
982 | Nature | Vol 620 | 31 August 2023

Article

Champion-level drone racing using deep
reinforcement learning

Elia Kaufmann1 ✉, Leonard Bauersfeld1, Antonio Loquercio1, Matthias Müller2, Vladlen Koltun3
& Davide Scaramuzza1

First-person view (FPV) drone racing is a televised sport in which professional
competitors pilot high-speed aircraft through a 3D circuit. Each pilot sees the
environment from the perspective of their drone by means of video streamed from an
onboard camera. Reaching the level of professional pilots with an autonomous drone
is challenging because the robot needs to fly at its physical limits while estimating its
speed and location in the circuit exclusively from onboard sensors1. Here we
introduce Swift, an autonomous system that can race physical vehicles at the level of
the human world champions. The system combines deep reinforcement learning (RL)
in simulation with data collected in the physical world. Swift competed against three
human champions, including the world champions of two international leagues, in
real-world head-to-head races. Swift won several races against each of the human
champions and demonstrated the fastest recorded race time. This work represents a
milestone for mobile robotics and machine intelligence2, which may inspire the
deployment of hybrid learning-based solutions in other physical systems.

Deep RL3 has enabled some recent advances in artificial intelligence.
Policies trained with deep RL have outperformed humans in complex
competitive games, including Atari4–6, Go5,7–9, chess5,9, StarCraft10, Dota
2 (ref. 11) and Gran Turismo12,13. These impressive demonstrations of
the capabilities of machine intelligence have primarily been limited
to simulation and board-game environments, which support policy
search in an exact replica of the testing conditions. Overcoming this
limitation and demonstrating champion-level performance in physi-
cal competitions is a long-standing problem in autonomous mobile
robotics and artificial intelligence14–16.

FPV drone racing is a televised sport in which highly trained human
pilots push aerial vehicles to their physical limits in high-speed agile
manoeuvres (Fig. 1a). The vehicles used in FPV racing are quadcopters,
which are among the most agile machines ever built (Fig. 1b). During a
race, the vehicles exert forces that surpass their own weight by a factor
of five or more, reaching speeds of more than 100 km h−1 and accel-
erations several times that of gravity, even in confined spaces. Each
vehicle is remotely controlled by a human pilot who wears a headset
showing a video stream from an onboard camera, creating an immersive
‘first-person-view’ experience (Fig. 1c).

Attempts to create autonomous systems that reach the performance
of human pilots date back to the first autonomous drone racing com-
petition in 2016 (ref. 17). A series of innovations followed, including the
use of deep networks to identify the next gate location18–20, transfer
of racing policies from simulation to reality21,22 and accounting for
uncertainty in perception23,24. The 2019 AlphaPilot autonomous drone
racing competition showcased some of the best research in the field25.
However, the first two teams still took almost twice as long as a profes-
sional human pilot to complete the track26,27. More recently, autono-
mous systems have begun to reach expert human performance28–30.
However, these works rely on near-perfect state estimation provided

by an external motion-capture system. This makes the comparison with
human pilots unfair, as humans only have access to onboard observa-
tions from the drone.

In this article, we describe Swift, an autonomous system that can race
a quadrotor at the level of human world champions using only onboard
sensors and computation. Swift consists of two key modules: (1) a per-
ception system that translates high-dimensional visual and inertial
information into a low-dimensional representation and (2) a control
policy that ingests the low-dimensional representation produced by
the perception system and produces control commands.

The control policy is represented by a feedforward neural network
and is trained in simulation using model-free on-policy deep RL31.
To bridge discrepancies in sensing and dynamics between simula-
tion and the physical world, we make use of non-parametric empiri-
cal noise models estimated from data collected on the physical
system. These empirical noise models have proved to be instru-
mental for successful transfer of the control policy from simulation
to reality.

We evaluate Swift on a physical track designed by a professional
drone-racing pilot (Fig. 1a). The track comprises seven square gates
arranged in a volume of 30 × 30 × 8 m, forming a lap of 75 m in length.
Swift raced this track against three human champions: Alex Vanover,
the 2019 Drone Racing League world champion, Thomas Bitmatta,
two-time MultiGP International Open World Cup champion, and
Marvin Schaepper, three-time Swiss national champion. The quad-
rotors used by Swift and by the human pilots have the same weight,
shape and propulsion. They are similar to drones used in international
competitions.

The human pilots were given one week of practice on the race track.
After this week of practice, each pilot competed against Swift in several
head-to-head races (Fig. 1a,b). In each head-to-head race, two drones

https://doi.org/10.1038/s41586-023-06419-4

Received: 5 January 2023

Accepted: 10 July 2023

Published online: 30 August 2023

Open access

 Check for updates

1Robotics and Perception Group, University of Zurich, Zürich, Switzerland. 2Intel Labs, Munich, Germany. 3Intel Labs, Jackson, WY, USA. ✉e-mail: ekaufmann@ifi.uzh.ch

https://doi.org/10.1038/s41586-023-06419-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06419-4&domain=pdf
mailto:ekaufmann@ifi.uzh.ch

Nature | Vol 620 | 31 August 2023 | 983

(one controlled by a human pilot and one controlled by Swift) start
from a podium. The race is set off by an acoustic signal. The first vehicle
that completes three full laps through the track, passing all gates in the
correct order in each lap, wins the race.

Swift won several races against each of the human pilots and achieved
the fastest race time recorded during the events. Our work marks
the first time, to our knowledge, that an autonomous mobile robot
achieved world-champion-level performance in a real-world competi-
tive sport.

The Swift system
Swift uses a combination of learning-based and traditional algorithms
to map onboard sensory readings to control commands. This map-
ping comprises two parts: (1) an observation policy, which distils
high-dimensional visual and inertial information into a task-specific
low-dimensional encoding, and (2) a control policy that transforms
the encoding into commands for the drone. A schematic overview of
the system is shown in Fig. 2.

The observation policy consists of a visual–inertial estimator32,33
that operates together with a gate detector26, which is a convolu-
tional neural network that detects the racing gates in the onboard
images. Detected gates are then used to estimate the global position
and orientation of the drone along the race track. This is done by a
camera-resectioning algorithm34 in combination with a map of the
track. The estimate of the global pose obtained from the gate detector
is then combined with the estimate from the visual–inertial estimator
by means of a Kalman filter, resulting in a more accurate representation

of the robot’s state. The control policy, represented by a two-layer
perceptron, maps the output of the Kalman filter to control commands
for the aircraft. The policy is trained using on-policy model-free deep
RL31 in simulation. During training, the policy maximizes a reward that
combines progress towards the next racing gate35 with a perception
objective that rewards keeping the next gate in the field of view of
the camera. Seeing the next gate is rewarded because it increases the
accuracy of pose estimation.

Optimizing a policy purely in simulation yields poor performance on
physical hardware if the discrepancies between simulation and reality
are not mitigated. The discrepancies are caused primarily by two factors:
(1) the difference between simulated and real dynamics and (2)
the noisy estimation of the robot’s state by the observation policy when
provided with real sensory data. We mitigate these discrepancies by
collecting a small amount of data in the real world and using this data
to increase the realism of the simulator.

