUB individuals. The significance of βa was calculated as 
described above, with a sandwich estimator of variance and the coeft-
est function. FDR was calculated across all conditions and lineages 
to yield a set of “cell-composition-adjusted” popDEGs. We assessed 
the impact of cellular composition on differences in gene expression 
between populations, by defining Student’s t-test statistic TΔβ as follows:

̂ ̂

̂ ̂

̂ ̂

̂ ̂ ̂ ̂T
β β

β β

β β

s s ρs s
=

−

Var( − )
=

−

+ − 2
(12)β

a r

a r

a r

a r a r
∆ 2 2

where βr
  and βa

  are the raw and cell-composition-adjusted differences 
in expression between populations; sr and sa are the estimated stand-
ard error of βr

  and βa, respectively; and ρ is the observed correlation 
in permuted data between the βr and βa

  statistics. Under the null hypoth-
esis that population differences are not affected by cellular composi-
tion, TΔβ should follow an approximate Gaussian distribution with  
mean 0 and variance 1, enabling the definition of a P value PΔβ. We then 
considered the set of raw popDEGs that (1) were not significant after 
adjustment (FDR > 1% or |βa| < 0.2) and (2) displayed significant differ-
ences between the raw and adjusted effect sizes (|TΔβ| > 1.96) imputable 
to the effect of cellular composition.

For the assessment of population differences in response to viral 
stimuli (that is, popDRGs), we used the same approach, but with the 
replacement of log-normalized counts with the log-fold change differ-
ence in expression between the stimulation conditions for each of the 
two viruses and non-stimulated conditions.

Pathway enrichment analyses
We performed functional assessments of the effects of cellular compo-
sition variability on differences in gene expression between donors in 
the basal state and in response to each virus, using the fgsea R package 
(v.1.18.1)83 and the default options. This made it possible to perform 
a gene set enrichment analysis with population differences in each 
lineage ranked by the magnitude of the effect of ancestry on the expres-
sion or response of the gene before (βr) and after (βa) adjustment for 
differences in cellular composition.

Fine mapping of eQTL
For eQTL mapping, we used variants with MAF > 5% in at least one 
of the three populations considered, resulting in a set of 10,711,657 
SNPs, of which 4,164,060 were located <100 kb from a gene. We used 
MatrixEQTL (v.2.3)84 to map eQTLs in a 100 kb region around each 

gene and obtain estimates of eQTL effect sizes and their standard 
error. eQTL mapping was performed separately for each immune 
lineage/cell type and condition, based on rank-transformed gene 
expression values. eQTL analyses were performed adjusting for 
population, age, chromosomal sex, cell composition (within each 
lineage), as well as cell mortality and total number of cells in the 
sample, and a data-driven number of surrogate variables included 
to capture unknown confounders and remove unwanted variability. 
Specifically, for each immune lineage/cell type and condition, sur-
rogate variables were obtained using the sva function from the sva R 
package (v.3.40.0)85 with option method=‛two-steps’, providing all 
other covariates as known confounders (mod argument). The number 
of surrogate variables to use in each lineage/cell type and condition 
was determined automatically based on the results from num.sv func-
tion with method=‛be’85.

For each gene, immune lineage/cell type and stimulation condition, 
Z-values (that is, the effect size of each eQTL divided by the standard 
error of effect size) were then calculated, and the fine mapping of eQTLs 
was performed using SuSiE (v.0.11.42)86 (susie_rss function of the 
susieR R package), with a default value of up to 10 independent eQTLs 
per gene. Imputed genotype dosages were extracted in a 100 kb window 
around each gene and regressed against the population of origin (that 
is, AFB, EUB or ASH). Genes with fewer than 50 SNPs in the selected 
window were discarded from the analysis. Pairwise correlations 
between the population-adjusted dosages were then assessed, to define 
the genotype correlation matrix to be used for the fine mapping of 
eQTLs. In rare cases (<0.1% of tested gene × condition combinations), 
the susie_rss function did not converge, even when the number of 
iterations was increased to >106. These runs were therefore discarded, 
and the associated eQTLs were assigned a null Z-score during FDR com-
putation (see below). For each eQTL, the index SNP was defined as the 
SNP with the highest posterior inclusion probability (that is, the α 
parameter in the output of SuSiE) for that eQTL, and the 95% credible 
interval was obtained as the minimal set of SNPs S such that αs > 0.01 
for all s S∈  and α∑ > 0.95s S s∈ . Only eQTLs with a log-Bayes factor 
(lbf) > 3 were considered for further analyses.

For each lineage and set of stimulation conditions, each eQTL iden-
tified by SuSiE was assigned an eQTL evidence score, defined as the 
absolute Z-value of association between the eQTL index SNP and the 
associated gene. We then used a pooled permutation strategy to define 
the genome-wide number of significant eQTLs (that is, eQTL × gene 
combinations) expected under the null hypothesis, for different 
thresholds of the eQTL evidence score. We repeated the eQTL mapping 
procedure on the dataset after randomly permuting genotype labels 
within each population. We then counted, for each possible evidence 
score threshold T, the number of eQTLs identified in the observed 
and permuted data. Finally, we retained as a significance threshold 
the lowest threshold giving several significant eQTLs in the permuted 
data (false positives) of less than 1% the number of eQTLs identified in 
the observed data (false positives + true positives).

Aggregation of eQTLs across cell types and stimulation 
conditions
The eQTL index SNP may differ between cellular states (immune line-
age/cell type and stimulation condition), even in the presence of a 
single causal variant. It is therefore necessary to aggregate eQTLs to 
ensure that the same locus is tagged by a single variant across cellu-
lar states. To this end, we applied the following procedure, for each 
gene: (1) let Cg be the set of cellular states where a significant eQTL 
was detected for gene g, and Sg be the associated list of eQTLs (that is, 
cellular state × index SNP). We aim to define a minimal set of SNPs, Mg, 
that overlaps the 95% credible intervals of all significant eQTLs in Sg. 
(2) For each SNP s in a 100-kb window around each gene, compute the 
expected number of cellular states in which the SNP has a causal effect 
on gene expression E[Nc(s)] as:



∑E N s[ ( )] = PP (13)c
j C

sj
∈ g

where PPsj is the posterior probability that SNP s has a causal effect on 
the expression of gene g in the cellular state j (cell type × condition). 
(3) Find the SNP s that maximizes E[Nc(s)], and add it to Mg. (4) Remove 
from Sg all eQTLs for which the 95% credible interval contains SNP s.  
(5) Repeat steps 1–3 until Sg is empty.

At the end of this procedure, Mg  provides the list of independent 
eQTL index SNPs (referred to as eSNPs) for gene g, for which we 
extracted summary statistics across all cellular states.

Mapping of response eQTLs
For the mapping of response eQTLs (reQTLs), we repeated the same 
procedure as for the mapping of eQTLs, using the rank-transformed 
log2-fold change as input rather than gene expression. This included 
reQTL mapping using MatrixEQTL84, fine mapping with SuSiE86, 
permutation-based FDR computation, and aggregation of reQTL 
across immune lineages, cell types and stimulation conditions. Sur-
rogate variables were computed directly from log2-transformed fold 
changes. For IAV-infected monocytes (detected only in the IAV condi-
tion), fold changes were computed relative to CD14+ monocytes in the 
non-stimulated condition. This produced a list of independent reQTL 
index SNPs M′, like that obtained for eQTLs, for which we extract sum-
mary statistics across all cellular states.

Sharing of eQTLs across cell types and stimulation conditions
After extracting the set M of independent eSNPs across all genes, we 
defined cell-type-specific eQTLs as eQTLs significant genome-wide in a 
single cell type. We accounted for the possibility that some eQTLs may 
be missed in specific cell types due to a lack of power by introducing 
a second definition of eQTL sharing based on nominal P values. Spe-
cifically, we considered an eQTL to be cell type-specific at a nominal 
significance if, and only if, it was significant genome-wide in a single 
cell type and its nominal P value of association was greater than 0.01 in 
all other cell types. For each pair of cell types, the correlation of eQTL 
effect sizes was calculated on the set of all eQTLs passing the nominal 
significance criterion (Student’s t-test, P < 0.01) in at least one of the 
two cell types. To understand how the effect of genetics on immune 
response varies between SARS-CoV-2 and IAV, we defined an interac-
tion statistic that enabled us to test for differences in reQTL effect size 
between the two viruses. Specifically, within each immune lineage/cell 
type, we defined:
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When the reQTL effect size is identical between the two viruses, we 
expect Tint to be normally distributed around 0 with variance 1, allow-
ing to derive an interaction P value. We therefore defined as virus- 
dependent reQTLs those with a nominal interaction P < 0.01 and as 
virus-specific reQTLs those that passed a nominal P value threshold of 
0.01 in only one of the two stimulation conditions.

