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Champion-level drone racing using deep 
reinforcement learning

Elia Kaufmann1 ✉, Leonard Bauersfeld1, Antonio Loquercio1, Matthias Müller2, Vladlen Koltun3 
& Davide Scaramuzza1

First-person view (FPV) drone racing is a televised sport in which professional 
competitors pilot high-speed aircraft through a 3D circuit. Each pilot sees the 
environment from the perspective of their drone by means of video streamed from an 
onboard camera. Reaching the level of professional pilots with an autonomous drone 
is challenging because the robot needs to fly at its physical limits while estimating its 
speed and location in the circuit exclusively from onboard sensors1. Here we 
introduce Swift, an autonomous system that can race physical vehicles at the level of 
the human world champions. The system combines deep reinforcement learning (RL) 
in simulation with data collected in the physical world. Swift competed against three 
human champions, including the world champions of two international leagues, in 
real-world head-to-head races. Swift won several races against each of the human 
champions and demonstrated the fastest recorded race time. This work represents a 
milestone for mobile robotics and machine intelligence2, which may inspire the 
deployment of hybrid learning-based solutions in other physical systems.

Deep RL3 has enabled some recent advances in artificial intelligence. 
Policies trained with deep RL have outperformed humans in complex 
competitive games, including Atari4–6, Go5,7–9, chess5,9, StarCraft10, Dota 
2 (ref. 11) and Gran Turismo12,13. These impressive demonstrations of 
the capabilities of machine intelligence have primarily been limited 
to simulation and board-game environments, which support policy 
search in an exact replica of the testing conditions. Overcoming this 
limitation and demonstrating champion-level performance in physi-
cal competitions is a long-standing problem in autonomous mobile 
robotics and artificial intelligence14–16.

FPV drone racing is a televised sport in which highly trained human 
pilots push aerial vehicles to their physical limits in high-speed agile 
manoeuvres (Fig. 1a). The vehicles used in FPV racing are quadcopters, 
which are among the most agile machines ever built (Fig. 1b). During a 
race, the vehicles exert forces that surpass their own weight by a factor 
of five or more, reaching speeds of more than 100 km h−1 and accel-
erations several times that of gravity, even in confined spaces. Each 
vehicle is remotely controlled by a human pilot who wears a headset 
showing a video stream from an onboard camera, creating an immersive 
‘first-person-view’ experience (Fig. 1c).

Attempts to create autonomous systems that reach the performance 
of human pilots date back to the first autonomous drone racing com-
petition in 2016 (ref. 17). A series of innovations followed, including the  
use of deep networks to identify the next gate location18–20, transfer 
of racing policies from simulation to reality21,22 and accounting for 
uncertainty in perception23,24. The 2019 AlphaPilot autonomous drone 
racing competition showcased some of the best research in the field25. 
However, the first two teams still took almost twice as long as a profes-
sional human pilot to complete the track26,27. More recently, autono-
mous systems have begun to reach expert human performance28–30. 
However, these works rely on near-perfect state estimation provided 

by an external motion-capture system. This makes the comparison with 
human pilots unfair, as humans only have access to onboard observa-
tions from the drone.

In this article, we describe Swift, an autonomous system that can race 
a quadrotor at the level of human world champions using only onboard 
sensors and computation. Swift consists of two key modules: (1) a per-
ception system that translates high-dimensional visual and inertial 
information into a low-dimensional representation and (2) a control 
policy that ingests the low-dimensional representation produced by 
the perception system and produces control commands.

The control policy is represented by a feedforward neural network  
and is trained in simulation using model-free on-policy deep RL31.  
To bridge discrepancies in sensing and dynamics between simula-
tion and the physical world, we make use of non-parametric empiri-
cal noise models estimated from data collected on the physical 
system. These empirical noise models have proved to be instru-
mental for successful transfer of the control policy from simulation  
to reality.

We evaluate Swift on a physical track designed by a professional 
drone-racing pilot (Fig. 1a). The track comprises seven square gates 
arranged in a volume of 30 × 30 × 8 m, forming a lap of 75 m in length. 
Swift raced this track against three human champions: Alex Vanover, 
the 2019 Drone Racing League world champion, Thomas Bitmatta, 
two-time MultiGP International Open World Cup champion, and 
Marvin Schaepper, three-time Swiss national champion. The quad-
rotors used by Swift and by the human pilots have the same weight, 
shape and propulsion. They are similar to drones used in international 
competitions.

The human pilots were given one week of practice on the race track. 
After this week of practice, each pilot competed against Swift in several 
head-to-head races (Fig. 1a,b). In each head-to-head race, two drones 
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(one controlled by a human pilot and one controlled by Swift) start 
from a podium. The race is set off by an acoustic signal. The first vehicle 
that completes three full laps through the track, passing all gates in the 
correct order in each lap, wins the race.

Swift won several races against each of the human pilots and achieved 
the fastest race time recorded during the events. Our work marks 
the first time, to our knowledge, that an autonomous mobile robot 
achieved world-champion-level performance in a real-world competi-
tive sport.