Specifically, we record onboard sensory observations from
the robot together with highly accurate pose estimates from a
motion-capture system while the drone is racing through the track.
During this data-collection phase, the robot is controlled by a policy
trained in simulation that operates on the pose estimates provided by
the motion-capture system. The recorded data allow to identify the
characteristic failure modes of perception and dynamics observed
through the race track. These intricacies of failing perception and
unmodelled dynamics are dependent on the environment, platform,
track and sensors. The perception and dynamics residuals are mod-
elled using Gaussian processes36 and k-nearest-neighbour regression,
respectively. The motivation behind this choice is that we empirically

c

a

b Human champions

Drone racing: human versus autonomous

Human pilot

Autonomous drone (ours)

Head-to-head competition

Fig. 1 | Drone racing. a, Swift (blue) races head-to-head against Alex Vanover,
the 2019 Drone Racing League world champion (red). The track comprises
seven square gates that must be passed in order in each lap. To win a race, a
competitor has to complete three consecutive laps before its opponent.
b, A close-up view of Swift, illuminated with blue LEDs, and a human-piloted
drone, illuminated with red LEDs. The autonomous drones used in this work rely

only on onboard sensory measurements, with no support from external
infrastructure, such as motion-capture systems. c, From left to right: Thomas
Bitmatta, Marvin Schaepper and Alex Vanover racing their drones through the
track. Each pilot wears a headset that shows a video stream transmitted in real
time from a camera aboard their aircraft. The headsets provide an immersive
‘first-person-view’ experience. c, Photo by Regina Sablotny.

984 | Nature | Vol 620 | 31 August 2023

Article

found perception residuals to be stochastic and dynamics residu-
als to be largely deterministic (Extended Data Fig. 1). These residual
models are integrated into the simulation and the racing policy is
fine-tuned in this augmented simulation. This approach is related to
the empirical actuator models used for simulation-to-reality transfer
in ref. 37 but further incorporates empirical modelling of the percep-
tion system and also accounts for the stochasticity in the estimate of
the platform state.

We ablate each component of Swift in controlled experiments
reported in the extended data. Also, we compare against recent work
that tackles the task of autonomous drone racing with traditional
methods, including trajectory planning and model predictive con-
trol (MPC). Although such approaches achieve comparable or even
superior performance to our approach in idealized conditions, such as
simplified dynamics and perfect knowledge of the robot’s state, their
performance collapses when their assumptions are violated. We find
that approaches that rely on precomputed paths28,29 are particularly
sensitive to noisy perception and dynamics. No traditional method has

achieved competitive lap times compared with Swift or human world
champions, even when provided with highly accurate state estima-
tion from a motion-capture system. Detailed analysis is provided in
the extended data.

Results
The drone races take place on a track designed by an external world-class
FPV pilot. The track features characteristic and challenging manoeu-
vres, such as a Split-S (Figs. 1a (top-right corner) and 4d). Pilots are
allowed to continue racing even after a crash, provided their vehicle
is still able to fly. If both drones crash and cannot complete the track,
the drone that proceeded farther along the track wins.

As shown in Fig. 3b, Swift wins 5 out of 9 races against A. Vanover, 4 out
of 7 races against T. Bitmatta and 6 out of 9 races against M. Schaepper.
Out of the 10 losses recorded for Swift, 40% were because of a colli-
sion with the opponent, 40% because of collision with a gate and 20%
because of the drone being slower than the human pilot. Overall, Swift

Perception system Real-world deployment

Perception
residual

Dynamics
residual

Real-world
experience

Observed state

Obs.
state

Action

Residual force and torque

Ground-truth state

Ground-truth state

a Real-world operation

b RL training loop

Simulation environment

200 HzIMU

Image 30 Hz 30 HzGate detector

VIO 100 Hz

Kalman
�lter

100 Hz

Reward Physics simulation

100 Hz
MLP: 2 × 128

Control policy πVIO
state

Gate
detections

Previous action

Action

Control
policy

π

fprop

fprop

fprop

fprop
fres

τres

gv

p = v∙

q = q ·∙ 0
/2

v =∙ 1
m (q((fprop + faero + fres)) + g

ω = J–1(τprop + τaero + τres)
∙

Fig. 2 | The Swift system. Swift consists of two key modules: a perception
system that translates visual and inertial information into a low-dimensional
state observation and a control policy that maps this state observation to
control commands. Control commands specify desired collective thrust and
body rates, the same control modality that the human pilots use. a, The
perception system consists of a VIO module that computes a metric estimate of
the drone state from camera images and high-frequency measurements
obtained by an inertial measurement unit (IMU). The VIO estimate is coupled
with a neural network that detects the corners of racing gates in the image

stream. The corner detections are mapped to a 3D pose and fused with the VIO
estimate using a Kalman filter. b, We use model-free on-policy deep RL to train
the control policy in simulation. During training, the policy maximizes a reward
that combines progress towards the centre of the next racing gate with a
perception objective to keep the next gate in the field of view of the camera. To
transfer the racing policy from simulation to the physical world, we augment
the simulation with data-driven residual models of the vehicle’s perception and
dynamics. These residual models are identified from real-world experience
collected on the race track. MLP, multilayer perceptron.

Nature | Vol 620 | 31 August 2023 | 985

wins most races against each human pilot. Swift also achieves the fastest
race time recorded, with a lead of half a second over the best time
clocked by a human pilot (A. Vanover).

Figure 4 and Extended Data Table 1d provide an analysis of the fast-
est lap flown by Swift and each human pilot. Although Swift is globally
faster than all human pilots, it is not faster on all individual segments
of the track (Extended Data Table 1). Swift is consistently faster at
the start and in tight turns such as the split S. At the start, Swift has a
lower reaction time, taking off from the podium, on average, 120 ms
before human pilots. Also, it accelerates faster and reaches higher
speeds going into the first gate (Extended Data Table 1d, segment 1).
In sharp turns, as shown in Fig. 4c,d, Swift finds tighter manoeuvres.
One hypothesis is that Swift optimizes trajectories on a longer time-
scale than human pilots. It is known that model-free RL can optimize

long-term rewards through a value function38. Conversely, human pilots
plan their motion on a shorter timescale, up to one gate into the future39.
This is apparent, for example in the split S (Fig. 4b,d), for which human
pilots are faster in the beginning and at the end of the manoeuvre,
but slower overall (Extended Data Table 1d, segment 3). Also, human
pilots orient the aircraft to face the next gate earlier than Swift does
(Fig. 4c,d). We propose that human pilots are accustomed to keeping
the upcoming gate in view, whereas Swift has learned to execute some
manoeuvres while relying on other cues, such as inertial data and visual
odometry against features in the surrounding environments. Overall,
averaged over the entire track, the autonomous drone achieves the
highest average speed, finds the shortest racing line and manages to
maintain the aircraft closer to its actuation limits throughout the race,
as indicated by the average thrust and power drawn (Extended Data
Table 1d).