Comparison of eQTLs and eGenes across studies
To assess the replicability of the eQTLs detected in our study, we 
compared the eGenes that we identified with those reported in three 
single-cell studies of resting and stimulated PBMCs19,87,88. For each study, 
we first reassigned each reported cell type to one of the five major 
lineages that we identified. We then retrieved, for each lineage/condi-
tion, the union of all genes with a reported eQTL in at least one of the 
cell types associated to that lineage, using the following thresholds:  
ref. 87, P < 10−5; ref. 88, FDR < 0.05; ref. 19, lfsr < 0.1. The resulting 
gene sets were considered as eGenes for each lineage/condition. 

Enrichments of eQTLs in previously identified eGenes were tested 
for each study and lineage separately, using a Fisher’s exact test to 
assess whether genes reported to contain an eQTL in a given lineage 
were more likely to present an eQTL in the same lineage in our study. 
For each comparison, we used as background sets all genes tested for 
eQTLs in both studies. When the set of tested genes was not reported 
in the study, as reported previously87, we used the union of eQTL genes 
across all cell types, as a proxy for the set of tested genes. For reQTLs, 
we compared, for each lineage, genes with a reQTL after IAV stimula-
tion in our study with genes with an eQTL at lfsr < 0.1 specifically after 
IAV stimulation (but not in non-stimulated cells) in ref. 19. Finally, we 
compared the direction of effect at shared eQTLs between our study 
(FDR < 0.01) and that of ref. 19 (lfsr < 0.1), focusing on the eQTL index 
SNP reported by the latter and assessing the percentage of eQTLs with 
concordant direction of effect in our data.

To assess the extent to which our findings in PBMCs replicate in the 
lung, we downloaded Genotype-Tissue Expression (GTEx) lung eQTL 
data55 from the eQTL catalogue (uniformly processed summary statis-
tics; http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GTEx/
ge/GTEx_ge_lung.all.tsv.gz). We next considered the index SNP from 
each eQTL, focusing on the subset of genes with median TPM > 10 in 
the lung and eQTLs with MAF > 5% in the GTEx dataset. We considered 
any eQTL with (1) P < 0.01 in the lung and (2) the same effect direction 
between lung and the lineage/cell type/condition in which it is the most 
significant in our study as replicated. As a comparison, we evaluated the 
amount of eQTLs that would be replicated when selecting SNPs at ran-
dom, matching for MAF in GTEx (bins of 5%) and the distance between 
the eQTL index SNPs and the nearest gene (that is, bins of 0–1, 1–5, 5–10, 
10–20, 20–50 and 50–100 kb), and computed the fold-enrichment 
in replicated eQTLs as the ratio between the observed and expected 
number of replicated eQTLs.

Mediation analyses
For all popDEGs and popDRGs, we evaluated the proportion of the 
difference in expression or response to viral stimulation between 
populations attributable to either genetic factors (that is, eQTLs) or 
cellular composition, using the mediate function of the mediation R 
package (v.4.5.0)80. Mediation analysis made it possible to separate the 
differences in expression/response between populations that were 
mediated by genetics (that is, differences in allele frequency of a given 
eQTL between populations, ζg), or cellular composition (that is, differ-
ence in cell type proportions between populations, ζc) from those 
occurring independently of the eQTL/cell type considered (independ-
ent or direct effect δ). It was then possible to estimate the respective 
proportion of population differences mediated by genetics τg and cel-
lular composition τc as τ =c

ζ
ζ ζ δ+ +

c

c g
 and τ =g

ζ

ζ ζ δ+ +
g

g c
, with ζ ζ δ+ +c g  cor-

responding to the total differences in expression/response between 
populations. For each popDEG and popDRG, we focused on either (1) 
the most strongly associated SNP in a 100 kb window around the gene, 
regardless of the presence or absence of a significant (r)eQTL, or  
(2) the cell type differing most strongly between populations in each  
lineage (that is, CD16+ monocytes in the myeloid lineage, κ-light-chain-
expressing memory cells in the B cell lineage, effector cells in CD4+ 
T cell lineage, CD8+ EMRA cells in the CD8+ T cell lineage and memory 
cells in the NK cell lineage). For each popDEG and potential mediator 
M (that is, eQTL SNP or cell subtype proportion), we then ran mediate 
with the following models:

γα β M δ I Z εExpr = + + + ⋅ + (15)i i i i
T

i
EUB

M α δ I Z ε= ′ + ′ + ⋅ + ′ (16)i i i
T

i
EUB γ′

where Expri corresponds to normalized expression values in the cell 
type/condition under consideration; α and α′ are two intercepts; β is 
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the effect of the mediator Mi on gene expression; δ and δ′ are the 
(direct) effect of population (captured through the indicator variable 
Ii

EUB) on gene expression and on the mediator; γ and γ′ capture the 
confounding effect of covariates (that is, age and cell mortality) on 
both gene expression and the mediator; and εi and ε′i are normally 
distributed residuals. For popDRGs, we used the same approach, 
replacing normalized gene expression values with the log2-transformed 
fold change in gene expression between the stimulated and unstimu-
lated states.

Detection of signals of natural selection
We avoided SNP ascertainment bias by performing natural selection 
analyses with high-coverage sequencing data from the 1KG Project89. 
We downloaded the GRCh38 phased genotype files from the New York 
Genome Center FTP server and calculated the pairwise FST (ref. 90) 
between our three study populations (AFB, EUB or ASH) and all 1KG 
populations to identify the 1KG populations that were the most geneti-
cally similar to our study populations. All selection and introgression 
analyses (see the ‘Archaic introgression analyses’ section) were based on 
the Yoruba from Ibadan, Nigeria (YRI), Utah residents with Northern and 
Western European ancestries (CEU) and Southern Han Chinese (CHS) 
populations, as these 1KG populations had the lowest FST values with 
our three study groups. We filtered the data to include only autosomal 
biallelic SNPs and insertions/deletions (indels), and removed sites that 
were invariant (that is, monomorphic) across the three populations. 
We identified loci presenting signals of positive selection (local adap-
tation) with the PBS39, based on the Reynold’s FST estimator90 between 
pairs of populations. PBS values were calculated for the YRI, CEU, and 
CHS populations separately, with the other two populations used as 
the control and outgroup. For each population, genome-wide PBS 
values were then ranked, and variants with PBS values within the top 
1% were considered to be putative targets of selection. For annotation 
of the selected eQTLs, the ancestral and derived states at each site 
were inferred from six-way EPO multiple alignments for six primate 
species (available from http://ftp.ensembl.org/pub/release-71/emf/
ensembl-compara/epo_6_primate/), and the effect size was reported 
for the derived allele. For sites without an ancestral/derived state in 
the EPO alignment, the effect of the allele with the lowest frequency 
worldwide was reported.

We assessed the extent to which different sets of eQTLs displayed 
signals of local adaptation in permutation-based enrichment analyses. 
For each population, we compared the mean PBS values at (r)eQTLs for 
each set of cell type/stimulation condition with the mean PBS values 
obtained for 10,000 sets of randomly resampled sites. Resampled 
sites were matched with eQTLs for MAF (mean MAF across the three 
populations, bins of 0.01), LD scores (quintiles) and distance to the 
nearest gene (bins of 0–1, 1–5, 10–20, 20–50 and >100 kb). For each 
population and set of eQTLs, we defined the fold-enrichment (FE) in 
positive selection as the ratio of observed/expected values for mean 
PBS and extracted the mean and 95% confidence interval of this ratio 
across all resamplings. One-sided resampling P values were calculated 
as the number of resamplings with a FE > 1 divided by the total number 
of resamplings. Resampling P values were then adjusted for multiple 
testing by the Benjamini–Hochberg method.

Detecting and dating episodes of local adaptation
We inferred the frequency trajectories of all eQTLs and reQTLs during 
the past 2,000 generations (that is, 56,000 years before the present, 
with a generation time of 28 years), systematically by using CLUES 
(commit no. 7371b86, 27 May 2021)40. We first used Relate (v.1.1.8)91 
on each population separately to reconstruct tree-like ancestral 
recombination graphs (ARGs) around each SNP in the genome and 
to estimate effective population sizes across time on the basis of the 
rate of coalescence events over the inferred ARGs. Using CLUES40, we 
then estimated at each eQTL or reQTL, the most likely allele frequency 

trajectories for each sampled ARG and averaged these trajectories 
across all possible ARGs.

