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De novo design of protein structure and 
function with RFdiffusion

Joseph L. Watson1,2,15, David Juergens1,2,3,15, Nathaniel R. Bennett1,2,3,15, Brian L. Trippe2,4,5,15, 
Jason Yim2,6,15, Helen E. Eisenach1,2,15, Woody Ahern1,2,7,15, Andrew J. Borst1,2, Robert J. Ragotte1,2, 
Lukas F. Milles1,2, Basile I. M. Wicky1,2, Nikita Hanikel1,2, Samuel J. Pellock1,2, Alexis Courbet1,2,8, 
William Sheffler1,2, Jue Wang1,2, Preetham Venkatesh1,2,9, Isaac Sappington1,2,9, 
Susana Vázquez Torres1,2,9, Anna Lauko1,2,9, Valentin De Bortoli8, Emile Mathieu10, 
Sergey Ovchinnikov11,12, Regina Barzilay6, Tommi S. Jaakkola6, Frank DiMaio1,2, Minkyung Baek13 
& David Baker1,2,14 ✉

There has been considerable recent progress in designing new proteins using deep- 
learning methods1–9. Despite this progress, a general deep-learning framework for 
protein design that enables solution of a wide range of design challenges, including 
de novo binder design and design of higher-order symmetric architectures, has yet to 
be described. Diffusion models10,11 have had considerable success in image and 
language generative modelling but limited success when applied to protein modelling, 
probably due to the complexity of protein backbone geometry and sequence–structure 
relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction 
network on protein structure denoising tasks, we obtain a generative model of protein 
backbones that achieves outstanding performance on unconditional and topology- 
constrained protein monomer design, protein binder design, symmetric oligomer 
design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic 
and metal-binding protein design. We demonstrate the power and generality of the 
method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing 
the structures and functions of hundreds of designed symmetric assemblies, metal- 
binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the 
cryogenic electron microscopy structure of a designed binder in complex with influenza 
haemagglutinin that is nearly identical to the design model. In a manner analogous to 
networks that produce images from user-specified inputs, RFdiffusion enables the 
design of diverse functional proteins from simple molecular specifications.

De novo protein design seeks to generate proteins with specified 
structural and/or functional properties, for example, making a bind-
ing interaction with a given target12, folding into a particular topology13 
or containing a catalytic site4. Denoising diffusion probabilistic models 
(DDPMs), a powerful class of machine learning models recently dem-
onstrated to generate new photorealistic images in response to text 
prompts14,15, have several properties well suited to protein design. First, 
DDPMs generate highly diverse outputs, as they are trained to denoise 
data (for instance, images or text) that have been corrupted with Gauss-
ian noise. By learning to stochastically reverse this corruption, diverse 
outputs closely resembling the training data are generated. Second, 
DDPMs can be guided at each step of the iterative generation process 
towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-
sary to explicitly model three-dimensional (3D) structures; rotation-
ally equivariant DDPMs can do this in a global representation frame 
independent manner. Recent work has adapted DDPMs for protein 
monomer design by conditioning on small protein ‘motifs’5,9 or on sec-
ondary structure and block-adjacency (‘fold’) information8. Although 
promising, these attempts have shown limited success in generating 
sequences that fold to the intended structures in silico5,16, probably due 
to the limited ability of the denoising networks to generate realistic 
protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 
could be developed by taking advantage of the deep understanding of 
protein structure implicit in powerful structure prediction methods 
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such as AlphaFold2 (ref. 17) (AF2) and RoseTTAFold18 (RF). RF has prop-
erties well suited for use in a protein design DDPM (Fig. 1a): it gener-
ates protein structures with high precision, operates on a rigid-frame 
representation of residues with rotational equivariance and has an 
architecture enabling conditioning on design specifications at the 
individual residue, inter-residue distance and orientation, and 3D 
coordinate levels. In previous work, we fine-tuned RF to complete 
protein backbones around input functional motifs in a single step 
(RFjoint Inpainting4). Experimental characterization showed that the 
method can scaffold a wide range of protein functional motifs with 
atomic accuracy19, but the approach fails on minimalist site descrip-
tions that do not sufficiently constrain the overall fold and, because it 
is deterministic, can produce only a limited diversity of designs for a 
given problem. We reasoned that by fine-tuning RF as the denoising net-
work in a generative diffusion model instead, we could overcome both 
problems: because the starting point is random noise, each denoising 
trajectory yields a different solution, and because structure is built up 
progressively through many denoising iterations, little to no starting 
structural information should be required. In this study, we used an 
updated version of RF18 as the basis for the denoising network archi-
tecture (Supplementary Methods), but other equivariant structure 
prediction networks (AF2 (ref. 17), OmegaFold20, ESMFold21) could in 
principle be substituted into an analogous DDPM.

We construct a RF-based diffusion model, RFdiffusion, using the RF 
frame representation that comprises a Cα coordinate and N-Cα-C rigid 
orientation for each residue. We generate training inputs by noising 
structures sampled from the Protein Data Bank (PDB) for up to 200 
steps22. For translations, we perturb Cα coordinates with 3D Gaussian 
noise. For residue orientations, we use Brownian motion on the mani-
fold of rotation matrices (building on refs. 23,24). To enable RFdiffusion 
to learn to reverse each step of the noising process, we train the model 
by minimizing a mean-squared error (m.s.e.) loss between frame pre-
dictions and the true protein structure (without alignment), averaged 
across all residues (Supplementary Methods). This loss drives denoising 
trajectories to match the data distribution at each timestep and hence 
to converge on structures of designable protein backbones (Extended 
Data Fig. 2a). The m.s.e. contrasts to the loss used in RF structure predic-
tion training (frame aligned point error or FAPE) in that, unlike FAPE, 
m.s.e. loss is not invariant to the global reference frame and therefore 
promotes continuity of the global coordinate frame between timesteps 
(Supplementary Methods).

To generate a new protein backbone, we first initialize random resi-
due frames and RFdiffusion makes a denoised prediction. Each residue 
frame is updated by taking a step in the direction of this prediction with 
some noise added to generate the input to the next step. The nature 
of the noise added and the size of this reverse step is chosen such that 
the denoising process matches the distribution of the noising process 
(Supplementary Methods and Extended Data Fig. 2a). RFdiffusion 
initially seeks to match the full breadth of possible protein structures 
compatible with the purely random frames with which it is initialized, 
and hence the denoised structures do not initially seem protein-like 
(Fig. 1c, left). However, through many such steps, the breadth of pos-
sible protein structures from which the input could have arisen narrows 
and RFdiffusion predictions come to closely resemble protein struc-
tures (Fig. 1c, right). We use the ProteinMPNN network1 to subsequently 
design sequences encoding these structures, typically sampling eight 
sequences per design in line with previous work5,16 (but see Supplemen-
tary Fig. 2a). We also considered simultaneously designing structure 
and sequence within RFdiffusion, but given the excellent performance 
of combining ProteinMPNN with the diffusion of structure alone, we 
did not extensively explore this possibility.

Figure 1a highlights the similarities between RF structure predic-
tion and an RFdiffusion denoising step: in both cases, the networks 
transform coordinates into a predicted structure, conditioned on 
inputs to the model. In RF, sequence is the primary input, with extra 

structural information provided as templates and initial coordinates to 
the model. In RFdiffusion, the primary input is the noised coordinates 
from the previous step. For specific design tasks, a range of auxiliary 
conditioning information, including partial sequence, fold informa-
tion or fixed functional-motif coordinates can be provided (Fig. 1b and 
Supplementary Methods).