We also compare the performance of Swift and the human champions
in time trials (Fig. 3a). In a time trial, a single pilot races the track, with
the number of laps left to the discretion of the pilot. We accumulate
time-trial data from the practice week and the races, including train-
ing runs (Fig. 3a, coloured) and laps flown in race conditions (Fig. 3a,
black). For each contestant, we use more than 300 laps for computing
statistics. The autonomous drone more consistently pushes for fast
lap times, exhibiting lower mean and variance. Conversely, human
pilots decide whether to push for speed on a lap-by-lap basis, yielding
higher mean and variance in lap times, both during training and in
the races. The ability to adapt the flight strategy allows human pilots
to maintain a slower pace if they identify that they have a clear lead,
so as to reduce the risk of a crash. The autonomous drone is unaware
of its opponent and pushes for fastest expected completion time no
matter what, potentially risking too much when in the lead and too
little when trailing behind40.

Discussion
FPV drone racing requires real-time decision-making based on noisy and
incomplete sensory input from the physical environment. We have pre-
sented an autonomous physical system that achieves champion-level
performance in this sport, reaching—and at times exceeding—the per-
formance of human world champions. Our system has certain structural
advantages over the human pilots. First, it makes use of inertial data
from an onboard inertial measurement unit32. This is akin to the human
vestibular system41, which is not used by the human pilots because they
are not physically in the aircraft and do not feel the accelerations acting
on it. Second, our system benefits from lower sensorimotor latency
(40 ms for Swift versus an average of 220 ms for expert human pilots39).
On the other hand, the limited refresh rate of the camera used by Swift
(30 Hz) can be considered a structural advantage for human pilots,
whose cameras’ refresh rate is four times as fast (120 Hz), improving
their reaction time42.

Human pilots are impressively robust: they can crash at full speed,
and—if the hardware still functions—carry on flying and complete the
track. Swift was not trained to recover after a crash. Human pilots are
also robust to changes in environmental conditions, such as illumina-
tion, which can markedly alter the appearance of the track. By con-
trast, Swift’s perception system assumes that the appearance of the
environment is consistent with what was observed during training. If
this assumption fails, the system can fail. Robustness to appearance
changes can be provided by training the gate detector and the residual
observation model in a diverse set of conditions. Addressing these
limitations could enable applying the presented approach in autono-
mous drone racing competitions in which access to the environment
and the drone is limited25.

Notwithstanding the remaining limitations and the work ahead, the
attainment by an autonomous mobile robot of world-champion-level
performance in a popular physical sport is a milestone for robotics

a

6

8

10

Swift
(n = 483)

Vanover
(n = 331)

Bitmatta
(n = 469)

Schaepper
(n = 345)

La
p

 t
im

e
(s

)
Single lap time comparison

15

20

25

Three laps comparison

b

Number
of races

Best
time-to-�nish Wins Losses Win

ratio

A. Vanover versus Swift 9 17.956 s 4 5 0.44

T. Bitmatta versus Swift 7 18.746 s 3 4 0.43

M. Schaepper versus Swift 9 21.160 s 3 6 0.33

Swift versus human pilots 25 17.465 s 15 10 0.60

Head-to-head racing results

La
p

 t
im

e
(s

)

mmedian = 6.80mmedian = 5.96mmedian = 5.76mmedian = 5.52

mmedian = 21.65mmedian = 17.98mmedian = 17.38mmedian = 16.98

Swift
(n = 115)

Vanover
(n = 221)

Bitmatta
(n = 338)

Schaepper
(n = 202)

Fig. 3 | Results. a, Lap-time results. We compare Swift against the human pilots
in time-trial races. Lap times indicate best single lap times and best average
times achieved in a heat of three consecutive laps. The reported statistics are
computed over a dataset recorded during one week on the race track, which
corresponds to 483 (115) data points for Swift, 331 (221) for A. Vanover, 469
(338) for T. Bitmatta and 345 (202) for M. Schaepper. The first number is the
number of single laps and the second is the number of three consecutive laps.
The dark points in each distribution correspond to laps flown in race conditions.
b, Head-to-head results. We report the number of head-to-head races flown by
each pilot, the number of wins and losses, as well as the win ratio.

986 | Nature | Vol 620 | 31 August 2023

Article

and machine intelligence. This work may inspire the deployment of
hybrid learning-based solutions in other physical systems, such as
autonomous ground vehicles, aircraft and personal robots, across a
broad range of applications.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06419-4.

1. De Wagter, C., Paredes-Vallés, F., Sheth, N. & de Croon, G. Learning fast in autonomous
drone racing. Nat. Mach. Intell. 3, 923 (2021).

2. Hanover, D. et al. Autonomous drone racing: a survey. Preprint at https://arxiv.org/
abs/2301.01755 (2023).

3. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).
4. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,

529–533 (2015).
5. Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by planning with a learned

model. Nature 588, 604–609 (2020).
6. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O. & Clune, J. First return, then explore.

Nature 590, 580–586 (2021).

7. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484–489 (2016).

8. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359
(2017).

9. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science 362, 1140–1144 (2018).

10. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature 575, 350–354 (2019).

11. Berner, C. et al. Dota 2 with large scale deep reinforcement learning. Preprint at https://
arxiv.org/abs/1912.06680 (2019).

12. Fuchs, F., Song, Y., Kaufmann, E., Scaramuzza, D. & Dürr, P. Super-human performance
in Gran Turismo Sport using deep reinforcement learning. IEEE Robot. Autom. Lett. 6,
4257–4264 (2021).

13. Wurman, P. R. et al. Outracing champion Gran Turismo drivers with deep reinforcement
learning. Nature 602, 223–228 (2022).

14. Funke, J. et al. in Proc. 2012 IEEE Intelligent Vehicles Symposium 541–547 (IEEE, 2012).
15. Spielberg, N. A., Brown, M., Kapania, N. R., Kegelman, J. C. & Gerdes, J. C. Neural network

vehicle models for high-performance automated driving. Sci. Robot. 4, eaaw1975 (2019).
16. Won, D.-O., Müller, K.-R. & Lee, S.-W. An adaptive deep reinforcement learning framework

enables curling robots with human-like performance in real-world conditions. Sci. Robot.
5, eabb9764 (2020).

17. Moon, H., Sun, Y., Baltes, J. & Kim, S. J. The IROS 2016 competitions. IEEE Robot. Autom.
Mag. 24, 20–29 (2017).

18. Jung, S., Hwang, S., Shin, H. & Shim, D. H. Perception, guidance, and navigation for indoor
autonomous drone racing using deep learning. IEEE Robot. Autom. Lett. 3, 2539–2544
(2018).