The Swift system
Swift uses a combination of learning-based and traditional algorithms 
to map onboard sensory readings to control commands. This map-
ping comprises two parts: (1) an observation policy, which distils 
high-dimensional visual and inertial information into a task-specific 
low-dimensional encoding, and (2) a control policy that transforms 
the encoding into commands for the drone. A schematic overview of 
the system is shown in Fig. 2.

The observation policy consists of a visual–inertial estimator32,33 
that operates together with a gate detector26, which is a convolu-
tional neural network that detects the racing gates in the onboard 
images. Detected gates are then used to estimate the global position 
and orientation of the drone along the race track. This is done by a 
camera-resectioning algorithm34 in combination with a map of the 
track. The estimate of the global pose obtained from the gate detector 
is then combined with the estimate from the visual–inertial estimator 
by means of a Kalman filter, resulting in a more accurate representation 

of the robot’s state. The control policy, represented by a two-layer 
perceptron, maps the output of the Kalman filter to control commands 
for the aircraft. The policy is trained using on-policy model-free deep 
RL31 in simulation. During training, the policy maximizes a reward that 
combines progress towards the next racing gate35 with a perception 
objective that rewards keeping the next gate in the field of view of 
the camera. Seeing the next gate is rewarded because it increases the 
accuracy of pose estimation.

Optimizing a policy purely in simulation yields poor performance on 
physical hardware if the discrepancies between simulation and reality  
are not mitigated. The discrepancies are caused primarily by two factors:  
(1) the difference between simulated and real dynamics and (2)  
the noisy estimation of the robot’s state by the observation policy when 
provided with real sensory data. We mitigate these discrepancies by 
collecting a small amount of data in the real world and using this data 
to increase the realism of the simulator.

Specifically, we record onboard sensory observations from 
the robot together with highly accurate pose estimates from a 
motion-capture system while the drone is racing through the track. 
During this data-collection phase, the robot is controlled by a policy 
trained in simulation that operates on the pose estimates provided by 
the motion-capture system. The recorded data allow to identify the 
characteristic failure modes of perception and dynamics observed 
through the race track. These intricacies of failing perception and 
unmodelled dynamics are dependent on the environment, platform, 
track and sensors. The perception and dynamics residuals are mod-
elled using Gaussian processes36 and k-nearest-neighbour regression, 
respectively. The motivation behind this choice is that we empirically 
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Fig. 1 | Drone racing. a, Swift (blue) races head-to-head against Alex Vanover, 
the 2019 Drone Racing League world champion (red). The track comprises 
seven square gates that must be passed in order in each lap. To win a race, a 
competitor has to complete three consecutive laps before its opponent.  
b, A close-up view of Swift, illuminated with blue LEDs, and a human-piloted 
drone, illuminated with red LEDs. The autonomous drones used in this work rely 

only on onboard sensory measurements, with no support from external 
infrastructure, such as motion-capture systems. c, From left to right: Thomas 
Bitmatta, Marvin Schaepper and Alex Vanover racing their drones through the 
track. Each pilot wears a headset that shows a video stream transmitted in real 
time from a camera aboard their aircraft. The headsets provide an immersive 
‘first-person-view’ experience. c, Photo by Regina Sablotny.
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found perception residuals to be stochastic and dynamics residu-
als to be largely deterministic (Extended Data Fig. 1). These residual 
models are integrated into the simulation and the racing policy is 
fine-tuned in this augmented simulation. This approach is related to 
the empirical actuator models used for simulation-to-reality transfer  
in ref. 37 but further incorporates empirical modelling of the percep-
tion system and also accounts for the stochasticity in the estimate of  
the platform state.

We ablate each component of Swift in controlled experiments 
reported in the extended data. Also, we compare against recent work 
that tackles the task of autonomous drone racing with traditional 
methods, including trajectory planning and model predictive con-
trol (MPC). Although such approaches achieve comparable or even 
superior performance to our approach in idealized conditions, such as 
simplified dynamics and perfect knowledge of the robot’s state, their 
performance collapses when their assumptions are violated. We find 
that approaches that rely on precomputed paths28,29 are particularly 
sensitive to noisy perception and dynamics. No traditional method has 

achieved competitive lap times compared with Swift or human world 
champions, even when provided with highly accurate state estima-
tion from a motion-capture system. Detailed analysis is provided in 
the extended data.

Results
The drone races take place on a track designed by an external world-class 
FPV pilot. The track features characteristic and challenging manoeu-
vres, such as a Split-S (Figs. 1a (top-right corner) and 4d). Pilots are 
allowed to continue racing even after a crash, provided their vehicle 
is still able to fly. If both drones crash and cannot complete the track, 
the drone that proceeded farther along the track wins.