We explored two different strategies for training RFdiffusion:  
(1) in a manner akin to ‘canonical’ diffusion models, with predictions 
at each timestep independent of predictions at previous timesteps 
(as in previous work5,8,9,16), and (2) with self-conditioning25, in which 
the model can condition on previous predictions between timesteps 
(Fig. 1a, bottom row and Supplementary Methods). The latter strategy 
was inspired by the success of ‘recycling’ in AF2, which is also central 
to the more recent RF model used here (Supplementary Methods). 
Self-conditioning within RFdiffusion notably improved performance 
on in silico benchmarks encompassing both conditional and uncondi-
tional protein design tasks (Fig. 2e and Extended Data Fig. 1e). Increased 
coherence of predictions within self-conditioned trajectories may, 
at least in part, explain these performance increases (Extended Data 
Fig. 1h). Fine-tuning RFdiffusion from pretrained RF weights was far 
more successful than training for an equivalent length of time from 
untrained weights (Extended Data Fig. 1f,g, also Supplementary Fig. 1) 
and the m.s.e. loss was also crucial for unconditional generation 
(Extended Data Fig. 1d). For all in silico benchmarks in this paper, we 
use the AF2 structure prediction network17 for validation and define an 
in silico ‘success’ as an RFdiffusion output for which the AF2 structure 
predicted from a single sequence is (1) of high confidence (mean pre-
dicted aligned error (pAE), less than five), (2) globally within a 2 Å back-
bone root mean-squared deviation (r.m.s.d.) of the designed structure 
and (3) within 1 Å backbone r.m.s.d. on any scaffolded functional site 
(Supplementary Methods). This measure of in silico success has been 
found to correlate with experimental success4,7,26 and is significantly 
more stringent than template modelling (TM)-score-based metrics 
used elsewhere5,16,27–29 (Supplementary Fig. 2c,d).

Unconditional protein monomer generation
As shown in Fig. 2a–c and Supplementary Fig. 3c,d, starting from ran-
dom noise, RFdiffusion can readily generate elaborate protein struc-
tures with little overall structural similarity to structures seen during 
training, indicating considerable generalization beyond the PDB (see 
Supplementary Table 1 for a comparison of all designs in the paper to 
the PDB). The designs are diverse (Supplementary Fig. 3a), spanning 
a wide range of alpha, beta and mixed alpha–beta topologies, with 
AF2 and ESMFold (Fig. 2c, Extended Data Fig. 1b,c and Supplemen-
tary Fig. 2b) predictions very close to the design structure models for 
de novo designs with as many as 600 residues. RFdiffusion generates 
plausible structures for even very large proteins, but these are difficult 
to validate in silico as they are probably generally beyond the single 
sequence prediction capabilities of AF2 and ESMFold. The quality and 
diversity of designs that are sampled are inherent to the model, and do 
not depend on any auxiliary conditioning input (for example, second-
ary structure information8). We experimentally characterized six of 
the 300 amino acid designs and three of the 200 amino acid designs, 
and found that they have circular dichroism spectra consistent with 
the mixed alpha–beta topologies of the designs and are extremely 
thermostable (Extended Data Fig. 3). Physics-based protein design 
methodologies have struggled in unconstrained generation of diverse 
protein monomers because of the difficulty of sampling on the very 
large and rugged conformational landscape30, and overcoming this 
limitation has been a primary test of deep-learning based protein 
design approaches5,6,8,16,27,31. RFdiffusion strongly outperforms (based 
on the AF2 success metric described above) Hallucination with RF, an 
experimentally validated method using Monte Carlo search or gradient 
descent to identify sequences predicted to fold into stable structures 
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(Fig. 2d). RFdiffusion generation is also more compute efficient than 
unconstrained Hallucination with RF, and efficiency can be greatly 
improved by taking larger steps at inference time and by truncating tra-
jectories early, which is possible because RF predicts the final structure 
at each timestep (Extended Data Fig. 2b,c). For example, a 100-residue 

protein can be generated in as little as 11 s on an NVIDIA RTX A4000 
Graphical Processing Unit, in contrast to RF Hallucination, which takes 
around 8.5 min.

It is often desirable to be able to specify a protein fold during design 
(such as triose-phosphate isomerase (TIM) barrels or cavity-containing 
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NTF2s for small molecule binder and enzyme design32,33), and thus we 
further fine-tuned RFdiffusion to condition on secondary structure 
and/or fold information, enabling rapid and accurate generation of 

diverse designs with the desired topologies (Fig. 2g and Extended Data 
Fig. 4). In silico success rates were 42.5 and 54.1% for TIM barrels and 
NTF2 folds, respectively (Extended Data Fig. 4d), and experimental 
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acids. d, RFdiffusion significantly outperforms Hallucination (with RF) at 
unconditional monomer generation (two-proportion z-test of in silico success: 
n = 400 designs per condition, z = 9.5, P = 1.6 × 10−21). Although Hallucination 
successfully generates designs up to 100 amino acids in length, in silico success 
rates rapidly deteriorate beyond this length. e, Ablating pretraining (by starting 
from untrained RF), RFdiffusion fine-tuning (that is, using original RF structure 

prediction weights as the denoiser), self-conditioning or m.s.e. losses (by 
training with FAPE) each notably decrease the performance of RFdiffusion. 
r.m.s.d. between design and AF2 is shown, for the unconditional generation of 
300 amino acid proteins (Supplementary Methods). f, Two example 300 amino 
acid proteins that expressed as soluble monomers. Designs (grey) overlaid with 
AF2 predictions (colours) are shown on the left, alongside circular dichroism 
(CD) spectra (top) and melt curves (bottom) on the right. The designs are highly 
thermostable. g, RFdiffusion can condition on fold information. An example 
TIM barrel is shown (bottom left), conditioned on the secondary structure and 
block adjacency of a previously designed TIM barrel, PDB 6WVS (top left). 
Designs have very similar circular dichroism spectra to PDB 6WVS (top right) 
and are highly thermostable (bottom right). See also Extended Data Fig. 3 for 
further traces. Boxplots represent median ± interquartile range; tails are 
minimum and maximum excluding outliers (±1.5× interquartile range).

https://doi.org/10.2210/pdb6WVS/pdb
https://doi.org/10.2210/pdb6WVS/pdb
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characterization of 11 TIM barrel designs indicated that at least eight 
designs were soluble, thermostable and had circular dichroism spectra 
consistent with the design model (Fig. 2g and Extended Data Fig. 4e,f).

Design of higher-order oligomers
There is considerable interest in designing symmetric oligomers, which 
can serve as vaccine platforms34, delivery vehicles35 and catalysts36. 
Cyclic oligomers have been designed using structure prediction net-
works with an adaptation of Hallucination that searches for sequences 
predicted to fold to the desired cyclic symmetry, but this approach 
fails for higher-order dihedral, tetrahedral, octahedral and icosahedral 
symmetries, probably in part because of the much lower representation 
of such structures in the PDB7.

We set out to generalize RFdiffusion to create symmetric oligomeric 
structures with any specified point group symmetry. Given a specifica-
tion of a point group symmetry for an oligomer with n chains, and the 
monomer chain length, we generate random starting residue frames 
for a single monomer subunit as in the unconditional generation case, 
and then generate n − 1 copies of this starting point arranged with the 
specified point group symmetry. Because RFdiffusion is equivariant 
(inherited from RF) with respect to rotation and relabelings of chains, 
symmetry is largely maintained in the denoising predictions; we explic-
itly resymmetrize at each step but this changes the structures only 
slightly (compare grey and coloured chains in Extended Data Fig. 5a 
and Supplementary Methods). For octahedral and icosahedral archi-
tectures, we explicitly model only the smallest subset of monomers 
required to generate the full assembly (for example, for icosahedra, 
the subunits at the five-, three- and twofold symmetry axes) to reduce 
the computational cost and memory footprint.

Despite not being trained on symmetric inputs, RFdiffusion is able 
to generate symmetric oligomers with high in silico success rates 
(Extended Data Fig. 5b), particularly when guided by an auxiliary inter- 
and intrachain contact potential (Extended Data Fig. 5c). As illustrated 
in Fig. 3 and Extended Data Fig. 5e, RFdiffusion designs are nearly indis-
tinguishable from AF2 predictions of the structures adopted by the 
designed sequences, and many show little resemblance to previously 
solved protein structures (Extended Data Fig. 5d and Supplementary 
Table 1). Several of the oligomeric topologies are not seen in the PDB, 
including two-layer beta barrels (Fig. 3a, C10 symmetry) and complex 
mixed alpha/beta topologies (Fig. 3a, C8 symmetry; closest TM align 
in PDB 6BRP, 0.47, and PDB 6BRO, 0.43, respectively).