We then analysed changes in inferred allele frequencies over time 
to identify selection events characterized by a rapid change in allele 
frequency (Supplementary Fig. 9a). We considered the posterior mean 
of allele frequency at each generation and smoothed the inferred allele 
frequency trajectories by loess regression (with span = 0.1) to ensure 
progressive changes in allele frequency over time and to minimize the 
artifacts induced by the inference process. Finally, for each variant 
and in each population, we calculated the change in allele frequency f 
at each generation as the difference in the smoothed allele frequency 
between two consecutive generations:

f t
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t

t f t f t˙ ( ) =
d
d

( ) = ( + 1) − ( ) (17)

Under an assumption of neutrality, the count of a particular allele at 
generation t + 1 is the result of a Bernoulli trial parameterized B N f( , ), 
where N is the size of the haploid population. The variance of allele 
frequencies at generation t + 1 is therefore greater for alleles present 
at higher frequencies in generation t,
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We adjusted for this by scaling the change in allele frequency ̇f  by a 
normalizing factor dependent on the allele frequency at generation t, 
such that the variance of the normalized change in allele frequency ġ  
was the same across all variants,
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Finally, at each generation, we divided the normalized change in 
allele frequency ġ  by its s.d. across all eQTLs and reQTLs, to calculate 
a Z-score for detecting alleles for which the normalized change in allele 
frequency exceeded genome-wide expectations,
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For each variant and generation, we then considered an absolute 
Z-score > 3 to constitute evidence of selection and we inferred the onset 
of selection of a variant as the first generation in which |Z| > 3.

Simulations, power and type I error estimates
We assessed the ability of our approach to detect (and date) events of 
natural selection correctly from the trajectories of allele frequencies 
by using simulations with SLiM (v.4.0.1)92 under various selection sce-
narios. Simulations were performed under a Wright–Fisher model for 
a single mutation occurring around 5,000 generations ago, at a fre-
quency varying from f = Nmin

1  to f = 1 − Nmax
1  in steps of 1%, where N is 

the simulated population size. We allowed population size to vary over 
time according to published estimates91 for the YRI, CEU and CHS 
populations (Supplementary Fig. 9b). We then performed simulations 
both under an assumption of neutrality (1,000 simulations for each 
starting frequency) and assuming a 200-generation-long episode of 
selection (100 simulations for each starting frequency and selection 
scenario). Selection episodes were simulated with an onset of selection 
1,000, 2,000, 3,000 or 4,000 generations ago, and with a selection 
coefficient ranging from 0.01 to 0.05 (Supplementary Fig. 9c). We 
saved computation time by performing a tenfold scaling in line with 
SLiM recommendations. For each selected scenario and variant, simu-
lated allele frequencies were retrieved every ten generations, and 
smoothed using loess regression with a span of 0.1. We then calculated 
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normalized differences in smoothed allele frequencies for each simu-
lated variant and scaled these differences at each generation, on the 
basis of their s.d. among neutral variants, to obtain Z-scores. For each 
selection scenario, we focused on the centre of the selection interval 
and determined the type I error and power for various thresholds of 
absolute Z-scores varying from 0 to 6. We found that a threshold of 3 
yielded both a low type I error (<0.2% false positives) and a satisfactory 
power for detecting selection events (Supplementary Fig. 9c). Finally, 
at each generation, we estimated the percentage of simulations, under 
an assumption of neutrality or a particular selection scenario, for which 
the absolute Z-score exceeded a threshold of 3. We found that signifi-
cant Z-scores were equally rare at each generation under the assump-
tion of neutrality, but that selected variants presented a clear and 
localized enrichment in significant Z-scores for intervals in which we 
simulated selection (Supplementary Fig. 9d).

Archaic introgression analyses
For the definition of regions of the modern human genome of archaic 
ancestry (Neanderthal or Denisovan), we downloaded the VCFs from 
the high-coverage Neanderthal Vindija93 and Denisovan Altai94 genomes 
(human genome assembly GRCh37; http://cdna.eva.mpg.de/neander-
tal/Vindija/) and applied the corresponding genome masks (FilterBed 
files). We then removed sites within segmental duplications and lifted 
over the genomic coordinates to the GRCh38 assembly with CrossMap 
(v.0.6.3)95. We used two statistics to identify introgressed regions in 
the CEU and CHS populations: (1) conditional random fields (CRF)96,97, 
which uses reference archaic and outgroup genomes to identify intro-
gressed haplotypes; and (2) the S′ method98, which identifies stretches 
of probably introgressed alleles without requiring the definition of an 
archaic reference genome.

For CRF-based calling, we phased the data with SHAPEIT4 (v.4.2.1)60, 
using the recommended parameters for sequence data, and focused 
on biallelic SNPs for which the ancestral/derived state was unam-
biguously defined. We then performed two independent runs of CRF 
to detect haplotypes inherited from Neanderthal or Denisova. For 
Neanderthal-introgressed haplotypes, we used the Vindija Neanderthal 
genome as the archaic reference and YRI individuals merged with the 
Altai Denisovan genome as the outgroup. For Denisovan-introgressed 
haplotypes, we used the Altai Denisovan genome as the archaic 
reference panel and YRI individuals merged with the Vindija Nean-
derthal genome as the outgroup. The results from the two inde-
pendent CRF runs were analysed jointly, and we retained alleles with 
a marginal posterior probability PNeanderthal ≥ 0.9 and PDenisova < 0.5 as 
Neanderthal-introgressed haplotypes and those containing alleles 
with PDenisova ≥ 0.9 and PNeanderthal < 0.5 as Denisovan-introgressed haplo-
types. For the S′-based calling of introgressed regions, we considered 
all biallelic SNPs with an allele frequency of <1% in the YRI population 
to be Eurasian-specific alleles. We then ran the Sprime (v.07Dec18.5e2; 
https://github.com/browning-lab/sprime) separately for the CEU and 
CHS populations to identify and score putatively introgressed regions 
containing a high density of Eurasian-specific alleles. Putatively intro-
gressed regions with a S′ score of >150,000 were considered to be intro-
gressed. This cut-off score has been shown to provide a good trade-off 
between power and accuracy based on simulations of introgression 
under realistic demographic scenarios98. For both calling methods 
(that is, CRF and S′), we used the recombination map from the 1KG 
Project Phase 3 data release56.

After the calling of introgressed regions throughout the genome for 
each population, we defined SNPs of putative archaic origin (archaic 
SNPs, aSNPs) as those (1) located in an introgressed region defined 
by either the CRF or S′ method; (2) with one of their alleles being rare 
or absent (MAF < 1%) in the YRI population, but present in the Vindija 
Neanderthal or Denisovan Altai genomes; and (3) in high LD (r2 > 0.8) 
with at least two other aSNPs and, to exclude incomplete lineage sort-
ing, comprising an LD block of >10 kb. This yielded a set of 100,345 

high-confidence aSNPs (Supplementary Table 8a). We further catego-
rized aSNPs as of Neanderthal origin, Denisovan origin or shared origin 
according to their presence/absence in the Vindija Neanderthal and 
Denisovan Altai genomes. Finally, we considered any site that was in 
high LD with at least one aSNP in the same population in which intro-
gression was detected to be introgressed, and classified introgressed 
haplotypes as of Neanderthal origin, Denisovan origin or shared origin 
according to the most frequent origin of aSNPs in the haplotype. For 
introgressed SNPs, we defined the introgressed allele as (1) the allele 
rare or absent from individuals of African ancestries if the SNP was 
an aSNP; and (2) for non-aSNPs, the allele most frequently segregat-
ing with the introgressed allele of linked aSNPs. In each population, 
introgressed alleles with a frequency in the top 1% for introgressed 
alleles genome-wide were considered to present evidence of adaptive 
introgression.