As shown in Fig. 3b, Swift wins 5 out of 9 races against A. Vanover, 4 out 
of 7 races against T. Bitmatta and 6 out of 9 races against M. Schaepper. 
Out of the 10 losses recorded for Swift, 40% were because of a colli-
sion with the opponent, 40% because of collision with a gate and 20% 
because of the drone being slower than the human pilot. Overall, Swift 
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Fig. 2 | The Swift system. Swift consists of two key modules: a perception 
system that translates visual and inertial information into a low-dimensional 
state observation and a control policy that maps this state observation to 
control commands. Control commands specify desired collective thrust and 
body rates, the same control modality that the human pilots use. a, The 
perception system consists of a VIO module that computes a metric estimate of 
the drone state from camera images and high-frequency measurements 
obtained by an inertial measurement unit (IMU). The VIO estimate is coupled 
with a neural network that detects the corners of racing gates in the image 

stream. The corner detections are mapped to a 3D pose and fused with the VIO 
estimate using a Kalman filter. b, We use model-free on-policy deep RL to train 
the control policy in simulation. During training, the policy maximizes a reward 
that combines progress towards the centre of the next racing gate with a 
perception objective to keep the next gate in the field of view of the camera. To 
transfer the racing policy from simulation to the physical world, we augment 
the simulation with data-driven residual models of the vehicle’s perception and 
dynamics. These residual models are identified from real-world experience 
collected on the race track. MLP, multilayer perceptron.
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wins most races against each human pilot. Swift also achieves the fastest  
race time recorded, with a lead of half a second over the best time  
clocked by a human pilot (A. Vanover).

Figure 4 and Extended Data Table 1d provide an analysis of the fast-
est lap flown by Swift and each human pilot. Although Swift is globally 
faster than all human pilots, it is not faster on all individual segments 
of the track (Extended Data Table 1). Swift is consistently faster at 
the start and in tight turns such as the split S. At the start, Swift has a 
lower reaction time, taking off from the podium, on average, 120 ms 
before human pilots. Also, it accelerates faster and reaches higher 
speeds going into the first gate (Extended Data Table 1d, segment 1). 
In sharp turns, as shown in Fig. 4c,d, Swift finds tighter manoeuvres. 
One hypothesis is that Swift optimizes trajectories on a longer time-
scale than human pilots. It is known that model-free RL can optimize 

long-term rewards through a value function38. Conversely, human pilots 
plan their motion on a shorter timescale, up to one gate into the future39. 
This is apparent, for example in the split S (Fig. 4b,d), for which human 
pilots are faster in the beginning and at the end of the manoeuvre, 
but slower overall (Extended Data Table 1d, segment 3). Also, human 
pilots orient the aircraft to face the next gate earlier than Swift does 
(Fig. 4c,d). We propose that human pilots are accustomed to keeping 
the upcoming gate in view, whereas Swift has learned to execute some 
manoeuvres while relying on other cues, such as inertial data and visual 
odometry against features in the surrounding environments. Overall, 
averaged over the entire track, the autonomous drone achieves the 
highest average speed, finds the shortest racing line and manages to 
maintain the aircraft closer to its actuation limits throughout the race, 
as indicated by the average thrust and power drawn (Extended Data  
Table 1d).

We also compare the performance of Swift and the human champions 
in time trials (Fig. 3a). In a time trial, a single pilot races the track, with 
the number of laps left to the discretion of the pilot. We accumulate 
time-trial data from the practice week and the races, including train-
ing runs (Fig. 3a, coloured) and laps flown in race conditions (Fig. 3a, 
black). For each contestant, we use more than 300 laps for computing 
statistics. The autonomous drone more consistently pushes for fast 
lap times, exhibiting lower mean and variance. Conversely, human 
pilots decide whether to push for speed on a lap-by-lap basis, yielding 
higher mean and variance in lap times, both during training and in 
the races. The ability to adapt the flight strategy allows human pilots 
to maintain a slower pace if they identify that they have a clear lead, 
so as to reduce the risk of a crash. The autonomous drone is unaware 
of its opponent and pushes for fastest expected completion time no 
matter what, potentially risking too much when in the lead and too 
little when trailing behind40.

Discussion
FPV drone racing requires real-time decision-making based on noisy and 
incomplete sensory input from the physical environment. We have pre-
sented an autonomous physical system that achieves champion-level 
performance in this sport, reaching—and at times exceeding—the per-
formance of human world champions. Our system has certain structural 
advantages over the human pilots. First, it makes use of inertial data 
from an onboard inertial measurement unit32. This is akin to the human 
vestibular system41, which is not used by the human pilots because they 
are not physically in the aircraft and do not feel the accelerations acting 
on it. Second, our system benefits from lower sensorimotor latency 
(40 ms for Swift versus an average of 220 ms for expert human pilots39). 
On the other hand, the limited refresh rate of the camera used by Swift 
(30 Hz) can be considered a structural advantage for human pilots, 
whose cameras’ refresh rate is four times as fast (120 Hz), improving 
their reaction time42.