19. Kaufmann, E. et al. in Proc. 2nd Conference on Robot Learning (CoRL) 133–145 (PMLR,
2018).

20. Zhang, D. & Doyle, D. D. in Proc. 2020 IEEE Aerospace Conference, 1–11 (IEEE, 2020).

Alex Vanover
b

c

a

d e

Thomas Bitmatta Marvin Schaepper

d

Thomas Bitmatta

e

Marvin SchaepperAlex Vanover
b

c

5 0 5 10

5

0

5

X (m)

Y
 (m

)

1

2

3 4

56

7

Split S

Start

1

2

3 4

56

7

Split S

Start

1

2

3 4

56

7

Split S

Start

1

2

3

4 5

6

7

Split S

Start

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Race progress (%)

Ti
m

e
b

eh
in

d
 a

ut
on

om
ou

s
d

ro
ne

 (s
)

Vanover

Segment 2 Segment 3
Segment 4

Segment 2 Segment 3
Segment 4

Segment 2
Segment 3 Segment 4Seg. 1

First lap Second lap Third lap

Bitmatta
Schaepper

Segment 2
Segment 3
Segment 4

Segment 1

Fig. 4 | Analysis. a, Comparison of the fastest race of each pilot, illustrated by
the time behind Swift. The time difference from the autonomous drone is
computed as the time since it passed the same position on the track. Although
Swift is globally faster than all human pilots, it is not necessarily faster on all
individual segments of the track. b, Visualization of where the human pilots are
faster (red) and slower (blue) compared with the autonomous drone. Swift is
consistently faster at the start and in tight turns, such as the split S. c, Analysis
of the manoeuvre after gate 2. Swift in blue, Vanover in red. Swift gains time
against human pilots in this segment as it executes a tighter turn while

maintaining comparable speed. d, Analysis of the split S manoeuvre. Swift
in blue, Vanover in red. The split S is the most challenging segment in the race
track, requiring a carefully coordinated roll and pitch motion that yields a
descending half-loop through the two gates. Swift gains time against human
pilots on this segment as it executes a tighter turn with less overshoot.
e, Illustration of track segments used for analysis. Segment 1 is traversed once
at the start, whereas segments 2–4 are traversed in each lap (three times over
the course of a race).

https://doi.org/10.1038/s41586-023-06419-4
https://arxiv.org/abs/2301.01755
https://arxiv.org/abs/2301.01755
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

Nature | Vol 620 | 31 August 2023 | 987

21. Loquercio, A. et al. Deep drone racing: from simulation to reality with domain
randomization. IEEE Trans. Robot. 36, 1–14 (2019).

22. Loquercio, A. et al. Learning high-speed flight in the wild. Sci. Robot. 6, eabg5810 (2021).
23. Kaufmann, E. et al. in Proc. 2019 International Conference on Robotics and Automation

(ICRA) 690–696 (IEEE, 2019).
24. Li, S., van der Horst, E., Duernay, P., De Wagter, C. & de Croon, G. C. Visual model-predictive

localization for computationally efficient autonomous racing of a 72-g drone. J. Field
Robot. 37, 667–692 (2020).

25. A.I. is flying drones (very, very slowly). https://www.nytimes.com/2019/03/26/technology/
alphapilot-ai-drone-racing.html (2019).

26. Foehn, P. et al. AlphaPilot: autonomous drone racing. Auton. Robots 46, 307–320 (2021).
27. Wagter, C. D., Paredes-Vallé, F., Sheth, N. & de Croon, G. The sensing, state-estimation,

and control behind the winning entry to the 2019 Artificial Intelligence Robotic Racing
Competition. Field Robot. 2, 1263–1290 (2022).

28. Foehn, P., Romero, A. & Scaramuzza, D. Time-optimal planning for quadrotor waypoint
flight. Sci. Robot. 6, eabh1221 (2021).

29. Romero, A., Sun, S., Foehn, P. & Scaramuzza, D. Model predictive contouring control for
time-optimal quadrotor flight. IEEE Trans. Robot. 38, 3340–3356 (2022).

30. Sun, S., Romero, A., Foehn, P., Kaufmann, E. & Scaramuzza, D. A comparative study of
nonlinear MPC and differential-flatness-based control for quadrotor agile flight. IEEE
Trans. Robot. 38, 3357–3373 (2021).

31. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization
algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

32. Scaramuzza, D. & Zhang, Z. Encyclopedia of Robotics (eds Ang, M., Khatib, O. & Siciliano,
B.) 1–9 (Springer, 2019).

33. Huang, G. in Proc. 2019 International Conference on Robotics and Automation (ICRA)
9572–9582 (IEEE, 2019).

34. Collins, T. & Bartoli, A. Infinitesimal plane-based pose estimation. Int. J. Comput. Vis. 109,
252–286 (2014).

35. Song, Y., Steinweg, M., Kaufmann, E. & Scaramuzza, D. in Proc. 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 1205–1212 (IEEE, 2021).

36. Williams, C. K. & Rasmussen, C. E. Gaussian Processes for Machine Learning (MIT Press,
2006).

37. Hwangbo, J. et al. Learning agile and dynamic motor skills for legged robots. Sci. Robot.
4, eaau5872 (2019).

38. Hung, C.-C. et al. Optimizing agent behavior over long time scales by transporting value.
Nat. Commun. 10, 5223 (2019).

39. Pfeiffer, C. & Scaramuzza, D. Human-piloted drone racing: visual processing and control.
IEEE Robot. Autom. Lett. 6, 3467–3474 (2021).

40. Spica, R., Cristofalo, E., Wang, Z., Montijano, E. & Schwager, M. A real-time game theoretic
planner for autonomous two-player drone racing. IEEE Trans. Robot. 36, 1389–1403
(2020).

41. Day, B. L. & Fitzpatrick, R. C. The vestibular system. Curr. Biol. 15, R583–R586
(2005).

42. Kim, J. et al. Esports arms race: latency and refresh rate for competitive gaming tasks.
J. Vis. 19, 218c (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html
https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html
https://arxiv.org/abs/1707.06347
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Quadrotor simulation
Quadrotor dynamics. To enable large-scale training, we use a high-
fidelity simulation of the quadrotor dynamics. This section briefly
explains the simulation. The dynamics of the vehicle can be written as

m
J

k

ΩΩ
ΩΩ ΩΩ

˙ =

˙

˙

˙
˙
˙

=

⋅
0

/2

1
((+)) +

(+ + +)

1
(−)

, (1)prop aero

−1
prop mot aero iner

mot
ss

ω

ω

τ τ τ τ

x

p

q

v

v

q

q f f g⊙

WB

WB

W

B

W

WB
B

WB W

in which ⊙ represents quaternion rotation, p q vWB WB W, , and ωB denote
the position, attitude quaternion, inertial velocity and body rates of
the quadcopter, respectively. The motor time constant is kmot and the
motor speeds Ω and Ωss are the actual and steady-state motor speeds,
respectively. The matrix J is the inertia of the quadcopter and

Wg
denotes the gravity vector. Two forces act on the quadrotor: the lift
force fprop generated by the propellers and an aerodynamic force faero
that aggregates all other forces, such as aerodynamic drag, dynamic
lift and induced drag. The torque is modelled as a sum of four compo-
nents: the torque generated by the individual propeller thrusts τprop,
the yaw torque τmot generated by a change in motor speed, an aerody-
namic torque τaero that accounts for various aerodynamic effects such
as blade flapping and an inertial term τiner. The individual components
are given as

∑ ∑= , = + × , (2)
i

i
i

i i iprop prop P,τ τf f r f

τ τ ω ωζ J̇
B B∑J= Ω , = − × (3)

i
i imot m+p iner

in which rP,i is the location of propeller i, expressed in the body frame,
and fi and τi are the forces and torques, respectively, generated by
the ith propeller. The axis of rotation of the ith motor is denoted by ζi,
the combined inertia of the motor and propeller is Jm+p and the derivative
of the ith motor speed is Ω̇i. The individual propellers are modelled
using a commonly used quadratic model, which assumes that the lift
force and drag torque are proportional to the square of the propeller
speed Ωi:

c c(Ω) = 0 0 ⋅ Ω , (Ω) = 0 0 ⋅ Ω (4)i i i i i il
2

d
2

⊤ ⊤
τf

in which cl and cd denote the propeller lift and drag coefficients, respec-
tively.