The enrichment of introgressed haplotypes in eQTLs or reQTLs 
was assessed separately for each population (CEU and CHS), first by 
stimulation condition and then by cell type within each condition. 
To avoid biases related to an increased power for the detection of 
eQTLs that segregate at higher frequencies in European genomes, 
(that is, nEUB = 80 and nASH = 62), we considered a set of n = 10,276 eQTLs 
mapped on a downsampled dataset composed of the same number of 
individuals from each population (EUB and ASH) within each cell type 
and condition. This downsampled set of eQTLs was highly concordant 
with the original eQTL mapping (that is, >95% sharing at the lineage 
level). Within each cell type/stimulation condition, we considered 
the set of all (r)eQTLs for which the index SNP displayed at least a 
marginal association (Student’s t-test, P < 0.01) with gene expression. 
For each population and (r)eQTL set, we then grouped (r)eQTLs in 
high LD (r2 > 0.8), retaining a single representative per group, and 
counted the total number of (r)eQTLs for which the index SNP was 
in LD (r2 > 0.8) with an aSNP (that is, introgressed eQTLs). We then 
used PLINK (v.1.9) --indep-pairwise (with a 500 kb window, 1 kb step, 
an r2 threshold of 0.8, and a MAF > 5%)57 to define tag-SNPs for each 
population, and we determined the expected number of introgressed 
SNPs by resampling tag-SNPs at random with the same distribution 
for MAF, LD scores and distance to the nearest gene. We performed 
10,000 resamplings for each (r)eQTL set and population. One-sided 
resampling-based P values were calculated as the frequency at which 
the number of introgressed SNPs among resampled SNPs exceeded 
the number of introgressed SNPs among (r)eQTLs. Resampling-based 
P values were then adjusted for multiple testing using the Benjamini–
Hochberg method.

We searched for signals of adaptive introgression by determining 
whether introgressed haplotypes that altered gene expression were 
introgressed at a higher frequency than introgressed haplotypes with 
no effect on gene expression. For each stimulation cell type/condi-
tion, we focused on the set of introgressed eQTLs segregating with a 
MAF > 5% in each population (retaining a single representative per LD 
group) and compared the frequency of the introgressed allele with 
that of introgressed tag-SNPs genome-wide. We modelled r(Freq), the 
(rank-transformed) frequency of introgressed tag-SNPs according 
to the presence/absence of a linked eQTL (IeQTL), and the mean MAF of 
the SNP across the three populations (giving a higher power for eQTL 
detection).

r α β I γ≈ + + MAF (21)(Freq) eQTL

where IeQTL is an indicator variable equal to 1 if the SNP is in LD with an 
eQTL (r2 > 0.8) and 0 otherwise; MAF  is the mean MAF calculated sep-
arately for each population; α is the intercept of the model; β measures 
the difference in rank r(Freq) between eQTLs and non eQTLs; and γ is a 
nuisance parameter capturing the relationship between MAF and r(Freq). 
Under this model, the difference in frequency between eQTLs and 
non-eQTLs can be tested directly in a Student’s t-test with β: = 00H .
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Enrichment in COVID-19-associated loci and colocalization 
analyses
We downloaded summary statistics from the COVID-19 Host Genetics 
Initiative (release 7: https://www.covid19hg.org/results/r7)8 for three 
GWASs: (1) A2—very severe respiratory cases of confirmed COVID-19 
versus the general population; (2) B2—hospitalized COVID-19 cases 
versus the general population; (3) C2—confirmed COVID-19 cases 
versus the general population. We assessed the enrichment in eQTLs 
and reQTLs of COVID-19 susceptibility/severity loci by considering, 
for each eQTL/reQTL, the A2, B2 or C2 P values of the index SNP and 
calculating the percentage of eQTLs/reQTLs with a significant GWAS P 
value of 10−4. This percentage was then compared to that obtained for 
the resampled set of SNPs, matched for distance to the nearest gene 
(bins of 0–1, 1–5, 5–10, 10–20, 20–50 and 50–100 kb) and MAF (1% MAF 
bins). We performed 10,000 resamplings for each set of eQTLs/reQTLs 
tested. The use of different P-value thresholds for COVID-19-associated 
hits (10−3 to 10−5) yielded similar results. Note that, despite the strong 
overlap (OR > 200, Fisher’s test, P = 4.2 × 10−40) between loci associ-
ated with susceptibility (C2) and severity (A2 or B2)8, 81 out of 105  
COVID-19 associated eQTLs (at nominal P < 10−4) are associated specifi-
cally with either susceptibility (n = 19) or severity (n = 62), supporting  
the relevance of considering these traits separately in our analysis.

To identify specific eQTLs/reQTLs colocalized with GWAS hits, we 
first considered all (r)eQTLs for which the index SNPs were located 
within 100 kb of a SNP associated with COVID-19 susceptibility/severity 
(P < 10−5). For each immune lineage/cell type, and condition for which 
the eQTL/reQTL reached genome-wide significance, we next extracted 
all SNPs in a 500 kb window around the index SNP for which summary 
statistics were available for both the eQTLs/reQTLs and COVID-19 GWAS 
phenotypes (A2, B2 and C2) and performed a colocalization test using 
the coloc.signals function of the coloc (v.5.1.0) R package. We set a prior 
probability for colocalization p12 of 10−5 (that is, the recommended 
default value). Any pair of (r)eQTL/COVID-19 phenotypes with a poste-
rior probability for colocalization PPH4 > 0.8 was considered to display 
significant colocalization.

Transcriptome-wide association tests
Using the summary statistics from the COVID-19 Host Genetics Initia-
tive8, we applied the S-PrediXcan framework (v.0.6.11)99 to leverage 
our genotype-expression dataset and identify associations between 
genotypes and COVID-19 traits that could be mediated by the regula-
tion of gene expression. These analyses were conducted separately in 
each of the 5 lineages or 22 cell types and the 3 experimental conditions 
of our setting.

To perform these transcriptome-wide association tests (across the 
12,655 human genes of our final dataset), we proceeded in two steps. 
First, we used the pseudobulk gene expression levels detected in each 
cell type/lineage and condition, together with the associated geno-
types, from each of the 222 donors to build reference transcriptome 
datasets. We then trained elastic net regression models on these ref-
erences to estimate the effect on gene expression of each SNP within 
a 100 kb window around each gene. These models were of the form:

α X Z εExpr = + ⋅ + ⋅ + (22)ij ij
T

j i
T

iw γ

where Exprij is the rank-transformed expression (log-normalized CPM) 
of gene j for individual i in the lineage/cell type and condition under 
consideration; α is an intercept; Xij are the genotypes of common vari-
ants in a 100 kb window around gene j; Zi represents the set of core 
covariates of the sample that includes the individual’s age and popula-
tion of origin, the cellular mortality of the sample and the frequency in 
the PBMC fraction of each cell type k comprising the lineage. Moreover, 
wj and γ are parameter vectors capturing the effect of genotypes and 
covariates, and the εi are normally distributed residuals.

We followed the S-PrediXcan pipeline99 using the regression  
coefficients wj as weights to predict the association between the  
genetically controlled expression (GReX) of each gene j (given by 

wwα XGReX = + ⋅ij ij
T

j) and the trait of interest. Specifically, we combined 
these weights with SNP covariances calculated from our data to approx-
imate Z-scores of association with COVID-19-trait as
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where the Z j
TWA  statistic measures the association between gene j’s 

GReX and each of the three COVID-19 traits; wlj is the weight of SNP l in 
the prediction of gene j’s expression, σl  and σj  are, respectively, the 
estimated variances of the SNP and the predicted gene expression, and 
βl
 and βs.e.( )l

  are the effect size estimated by each GWAS for SNP l and 
its standard error, respectively.

Statistical analyses
Unless explicitly specified, all statistical tests are two-sided and based 
on measurements from independent samples.