Human pilots are impressively robust: they can crash at full speed, 
and—if the hardware still functions—carry on flying and complete the 
track. Swift was not trained to recover after a crash. Human pilots are 
also robust to changes in environmental conditions, such as illumina-
tion, which can markedly alter the appearance of the track. By con-
trast, Swift’s perception system assumes that the appearance of the 
environment is consistent with what was observed during training. If 
this assumption fails, the system can fail. Robustness to appearance 
changes can be provided by training the gate detector and the residual 
observation model in a diverse set of conditions. Addressing these 
limitations could enable applying the presented approach in autono-
mous drone racing competitions in which access to the environment 
and the drone is limited25.

Notwithstanding the remaining limitations and the work ahead, the 
attainment by an autonomous mobile robot of world-champion-level 
performance in a popular physical sport is a milestone for robotics 
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and machine intelligence. This work may inspire the deployment of 
hybrid learning-based solutions in other physical systems, such as 
autonomous ground vehicles, aircraft and personal robots, across a 
broad range of applications.
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Methods

Quadrotor simulation
Quadrotor dynamics. To enable large-scale training, we use a high- 
fidelity simulation of the quadrotor dynamics. This section briefly 
explains the simulation. The dynamics of the vehicle can be written as
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in which ⊙ represents quaternion rotation, p q vWB WB W, ,  and ωB denote 
the position, attitude quaternion, inertial velocity and body rates of 
the quadcopter, respectively. The motor time constant is kmot and the 
motor speeds Ω and Ωss are the actual and steady-state motor speeds, 
respectively. The matrix J is the inertia of the quadcopter and 

Wg  
denotes the gravity vector. Two forces act on the quadrotor: the lift 
force fprop generated by the propellers and an aerodynamic force faero 
that aggregates all other forces, such as aerodynamic drag, dynamic 
lift and induced drag. The torque is modelled as a sum of four compo-
nents: the torque generated by the individual propeller thrusts τprop, 
the yaw torque τmot generated by a change in motor speed, an aerody-
namic torque τaero that accounts for various aerodynamic effects such 
as blade flapping and an inertial term τiner. The individual components 
are given as

∑ ∑= , = + × , (2)
i

i
i

i i iprop prop P,τ τf f r f

τ τ ω ωζ J̇
B B∑J= Ω , = − × (3)

i
i imot m+p iner

in which rP,i is the location of propeller i, expressed in the body frame, 
and fi and τi are the forces and torques, respectively, generated by  
the ith propeller. The axis of rotation of the ith motor is denoted by ζi, 
the combined inertia of the motor and propeller is Jm+p and the derivative  
of the ith motor speed is Ω̇i. The individual propellers are modelled 
using a commonly used quadratic model, which assumes that the lift 
force and drag torque are proportional to the square of the propeller 
speed Ωi:

c c(Ω ) = 0 0 ⋅ Ω , (Ω ) = 0 0 ⋅ Ω (4)i i i i i il
2

d
2

⊤ ⊤
τf    

in which cl and cd denote the propeller lift and drag coefficients, respec-
tively.

Aerodynamic forces and torques. The aerodynamic forces and torques 
are difficult to model with a first-principles approach. We thus use a 
data-driven model43. To maintain the low computational complexity 
required for large-scale RL training, a grey-box polynomial model is 
used rather than a neural network. The aerodynamic effects are  
assumed to primarily depend on the velocity vB (in the body frame) and 
the average squared motor speed Ω2. The aerodynamic forces fx, fy and 
fz and torques τx, τy and τz are estimated in the body frame. The quantities 
vx, vy and vz denote the three axial velocity components (in the body 
frame) and vxy denotes the speed in the (x, y) plane of the quadrotor. On 
the basis of insights from the underlying physical processes, linear and 
quadratic combinations of the individual terms are selected. For read-
ability, the coefficients multiplying each summand have been omitted:
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The respective coefficients are then identified from real-world 
flight data, in which motion capture is used to provide ground-truth 
forces and torque measurements. We use data from the race 
track, allowing the dynamics model to fit the track. This is akin to 
the human pilots’ training for days or weeks before the race on 
the specific track that they will be racing. In our case, the human 
pilots are given a week of practice on the same track ahead of the  
competition.

Betaflight low-level controller. To control the quadrotor, the neural  
network outputs collective thrust and body rates. This control  
signal is known to combine high agility with good robustness to 
simulation-to-reality transfer44. The predicted collective thrust 
and body rates are then processed by an onboard low-level con-
troller that computes individual motor commands, which are sub-
sequently translated into analogue voltage signals through an 
electronic speed controller (ESC) that controls the motors. On the 
physical vehicle, this low-level proportional–integral–derivative 
(PID) controller and ESC are implemented using the open-source 
Betaflight and BLHeli32 firmware45. In simulation, we use an ac-
curate model of both the low-level controller and the motor speed  
controller.