Aerodynamic forces and torques. The aerodynamic forces and torques
are difficult to model with a first-principles approach. We thus use a
data-driven model43. To maintain the low computational complexity
required for large-scale RL training, a grey-box polynomial model is
used rather than a neural network. The aerodynamic effects are
assumed to primarily depend on the velocity vB (in the body frame) and
the average squared motor speed Ω2. The aerodynamic forces fx, fy and
fz and torques τx, τy and τz are estimated in the body frame. The quantities
vx, vy and vz denote the three axial velocity components (in the body
frame) and vxy denotes the speed in the (x, y) plane of the quadrotor. On
the basis of insights from the underlying physical processes, linear and
quadratic combinations of the individual terms are selected. For read-
ability, the coefficients multiplying each summand have been omitted:

f v v v v

f v v v v

f v v v v v v v v v

τ v v v v v v

τ v v v v v v
τ v v

+ | | + Ω + Ω

+ | | + Ω + Ω

+ | | + + + Ω + Ω + Ω

+ | | + Ω + Ω + | | Ω

+ | | + Ω + Ω + | | Ω
+

x x x x x

y y y y y

z z z z xy xy xy z xy z

x y y y y y y

y x x x x x x

z x y

2 2

2 2

2 2 2 2

2 2 2

2 2 2

The respective coefficients are then identified from real-world
flight data, in which motion capture is used to provide ground-truth
forces and torque measurements. We use data from the race
track, allowing the dynamics model to fit the track. This is akin to
the human pilots’ training for days or weeks before the race on
the specific track that they will be racing. In our case, the human
pilots are given a week of practice on the same track ahead of the
competition.

Betaflight low-level controller. To control the quadrotor, the neural
network outputs collective thrust and body rates. This control
signal is known to combine high agility with good robustness to
simulation-to-reality transfer44. The predicted collective thrust
and body rates are then processed by an onboard low-level con-
troller that computes individual motor commands, which are sub-
sequently translated into analogue voltage signals through an
electronic speed controller (ESC) that controls the motors. On the
physical vehicle, this low-level proportional–integral–derivative
(PID) controller and ESC are implemented using the open-source
Betaflight and BLHeli32 firmware45. In simulation, we use an ac-
curate model of both the low-level controller and the motor speed
controller.

Because the Betaflight PID controller has been optimized for
human-piloted flight, it exhibits some peculiarities, which the simu-
lation correctly captures: the reference for the D-term is constantly
zero (pure damping), the I-term gets reset when the throttle is cut and,
under motor thrust saturation, the body rate control is assigned prior-
ity (proportional downscaling of all motor signals to avoid saturation).
The gains of the controller used for simulation have been identified
from the detailed logs of the Betaflight controller’s internal states.
The simulation can predict the individual motor commands with less
than 1% error.

Battery model and ESC. The low-level controller converts the individ-
ual motor commands into a pulse-width modulation (PWM) signal and
sends it to the ESC, which controls the motors. Because the ESC does
not perform closed-loop control of the motor speeds, the steady-state
motor speed Ωi,ss for a given PWM motor command cmdi is a function
of the battery voltage. Our simulation thus models the battery voltage
using a grey-box battery model46 that simulates the voltage based on
instantaneous power consumption Pmot:

P
c

η
=

Ω
(5)mot

d
3

The battery model46 then simulates the battery voltage based on this
power demand. Given the battery voltage Ubat and the individual motor
command ucmd,i, we use the mapping (again omitting the coefficients
multiplying each summand)

 U u u U uΩ 1 + + + + (6)i i i i,ss bat cmd, cmd, bat cmd,

to calculate the corresponding steady-state motor speed Ωi,ss required
for the dynamics simulation in equation (1). The coefficients have been

identified from Betaflight logs containing measurements of all involved
quantities. Together with the model of the low-level controller, this
enables the simulator to correctly translate an action in the form of col-
lective thrust and body rates to desired motor speeds Ωss in equation (1).

Policy training
We train deep neural control policies that directly map observations
ot in the form of platform state and next gate observation to con-
trol actions ut in the form of mass-normalized collective thrust and
body rates44. The control policies are trained using model-free RL in
simulation.

Training algorithm. Training is performed using proximal policy
optimization31. This actor-critic approach requires jointly optimizing
two neural networks during training: the policy network, which maps
observations to actions, and the value network, which serves as the
‘critic’ and evaluates actions taken by the policy. After training, only
the policy network is deployed on the robot.

Observations, actions and rewards. An observation o ∈t
31R obtained

from the environment at time t consists of: (1) an estimate of the current
robot state; (2) the relative pose of the next gate to be passed on the
track layout; and (3) the action applied in the previous step. Specifi-
cally, the estimate of the robot state contains the position of the platform,
its velocity and attitude represented by a rotation matrix, resulting in a
vector in R15. Although the simulation uses quaternions internally, we
use a rotation matrix to represent attitude to avoid ambiguities47. The
relative pose of the next gate is encoded by providing the relative posi-
tion of the four gate corners with respect to the vehicle, resulting in a
vector in R12. All observations are normalized before being passed to
the network. Because the value network is only used during training
time, it can access privileged information about the environment that
is not accessible to the policy48. This privileged information is concat-
enated with other inputs to the policy network and contains the exact
position, orientation and velocity of the robot.

For each observation ot, the policy network produces an action
Ra ∈t

4 in the form of desired mass-normalized collective thrust and
body rates.

We use a dense shaped reward formulation to learn the task of
perception-aware autonomous drone racing. The reward rt at time
step t is given by

r r r r r= + + − (7)t t t t t
prog perc cmd crash

in which rprog rewards progress towards the next gate35, rperc encodes
perception awareness by adjusting the attitude of the vehicle such
that the optical axis of the camera points towards the centre of the
next gate, rcmd rewards smooth actions and rcrash is a binary penalty that
is only active when colliding with a gate or when the platform leaves a
predefined bounding box. If r crash is triggered, the training episode ends.