Inclusion and ethics
The current research project builds on samples collected in Ghent 
(Belgium) and Hong-Kong SAR (China) and has been conducted in 
collaboration with local researchers. Roles and responsibilities were 
agreed among collaborators ahead of the research. Research conducted 
in this study is relevant to local participants and has been reviewed by 
local ethics committees (committee of Ghent University, Belgium, 
B670201214647; Institutional Review Board of the University of Hong 
Kong, UW 20-132), and the relevant French authorities (CPP, CCITRS 
and CNIL). This study was also monitored by the Ethics Board of Institut 
Pasteur (EVOIMMUNOPOP-281297). All manipulations of live viruses 
were performed in a high-security BSL-3 environment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated and analysed in this study have been 
deposited in the Institut Pasteur data repository, OWEY, which is 
available online (https://doi.org/10.48802/owey.e4qn-9190). The 
genome-wide genotyping data generated or used in this study have 
been deposited in OWEY and can be accessed online (https://doi.
org/10.48802/owey.pyk2-5w22). In accordance with the General 
Data Protection Regulation (GDPR) in force in the European Union, 
the aforementioned data can be accessed only from the institutional 
data repository after authorization by the relevant Data Access Com-
mittee (DAC). The DAC ensures that data access and use is authorized 
for academic research relating to the variability of the human immune 
response, as defined in the informed consent signed by research par-
ticipants. COVID-19 GWAS summary statistics used in the present study 
can be downloaded from https://www.covid19hg.org/results/r7. Human 
(1000G data, low (phase 3) and high (NYGC) coverage), archaic (Vindija 
and Denisova) and ancestral (EPO6) genomes used can be retrieved 
from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 
(1000G phase 3), https://www.internationalgenome.org/data-portal/
data-collection/30x-grch38 (1000G high coverage), http://cdna.eva.
mpg.de/neandertal/Vindija/ (archaic) and http://ftp.ensembl.org/
pub/release-71/emf/ensembl-compara/epo_6_primate/ (EPO6). Uni-
formly processed summary statistics from GTEx lung tissue were down-
loaded from http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/ 
(GTEx/lung/ge/all: study_id: QTS000015, dataset_id: QTD000271, file: 
QTD000271.all.tsv.gz). Source data are provided with this paper.
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Extended Data Fig. 1 | Transcriptional responses to SARS-CoV-2 and IAV 
stimulation. a, Comparison of transcriptional responses to SARS-CoV-2 and 
IAV across major immune lineages. Hallmark inflammatory and interferon- 
stimulated genes are highlighted in orange and blue, respectively. b, Distribution 
of ISG activity in the non-stimulated state and in response to SARS-CoV-2 (COV) 
and influenza A virus (IAV) across the five major immune lineages. For each 

lineage and set of stimulation conditions, the violins and boxplots show the 
distribution of ISG activity scores across all n = 222 independent biological 
samples (middle line: median; box limits: upper and lower quartiles; whiskers: 
1.5× interquartile range; points: outliers). *: Wilcoxon’s two-sided signed-rank 
p-value < 2.2 × 10−16.



Extended Data Fig. 2 | Drivers of population variation in expression of 
interferon-stimulated genes. a, Proportion of the variance of ISG activity 
explained by IFN-α, IFN-β and IFN-γ in the non-stimulated condition and in 
response to SARS-CoV-2 and IAV, across the five major immune lineages.  
b, Correlation between levels of IFN-α in the supernatants (measured by 
SIMOA) and ISG activity in myeloid and CD4+ T cells, adjusted for cellular 
mortality. Each dot represents a sample (donor × condition) and is coloured 
according to its stimulation condition (grey: NS, red: COV and blue: IAV). For 
each lineage and set of stimulation conditions, lines show the expected ISG 
activity in each sample given the concentration of IFN-α; shaded error bands 
show the 95% CI (mean ± 2 SEM) around this estimate. c, Relative expression of 
IFN-α-encoding transcripts by each immune cell type in response to SARS- 
CoV-2 and IAV. Bar lengths indicate the mean number of IFN-α transcripts 

contributed by each cell type to the overall pool (cell type frequency × mean 
number of IFN-α transcripts per cell). Dot area is proportional to the mean level 
of IFN-α transcripts in each cell type (counts per million). No value is reported 
in the SARS-CoV-2 condition for infected monocytes as this cell population is 
specific to the IAV condition. d, Correlation of ISG activity scores between 
SARS-CoV-2 and IAV-stimulated samples. Each dot corresponds to a single 
individual (n = 222) and its colour indicates the self-reported ancestries of the 
individual concerned (AFB: Central African; EUB: West European; ASH: East 
Asian). Shaded error band shows the 95% confidence interval (mean ± 2 SEM) of 
the expected ISG activity in COV-stimulated sample, given ISG activity in 
IAV-stimulated samples. Samples with a cellular viability below the 10th 
percentile are indicated by smaller dots.
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Extended Data Fig. 3 | Population differences in cellular composition and 
transcriptional responses to viral stimulation. a, Validation of the memory- 
like NK fraction. Flow cytometry data for representative CMV+ and CMV− 
donors, highlighting the higher percentage of memory-like NK cells (NKG2C+, 
NKG2A−, CD57+) among CMV+ donors than among CMV− donors. b, Population 
variation in the percentage of CD16+ monocytes, memory lymphocyte subsets 
and memory-like NK cells. For each major immune lineage, the cell type 
differing most strongly in frequency between AFB (n = 80) and EUB (n = 80) 
donors is shown. Boxplots show the distribution of the percentage of the target 
cell type in the corresponding lineage in each population (middle line: median; 
box limits: upper and lower quartiles; whiskers: 1.5× interquartile range). 
Wilcoxon’s two-sided rank-sum p-values are shown. c, Effect of adjusting for 
cellular composition on the absolute differences in expression between AFB 

and EUB donors, as a function of absolute differences in expression between 
the two cell types differing most in frequency between these populations 
(Supplementary Table 4b). For each gene, lineage and condition, the effect of 
adjustment is measured by the difference between raw (log2FCr) and adjusted 
(log2FCa) log2fold-changes. For each lineage and stimulation condition, lines 
show the expected change in the magnitude of population gene expression 
differences after adjusting for cellular composition, conditional on absolute 
differences in expression between the two cell types that differ most in 
frequency between these populations; shaded error bands show the 95% CI 
(mean ± 2 SEM) around this estimate. d, Serology assays for CMV across donors 
according to ancestries. Each dot represents a donor and is coloured according 
to ancestries (AFB: Central Africans, EUB: West Europeans). The grey line 
represents the detection threshold used to identify a donor as seropositive.



Extended Data Fig. 4 | Mapping of expression quantitative trait loci at 
cell-type resolution. a, Overlap of eQTLs and eGenes (i.e., genes with an eQTL) 
detected during the mapping of eQTLs at the immune lineage and cell type 
levels. b, Total number of eQTLs detected in each of the 22 different cell types. 
Coloured bars indicate the number of genome-wide significant eQTLs in each 
cell type, white stripes (bottom) indicate cell type-specific eQTLs (two-sided 
Student’s t-test Benjamini-Hochberg-adjusted p-value <0.01; nominal p-value  
>0.01 in all other cell types), and black stripes (top) indicate the total number  
of eQTLs detected in each cell type including eQTLs from other cell types 
replicated at a p-value < 0.01. c, Example of a pDC-specific eQTL for MIR155HG. 

MIR155HG expression levels in pDCs and CD14+ monocytes according to 
rs114273142 genotype in non-stimulated (NS), SARS-CoV-2-stimulated (COV) 
and influenza A virus-stimulated (IAV) conditions (middle line: median; box 
limits: upper and lower quartiles; whiskers: 1.5× interquartile range; points: 
outliers). The number n of independent biological samples is indicated where 
relevant. d, Correlation of eQTL (NS; lower triangle) and reQTL (response to 
SARS-CoV-2; upper triangle) effect sizes across cell types. For each pair of cell 
types, Spearman’s correlation coefficient was calculated for the effect sizes (β) 
of eQTLs that are significant at a nominal two-sided Student’s t-test p-value < 0.01 
in each cell type.
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Extended Data Fig. 5 | Contribution of genetics to population differences  
in response to RNA viruses. a, Enrichment in reQTLs among popDRGs. For 
each lineage, bars indicate the percentage of genes with a significant reQTL, 
both genome-wide and among the popDRGs identified, before or after 
adjustment for cell composition (referred to as “adjusted” and “raw” respectively). 
b, Percentage of popDEGs with an eQTL according to the magnitude of differences 
in expression. In each lineage, popDEGs are assigned to one of five magnitude 
groups based on quintiles of log2fold-change between the AFB and EUB 
populations. For each lineage and magnitude group, the number of popDEGs 
with an eQTL and the total number of popDEGs are reported. c, Relationship 
between eQTL effect sizes and population differences in expression (popDEGs 
only). d, Relationship between reQTL effect sizes and population differences in 
response to immune stimulation (popDRGs only). For each stimulation 

condition, the regression line is computed jointly across all lineages. c and  
d, Lines show expected (r)eQTL effect sizes conditional on the magnitude of 
population differences in gene expression or in response to viral stimulation; 
shaded error bands show the 95% CI (mean ± 2 SEM) around this estimate.  
e, Contribution of genetics and cell composition to population differences  
in response to stimulation by COV and IAV. For each lineage and stimulation 
condition, the x-axis indicates the mean percentage of population differences 
in response to stimulation mediated by either genetics or cell composition, 
across all popDRGs (upper panels) or the set of popDRGs with a significant 
reQTL (lower panels). The size of the dots reflects the percentage of genes with 
a significant mediated effect (FDR<1%). The statistical significance of mediated 
effects for each gene is reported in Supplementary Table 6.