We selected 608 designs for experimental characterization and 
found using size-exclusion chromatography (SEC) that at least 87 
had oligomerization states closely consistent with the design mod-
els (within the 95% confidence interval, 126 designs within the 99% 
confidence interval, as determined by SEC calibration curves; Sup-
plementary Figs. 4 and 5). We took advantage of the increased size 
of these oligomers (compared to the smaller unconditional and 
fold-conditioned monomers described above) and collected nega-
tive stain electron microscopy (nsEM) data on a subset of these designs 
across different symmetry groups. For most, distinct particles were 
evident with shapes resembling the design models in both the raw 
micrographs and subsequent two-dimensional (2D) classifications 
(Fig. 3 and Extended Data Fig. 5f). nsEM characterization of a C3 
design (HE0822) with 350 residue subunits (1,050 residues in total) 
suggests that the actual structure is very close to the design, both 
over the 350 residue subunits and the overall C3 architecture. 2D class 
averages are clearly consistent with both top and side views of the 
design model, and a 3D reconstruction of the density has key features 
consistent with the design, including the distinctive pinwheel shape 
(Fig. 3b, top row). Electron microscopy 2D class averages of C5 and 
C6 designs with more than 750 residues (HE0794, HE0789, HE0841) 
were also consistent with the respective design models (Extended  
Data Fig. 5f).

RFdiffusion also generated cyclic oligomers with alpha and/or beta 
barrel structures that resemble expanded TIM barrels and provide an 
interesting comparison between innovation during natural evolution 
and innovation through deep learning. The TIM barrel fold, with eight 
strands and eight helices, is one of the most abundant folds in nature37. 
nsEM confirmed the structure of two RFdiffusion designed cyclic oli-
gomers, which considerably extend beyond this fold (Fig. 3b, bottom 
rows). HE0626 is a C6 alpha–beta barrel composed of 18 strands and 
18 helices, and HE0675 is a C8 octamer composed of an inner ring of 16 
strands and an outer ring of 16 helices arranged locally in a very similar 
repeating pattern to the TIM barrel (1:1 helix:strand). For both HE0626 
and HE0675 we obtained nsEM 3D reconstructions that are in agree-
ment with the computational design models. The HE0600 design is 
also an alpha–beta barrel (Extended Data Fig. 5f), but has two strands 
for every helix (24 strands and 12 helices in total) and hence is locally 
different from a TIM barrel. Whereas natural evolution has extensively 
explored structural variations of the classic eight-strand or eight-helix 
TIM barrel fold, RFdiffusion can more readily explore global changes 
in barrel curvature, enabling discovery of TIM barrel-like structures 
with many more helices and strands.

RFdiffusion also readily generated structures with dihedral, tet-
rahedral and icosohedral symmetries (Fig. 3c,d and Extended Data 
Fig. 5e,f). SEC characterization indicated that 38 D2, seven D3 and three 
D4 designs had the expected molecular weights (these have four, six 
and eight chains, respectively) (Supplementary Fig. 5). Although the 
D2 dihedrals are too small for nsEM, 2D class averages—and for some, 
3D reconstructions of D3 and D4 designs—were congruent with the 
overall topologies of the design models (Fig. 3c and Extended Data 
Fig. 5f). Similarly, 3D reconstruction (Fig. 3c) and cryogenic electron 
microscopy (cryo-EM) 2D class averages (Extended Data Fig. 5g and Sup-
plementary Fig. 6) of the D4 HE0537 closely match the design model, 
recapitulating the roughly 45° offset between tetramic subunits. 2D 
nsEM class averages for a 12-chain tetrahedron (HE0964) were consist-
ent with the design model (Extended Data Fig. 5f). Forty-eight icosa-
hedra were selected for experimental validation, and one, HE0902, a 
15 nm (diameter) highly porous assembly (Fig. 3d, left) was observed in 
nsEM micrographs to form homogeneous particles. 2D class averages 
and a 3D reconstruction very closely match the design model (Fig. 3d), 
with triangular hubs arrayed around the empty C5 axes. Designs such 
as HE0902 (and future similar large assemblies) should be useful as 
new nanomaterials and vaccine scaffolds, with robust assembly and 
(in the case of HE0902) the outward facing N and C termini offering 
many possibilities for antigen display.

Functional-motif scaffolding
We next investigated the use of RFdiffusion for scaffolding protein 
structural motifs that carry out binding and catalytic functions, in 
which the role of the scaffold is to hold the motif in precisely the 3D 
geometry needed for optimal function. In RFdiffusion, we input motifs 
as 3D coordinates (including sequence and sidechains) both during 
conditional training and inference, and build scaffolds that hold the 
motif atomic coordinates in place. Many deep-learning methods  
have been developed recently to address this problem, including 
RFjoint Inpainting4, constrained Hallucination4 and other DDPMs5,8,29. To  
rigorously evaluate the performance of these methods in comparison 
to RFdiffusion across a broad set of design challenges, we established 
an in silico benchmark test (Supplementary Table 9) comprising 25 
motif-scaffolding design problems addressed in six recent publications 
encompassing several design methodologies4,5,29,38–40. The challenges 
span a broad range of motifs, including simple ‘inpainting’ problems, 
viral epitopes, receptor traps, small molecule binding sites, binding 
interfaces and enzyme active sites.

RFdiffusion solves 23 of the 25 benchmark problems, compared to 
15 for Hallucination and 19 for RFjoint Inpainting (Fig. 4a,b). For 19 out 

https://doi.org/10.2210/pdb6BRP/pdb
https://doi.org/10.2210/pdb6BRO/pdb
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of 23 of the problems solved by RFdiffusion, the fraction of successful 
designs is higher than either Hallucination or RFjoint Inpainting. The 
excellent performance of RFdiffusion required no hyperparameter tun-
ing or external potentials; this contrasts with Hallucination, for which 

problem-specific optimization can be required. In 17 out of 23 of the 
problems, RFdiffusion-generated successful solutions with higher in 
silico success rates when noise was not added during the reverse diffu-
sion trajectories (see Extended Data Fig. 1i for further discussion on the 
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(1) symmetric design model, (2) AF2 prediction of design following sequence 
design with ProteinMPNN, (3) 2D class averages showing both top and side 
views (scale bar, 60 Å for all class averages) and (4) 3D reconstructions from 

class averages with the design model fit into the density map. The overall 
shapes are consistent with the design models, and confirm the intended 
oligomeric state. As in a, AF2 predictions of each design are nearly 
indistinguishable from the design model (backbone r.m.s.d.s (Å) for HE0822, 
HE0626, HE0490, HE0675 and HE0537, are 1.33, 1.03, 0.60, 0.74 and 0.75, 
respectively). d, nsEM characterization of an icosahedral particle (HE0902, 
100 AA per chain). The design model, including the AF2 prediction of the C3 
subunit are shown on the left. nsEM data are shown on the right: on top, a 
representative micrograph is shown alongside 2D class averages along each 
symmetry axis (C3, C2 and C5, from left to right) with the corresponding 3D 
reconstruction map views shown directly below overlaid on the design model.
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effect of noise on design quality, and Supplementary Fig. 8 for analysis 
of design diversity). The ability of RFdiffusion to scaffold functional 
motifs is not related to their presence in the RFdiffusion training set 
(Supplementary Fig. 7).