Specifically, the reward terms are

r λ d d

r λ λ δ

= [−]

= exp[⋅]
(8)t t t

t

prog
1 −1

Gate Gate

perc
2 3 cam

4

r λ λ= + − (9)t t
ω

t t
cmd

4 5 −1
2a a a

r
p

=
5.0, if < 0 or in collision with gate

0, otherwise
t

zcrash

in which dt
Gate denotes the distance from the centre of mass of the vehi-

cle to the centre of the next gate at time step t, δcam represents the angle
between the optical axis of the camera and the centre of the next gate

and t
ωa are the commanded body rates. The hyperparameters λ1,…, λ5

balance different terms (Extended Data Table 1a).

Training details. Data collection is performed by simulating 100 agents
in parallel that interact with the environment in episodes of 1,500 steps.
At each environment reset, every agent is initialized at a random gate
on the track, with bounded perturbation around a state previously
observed when passing this gate. In contrast to previous work44,49,50,
we do not perform randomization of the platform dynamics at training
time. Instead, we perform fine-tuning based on real-world data. The
training environment is implemented using TensorFlow Agents51. The
policy network and the value network are both represented by two-layer
perceptrons with 128 nodes in each layer and LeakyReLU activations
with a negative slope of 0.2. Network parameters are optimized using
the Adam optimizer with learning rate 3 × 10−4 for both the policy
network and the value network.

Policies are trained for a total of 1 × 108 environment interactions,
which takes 50 min on a workstation (i9 12900K, RTX 3090, 32 GB RAM
DDR5). Fine-tuning is performed for 2 × 107 environment interactions.

Residual model identification
We perform fine-tuning of the original policy based on a small amount
of data collected in the real world. Specifically, we collect three full
rollouts in the real world, corresponding to approximately 50 s of flight
time. We fine-tune the policy by identifying residual observations and
residual dynamics, which are then used for training in simulation. During
this fine-tuning phase, only the weights of the control policy are
updated, whereas the weights of the gate-detection network are kept
constant.

Residual observation model. Navigating at high speeds results in sub-
stantial motion blur, which can lead to a loss of tracked visual features
and severe drift in linear odometry estimates. We fine-tune policies
with an odometry model that is identified from only a handful of trials
recorded in the real world. To model the drift in odometry, we use Gauss-
ian processes36, as they allow fitting a posterior distribution of odom-
etry perturbations, from which we can sample temporally consistent
realizations.

Specifically, the Gaussian process model fits residual position,
velocity and attitude as a function of the ground-truth robot state.
The observation residuals are identified by comparing the observed
visual–inertial odometry (VIO) estimates during a real-world rollout
with the ground-truth platform states, which are obtained from an
external motion-tracking system.

We treat each dimension of the observation separately, effectively
fitting a set of nine 1D Gaussian processes to the observation residuals.
We use a mixture of radial basis function kernels

κ σ L σ(,) = exp −

1
2

(−) (−) + (10)i j i j i jf
2 −2

n
2⊤z z z z z z

in which L is the diagonal length scale matrix and σf and σn represent the
data and prior noise variance, respectively, and zi and zj represent data
features. The kernel hyperparameters are optimized by maximizing
the log marginal likelihood. After kernel hyperparameter optimiza-
tion, we sample new realizations from the posterior distribution that
are then used during fine-tuning of the policy. Extended Data Fig. 1
illustrates the residual observations in position, velocity and attitude
in real-world rollouts, as well as 100 sampled realizations from the
Gaussian process model.

Residual dynamics model. We use a residual model to complement
the simulated robot dynamics52. Specifically, we identify residual
accelerations as a function of the platform state s and the commanded
mass-normalized collective thrust c:

Article

a s c= KNN(,) (11)res

We use k-nearest neighbour regression with k = 5. The size of the dataset
used for residual dynamics model identification depends on the track
layout and ranges between 800 and 1,000 samples for the track layout
used in this work.

Gate detection
To correct for drift accumulated by the VIO pipeline, the gates are used
as distinct landmarks for relative localization. Specifically, gates are
detected in the onboard camera view by segmenting gate corners26.
The greyscale images provided by the Intel RealSense Tracking Camera
T265 are used as input images for the gate detector. The architecture of
the segmentation network is a six-level U-Net53 with (8, 16, 16, 16, 16, 16)
convolutional filters of size (3, 3, 3, 5, 7, 7) per level and a final extra
layer operating on the output of the U-Net containing 12 filters. As the
activation function, LeakyReLU with α = 0.01 is used. For deployment
on the NVIDIA Jetson TX2, the network is ported to TensorRT. To opti-
mize memory footprint and computation time, inference is performed
in half-precision mode (FP16) and images are downsampled to size
384 × 384 before being fed to the network. One forward pass through
the network takes 40 ms on the NVIDIA Jetson TX2.

VIO drift estimation
The odometry estimates from the VIO pipeline54 exhibit substantial drift
during high-speed flight. We use gate detection to stabilize the pose
estimates produced by VIO. The gate detector outputs the coordinates
of the corners of all visible gates. A relative pose is first estimated for
all predicted gates using infinitesimal plane-based pose estimation
(IPPE)34. Given this relative pose estimate, each gate observation is
assigned to the closest gate in the known track layout, thus yielding a
pose estimate for the drone.

Owing to the low frequency of the gate detections and the high qual-
ity of the VIO orientation estimate, we only refine the translational
components of the VIO measurements. We estimate and correct for
the drift of the VIO pipeline using a Kalman filter that estimates the
translational drift pd (position offset) and its derivative, the drift veloc-
ity vd. The drift correction is performed by subtracting the estimated
drift states pd and vd from the corresponding VIO estimates. The Kalman
filter state x is given by Rx p v⊤ ⊤ ⊤= [,] ∈d d

6.
The state x and covariance P updates are given by:

x xF P FP F Q= , = + , (12)k k k k+1 +1
⊤

F t Q
σ

σ
= d

0
, =

0

0
. (13)

3×3 3×3

3×3 3×3

pos
3×3 3×3

3×3
vel

3×3

I I
I

I

I

On the basis of measurements, the process noise is set to σpos = 0.05
and σvel = 0.1. The filter state and covariance are initialized to zero. For
each measurement zk (pose estimate from a gate detection), the pre-
dicted VIO drift xk

− is corrected to the estimate xk
+ according to the

Kalman filter equations:

x x z x

⊤ ⊤K P H H P H R

K H

P I K H P

= (+) ,

= + (− ()),

= (−) ,

(14)
k k k k k k

k k k k k

k k k k

− − −1

+ − −

+ −

in which Kk is the Kalman gain, R is the measurement covariance and Hk is
the measurement matrix. If several gates have been detected in a single
camera frame, all relative pose estimates are stacked and processed in
the same Kalman filter update step. The main source of measurement
error is the uncertainty in the gate-corner detection of the network. This
error in the image plane results in a pose error when IPPE is applied.

We opted for a sampling-based approach to estimate the pose error
from the known average gate-corner-detection uncertainty. For each
gate, the IPPE algorithm is applied to the nominal gate observation as
well as to 20 perturbed gate-corner estimates. The resulting distribu-
tion of pose estimates is then used to approximate the measurement
covariance R of the gate observation.