Extended Data Fig. 6 | Positive selection signals across cell types and 
populations. a, Fold-enrichments (FE) of eQTLs in local adaptation signals 
across the 22 cell types. Adaptive loci are defined separately in Central Africans 
(YRI), West Europeans (CEU) and East Asians (CHS), based on the population 
branch statistic (top 1% PBS). Occurrence of adaptive signals at reQTLs is 
compared to randomly selected variants, matched for MAF, distance to nearest 
gene, and LD score. b, Allele frequency trajectories over the past 2,000 
generations in YRI (green) and CEU (yellow) of the GBP7 reQTL (rs1142888-G). 
Lines indicate the maximum a posteriori estimate of allele frequency at each 

epoch in each population; shaded areas indicate the 95% CIs around these 
estimates (2.5th −97.5th percentiles of posterior distribution). c, Fold-enrichments 
(FE) of eQTLs and reQTLs in local adaptation signals (top 1% PBS), for eQTLs and 
reQTLs relative to random variants, matched for MAF, distance to nearest gene, 
and LD score. reQTLs are analysed either for each stimulus separately (reQTL) or 
splitting into stimulus-specific and shared reQTLs (reQTL breakdown). a and c. 
Data are presented as the mean and 2.5th −97.5th percentiles (95% CIs) of FE 
observed over N = 10,000 resamplings.
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Extended Data Fig. 7 | Onset of positive selection events at SARS-CoV-2 
reQTLs. a and b, Estimated period of selection over the past 2,000 generations, 
for 148 and 279 SARS-CoV-2 reQTLs with significant evidence of natural selection 
in Central Africans and West Europeans, respectively (max. |Z-score| > 3). In both 
panels, variants presenting strong signals of positive selection (i.e., top 5% for PBS) 
are shown in colour. The transparent rectangle highlights the period between 
770 and 970 generations ago (i.e., 21.5-27.2 thousand years ago) associated with 
genetic adaptation targeting host coronavirus-interacting proteins in East Asians. 
Variants are ordered along the x-axis in descending order of time to onset of 
natural selection. c, Percentage of SARS-CoV-2-specific reQTLs presenting 

selection signals in different populations, between 770 and 970 generations ago. 
Data are presented as the median and 2.5th −97.5th percentiles (95% CIs) of 
percentages observed over N = 1,000 resamplings. d and e, Examples of 
SARS-CoV-2-induced reQTLs at LILRB1 (rs4806787) in plasmacytoid dendritic 
cells (pDCs) and SIRPA (rs1028396) in CD14+ monocytes. Student’s two-sided 
t-test p-values < 0.01 are shown; middle line: median; notches: 95% CIs of median, 
box limits: upper and lower quartiles; whiskers: 1.5× interquartile range;  
points: outliers. The number n of independent biological samples is indicated 
where relevant.



Extended Data Fig. 8 | Adaptive introgression at regulatory loci.  
a, Enrichment of eQTLs and reQTLs in introgressed haplotypes (mean and  
2.5th −97.5th percentiles of observed/expected ratios across N = 10,000 
resamplings). b, For each population and condition, the frequencies of 
introgressed haplotypes are compared according to their effects on gene 
expression (eQTL vs. non-eQTL; Benjamini-Hochberg-adjusted two-sided 
Wilcoxon’s rank-sum p-values < 0.01 are shown). The numbers of independent 
SNPs and eQTLs considered, n and neQTL respectively, are indicated. Middle line: 
median; notches: 95% CIs of median, box limits: upper and lower quartiles; 
whiskers: 1.5× interquartile range; points: outliers. Benjamini-Hochberg 
-adjusted two-sided Student’s t-test p-values < 0.01 are shown. For a and b, each 
population was downsampled to the same number of donors prior to eQTL 
mapping to avoid biases due to differences in statistical power. c, Adaptively 

introgressed eQTLs of host defence genes. From left to right: (i) effects of the 
introgressed allele on gene expression across immune lineages and stimulation 
conditions, (ii) clinical and functional annotations of associated genes,  
(iii) present-day population frequencies of the introgressed alleles, (iv) percentile 
of archaic allele frequency at the locus (CEU and CHS; dark shades: top 1%, light 
shades: top 5%), and (v) effects of the target allele on COVID-19 risk (infection, 
hospitalization, and critical state). Arrows indicate the increase/decrease in 
gene expression or disease risk with each copy of the introgressed allele. 
Opacity increases with significance (two-sided Student’s t-test -log10 p-value). 
In the leftmost panel, arrow colours indicate the stimulation condition (grey: 
NS, red: COV, blue: IAV). For each eQTL, the introgressed allele is defined as the 
allele segregating with the archaic haplotype in Eurasians.



Article

Extended Data Fig. 9 | Cell type-dependent effects on gene expression of 
Neanderthal introgression. a, Effects on gene expression of two loci (OAS1 
and TLR1) presenting strong evidence of adaptive introgression. For each 
locus, estimated eQTL effect size and 95% CIs estimated in 222 unrelated 
donors are shown across 22 cell types and stimulation conditions. b-f, Examples 
of adaptive introgression at three introgressed loci (UBE2F, TRAF3IP3 and 
TNFSF13B). b, Upper panel: frequency and origin of archaic alleles at the UBE2F 
locus. Each dot represents an archaic allele, and its colour indicates whether  
it was unique to the Vindija Neanderthal genome (orange), shared between  
the Vindija Neanderthal and Denisova genomes (light yellow), or specific to 
Denisova (green). The reQTL index SNP is shown in red (rs58964929). The y-axis 
indicates allele frequency in West Europeans (CEU, yellow) and East Asians 
(CHS, purple). Middle panel: monocyte eQTL p-values (two-sided Student’s 
t-test), colour-coded according to stimulation conditions (grey: non-stimulated 

(NS), red: SARS-CoV-2-stimulated (COV), blue: IAV-stimulated (IAV)). Each dot 
represents a SNP. Dot area is proportional to the LD (r2) values between the SNP 
and nearby archaic alleles. For archaic alleles, arrows indicate direction of allele 
effect on gene expression. Lower panel: Genes at locus, with UBE2F highlighted 
in red. c, and e, same as b (upper panel) for TRAF3IP3 and TNFSF13B. d, The 
Neanderthal-introgressed eQTL at TRAF3IP3 is apparent only in IAV-infected 
monocytes and not detected in bystander cells (stimulated but not infected).  
f, Effects of the introgressed eQTL at TNFSF13B in MAIT cells (i.e., the cell type 
with the largest effect size). For b, d and f, middle line: median; box limits:  
upper and lower quartiles; whiskers: 1.5× interquartile range; points: outliers. 
Benjamini-Hochberg-adjusted two-sided Student’s t-test p-values < 0.01 are 
shown, and the number n of independent biological samples is indicated  
where relevant.



Extended Data Fig. 10 | Colocalization of eQTLs and reQTLs with COVID-19- 
associated loci. a, Enrichment in COVID-19-associated loci at eQTLs and  
reQTLs in each major lineage. Data are presented as the mean and 2.5th −97.5th 
percentiles (95% CIs) of fold-enrichments observed over N = 10,000 resamplings. 
b and c, Colocalization of eQTLs with COVID-19 GWAS hits at the OAS1-3 locus. 
For each eQTL, the upper panel shows the two-sided Student’s t-test −log10 
(p-value) profile for association with COVID-19 phenotypes and the lower panel 
represents the profile of −log10 (p-values) for association with expression in a 
representative cell type. Arrows indicate the direction of the effect at each SNP. 