One of the benchmark problems is the scaffolding of the p53 helix 
that binds MDM2. Inhibiting this interaction through high-affinity 
competitive inhibition by scaffolding the p53 helix and making further 
interactions with MDM2 is a promising therapeutic avenue41. In silico 
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Fig. 4 | Scaffolding of diverse functional sites with RFdiffusion. a, RFdiffusion 
outperforms other methods across 25 benchmark motif-scaffolding problems 
collected from six recent publications (Supplementary Table 9). In silico 
success is defined as AF2 r.m.s.d. to design model less than 2 Å, AF2 r.m.s.d. to 
the native functional motif less than 1 Å and AF2 pAE less than five. One 
hundred designs were generated per problem, with no previous optimization 
on the benchmark set (some optimization was necessary for Hallucination). 
Supplementary Table 10 presents full results. In silico success rates on the 
problems are correlated between the methods, and RFdiffusion can still 
struggle on challenging problems in which all methods have low success.  
b, Four examples of designs in which RFdiffusion significantly outperforms 
existing methods. Teal, native motif; colours, AF2 prediction of a design. 
Metrics (r.m.s.d. AF2 versus design/versus native motif (Å), AF2 pAE): 5TRV 
long, 1.17/0.57; 4.73; 6E6R long, 0.89/0.27, 4.56; 7MRX long, 0.84/0.82 4.32; 
5TPN, 0.59/0.49 3.77. c, RFdiffusion can scaffold the p53 helix that binds MDM2 

(left) and makes extra contacts with the target (right, average 31% increased 
surface area. Design was p53_design_89). Designs were generated with an 
RFdiffusion model fine-tuned on complexes. d, BLI measurements indicate 
high-affinity binding to MDM2 (p53_design_89, 0.7 nM; p53_design_53, 
0.5 nM); the native affinity is 600 nM (ref. 42). e, Out of 95 designs, 55 showed 
binding to MDM2 (more than 50% of maximum response). Thirty-two  
of these were monomeric (Supplementary Fig. 10h). f, After fine-tuning 
(Supplementary Methods), RFdiffusion can scaffold enzyme active sites.  
An oxidoreductase example (EC1) is shown (PDB 1A4I); catalytic site (teal); 
RFdiffusion output (grey, model; colours, AF2 prediction); zoom of active site. 
AF2 versus design backbone r.m.s.d. 0.88 Å, AF2 versus design motif backbone 
r.m.s.d. 0.53 Å, AF2 versus design motif full-atom r.m.s.d. 1.05 Å, AF2 pAE 4.47. 
g, In silico success rates on active sites derived from EC1-5 (AF2 Motif r.m.s.d. 
versus native: backbone less than 1 Å, backbone and sidechain atoms less than 
1.5 Å, r.m.s.d. AF2 versus design less than 2 Å, AF2 pAE less than 5).

https://doi.org/10.2210/pdb1A4I/pdb
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success has been described elsewhere4, but experimental success 
has not been reported. We used an RFdiffusion model fine-tuned on 
protein complexes (Supplementary Methods) to generate 96 designs 
scaffolding this helix. We scaffolded the p53 helix in the presence of 
MDM2, so extra interactions could be designed by RFdiffusion and 
experimentally identified 0.5 and 0.7 nM binders (Fig. 4c,d), three 
orders of magnitude higher affinity than the reported 600 nM affinity 
of the p53 peptide alone42. The overall success rate was quite high: out 
of the 96 designs, 55 showed some detectable binding at 10 μM (Fig. 4e 
and Supplementary Fig. 10h).

Scaffolding enzyme active sites
A grand challenge in protein design is to scaffold minimal descriptions 
of enzyme active sites comprising a few single amino acids. Whereas 
some in silico success has been reported previously4, a general solu-
tion that can readily produce high-quality, orthogonally validated 
outputs remains elusive. Following fine-tuning on a task mimicking 
this problem (Supplementary Methods), RFdiffusion was able to scaf-
fold enzyme active sites comprising many sidechain and backbone 
functional groups with high accuracy and in silico success rates across 
a range of enzyme classes (Fig. 4f and Extended Data Fig. 6a–d; in 
silico success required fine tuning). Although RFdiffusion is unable to 
explicitly model bound small molecules at present (however, see our 
conclusions), the substrate can be implicitly modelled using an exter-
nal potential to guide the generation of ‘pockets’ around the active 
site. As a demonstration, we scaffold a retroaldolase active site triad 
while implicitly modelling the reaction substrate (Extended Data 
Fig. 6e–h).

Symmetric functional-motif scaffolding
Several important design challenges involve the scaffolding of several 
copies of a functional motif in symmetric arrangements. For example, 
many viral glycoproteins are trimeric and symmetry matched arrange-
ments of inhibitory domains can be extremely potent43–46. Conversely, 
symmetric presentation of viral epitopes in an arrangement that mimics 
the virus could induce new classes of neutralizing antibodies47,48. To 
explore this general direction, we sought to design trimeric multiva-
lent binders to the SARS-CoV-2 spike protein. In previous work, flex-
ible linkage of a binder to the ACE2 binding site (on the spike protein  
receptor binding domain) to a trimerization domain yielded a 
high-affinity inhibitor that had potent and broadly neutralizing anti-
viral activity in animal models43. Ideally, however, symmetric fusions 
to binders would be rigid, so as to reduce the entropic cost of binding 
while maintaining the avidity benefits from multivalency. We used 
RFdiffusion to design C3-symmetric trimers that rigidly hold three bind-
ing domains (the functional motif in this case) such that they exactly 
match the ACE2 binding sites on the SARS-CoV-2 spike protein trimer. 
The designs were confidently predicted by AF2 to both assemble as 
C3-symmetric oligomers, and to scaffold the AHB2 SARS-CoV-2 binder 
interface with high accuracy (Fig. 5a).

The ability to scaffold functional sites with any desired symmetry 
opens up new approaches to designing metal-coordinating protein 
assemblies49,50. Divalent transition metal ions show distinct prefer-
ences for specific coordination geometries (for example, square planar, 
tetrahedral and octahedral) with ion-specific optimal sidechain–metal 
bond lengths. RFdiffusion provides a general route to building up sym-
metric protein assemblies around such sites, with the symmetry of 
the assembly matching the symmetry of the coordination geometry.  
As a first test, we sought to design square-planar Ni2+ binding sites.  
We designed C4 protein assemblies with four central histidine imida-
zoles arranged in an ideal Ni2+-binding site with square-planar coor-
dination geometry (Fig. 5b). Diverse designs starting from distinct 
C4-symmetric histidine square-planar sites had good in silico success 

with the histidine residues in near ideal geometries for coordinating 
metal in the AF2-predicted structures (Supplementary Fig. 9).

We expressed and purified 44 designs in Escherichia coli, and found 
that 37 had SEC chromatograms consistent with the intended oligo-
meric state (Extended Data Fig. 7b). Of the designs, 36 were tested for 
Ni2+ coordination by isothermal titration calorimetry, and 18 were found 
to bind Ni2+ with dissociation constants ranging from low nanomolar 
to low micromolar (Fig. 5c,d and Extended Data Fig. 7a). The inflection 
points in the wild-type isotherms indicate binding with the designed 
stoichiometry, a one to four ratio of ion to monomer. Although most of 
the designed proteins showed exothermic metal coordination, in a few 
cases binding was endothermic (Fig. 5d, left and Extended Data Fig. 7a: 
NiB2.9, NiB2.10, NiB2.15 and NiB2.23), suggesting that Ni2+ coordination 
is entropically driven in these assemblies. To confirm that Ni2+ binding 
was indeed mediated by the scaffolded histidine 52, we mutated this 
residue to alanine, which abolished or notably reduced binding in 17 
out of 17 cases with successful expression (Extended Data Figs. 7a,c 
and Fig. 5c,d; one mutant did not express). We structurally charac-
terized by nsEM a subset of the designs—NiB1.12, NiB1.15, NiB1.17 and 
NiB1.20—that showed histidine-dependent binding. All four designs 
showed clear fourfold symmetry both in the raw micrographs and in 
2D class averages (Fig. 5c,d), with design NiB1.17 also clearly showing 
twofold axis side views with a measured diameter approximating the 
design model. A 3D reconstruction of NiB1.17 was in close agreement 
with the design model (Fig. 5c).