Simulation results
Reaching champion-level performance in autonomous drone racing
requires overcoming two challenges: imperfect perception and incom-
plete models of the system’s dynamics. In controlled experiments in
simulation, we assess the robustness of our approach to both of these
challenges. To this end, we evaluate performance in a racing task when
deployed in four different settings. In setting (1), we simulate a simplis-
tic quadrotor model with access to ground-truth state observations. In
setting (2), we replace the ground-truth state observations with noisy
observations identified from real-world flights. These noisy obser-
vations are generated by sampling one realization from the residual
observation model and are independent of the perception awareness
of the deployed controller. Settings (3) and (4) share the observation
models with the previous two settings, respectively, but replace the
simplistic dynamics model with more accurate aerodynamical simula-
tion43. These four settings allow controlled assessment of the sensitivity
of the approach to changes in the dynamics and the observation fidelity.

In all four settings, we benchmark our approach against the follow-
ing baselines: zero-shot, domain randomization and time-optimal.
The zero-shot baseline represents a learning-based racing policy35
trained using model-free RL that is deployed zero-shot from the training
domain to the test domain. The training domain of the policy is equal to
experimental setting (1), that is, idealized dynamics and ground-truth
observations. Domain randomization extends the learning strategy
from the zero-shot baseline by randomizing observations and dynam-
ics properties to increase robustness. The time-optimal baseline uses
a precomputed time-optimal trajectory28 that is tracked using an MPC
controller. This approach has shown the best performance in com-
parison with other model-based methods for time-optimal flight55,56.
The dynamics model used by the trajectory generation and the MPC
controller matches the simulated dynamics of experimental setting (1).

Performance is assessed by evaluating the fastest lap time, the aver-
age and minimum observed gate margin of successfully passed gates
and the percentage of track successfully completed. The gate margin
metric measures the distance between the drone and the closest point
on the gate when crossing the gate plane. A high gate margin indicates
that the quadrotor passed close to the centre of the gate. Leaving a
smaller gate margin can increase speed but can also increase the risk
of collision or missing the gate. Any lap that results in a crash is not
considered valid.

The results are summarized in Extended Data Table 1c. All approaches
manage to successfully complete the task when deployed in ideal-
ized dynamics and ground-truth observations, with the time-optimal
baseline yielding the lowest lap time. When deployed in settings that
feature domain shift, either in the dynamics or the observations, the
performance of all baselines collapses and none of the three base-
lines are able to complete even a single lap. This performance drop
is exhibited by both learning-based and traditional approaches. By
contrast, our approach, which features empirical models of dynamics
and observation noise, succeeds in all deployment settings, with small
increases in lap time.

The key feature that enables our approach to succeed across
deployment regimes is the use of an empirical model of dynamics
and observation noise, estimated from real-world data. A comparison
between an approach that has access to such data and approaches
that do not is not entirely fair. For that reason, we also benchmark
the performance of all baseline approaches when having access to
the same real-world data used by our approach. Specifically, we

compare the performance in experimental setting (2), which fea-
tures the idealized dynamics model but noisy perception. All baseline
approaches are provided with the predictions of the same Gaussian
process model that we use to characterize observation noise. The
results are summarized in Extended Data Table 1b. All baselines ben-
efit from the more realistic observations, yielding higher completion
rates. Nevertheless, our approach is the only one that reliably com-
pletes the entire track. As well as the predictions of the observation
noise model, our approach also takes into account the uncertainty
of the model. For an in-depth comparison of the performance of
RL versus optimal control in controlled experiments, we refer the
reader to ref. 57.

Fine-tuning for several iterations
We investigate the extent of variations in behaviour across iterations.
The findings of our analysis reveal that subsequent fine-tuning opera-
tions result in negligible enhancements in performance and alterations
in behaviour (Extended Data Fig. 2).

In the following, we provide more details on this investigation. We
start by enumerating the fine-tuning steps to provide the necessary
notation:

1. Train policy-0 in simulation.
2. Deploy policy-0 in the real world. The policy operates on ground-truth

data from a motion-capture system.
3. Identify residuals observed by policy-0 in the real world.
4. Train policy-1 by fine-tuning policy-0 on the identified residuals.
5. Deploy policy-1 in the real world. The policy operates only on onboard

sensory measurements.
6. Identify residuals observed by policy-1 in the real world.
7. Train policy-2 by fine-tuning policy-1 on the identified residuals.

We compare the performance of policy-1 and policy-2 in simu-
lation after fine-tuning on their respective residuals. The results
are illustrated in Extended Data Fig. 2. We observe that the dif-
ference in distance from gate centres, which is a metric for the
safety of the policy, is 0.09 ± 0.08 m. Furthermore, the difference
in the time taken to complete a single lap is 0.02 ± 0.02 s. Note
that this lap-time difference is substantially smaller than the dif-
ference between the single-lap completion times of Swift and the
human pilots (0.16 s).

Drone hardware configuration
The quadrotors used by the human pilots and Swift have the same
weight, shape and propulsion. The platform design is based on the
Agilicious framework58. Each vehicle has a weight of 870 g and can pro-
duce a maximum static thrust of approximately 35 N, which results in a
static thrust-to-weight ratio of 4.1. The base of each platform consists of
an Armattan Chameleon 6″ main frame that is equipped with T-Motor
Velox 2306 motors and 5″, three-bladed propellers. An NVIDIA Jetson
TX2 accompanied by a Connect Tech Quasar carrier board provides
the main compute resource for the autonomous drones, featuring
a six-core CPU running at 2 GHz and a dedicated GPU with 256 CUDA
cores running at 1.3 GHz. Although forward passes of the gate-detection
network are performed on the GPU, the racing policy is evaluated on
the CPU, with one inference pass taking 8 ms. The autonomous drones
carry an Intel RealSense Tracking Camera T265 that provides VIO esti-
mates59 at 100 Hz that are fed by USB to the NVIDIA Jetson TX2. The
human-piloted drones carry neither a Jetson computer nor a RealSense
camera and are instead equipped with a corresponding ballast weight.
Control commands in the form of collective thrust and body rates
produced by the human pilots or Swift are sent to a commercial flight
controller, which runs on an STM32 processor operating at 216 MHz.
The flight controller is running Betaflight, an open-source flight-control
software45.

Human pilot impressions
The following quotes convey the impressions of the three human cham-
pions who raced against Swift.

Alex Vanover:
•	These races will be decided at the split S, it is the most challenging

part of the track.
•	This was the best race! I was so close to the autonomous drone, I could

really feel the turbulence when trying to keep up with it.
Thomas Bitmatta:

•	The possibilities are endless, this is the start of something that could
change the whole world. On the flip side, I’m a racer, I don’t want any-
thing to be faster than me.

•	As you fly faster, you trade off precision for speed.
•	 It’s inspiring to see the potential of what drones are actually capable

of. Soon, the AI drone could even be used as a training tool to under-
stand what would be possible.