Because the Betaflight PID controller has been optimized for 
human-piloted flight, it exhibits some peculiarities, which the simu-
lation correctly captures: the reference for the D-term is constantly 
zero (pure damping), the I-term gets reset when the throttle is cut and, 
under motor thrust saturation, the body rate control is assigned prior-
ity (proportional downscaling of all motor signals to avoid saturation). 
The gains of the controller used for simulation have been identified 
from the detailed logs of the Betaflight controller’s internal states. 
The simulation can predict the individual motor commands with less 
than 1% error.

Battery model and ESC. The low-level controller converts the individ-
ual motor commands into a pulse-width modulation (PWM) signal and 
sends it to the ESC, which controls the motors. Because the ESC does 
not perform closed-loop control of the motor speeds, the steady-state 
motor speed Ωi,ss for a given PWM motor command cmdi is a function 
of the battery voltage. Our simulation thus models the battery voltage 
using a grey-box battery model46 that simulates the voltage based on 
instantaneous power consumption Pmot:
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(5)mot

d
3

The battery model46 then simulates the battery voltage based on this 
power demand. Given the battery voltage Ubat and the individual motor 
command ucmd,i, we use the mapping (again omitting the coefficients 
multiplying each summand)

 U u u U uΩ 1 + + + + (6)i i i i,ss bat cmd, cmd, bat cmd,

to calculate the corresponding steady-state motor speed Ωi,ss required 
for the dynamics simulation in equation (1). The coefficients have been 



identified from Betaflight logs containing measurements of all involved 
quantities. Together with the model of the low-level controller, this 
enables the simulator to correctly translate an action in the form of col-
lective thrust and body rates to desired motor speeds Ωss in equation (1).

Policy training
We train deep neural control policies that directly map observations 
ot in the form of platform state and next gate observation to con-
trol actions ut in the form of mass-normalized collective thrust and 
body rates44. The control policies are trained using model-free RL in  
simulation.

Training algorithm. Training is performed using proximal policy  
optimization31. This actor-critic approach requires jointly optimizing 
two neural networks during training: the policy network, which maps 
observations to actions, and the value network, which serves as the 
‘critic’ and evaluates actions taken by the policy. After training, only 
the policy network is deployed on the robot.

Observations, actions and rewards. An observation o ∈t
31R  obtained 

from the environment at time t consists of: (1) an estimate of the current 
robot state; (2) the relative pose of the next gate to be passed on the 
track layout; and (3) the action applied in the previous step. Specifi-
cally, the estimate of the robot state contains the position of the platform,  
its velocity and attitude represented by a rotation matrix, resulting in a 
vector in R15. Although the simulation uses quaternions internally, we 
use a rotation matrix to represent attitude to avoid ambiguities47. The 
relative pose of the next gate is encoded by providing the relative posi-
tion of the four gate corners with respect to the vehicle, resulting in a 
vector in R12. All observations are normalized before being passed to 
the network. Because the value network is only used during training 
time, it can access privileged information about the environment that 
is not accessible to the policy48. This privileged information is concat-
enated with other inputs to the policy network and contains the exact 
position, orientation and velocity of the robot.

For each observation ot, the policy network produces an action 
Ra ∈t

4 in the form of desired mass-normalized collective thrust and 
body rates.

We use a dense shaped reward formulation to learn the task of 
perception-aware autonomous drone racing. The reward rt at time 
step t is given by

r r r r r= + + − (7)t t t t t
prog perc cmd crash

in which rprog rewards progress towards the next gate35, rperc encodes 
perception awareness by adjusting the attitude of the vehicle such 
that the optical axis of the camera points towards the centre of the 
next gate, rcmd rewards smooth actions and rcrash is a binary penalty that 
is only active when colliding with a gate or when the platform leaves a 
predefined bounding box. If r crash is triggered, the training episode ends.

Specifically, the reward terms are
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in which dt
Gate denotes the distance from the centre of mass of the vehi-

cle to the centre of the next gate at time step t, δcam represents the angle 
between the optical axis of the camera and the centre of the next gate 

and t
ωa  are the commanded body rates. The hyperparameters λ1,…, λ5 

balance different terms (Extended Data Table 1a).

Training details. Data collection is performed by simulating 100 agents 
in parallel that interact with the environment in episodes of 1,500 steps. 
At each environment reset, every agent is initialized at a random gate 
on the track, with bounded perturbation around a state previously 
observed when passing this gate. In contrast to previous work44,49,50, 
we do not perform randomization of the platform dynamics at training 
time. Instead, we perform fine-tuning based on real-world data. The 
training environment is implemented using TensorFlow Agents51. The 
policy network and the value network are both represented by two-layer 
perceptrons with 128 nodes in each layer and LeakyReLU activations 
with a negative slope of 0.2. Network parameters are optimized using  
the Adam optimizer with learning rate 3 × 10−4 for both the policy 
network and the value network.

Policies are trained for a total of 1 × 108 environment interactions, 
which takes 50 min on a workstation (i9 12900K, RTX 3090, 32 GB RAM 
DDR5). Fine-tuning is performed for 2 × 107 environment interactions.