Design of protein-binding proteins
The design of high-affinity binders to target proteins is a grand chal-
lenge in protein design, with numerous therapeutic applications51. A 
general method for de novo binder design from target structure infor-
mation alone using the physically based Rosetta method was recently 
described12, and subsequently, using ProteinMPNN for sequence design 
and AF2 for design filtering was found to improve design success rates26. 
However, experimental success rates were low, still requiring many 
thousands of designs to be screened for each design campaign12, and 
the approach relied on prespecifying a particular set of protein scaf-
folds as the basis for the designs, inherently limiting the diversity and 
shape complementarity of possible solutions12. To our knowledge, no 
deep-learning method has yet demonstrated experimental general 
success in designing completely de novo binders.

We reasoned that RFdiffusion might be able to address this chal-
lenge by directly generating binding proteins in the context of the 
target. For many therapeutic applications, for example, blocking a 
protein–protein interaction, it is desirable to bind to a particular site 
on a target protein. To enable this, we fine-tuned RFdiffusion on protein 
complex structures, providing a feature as input indicating a subset of 
the residues on the target chain (called ‘interface hotspots’) to which 
the diffused chain binds (Fig. 6a and Extended Data Fig. 8a,b). For 
design challenges in which a particular binder fold might be especially 
compatible, we enabled coarse-grained control over binder scaffold 
topology by fine-tuning an extra model to condition binder diffusion 
on secondary structure and block-adjacency information, in addition 
to conditioning on interface hotspots (Extended Data Fig. 8c,d and 
Supplementary Methods).

To compare RFdiffusion to previous binder design methods, we 
performed binder design campaigns against five targets: Influenza 
A H1 Haemagglutinin (HA)52, Interleukin-7 Receptor-α (IL-7Rα)12,  
Programmed Death-Ligand 1 (PD-L1)12, Insulin Receptor (InsR) and 
Tropomyosin Receptor Kinase A (TrkA)12. We designed putative binders 
to each target, both with and without conditioning on compatible fold 
information, with high in silico success rates (Extended Data Fig. 8e,f). 
Designs were filtered by AF2 confidence in the interface and mono-
mer structure26, and 95 were selected for each target for experimental 
characterization.
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The designed binders were expressed in E. coli and purified, and 
binding was assessed through single point biolayer interferometry 
(BLI) screening at 10 μM binder concentration (Extended Data Fig. 8g). 
The overall experimental success rate, defined as binding at or above 
50% of the maximal response for the positive control, was 19% (this 
is a conservative estimate as some designs that showed binding had 
insufficient material to permit screening at 10 μM: Extended Data 

Fig. 8g); an increase of roughly two orders of magnitude over our 
previous Rosetta-based method on the same targets (Fig. 6b). Bind-
ers were identified for all five targets, with fewer than 100 designs 
tested per target compared to thousands in previous studies. Full 
BLI titrations for a subset of the designs showed nanomolar affini-
ties with no further experimental optimization, including HA and 
IL-7Rα binders with affinities of roughly 30 nM (Fig. 6c). Binding 
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Fig. 5 | Symmetric motif scaffolding with RFdiffusion. a, Design of 
symmetric oligomers scaffolding the binding interface of ACE2 mimic AHB2 
(left, teal) against the SARS-CoV-2 spike trimer (left, grey). Three AHB2 copies 
are input to RFdiffusion along with C3 noise (middle); output are C3-symmetric 
oligomers holding the three AHB2 copies in place to engage all spike subunits. 
AF2 predictions (right) recapitulate the AHB2 structure with 0.6 Å r.m.s.d. over 
the assymetric unit and 2.9 Å r.m.s.d. over the C3 assembly. b, Design of C4-
symmetric oligomers to scaffold a Ni2+ binding motif (left). Starting from 
square-planar histidine rotamers within helical fragments (Supplementary 
Methods), RFdiffusion generates a C4 oligomer scaffolding the binding domain 
(middle). AF2 predictions (colour) agree closely with the design model (grey), 
with backbone r.m.s.d. less than 1.0 Å (right). c, nsEM 2D class averages (scale 
bar, 60 Å) and 3D reconstruction density are consistent with the symmetry and 

structure of the NiB1.17 design model shown superimposed on the density in 
ribbon representation (top). Isothermal titration calorimetry binding isotherm 
of design NiB1.17 (blue) indicates a dissociation constant less than 20 nM at a 
metal:monomer stoichiometry of 1:4. The H52A mutant isotherm (pink) ablates 
binding, indicating scaffolded histidine residues are critical for metal binding. 
d, Additional experimentally characterized Ni2+ binders NiB2.15 (left), NiB1.12 
(middle) and NiB1.20 (right). Metal-coordinating sidechains in the design 
models (top, teal) are closely recapitulated in the AF2 predictions (colours).  
2D nsEM class averages (middle; scale bar, 60 Å) are consistent with design 
models. Binding isotherms for wild-type (WT) and H52A mutant (bottom) 
indicate Ni2+ binding mediated directly by the scaffolded histidines at the 
designed stoichiometry. Note that for ITC plots, points represent single 
measurements.
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interfaces were often highly distinct from interfaces to these tar-
gets in the PDB (Supplementary Figs. 11 and 12). To assess binder 
specificity, six of the highest affinity IL-7Rα binders were assessed 
by means of competition BLI, and all six competed for binding with 
a structurally validated positive control binding to the same site 

(Supplementary Fig. 10a; further work is required to fully characterize  
proteome-wide specificity).

We solved the structure of the highest affinity Influenza binder, 
HA_20, in complex with Iowa43 HA using cryo-EM  (Extended  
Data Table 1). Raw electron micrographs revealed a well-folded HA 
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binder, HA_20, binds with a KD of 28 nM. c,d, Yellow or orange, target or hotspot 

residues; grey, design model; purple, AF2 prediction (r.m.s.d. AF2 versus 
design). Binders: IL7Ra_55 (2.1 Å), InsulinR_30 (2.6 Å), PDL1_77 (1.5 Å), TrkA_88 
(1.4 Å) (left to right in c) and HA_20 (1.7 Å) (d). e, Cryo-EM 2D class averages of 
HA_20 bound to influenza HA, strain A/USA:Iowa/1943 H1N1 (scale bar, 10 nm). 
f, 2.9 Å cryo-EM 3D reconstruction of the complex viewed along two orthogonal 
axes. HA_20 (purple) is bound to H1 along the stem of all three subunits. g, The 
cryo-EM structure of the HA_20 binder in complex closely matches the design 
model (r.m.s.d. to RFdiffusion design, 0.63 Å; yellow, influenza HA). h, Structure 
of the HA_20 binder alone superimposed on the design model viewed along 
two orthogonal axes. For cryo-EM panels, yellow, Influenza H1 map and/or 
structure; grey, HA_20 binder design model; purple, HA_20 binder map or 
structure.
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glycoprotein with clearly discernible side, top and tilted view orienta-
tions suspended in a thin layer of vitreous ice (Extended Data Fig. 9a). 
The 2D class averages further show clear secondary structure elements 
corresponding to both Iowa43 HA (Extended Data Fig. 9b), as well as 
the HA_20 binder bound to the stem (Fig 6e). The 3D heterogenous 
refinement without symmetry revealed full occupancy of all three HA 
stem epitopes by the HA_20 binder. A final non-uniform 3D refinement 
reconstruction with C3 symmetry yielded a 2.9 Å map of the HA/HA_20 
protein–protein complex (Fig 6f) and corresponding 3D structure that 
almost perfectly matches the computational design model (0.63 Å, 
Fig 6f,g; the sidechain interactions at the interface are very different 
from the closest structure in the PDB; Extended Data Fig. 9h). Over the 
binder alone, the experimental structure deviates from the RFdiffusion 
design by only 0.6 Å (Fig. 6h). These results demonstrate the ability of 
RFdiffusion to generate new proteins with atomic level accuracy, and to 
precisely target functionally relevant sites on therapeutically important  
proteins.