The colour code reflects LD (r2) with the consensus SNP, shown in purple, 
identified by colocalization analysis. d, Allele frequency trajectories over the  
last 2,000 generations in the three populations of two DR1 eQTLs (rs569414 and 
rs1559828) that colocalize with COVID-19 severity loci (alleles rs569414-A and 
rs1559828-A are associated with decreased COVID-19 severity). Full lines indicate 
the maximum a posteriori estimate of allele frequency at each epoch in each 
population; shaded areas indicate the 95% CIs around these estimates (2.5th−97.5th 
percentile of the posterior distribution).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection GenomeStudio (v.2011.1), FlowJo software (v10.7.1), STARsolo aligner (v2.7.8a) 

Data analysis PLINK (v1.9), GATK (v4.1.2.0), bcftools (v1.16), tabix (v0.2.6), Beagle5.1 (18may20.d20), SHAPEIT4 (v4.2.1), samtools (v1.10), Demuxlet (v0.1), 
Freemuxlet (v0.1), R (v4.1.0) with the following packages : scran (v1.20.1), SingleCellExperiment (v1.14.1), batchelor (v1.8.1), Seurat (v4.1.1), 
Harmony (v0.1.0), kBET (v0.99.6), scuttle (v1.2.1), lme4 (v1.1-27.1), sandwich (v2.5-1), lmtest (v0.9-40), care (v1.1.11), fgsea (v1.18.1), 
MatrixEQTL (v2.3), sva (v3.40.0), SuSiER (v0.11.42), mediation (v4.5.0), and CrossMap (v0.6.3). 
 CLUES (commit n°7371b86, 27 may 2021), Relate (v1.1.8), SliM (v.4.0.1), S-prime (v.07Dec18.5e2), CRF (Sankararaman et al., Nature 2014), 
coloc (v 5.1.0), S-PrediXcan (v0.6.11), other custom-generated scripts are deposited on GitHub (www.github.com/h-e-g/popCell_SARS-CoV-2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The single-cell RNA sequencing data generated and analyzed in this study have been deposited in the Institut Pasteur data repository, OWEY, which can be accessed 
at: https://doi.org/10.48802/owey.e4qn-9190. The genome-wide genotyping data generated or used in this study have been deposited in OWEY and can be 
accessed at https://doi.org/10.48802/owey.pyk2-5w22. Data access and use is restricted to academic research related to the variability of the human immune 
response. COVID-19 GWAS summary statistics used in the present study can be downloaded from https://www.covid19hg.org/results/r7. Human (1000G data, low 
[phase 3] and high [NYGC] coverage), archaic (Vindija and Denisova) and ancestral (EPO6) genomes used can be retrieved from ftp://ftp/1000genomes.ebi.ac.uk/
vol1/ftp/release20130502 (1000G phase 3), https://www.internationalgenome.org/data-portal/data-collection/30x-grch38 (1000G high coverage), http://
cdna.eva.mpg.de/neandertal/Vindija/ (archaic) and ftp://ftp.ensembl.org/pub/release-71/emf/ensembl-compara/epo_6_primate/ (EPO6), respectively. Uniformly 
processed summary statistics from GTEx lung tissue were downloaded from http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/ (GTEx/lung/ge/all: study_id: 
QTS000015, dataset_id: QTD000271, file: QTD000271.all.tsv.gz).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The EvoImmunoPop cohort analyzed in this study (EUB and AFB donors) is constituted of self-reported male individuals. This 
choice, which was originally made in an effort to minimize non-genetic variation and increase power for the mapping of 
eQTLs, limits the generality of our findings, which are likely to be male-biased. However, this bias is partially balanced by the 
presence of female individuals among ASH donors (41 self-reported females). In addition, recent work has shown that the 
genetic basis of gene expression variation is largely shared between males and females (see 10.1126/science.aba3066), 
suggesting adequate transferability of our results. Self-reported gender was compared with chromosomal sex (inferred based 
on genotyping data) and was found to be concordant in all but one individual. All analyses including ASH individuals, who 
include both males and females, were adjusted for chromosomal sex.

Population characteristics The study populations were composed of 80 male donors of self-reported European descent living in Belgium (EUB), 80 male 
donors of self-reported African descent living in Belgium (AFB), and 71 donors of East Asian descent living in Hong Kong (ASH; 
30 males and 41 females). Inclusion of EUB and AFB was restricted to nominally healthy donors between 19 and 50 years of 
age at the time of sample collection (2012-2013). Inclusion of ASH donors was restricted to nominally healthy donors 
between 19 and 63 years of age and who were SARS-CoV-2 naive at the time of the sample collection (2020). 

Recruitment Recruitment of donors of West European and Central African ancestries was performed at the Center for Vaccinology 
(CEVAC) of Ghent University Hospital (Ghent, Belgium), based on self-reported ancestry. Recruitment of donors of East Asian 
ancestry was performed at the School of Public Health of University of Hong Kong (Hong Kong SAR, China). In both cohorts, 
sampling of related individuals was avoided because relatedness can confound population genetic analyses. We do not 
anticipate any bias in our results that could be due to this recruitment strategy.

Ethics oversight All donors were sampled after written informed consent had been obtained, and the study was approved by the ethics 
committee of Ghent University (Belgium, n° B670201214647), the Institutional Review Board of the University of Hong Kong 
(n° UW 20-132), and the relevant French authorities (CPP, CCITRS and CNIL). This study was also monitored by the Ethics 
Board of Institut Pasteur (EVOIMMUNOPOP-281297). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Target sample sizes of 80 individuals per population and stimulation condition, and ~1,500 cells per sample, were determined based on (i) 
sample size of previous single-cell eQTL studies (Randolph et al. Science, 2021) and (ii) to ensure >80% power for the detection of eQTLs 
(MAF>5%) with effect sizes higher than 0.2, at a family-wise error rate of 5%, assuming 10 million SNP-gene pairs tested and residual variance 
in gene expression of 0.2. 



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Data exclusions One East Asian donor was excluded due to the presence of low-quality cells upon thawing. Stimulation experiments were performed on the 
remaining 230 individuals, for a target number of 770 samples (8 individuals × 7 conditions (2 virus × 2 time points + non stimulated × 3 time 
points) + 222 individuals × 3 conditions + 48 replicates (16 individuals ×3 conditions)), each processed on two separate libraries. One library 
(L117) failed during the library preparation stage and was thus discarded. Finally, eight East Asian donors were discarded because the number 
of cells recovered after quality control was too low (< 500 singlets in at least one sample).

Replication The reproducibility of scRNA-seq profiles was evaluated in two ways. First, we processed cells from each sample on two separate 10x 
Genomics libraries in each run, enabling us to assess technical variability associated with library preparation for each sample. Second, for 16 
samples, we performed an additional run, allowing us to evaluate replicability across experiments using the same protocol on samples from 
the same individual.  All attempts at replication were successful (see Supplementary Figure 5).

Randomization We used a balanced design where each experimental run was mostly composed of an approximately equal number of donors of African, 
European, and East Asian ancestries. Donors were randomly selected within each population. In each experimental run, resting and 
stimulated cells from 12 different donors were pooled together according to a pre-established scheme (four resting, four SARS-CoV-2 and four 
IAV samples per library, eight libraries per experimental run) prior to library preparation. cDNA libraries were then pooled and sequenced by 
groups of eight within each sequencing flow-cell (either pooling libraries from each run, or from 2 different runs). Thus, each flow-cell 
contained a randomized, balanced set of > 48 samples. Note that within each population (AFB, EUB and ASH) genotypes are randomized by 
meiotic recombination, which ensures adequate mixing of alleles across batches.  

Blinding When performing stimulations, researchers were blinded to the population of origin of the individual. Genotypes and environmental 
exposures were unknown a priori during data collection, and researchers were blinded to the population of origin of the individual when 
assessing serologies. Sequencing and quantification of gene expression were performed using automated pipelines and did not take into 
account the identity of the sample or the population of origin.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used We used the following antibodies for our study : 

1) CITE-seq: full description of the antibodies is provided in the Supplementary Table S3B (clone, reference and supplier).  
   - TotalSeqTM-B 0046 anti-human CD8  (clone SK1, supplier Biolegend, reference: 344757, dilution: 1/50) 
   - TotalSeqTM-B 0047 anti-human CD56 (NCAM)  (clone 5.1H11 , supplier Biolegend, reference: 362561, dilution: 1/50) 
   - TotalSeqTM-B 0049 anti-human CD3  (clone SK7 , supplier Biolegend, reference: 344853, dilution: 1/50) 
   - TotalSeqTM-B 0050 anti-human CD19  (clone HIB19 , supplier Biolegend, reference: 302263, dilution: 1/50) 
   - TotalSeqTM-B 0053 anti-human CD11c  (clone S-HCL-3 , supplier Biolegend, reference: 371523, dilution: 1/50) 
   - TotalSeqTM-B 0063 anti-human CD45RA  (clone HI100 , supplier Biolegend, reference: 304161, dilution: 1/50) 
   - TotalSeqTM-B 0064 anti-human CD123  (clone 6H6 , supplier Biolegend, reference: 306047, dilution: 1/50) 
   - TotalSeqTM-B 0072 anti-human CD4  (clone RPA-T4 , supplier Biolegend, reference: 300565, dilution: 1/50) 
   - TotalSeqTM-B 0081 anti-human CD14  (clone M5E2 , supplier Biolegend, reference: 301857, dilution: 1/50) 
   - TotalSeqTM-B 0083 anti-human CD16  (clone 3G8 , supplier Biolegend, reference: 302063, dilution: 1/50) 
   - TotalSeqTM-B 0085 anti-human CD25  (clone BC96 , supplier Biolegend, reference: 302647, dilution: 1/50) 
   - TotalSeqTM-B 0154 anti-human CD27  (clone O323 , supplier Biolegend, reference: 302851, dilution: 1/50) 
   - TotalSeqTM-B 0159 anti-human HLA-DR  (clone L243 , supplier Biolegend, reference: 307661, dilution: 1/50) 
   - TotalSeqTM-B 0390 anti-human CD127 (IL-7Rα)  (clone A019D5 , supplier Biolegend, reference: 351354, dilution: 1/50) 
   - TotalSeqTM-B 0410 anti-human CD38  (clone HB-7 , supplier Biolegend, reference: 356639, dilution: 1/50) 
 