Residual model identification
We perform fine-tuning of the original policy based on a small amount 
of data collected in the real world. Specifically, we collect three full 
rollouts in the real world, corresponding to approximately 50 s of flight 
time. We fine-tune the policy by identifying residual observations and  
residual dynamics, which are then used for training in simulation. During  
this fine-tuning phase, only the weights of the control policy are 
updated, whereas the weights of the gate-detection network are kept 
constant.

Residual observation model. Navigating at high speeds results in sub-
stantial motion blur, which can lead to a loss of tracked visual features 
and severe drift in linear odometry estimates. We fine-tune policies 
with an odometry model that is identified from only a handful of trials  
recorded in the real world. To model the drift in odometry, we use Gauss-
ian processes36, as they allow fitting a posterior distribution of odom-
etry perturbations, from which we can sample temporally consistent  
realizations.

Specifically, the Gaussian process model fits residual position, 
velocity and attitude as a function of the ground-truth robot state. 
The observation residuals are identified by comparing the observed 
visual–inertial odometry (VIO) estimates during a real-world rollout 
with the ground-truth platform states, which are obtained from an 
external motion-tracking system.

We treat each dimension of the observation separately, effectively 
fitting a set of nine 1D Gaussian processes to the observation residuals. 
We use a mixture of radial basis function kernels
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in which L is the diagonal length scale matrix and σf and σn represent the 
data and prior noise variance, respectively, and zi and zj represent data 
features. The kernel hyperparameters are optimized by maximizing 
the log marginal likelihood. After kernel hyperparameter optimiza-
tion, we sample new realizations from the posterior distribution that 
are then used during fine-tuning of the policy. Extended Data Fig. 1 
illustrates the residual observations in position, velocity and attitude 
in real-world rollouts, as well as 100 sampled realizations from the 
Gaussian process model.

Residual dynamics model. We use a residual model to complement 
the simulated robot dynamics52. Specifically, we identify residual  
accelerations as a function of the platform state s and the commanded 
mass-normalized collective thrust c:
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a s c= KNN( , ) (11)res

We use k-nearest neighbour regression with k = 5. The size of the dataset 
used for residual dynamics model identification depends on the track 
layout and ranges between 800 and 1,000 samples for the track layout 
used in this work.

Gate detection
To correct for drift accumulated by the VIO pipeline, the gates are used 
as distinct landmarks for relative localization. Specifically, gates are 
detected in the onboard camera view by segmenting gate corners26. 
The greyscale images provided by the Intel RealSense Tracking Camera 
T265 are used as input images for the gate detector. The architecture of 
the segmentation network is a six-level U-Net53 with (8, 16, 16, 16, 16, 16) 
convolutional filters of size (3, 3, 3, 5, 7, 7) per level and a final extra 
layer operating on the output of the U-Net containing 12 filters. As the 
activation function, LeakyReLU with α = 0.01 is used. For deployment 
on the NVIDIA Jetson TX2, the network is ported to TensorRT. To opti-
mize memory footprint and computation time, inference is performed 
in half-precision mode (FP16) and images are downsampled to size 
384 × 384 before being fed to the network. One forward pass through 
the network takes 40 ms on the NVIDIA Jetson TX2.

VIO drift estimation
The odometry estimates from the VIO pipeline54 exhibit substantial drift 
during high-speed flight. We use gate detection to stabilize the pose 
estimates produced by VIO. The gate detector outputs the coordinates 
of the corners of all visible gates. A relative pose is first estimated for 
all predicted gates using infinitesimal plane-based pose estimation 
(IPPE)34. Given this relative pose estimate, each gate observation is 
assigned to the closest gate in the known track layout, thus yielding a 
pose estimate for the drone.

Owing to the low frequency of the gate detections and the high qual-
ity of the VIO orientation estimate, we only refine the translational 
components of the VIO measurements. We estimate and correct for 
the drift of the VIO pipeline using a Kalman filter that estimates the 
translational drift pd (position offset) and its derivative, the drift veloc-
ity vd. The drift correction is performed by subtracting the estimated 
drift states pd and vd from the corresponding VIO estimates. The Kalman 
filter state x is given by Rx p v⊤ ⊤ ⊤= [ , ] ∈d d

6.
The state x and covariance P updates are given by:
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On the basis of measurements, the process noise is set to σpos = 0.05 
and σvel = 0.1. The filter state and covariance are initialized to zero. For 
each measurement zk (pose estimate from a gate detection), the pre-
dicted VIO drift xk

−  is corrected to the estimate xk
+  according to the 

Kalman filter equations:
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in which Kk is the Kalman gain, R is the measurement covariance and Hk is 
the measurement matrix. If several gates have been detected in a single 
camera frame, all relative pose estimates are stacked and processed in 
the same Kalman filter update step. The main source of measurement 
error is the uncertainty in the gate-corner detection of the network. This 
error in the image plane results in a pose error when IPPE is applied. 