Discussion
RFdiffusion is a comprehensive improvement over current protein 
design methods. RFdiffusion readily generates diverse uncondi-
tional designs up to 600 residues in length that are accurately pre-
dicted by AF2, far exceeding the complexity and accuracy achieved 
by most previous methods (a recent Hallucination-based approach 
also achieved high unconditional performance53). Half of our tested 
unconditional designs express in a soluble way,  and have circular 
dichroism spectra consistent with the design models and high ther-
mostability. Despite their substantially increased complexity, the 
ideality and stability of RFdiffusion designs is akin to that of de novo 
protein designs generated using previous methods such as Rosetta. 
RFdiffusion enables generation of higher-order architectures with any 
desired symmetry, unlike Hallucination methods, which have so far 
been limited to cyclic symmetries. Electron microscopy confirmed that 
the structures of these oligomers are very similar to the design mod-
els, which in many cases show little global similarity to known protein  
oligomers.

There has been recent progress in scaffolding protein functional 
motifs using deep-learning methods (RF Hallucination, RFjoint Inpainting 
and diffusion), but Hallucination is slow for large systems, Inpainting 
fails when insufficient starting information is provided and previous 
diffusion methods had low accuracy. RFdiffusion outperforms these 
previous methods in the complexity of the motifs that can be scaf-
folded, the precision with which sidechains are positioned (for cataly-
sis and other functions), and the accuracy of motif recapitulation by 
AF2. The design of MDM2 binding proteins with three orders of magni-
tude higher affinities than the scaffolded P53 motif demonstrates the 
robustness of RFdiffusion motif scaffolding. Combining accurate motif  
scaffolding with the design of symmetric assemblies enabled consist-
ent and atomically precise positioning of sidechains to coordinate Ni2+ 
ions across diverse tetrameric assemblies

For binder design from target structural information alone, previous 
work required testing tens of thousands of sequences12. RFdiffusion, 
when combined with improved filtering26 raises experimental success 
rates by two orders of magnitude; high-affinity binders can be identi-
fied from dozens of designs, in many cases eliminating the require-
ment for slow and expensive high-throughput screening (at least for 
the non-polar sites targeted here; further studies will be required 
to assess success rates on more polar target sites and sites without 
native binding partners). A high-resolution cryo-EM structure of one 
of these designs in complex with influenza HA shows that RFdiffusion 
can design functional proteins with atomic accuracy. Vázquez Torres 
et al. demonstrate the ability of RFdiffusion to design picomolar affin-
ity binders to flexible helical peptides54, further highlighting its use for 
de novo binder design. Vázquez Torres et al. also show how RFdiffusion 

can be extended for protein model refinement by partial noising and 
denoising, which enables tuneable sampling around a given input 
structure. For peptide binder design, this enabled increases in affin-
ity of nearly three orders of magnitude without high-throughput  
screening.

The breadth and complexity of problems solvable with RFdiffusion 
and the robustness and accuracy of the solutions far exceeds what has 
been achieved previously. In a manner reminiscent of the generation 
of images from text prompts, RFdiffusion makes possible, with mini-
mal specialist knowledge, the generation of functional proteins from 
minimal molecular specifications (for example, high-affinity binders 
to a user-specified target protein, and diverse protein assemblies from 
user-specified symmetries).

The power and scope of RFdiffusion can be extended in several 
directions. RF has recently been extended to nucleic acids and  
protein–nucleic acid complexes55, which should enable RFdiffusion to 
design nucleic acid binding proteins and perhaps folded RNA struc-
tures. Extension of RF to incorporate ligands should similarly enable 
extension of RFdiffusion to explicitly model ligand atoms, and allow the 
design of protein–ligand interactions. The ability to customize RFdif-
fusion to specific design challenges by addition of external potentials 
and by fine-tuning (as illustrated here for catalytic site scaffolding, 
binder-targeting and fold specification), along with continued improve-
ments to the underlying methodology, should enable de novo protein 
design to achieve still higher levels of complexity, to approach and, in 
some cases, surpass what natural evolution has achieved.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Training ablations reveal determinants of RFdiffusion 
success. A–C) RFdiffusion can generate high quality large unconditional 
monomers. Designs are routinely accurately recapitulated by AF2 (see also 
Fig. 2c), with high confidence (A) for proteins up to approximately 400 amino 
acids in length. B) Further orthogonal validation of designs by ESMFold.  
C) Recapitulation of the design structure is often better with ESMFold 
compared with AF2. For each backbone, the best of 8 ProteinMPNN sequences 
is plotted, with points therefore paired by backbone rather than sequence.  
D) Comparing RFdiffusion trained with MSE loss on Cα atoms and N-Cα-C 
backbone frames (Methods 2.5), rather than with FAPE loss8,17. The MSE loss is 
not invariant to the global coordinate frame, unlike FAPE loss, and is required 
for good performance at unconditional generation (left, two-proportion z-test 
of in silico success rate, n = 400 designs per condition, z = 4.1, p = 4.1e-5). For 
motif scaffolding problems, where the ‘motif’ provides a means to align the 
global coordinate frame between timesteps, FAPE loss performs approximately 
as well as MSE loss, suggesting the L2 nature of MSE loss (as opposed to the L1 
loss in FAPE) is not empirically critical for performance. E) Allowing the model 
to condition on its X0 prediction at the previous timestep (see Supplementary 
Methods 2.4) improves designs. Designs with self-conditioning (pink) have 
improved recapitulation by AF2 (left) and better AF2 confidence in the 
prediction (right). Two-proportion z-test of in silico success rate, n = 800 
designs per condition z = 11.4, p = 6.1e-30. F) RFdiffusion leverages the 
representations learned during RF pre-training. RFdiffusion fine-tuned from 
pre-trained RF (pink) comprehensively outperforms a model trained for an 
equivalent amount of time, from untrained weights (gray). For context, 
sequences generated by ProteinMPNN on these output backbones are little 

better than sampling ProteinMPNN sequences from random Gaussian-sampled 
coordinates (white). Two-proportion z-test of in silico success rate, pre-training 
vs without pre-training (or vs random noise; both have zero success rate), 
n = 800 designs per condition, z = 23.0, p = 3.1e-117. Note that the data in pink in 
D–F is the same data, reproduced in each plot for clarity. G) The median (by AF2 
r.m.s.d. vs design) 300 amino acid unconditional sample highlighting the 
importance of self-conditioning and pre-training. Without pre-training  
(at least when trained with equivalent compute), RFdiffusion outputs bear little 
resemblance to proteins (gray, left). Without self-conditioning, outputs show 
characteristic protein secondary structures, but lack core-packing and ideality 
(gray, middle). With pre-training and self-conditioning, proteins are diverse and 
well-packed (pink, right). H) Greater coherence during unconditional denoising 
may partly explain the effect of self-conditioning. Successive X0 predictions are 
more similar when the model can self-condition (lower r.m.s.d. between X0 
predictions, pink curve). Data are aggregated from unconditional design 
trajectories of 100, 200 and 300 residues. I) During the reverse (generation) 
process, the noise added at each step can be scaled (reduced). Reducing the 
noise scale improves the in silico design success rates (left, middle; two-
proportion z-test of in silico success rate, n = 800 designs per condition,  
0 vs 0.5: z = 1.7, p = 0.09, 0 vs 1: z = 6.5, p = 6.8e-11; 0.5 vs 1: z = 4.8, p = 1.4e-6).  
This comes at the expense of diversity, with the number of unique clusters at a 
TM-score cutoff of 0.6 reduced when noise is reduced (right). Note throughout 
this figure the 6EXZ_long benchmarking problem is abbreviated to 6EXZ for 
brevity. Boxplots represent median±IQR; tails: min/max excluding outliers 
(±1.5xIQR).
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Extended Data Fig. 2 | RFdiffusion learns the distribution of the denoising 
process, and inference efficiency can be improved. A) Analysis of simulated 
forward (noising) and reverse (denoising) trajectories shows that the 
distribution of Cα coordinates and residue orientations closely match, 
demonstrating that RFdiffusion has learned the distribution of the denoising 
process as desired. Left to right: i) average distance between a Cα coordinate at 
Xt and its position in X0; ii) average distance between a Cα coordinate at Xt and 
Xt-1; iii) average distance between adjacent Cα coordinates at Xt; iv) average 
rotation distance between a residue orientation at Xt and X0; v) average rotation 
distance between a residue orientation at Xt and Xt-1. B-C) While RFdiffusion is 
trained to generate samples over 200 timesteps, in many cases, trajectories 
can be shortened to improve computational efficiency. B) Larger steps can be 
taken between timesteps at inference. Decreasing the number of timesteps 
speeds up inference, and often does not decrease in silico success rates (left) 