2) Flow cytometry: full description of the antibodies is provided in the section Flow Cytometry of the Methods (clone and supplier). 
   - CD3 VioGreen (clone BW264/56, Miltenyi Biotec, dilution: 1/50), 
   - CD14 V500 (clone M5E2, BD Biosciences, dilution: 1/50), 
   - CD57 Pacific Blue (clone HNK-1, Biolegend, dilution: 1/20), 
   - NKp46 PE (clone 9E2/NKp46, BD Biosciences, dilution: 1/10), 
   - CD16 PerCP-Cy5.5 (clone 3G8, BD Biosciences, dilution: 1/20), 
   - CD56 APC-Vio770 (clone REA196, Miltenyi Biotec, dilution: 1/50), 
   - NKG2A FITC (clone REA110, Miltenyi Biotec, dilution: 1/50),  
   - NKG2C APC (clone REA205, Miltenyi Biotec, dilution: 1/50) 
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3) SIMOA: full description of the antibodies is provided in the section Supernatants cytokine assays of the Methods (clone and 
supplier or origin).  
    - IFN-α capture antibody (clone 8H1, supplier: Evitria, Switzerland, origin: APS1/APECED  patient, concentration: 0.3 mg/mL) 
    - IFN-α detector antibody (clone 12H5 ,supplier: Evitria, Switzerland, origin: APS1/APECED patient, concentration: 0.3 μg/mL) 
    - IFN-γ capture antibody (clone MD-1, supplier: BioLegend, concentration: 0.3 mg/mL) 
    - IFN-γ detector antibody (clone MAB285, supplier: R&D Systems, concentration: 0.3 μg/mL) 
    - IFN-β capture antibody (clone 710322-9 IgG1 kappa, supplier: PBL Assay Science, origin mouse monoclonal antibody, 
concentration: 0.3 mg/mL) 
    - IFN-γ detector antibody (710323-9 IgG1 kappa, supplier: PBL Assay Science, origin mouse monoclonal antibody, concentration: 
0.3 μg/mL) 

Validation Validation of commercial antibodies was done on a regular internal quality control for each lot by the manufacturer. 
Flow cytometry: 
Miltenyi Biotech 
https://www.miltenyibiotec.com/upload/assets/dataSheet_p42150_eng_GBR.pdf 
https://www.miltenyibiotec.com/upload/assets/IM0022906.PDF 
https://www.miltenyibiotec.com/upload/assets/dataSheet_p42217_eng_GBR.pdf 
https://www.miltenyibiotec.com/upload/assets/dataSheet_p68857_eng_GBR.pdf 
BD Biosciences 
https://www.bdbiosciences.com/content/bdb/paths/generate-tds-document.us.561391.pdf 
https://www.bdbiosciences.com/content/bdb/paths/generate-tds-document.us.562101.pdf 
https://www.bdbiosciences.com/content/bdb/paths/generate-tds-document.us.560717.pdf 
Biolegend 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/pacific-blue-anti-human-cd57-antibody-8827?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=Pacific%20Blue%E2%84%A2%20anti-human%
20CD57%20Antibody.pdf&v=20220914123035 
 
CITE-seq: 
Biolegend 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0046-anti-human-cd8-antibody-18042?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0046%20anti-human%
20CD8%20Antibody.pdf&v=20220902063018 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0047-anti-human-cd56-ncam-antibody-18156?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0047%20anti-human%
20CD56%20(NCAM)%20Antibody.pdf&v=20210121043158 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0049-anti-human-cd3-antibody-19288?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0049%20anti-human%
20CD3%20Antibody.pdf&v=20220907063026 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0050-anti-human-cd19-antibody-16831?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0050%20anti-human%
20CD19%20Antibody.pdf&v=20221026111349 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0053-anti-human-cd11c-antibody-18043?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0053%20anti-human%
20CD11c%20Antibody.pdf&v=20220820063106 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0063-anti-human-cd45ra-antibody-16850?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0063%20anti-human%
20CD45RA%20Antibody.pdf&v=20220820063106 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0064-anti-human-cd123-antibody-18968?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0064%20anti-human%
20CD123%20Antibody.pdf&v=20220830085839 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0072-anti-human-cd4-antibody-16820?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0072%20anti-human%
20CD4%20Antibody.pdf&v=20220824063016 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0081-anti-human-cd14-antibody-16827?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0081%20anti-human%
20CD14%20Antibody.pdf&v=20220817071325 
https://www.biolegend.com/en-us/products/totalseq-b0083-anti-human-cd16-antibody-16829 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0085-anti-human-cd25-antibody-16836?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0085%20anti-human%
20CD25%20Antibody.pdf&v=20220820063106 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0154-anti-human-cd27-antibody-16839?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0154%20anti-human%
20CD27%20Antibody.pdf&v=20220820063106 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0159-anti-human-hla-dr-antibody-16879?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0159%20anti-human%
20HLA-DR%20Antibody.pdf&v=20220830045305 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0390-anti-human-cd127-il-7ralpha-antibody-16859?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0390%20anti-human%
20CD127%20(IL-7R%CE%B1)%20Antibody.pdf&v=20220820063106 
https://d1spbj2x7qk4bg.cloudfront.net/en-us/products/totalseq-b0410-anti-human-cd38-antibody-18086?
pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq%E2%84%A2-B0410%20anti-human%
20CD38%20Antibody.pdf&v=20220820063106 
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Simoa: 
Validation of the antibodies used for the Simoa assays has been previously described and published in the following articles: Rodero 
et al., Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J. Exp. Med. 214 (2017); Hadjadj 
et al., Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369 (2020).  
 

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Frozen PBMCs from three AFB (CMV+) and six EUB (3 CMV+, 3 CMV-) donors were thawed, centrifuged, counted and allowed 
to rest overnight. For each donor, 1E6 cells were resuspended in PBS supplemented with 2% FBS and incubated with human 
Fc blocking solution (BD Biosciences) for 10 minutes at 4°C. Cells were then stained with the following antibodies for 30 
minutes at 4°C: CD3 VioGreen (Miltenyi Biotec), CD14 V500 (BD Biosciences), CD57 Pacific Blue (Biolegend), NKp46 PE (BD 
Biosciences), CD16 PerCP-Cy5.5 (BD Biosciences), CD56 APC-Vio770 (Miltenyi Biotec), NKG2A FITC (BioLegend), NKG2C APC 
(BioLegend).

Instrument Samples were acquired on a MACSQuant 10 cytometer (Miltenyi, S/N 2428). 

Software Data were analyzed using FlowJo v10.7.1. 

Cell population abundance Between 0.3x1E6 and 0.5x1E6 PBMCs per donor were acquired on the cytometer. The percentage of NKG2C+ and NKG2A+ 
cells were determined following the gating strategy described below. 

Gating strategy Singlets were first selected using FSC-H/FSC-A markers, then with the markers SSC-H/SSC-A. NK cells were then determined 
as NKp46+/CD3+CD14-Viogreen- cells. From this gate, our subsets of interest were defined as: NKG2C+ cells with NKG2C+/
NKG2A- gate; NKG2A+ cells with NKG2A+/NKG2C- gate. Finally, a histogram overlay for CD57 marker was made using the 
cells from the two previous gates (NKG2C+ and NKG2A+ cells), to confirm the phenotypic characteristic of NK memory cells. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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