We opted for a sampling-based approach to estimate the pose error 
from the known average gate-corner-detection uncertainty. For each 
gate, the IPPE algorithm is applied to the nominal gate observation as 
well as to 20 perturbed gate-corner estimates. The resulting distribu-
tion of pose estimates is then used to approximate the measurement 
covariance R of the gate observation.

Simulation results
Reaching champion-level performance in autonomous drone racing 
requires overcoming two challenges: imperfect perception and incom-
plete models of the system’s dynamics. In controlled experiments in 
simulation, we assess the robustness of our approach to both of these 
challenges. To this end, we evaluate performance in a racing task when 
deployed in four different settings. In setting (1), we simulate a simplis-
tic quadrotor model with access to ground-truth state observations. In 
setting (2), we replace the ground-truth state observations with noisy 
observations identified from real-world flights. These noisy obser-
vations are generated by sampling one realization from the residual 
observation model and are independent of the perception awareness 
of the deployed controller. Settings (3) and (4) share the observation 
models with the previous two settings, respectively, but replace the 
simplistic dynamics model with more accurate aerodynamical simula-
tion43. These four settings allow controlled assessment of the sensitivity 
of the approach to changes in the dynamics and the observation fidelity.

In all four settings, we benchmark our approach against the follow-
ing baselines: zero-shot, domain randomization and time-optimal. 
The zero-shot baseline represents a learning-based racing policy35 
trained using model-free RL that is deployed zero-shot from the training 
domain to the test domain. The training domain of the policy is equal to 
experimental setting (1), that is, idealized dynamics and ground-truth 
observations. Domain randomization extends the learning strategy 
from the zero-shot baseline by randomizing observations and dynam-
ics properties to increase robustness. The time-optimal baseline uses 
a precomputed time-optimal trajectory28 that is tracked using an MPC 
controller. This approach has shown the best performance in com-
parison with other model-based methods for time-optimal flight55,56. 
The dynamics model used by the trajectory generation and the MPC 
controller matches the simulated dynamics of experimental setting (1).

Performance is assessed by evaluating the fastest lap time, the aver-
age and minimum observed gate margin of successfully passed gates 
and the percentage of track successfully completed. The gate margin 
metric measures the distance between the drone and the closest point 
on the gate when crossing the gate plane. A high gate margin indicates 
that the quadrotor passed close to the centre of the gate. Leaving a 
smaller gate margin can increase speed but can also increase the risk 
of collision or missing the gate. Any lap that results in a crash is not 
considered valid.

The results are summarized in Extended Data Table 1c. All approaches 
manage to successfully complete the task when deployed in ideal-
ized dynamics and ground-truth observations, with the time-optimal 
baseline yielding the lowest lap time. When deployed in settings that 
feature domain shift, either in the dynamics or the observations, the 
performance of all baselines collapses and none of the three base-
lines are able to complete even a single lap. This performance drop 
is exhibited by both learning-based and traditional approaches. By 
contrast, our approach, which features empirical models of dynamics 
and observation noise, succeeds in all deployment settings, with small 
increases in lap time.

The key feature that enables our approach to succeed across 
deployment regimes is the use of an empirical model of dynamics 
and observation noise, estimated from real-world data. A comparison 
between an approach that has access to such data and approaches 
that do not is not entirely fair. For that reason, we also benchmark 
the performance of all baseline approaches when having access to 
the same real-world data used by our approach. Specifically, we 



compare the performance in experimental setting (2), which fea-
tures the idealized dynamics model but noisy perception. All baseline 
approaches are provided with the predictions of the same Gaussian 
process model that we use to characterize observation noise. The 
results are summarized in Extended Data Table 1b. All baselines ben-
efit from the more realistic observations, yielding higher completion 
rates. Nevertheless, our approach is the only one that reliably com-
pletes the entire track. As well as the predictions of the observation 
noise model, our approach also takes into account the uncertainty 
of the model. For an in-depth comparison of the performance of  
RL versus optimal control in controlled experiments, we refer the 
reader to ref. 57.

Fine-tuning for several iterations
We investigate the extent of variations in behaviour across iterations. 
The findings of our analysis reveal that subsequent fine-tuning opera-
tions result in negligible enhancements in performance and alterations 
in behaviour (Extended Data Fig. 2).

In the following, we provide more details on this investigation. We 
start by enumerating the fine-tuning steps to provide the necessary 
notation:

1. Train policy-0 in simulation.
2. Deploy policy-0 in the real world. The policy operates on ground-truth 

data from a motion-capture system.
3. Identify residuals observed by policy-0 in the real world.
4. Train policy-1 by fine-tuning policy-0 on the identified residuals.
5. Deploy policy-1 in the real world. The policy operates only on onboard 

sensory measurements.
6. Identify residuals observed by policy-1 in the real world.
7. Train policy-2 by fine-tuning policy-1 on the identified residuals.