(for example, on an NVIDIA A4000 GPU, 100 amino acid designs can be 
generated with 15 steps, in ~11s, with an in silico success rate of over 60%). When 
normalized for compute budget (center) it is often much more efficient to run 
more trajectories with fewer timesteps. This can be done without loss of 
diversity in samples (right). For harder problems (e.g. unconditional 300 amino 
acids), one must strike an intermediate number of total timesteps (e.g., T = 50) 
for optimal compute efficiency. Note that for all other analyses in the paper, 
200 inference steps were used, in line with how RFdiffusion is trained. C) An 
alternative to taking larger steps is to stop trajectories early (possible because 
RFdiffusion predicts X0 at every timestep). In many cases, trajectories can be 
stopped at timestep 50–75 with little effect on the final in silico success rate of 
designs (left), and when normalized by compute budget (center), success rates 
per unit time are typically higher generating more designs with early-stopping. 
Again, this can be done without a significant loss in diversity (right).



Extended Data Fig. 3 | Unconditionally-generated designs are folded and 
thermostable. A) Four 200 amino acid and fourteen 300 amino acid proteins 
were tested for expression and stability. 9/18 designs expressed, with a major 
peak at the expected elution volume. Blue: 300 amino acid proteins; Purple: 
200 amino acid proteins. B) Colored AF2 predictions overlaid on gray design 

models (left), circular dichroism spectra at 25 °C (blue) and 95 °C (pink) (middle) 
and circular dichroism melt curves (right) for all 9 designs passing expression 
thresholds. In all cases, proteins remain well folded even at 95 °C. Note that 
data on 300aa_3 and 300aa_8 are duplicated from Fig. 2f, reproduced here  
for clarity.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | RFdiffusion can condition on fold information to 
generate specific, thermostable folds. A) 6WVS is a previously-described 
de novo designed TIM barrel (left). A fine-tuned RFdiffusion model can condition 
on 1D and 2D inputs representing this protein fold, specifically secondary 
structure (middle, bottom) and block-adjacency information (middle, top)  
(see Supplementary Methods 4.3.2). RFdiffusion then generates proteins that 
closely recapitulate this course-grained fold information (right). B) Outputs 
are diverse with respect to each other. With this coarse-grained fold 
specification, in silico successful designs are much more diverse (as quantified 
by pairwise TM-scores) compared to diversity generated through simply 
sampling many sequences for the original PDB backbone (6WVS). C) NTF2  
folds are useful scaffolds for de novo enzyme design56, and can also be readily 
generated with fold-conditioning in RFdiffusion. Designs are diverse and 
closely recapitulated by AF2. D) In silico success rates are high with fold-
conditioned diffusion. TIM barrels are generated with an AF2 in silico success 
rate of 42.5% (left bar, pink) with in silico success incorporating both AF2 

metrics and a TM-score vs 6WVS > 0.5. NTF2 folds are generated with an AF2 in 
silico success rate of 54.1% (right bar, pink), with in silico success incorporating 
both AF2 metrics and a TM-score vs PDB: 1GY6 > 0.5. In silico success was 
further validated with ESMFold (blue bars), where a pLDDT > 80 was used  
as the confidence metric for success. Gray: RFdiffusion design, colors: AF2 
prediction. E) 11 TIM barrel designs were purified alongside the 6WVS positive 
control. Ten of these express and elute predominantly as monomers (note that 
the designs are approximately 4kDa larger than 6WVS). F) Eight designs 
expressed sufficiently for analysis by circular dichroism. All designs are folded, 
with circular dichroism spectra consistent with the designed structure 
(middle), and similar to 6WVS. Designs were also all highly thermostable,  
with CD melt analyses demonstrating designs were folded even at 95 °C (right). 
Designs are shown in gray, with the AF2 predictions overlaid in colors (left). 
Note that data on 6WVS and TIM_barrel_6 are duplicated from Fig. 2g, 
reproduced here for clarity.

https://doi.org/10.2210/pdb1GY6/pdb
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Symmetric oligomer design with RFdiffusion. A) Due 
to the (near-perfect - see Supplementary Methods 3.1) equivariance properties 
of RFdiffusion, X0 predictions from symmetric inputs are also symmetric, even 
at very early timepoints (and becoming increasingly symmetric through time; 
r.m.s.d. vs symmetrized: t = 200 1.20 Å; t = 150 0.40 Å; t = 50 0.06 Å; t = 0 0.02Å). 
Gray: symmetrized (top left) subunit; colors: RFdiffusion X0 prediction.  
B) In silico success rates for symmetric oligomer designs of various cyclic and 
dihedral symmetries. In silico success is defined here as the proportion of 
designs for which AF2 yields a prediction from a single sequence that has mean 
pLDDT > 80 and backbone r.m.s.d. over the oligomer between the design model 
and AF2 < 2Å. Note that 16 sequences per RFdiffusion design were sampled.  
C) Box plots of the distribution of backbone r.m.s.d.s between AF2 and the 
RFdiffusion design model with and without the use of external potentials during 
the trajectory. The external potentials used are the ‘inter-chain’ contact potential 
(pushing chains together), as well as the ‘intra-chain’ contact potential (making 
chains more globular). Using these potentials dramatically improves in silico 

success (Two-proportion z-test of in silico success rate: n = 100 designs per 
condition, z = 4.3, p = 1.9e-5). D) Designs are diverse with respect to the training 
dataset (the PDB). While the monomers (typically 60–100 AA) show reasonable 
alignment to the PDB (median 0.72), the whole oligomeric assemblies showed 
little resemblance to the PDB (median 0.50). E) Additional examples of design 
models (left) against AF2 predictions (right) for C3, C5, C12, and D4 symmetric 
designs (the symmetries not displayed in Fig. 3) with backbone r.m.s.d.s (Å) 
against their AF2 predictions of 0.82, 0.63, 0.79, and 0.78 with total amino acids 
750, 900, 960, 640. F) Additional nsEM data for symmetric designs. The model 
is shown on the left and the 2D class averages on the right for each design.  
G) Two orthogonal side views of HE0537 by cryo-EM. Representative 2D class 
averages from the cryo-EM data are shown to the right of 2D projection images 
of the computational design model (lowpass filtered to 8 Å), which appear 
nearly identical to the experimental data. Scale bars shown (white) are 60 Å. 
Boxplot represents median ± IQR; tails: min/max excluding outliers (±1.5xIQR).
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | External potentials for generating pockets around 
substrate molecules. A–D) Example in silico successful designs for enzyme 
classes 2–5 (ref. 57, see also Fig. 4). Native enzyme (PDB: 1CWY, 1DE3, 1P1X, 1SNZ); 
catalytic site (teal); RFdiffusion output (gray: model, colors: AF2 prediction). 
Metrics (AF2 vs design backbone r.m.s.d., AF2 vs design motif backbone 
r.m.s.d., AF2 vs design motif full-atom r.m.s.d., AF2 pAE): EC2: 0.93 Å, 0.50 Å, 
1.29 Å, 3.51; EC3: 0.92 Å, 0.60 Å, 1.07 Å, 4.59; EC4: 0.93 Å, 0.80 Å, 1.03 Å, 4.41; EC5: 
0.78 Å, 0.44 Å, 1.14 Å, 3.32. E–H) Implicit modeling of a substrate while 
scaffolding a retroaldolase active site triad [TYR1051-LYS1083-TYR1180] from 
PDB: 5AN7. E) The potential used to implicitly model the substrate, which has 
both a repulsive and attractive field (see Supplementary Methods 4.4). F) Left: 
Kernel densities demonstrate that without using the external potential (pink), 
designs often fall into two failure modes: (1) no pocket, and (2) clashes with the 
substrate. Right: clashes (substrate < 3 Å of the backbone) & pockets (no clash 
and > 16 Cα within 3–8 Å of substrate) with and without the potential. Two-
proportion z-test: n = 71/51 +/− potential; clashes z = −2.05, p = 0.02, pocket 