Marvin Schaepper:
•	 It feels different racing against a machine, because you know that the

machine doesn’t get tired.

Research ethics
The study has been conducted in accordance with the Declaration of
Helsinki. The study protocol is exempt from review by an ethics commit-
tee according to the rules and regulations of the University of Zurich,
because no health-related data has been collected. The participants
gave their written informed consent before participating in the study.

Data availability
All (other) data needed to evaluate the conclusions in the paper are
present in the paper or the extended data. Motion-capture recordings of
the race events with accompanying analysis code can be found in the file
‘racing_data.zip’ on Zenodo at https://doi.org/10.5281/zenodo.7955278.

Code availability
Pseudocode for Swift detailing the training process and algorithms
can be found in the file ‘pseudocode.zip’ on Zenodo at https://doi.
org/10.5281/zenodo.7955278. To safeguard against potential misuse,
the full source code associated with this research will not be made
publicly available.

43. Bauersfeld, L., Kaufmann, E., Foehn, P., Sun, S. & Scaramuzza, D. in Proc. Robotics:

Science and Systems XVII 42 (Robotics: Science and Systems Foundation, 2021).
44. Kaufmann, E., Bauersfeld, L. & Scaramuzza, D. in Proc. 2022 International Conference on

Robotics and Automation (ICRA) 10504–10510 (IEEE, 2022).
45. The Betaflight Open Source Flight Controller Firmware Project. Betaflight. https://github.

com/betaflight/betaflight (2022).
46. Bauersfeld, L. & Scaramuzza, D. Range, endurance, and optimal speed estimates for

multicopters. IEEE Robot. Autom. Lett. 7, 2953–2960 (2022).
47. Zhou, Y., Barnes, C., Lu, J., Yang, J. & Li, H. in Proc. IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) 5745–5753 (IEEE, 2019).
48. Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W. & Abbeel, P. in Proc. Robotics:

Science and Systems XIV (MIT Press Journals, 2018).
49. Molchanov, A. et al. in Proc. 2019 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) 59–66 (IEEE, 2019).
50. Andrychowicz, O. M. et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res.

39, 3–20 (2020).
51. Guadarrama, S. et al. TF-Agents: a library for reinforcement learning in TensorFlow.

https://github.com/tensorflow/agents (2018).
52. Torrente, G., Kaufmann, E., Foehn, P. & Scaramuzza, D. Data-driven MPC for quadrotors.

IEEE Robot. Autom. Lett. 6, 3769–3776 (2021).
53. Ronneberger, O., Fischer, P. & Brox, T. in Proc. International Conference on Medical Image

Computing and Computer-assisted Intervention 234–241 (Springer, 2015).
54. Intel RealSense T265 series product family. https://www.intelrealsense.com/wp-content/

uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf (2019).
55. Ryou, G., Tal, E. & Karaman, S. Multi-fidelity black-box optimization for time-optimal

quadrotor maneuvers. Int. J. Robot. Res. 40, 1352–1369 (2021).
56. Pham, H. & Pham, Q.-C. A new approach to time-optimal path parameterization based on

reachability analysis. IEEE Trans. Robot. 34, 645–659 (2018).
57. Song, Y., Romero, A., Müller, M., Koltun, V. & Scaramuzza, D. Reaching the limit in

autonomous racing: optimal control versus reinforcement learning. Sci. Robot. (in the
press).

https://doi.org/10.5281/zenodo.7955278
https://doi.org/10.5281/zenodo.7955278
https://doi.org/10.5281/zenodo.7955278
https://github.com/betaflight/betaflight
https://github.com/betaflight/betaflight
https://github.com/tensorflow/agents
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf

Article
58. Foehn, P. et al. Agilicious: open-source and open-hardware agile quadrotor for vision-based

flight. Sci. Robot. 7, eabl6259 (2022).
59. Jones, E. S. & Soatto, S. Visual-inertial navigation, mapping and localization: a scalable

real-time causal approach. Int. J. Robot. Res. 30, 407–430 (2011).

Acknowledgements The authors thank A. Vanover, T. Bitmatta and M. Schaepper for accepting
to race against Swift. The authors also thank C. Pfeiffer, T. Längle and A. Barden for their
contributions to the organization of the race events and the drone hardware design. This work
was supported by Intel’s Embodied AI Lab, the Swiss National Science Foundation (SNSF)
through the National Centre of Competence in Research (NCCR) Robotics and the European
Research Council (ERC) under grant agreement 864042 (AGILEFLIGHT).

Author contributions E.K. formulated the main ideas, implemented the system, performed the
experiments and data analysis and wrote the paper. L.B. contributed to the main ideas, the
experiments, data analysis, paper writing and designed the graphical illustrations. A.L.

formulated the main ideas and contributed to the experimental design, data analysis and
paper writing. M.M. contributed to the experimental design, data analysis and paper writing.
V.K. contributed to the main ideas, the experimental design, the analysis of experiments and
paper writing. D.S. contributed to the main ideas, experimental design, analysis of
experiments, paper writing and provided funding.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-06419-4.
Correspondence and requests for materials should be addressed to Elia Kaufmann.
Peer review information Nature thanks Sunggoo Jung, Karime Pereida and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer
reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-023-06419-4
http://www.nature.com/reprints

Extended Data Fig. 1 | Residual models. a, Visualization of the residual
observation model and the residual dynamics model identified from real-world
data. Black curves depict the residual observed in the real world and coloured
lines show 100 sampled realizations of the residual observation model. Each

plot depicts an entire race, that is, three laps. b, Predicted residual observation
for a simulated rollout. Blue, ground-truth position provided by the simulator;
orange, perturbed position generated by the Gaussian process residual.

Article

Extended Data Fig. 2 | Multi-iteration fine-tuning. Rollout comparison after fine-tuning the policy for one iteration (blue) and two iterations (orange).

Extended Data Table 1 | Network parameters and detailed metrics show how our Swift system compares with other
approaches

a, Training hyperparameters. b, Comparison with baselines that are provided with the same observation noise model used by our approach. c, Evaluation in simulation, with idealized dynamics
(top) versus realistic dynamics (bottom) and ground-truth observations (left) versus noisy observations (right). We report the fastest achieved collision-free lap time in seconds, the average and
smallest gate margin of successfully passed gates and the percentage of track completed. We compare our approach with a learning-based approach that performs zero-shot transfer, with and
without domain randomization during training, as well as a traditional planning and control approach28. d, Comparison of the average speed, power, thrust, time and distance travelled for each
pilot during the fastest flown race. Best numbers are indicated in bold.

	Champion-level drone racing using deep reinforcement learning
	The Swift system
	Results
	Discussion
	Online content
	Fig. 1 Drone racing.
	Fig. 2 The Swift system.
	Fig. 3 Results.
	Fig. 4 Analysis.
	Extended Data Fig. 1 Residual models.
	Extended Data Fig. 2 Multi-iteration fine-tuning.
	Extended Data Table 1 Network parameters and detailed metrics show how our Swift system compares with other approaches.