We compare the performance of policy-1 and policy-2 in simu-
lation after fine-tuning on their respective residuals. The results 
are illustrated in Extended Data Fig. 2. We observe that the dif-
ference in distance from gate centres, which is a metric for the 
safety of the policy, is 0.09 ± 0.08 m. Furthermore, the difference 
in the time taken to complete a single lap is 0.02 ± 0.02 s. Note 
that this lap-time difference is substantially smaller than the dif-
ference between the single-lap completion times of Swift and the  
human pilots (0.16 s).

Drone hardware configuration
The quadrotors used by the human pilots and Swift have the same 
weight, shape and propulsion. The platform design is based on the 
Agilicious framework58. Each vehicle has a weight of 870 g and can pro-
duce a maximum static thrust of approximately 35 N, which results in a 
static thrust-to-weight ratio of 4.1. The base of each platform consists of 
an Armattan Chameleon 6″ main frame that is equipped with T-Motor 
Velox 2306 motors and 5″, three-bladed propellers. An NVIDIA Jetson 
TX2 accompanied by a Connect Tech Quasar carrier board provides 
the main compute resource for the autonomous drones, featuring 
a six-core CPU running at 2 GHz and a dedicated GPU with 256 CUDA 
cores running at 1.3 GHz. Although forward passes of the gate-detection 
network are performed on the GPU, the racing policy is evaluated on 
the CPU, with one inference pass taking 8 ms. The autonomous drones 
carry an Intel RealSense Tracking Camera T265 that provides VIO esti-
mates59 at 100 Hz that are fed by USB to the NVIDIA Jetson TX2. The 
human-piloted drones carry neither a Jetson computer nor a RealSense 
camera and are instead equipped with a corresponding ballast weight. 
Control commands in the form of collective thrust and body rates 
produced by the human pilots or Swift are sent to a commercial flight 
controller, which runs on an STM32 processor operating at 216 MHz. 
The flight controller is running Betaflight, an open-source flight-control 
software45.

Human pilot impressions
The following quotes convey the impressions of the three human cham-
pions who raced against Swift.

Alex Vanover:
•	These races will be decided at the split S, it is the most challenging 

part of the track.
•	This was the best race! I was so close to the autonomous drone, I could 

really feel the turbulence when trying to keep up with it.
Thomas Bitmatta:

•	The possibilities are endless, this is the start of something that could 
change the whole world. On the flip side, I’m a racer, I don’t want any-
thing to be faster than me.

•	As you fly faster, you trade off precision for speed.
•	 It’s inspiring to see the potential of what drones are actually capable 

of. Soon, the AI drone could even be used as a training tool to under-
stand what would be possible.

Marvin Schaepper:
•	 It feels different racing against a machine, because you know that the 

machine doesn’t get tired.

Research ethics
The study has been conducted in accordance with the Declaration of 
Helsinki. The study protocol is exempt from review by an ethics commit-
tee according to the rules and regulations of the University of Zurich, 
because no health-related data has been collected. The participants 
gave their written informed consent before participating in the study.

Data availability
All (other) data needed to evaluate the conclusions in the paper are 
present in the paper or the extended data. Motion-capture recordings of 
the race events with accompanying analysis code can be found in the file 
‘racing_data.zip’ on Zenodo at https://doi.org/10.5281/zenodo.7955278.

Code availability
Pseudocode for Swift detailing the training process and algorithms 
can be found in the file ‘pseudocode.zip’ on Zenodo at https://doi.
org/10.5281/zenodo.7955278. To safeguard against potential misuse, 
the full source code associated with this research will not be made 
publicly available.
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Extended Data Fig. 1 | Residual models. a, Visualization of the residual 
observation model and the residual dynamics model identified from real-world 
data. Black curves depict the residual observed in the real world and coloured 
lines show 100 sampled realizations of the residual observation model. Each 

plot depicts an entire race, that is, three laps. b, Predicted residual observation 
for a simulated rollout. Blue, ground-truth position provided by the simulator; 
orange, perturbed position generated by the Gaussian process residual.
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Extended Data Fig. 2 | Multi-iteration fine-tuning. Rollout comparison after fine-tuning the policy for one iteration (blue) and two iterations (orange).



Extended Data Table 1 | Network parameters and detailed metrics show how our Swift system compares with other 
approaches

a, Training hyperparameters. b, Comparison with baselines that are provided with the same observation noise model used by our approach. c, Evaluation in simulation, with idealized dynamics 
(top) versus realistic dynamics (bottom) and ground-truth observations (left) versus noisy observations (right). We report the fastest achieved collision-free lap time in seconds, the average and 
smallest gate margin of successfully passed gates and the percentage of track completed. We compare our approach with a learning-based approach that performs zero-shot transfer, with and 
without domain randomization during training, as well as a traditional planning and control approach28. d, Comparison of the average speed, power, thrust, time and distance travelled for each 
pilot during the fastest flown race. Best numbers are indicated in bold.
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