z = −2.27, p = 0.01. Each datapoint represents a design already passing the 
stringent in silico success metrics (AF2 motif r.m.s.d. < 1 Å, AF2 backbone 
r.m.s.d. < 2 Å, AF2 pAE < 5). Note that the potential and clash definition pertain 
only to backbone Cα atoms, and do not currently include sidechain atoms.  
G) Designs close to the labeled local maxima of the kernel density estimate. 
Without the potential, the catalytic triad is predominantly (1) exposed on the 
surface with no residues available to provide substrate stabilization or (2) 
buried in the protein core, preventing substrate access. With the potential, the 
catalytic triad is predominantly (3), partially buried in a concave pocket with 
shape complementary to the substrate. Backbone atoms within 3 Å of the 
substrate are shown in red. H) A variety of diverse designs with pockets made 
using the potential, with no clashes between the substrate and the AF2-
predicted backbone. The functional form and parameters used for the pocket 
potential are detailed in Supplementary Methods 4.4. In each case the substrate 
is superimposed on the AF2 prediction of the catalytic triad.

https://doi.org/10.2210/pdb1CWY/pdb
https://doi.org/10.2210/pdb1DE3/pdb
https://doi.org/10.2210/pdb1P1X/pdb
https://doi.org/10.2210/pdb1SNZ/pdb
https://doi.org/10.2210/pdb5AN7/pdb
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Additional Ni2+ binding C4 oligomers. A) AF2 
predictions of a subset of the experimentally verified Ni2+ binding oligomers, 
with corresponding isothermal titration calorimetry (ITC) binding isotherms 
for the wild-type (blue) and H52A mutant (pink) below. Note that these, with 
Fig. 5, encompass all of the experimentally validated outputs deriving from 
unique RFdiffusion backbones. Wild-type dissociation constants are displayed 
in each plot. We observe a mixture of endothermic (NiB2.10, NiB2.23, NiB2.15) 
and exothermic isotherms. For all cases displayed we observe no binding to the 
ion for H52A mutants, indicating the scaffolded histidine at position 52 is 
critical for ion binding. KD values in the isotherms indicate binding of the ion 

with the designed stoichiometry (1:4 Ni2+:protein). Note that each backbone 
depicted is from a unique RFdiffusion sampling trajectory, and that models and 
data for designs NiB2.15, NiB1.12, NiB1.20 and NiB1.17 from Fig. 5 are duplicated 
here for ease of viewing. B) Size exclusion chromatograms for elutions from the 
44 purifications suggest the vast majority of designs are soluble and have the 
correct oligomeric state. C) Size exclusion chromatograms for 20 H52A mutants 
show that the mutants remain soluble and retain the intended oligomeric state. 
Note that only 18 of these 20 had wild-type sequences that definitively bound 
nickel. Note also that for ITC plots, points represent single measurements.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Targeted unconditional and fold-conditioned protein 
binder design. A-B) The ability to specify where on a target a designed binder 
should bind is crucial. Specific “hotspot” residues can be input to a fine-tuned 
RFdiffusion model, and with these inputs, binders almost universally target  
the correct site. A) IL-7Rα (PDB: 3DI3) has two patches that are optimal for 
binding, denoted Site 1 and Site 2 here. For each site, 100 designs were generated 
(without fold-specification). B) Without guidance, designs typically target Site 
1 (left bar, gray), with contact defined as Cα-Cα distance between binder and 
hotspot reside < 10 Å. Specifying Site 1 hotspot residues increases further the 
efficiency with which Site 1 is targeted (left bar, pink). In contrast, specifying 
the Site 2 hotspot residues can completely redirect RFdiffusion, allowing it  
to efficiently target this site (right bar, pink). C-D) As well as conditioning  
on hotspot residue information, a fine-tuned RFdiffusion model can also 
condition on input fold information (secondary structure and block-adjacency 
information - see Supplementary Methods 4.5). This effectively allows the 
specification of a (for instance, particularly compatible) fold that the binder 
should adopt. C) Two examples showing binders can be specified to adopt 
either a ferredoxin fold (left) or a particular helical bundle fold (right).  
D) Quantification of the efficiency of fold-conditioning. Secondary structure 
inputs were accurately respected (top, pink). Note that in this design target  
and target site, RFdiffusion without fold-specification made generally helical 

designs (right, gray bar). Block-adjacency inputs were also respected for  
both input folds (bottom, pink). E) Reducing the noise added at each step of 
inference improves the quality of binders designed with RFdiffusion, both  
with and without fold-conditioning. As an example, the distribution of AF2 
interaction pAEs (known to indicate binding when pAE < 1026) is shown for 
binders designed to PD-L1. In both cases, the proportion of designs with 
interaction pAE < 10 is high (blue curve), and improved when the noise is scaled 
by a factor 0.5 (pink curve) or 0 (yellow curve). F) Full in silico success rates  
for the protein binders designed to five targets. In each case, the best fold-
conditioned results are shown (i.e. from the most target-compatible input fold), 
and the success rates at each noise scale are separated. In line with current best 
practice26, we tested using Rosetta FastRelax58 before designing the sequence 
with ProteinMPNN, but found that this did not systematically improve designs. 
In silico success is defined in line with current best practice26: AF2 pLDDT of the 
monomer > 80, AF2 interaction pAE < 10, AF2 r.m.s.d. monomer vs design < 1 Å. 
G) Experimentally-validated de novo protein binders were identified for all five 
of the targets. Designs that bound at 10 μM during single point BLI screening 
with a response equal to or greater than 50% of the positive control were 
considered binders. Concentration is denoted by hue for designs that were 
screened at concentrations less than 10 μM and thus may be false negatives.

https://doi.org/10.2210/pdb3DI3/pdb
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Cryo-electron microscopy structure determination 
of designed Influenza HA binder. A) Representative raw micrograph showing 
ideal particle distribution and contrast. B) 2D Class averages of Influenza 
H1+HA_20 binder with clearly defined secondary structure elements and a full-
sampling of particle view angles (scale bar = 10 nm). C) Cryo-EM local resolution 
map calculated using an FSC value of 0.143 viewed along two different angles. 
Local resolution estimates range from ~2.3 Å at the core of H1 to ~3.4 Å along the 
periphery of the N-terminal helix of the HA_20 binder. D) Cryo-EM structure of 

the full H1+HA_20 binder complex (purple: HA_20; yellow: H1; teal: glycans).  
E) Global resolution estimation plot. F) Orientational distribution plot 
demonstrating complete angular sampling. G) 3D ab initio (left) and 3D 
heterogenous refinement (right - unsharpened) outputs, performed in the 
absence of applied symmetry, and showing clear density of the HA_20 binder 
bound to all three stem epitopes of the Iowa43 HA glycoprotein trimer, in all 
maps. H) The designed binder has topological similarity to 5VLI, a protein in 
the PDB, but binds with very different interface contacts.
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Extended Data Table 1 | Cryo-EM data collection, refinement and validation statistics
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Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Plants
Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
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was applied.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and 
lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
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Graph analysis subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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