Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum-metric-induced nonlinear transport in a topological antiferromagnet

Abstract

The Berry curvature and quantum metric are the imaginary part and real part, respectively, of the quantum geometric tensor, which characterizes the topology of quantum states1. The Berry curvature is known to generate a number of important transport phenomena, such as the quantum Hall effect and the anomalous Hall effect2,3; however, the consequences of the quantum metric have rarely been probed by transport measurements. Here we report the observation of quantum-metric-induced nonlinear transport, including both a nonlinear anomalous Hall effect and a diode-like non-reciprocal longitudinal response, in thin films of a topological antiferromagnet, MnBi2Te4. Our observations reveal that the transverse and longitudinal nonlinear conductivities reverse signs when reversing the antiferromagnetic order, diminish above the Néel temperature and are insensitive to disorder scattering, thus verifying their origin in the band-structure topology. They also flip signs between electron- and hole-doped regions, in agreement with theoretical calculations. Our work provides a means to probe the quantum metric through nonlinear transport and to design magnetic nonlinear devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum-metric-induced nonlinearity in a PT-symmetric AFM.
Fig. 2: Observation of nonlinear transport in AFM MnBi2Te4.
Fig. 3: Spin-order-related electron nonlinearity from the band-normalized quantum metric dipole.
Fig. 4: The electric-field and carrier-density-dependence of the nonlinear response.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Provost, J. P. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289–301 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  4. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  PubMed  Google Scholar 

  5. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Article  CAS  Google Scholar 

  6. Du, Z. Z., Wang, C. M., Lu, H. Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Qin, M.-S. et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 38, 017301 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Article  Google Scholar 

  16. He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Zhang, Z. et al. Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4. Nat. Commun. 13, 6191 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022).

    Article  CAS  Google Scholar 

  19. Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    Article  ADS  PubMed  Google Scholar 

  23. Wang, C., Gao, Y. & Xiao, D. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 127, 277201 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Liu, H. et al. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 127, 277202 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe, H. & Yanase, Y. Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X 11, 011001 (2021).

    CAS  Google Scholar 

  26. Holder, T., Kaplan, D., Ilan, R. & Yan, B. Mixed axial-gravitational anomaly from emergent curved spacetime in nonlinear charge transport. Preprint at https://arxiv.org/abs/2111.07780 (2021).

  27. Lahiri, S., Das, K., Culcer, D. & Agarwal, A. Intrinsic nonlinear conductivity induced by the quantum metric dipole. Preprint at https://arxiv.org/abs/2207.02178 (2022).

  28. Smith, T. B., Pullasseri, L. & Srivastava, A. Momentum-space gravity from the quantum geometry and entropy of Bloch electrons. Phys. Rev. Res. 4, 013217 (2022).

    Article  CAS  Google Scholar 

  29. Arora, A., Rudner, M. S. & Song, J. C. W. Quantum plasmonic nonreciprocity in parity-violating magnets. Nano Lett. 22, 9351–9357 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Kaplan, D., Holder, T. & Yan, B. Unification of nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. Preprint at https://arxiv.org/abs/2211.17213 (2022).

  31. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    Article  CAS  Google Scholar 

  39. Cai, J. et al. Electric control of a canted-antiferromagnetic Chern insulator. Nat. Commun. 13, 1668 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, S. et al. Odd–even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. X 11, 011003 (2021).

    CAS  Google Scholar 

  41. Fonseca, J. et al. Anomalous second harmonic generation from atomically thin MnBi2Te4. Nano Lett. 22, 10134–10139 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watanabe, H. & Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: application to Mn-based compounds. Phys. Rev. Res. 2, 043081 (2020).

    Article  CAS  Google Scholar 

  45. Ma, D., Arora, A., Vignale, G. & Song, J. C. Anomalous skew-scattering nonlinear Hall effect in PT-symmetric antiferromagnets. Preprint at https://arxiv.org/abs/2210.14932 (2022).

  46. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    Article  CAS  Google Scholar 

  47. Avci, C. O., Mendil, J., Beach, G. S. D. & Gambardella, P. Origins of the unidirectional spin Hall magnetoresistance in metallic bilayers. Phys. Rev. Lett. 121, 087207 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Cao, N. et al. Angle dependent field-driven reorientation transitions in uniaxial antiferromagnet MnBi2Te4 single crystal. Appl. Phys. Lett. 120, 163102 (2022).

    Article  ADS  CAS  Google Scholar 

  49. Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  53. Mostofi, A. A. et al. An updated version of Wannier 90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article  ADS  CAS  MATH  Google Scholar 

Download references

Acknowledgements

We thank S. A. Yang, H. Liu,  S. Xu and J. Song for discussions. W.G. acknowledges the financial support from the Singapore National Research Foundation through its Competitive Research Program (CRP Award No. NRF-CRP22-2019-0004). B.Y. acknowledges the financial support by the European Research Council (ERC Consolidator Grant No. 815869, ‘NonlinearTopo’) and Israel Science Foundation (ISF No. 2932/21). A.W. acknowledges the financial support from the National Natural Science Foundation of China (grant no. 12004056), Chongqing Research Program of Basic Research and Frontier Technology, China (grant no. cstc2021jcyj-msxmX0661) and Fundamental Research Funds for the Central Universities, China (grant no. 2022CDJXY-002). X.Z. acknowledges the financial support from the National Key Research and Development Program of the Ministry of Science and Technology of China (2019YFA0704901) and the National Natural Science Foundation of China (grant nos. 52125103 and 52071041).

Author information

Authors and Affiliations

Authors

Contributions

W.G. and B.Y. conceived and supervised the project. N.W. fabricated the devices and performed the transport and RMCD measurements with help from Z.Z. and C.Z. D.K., T.H. and B.Y. performed the theoretical calculations. N.W. and F.Z. performed the NV measurement with help from Z.J., S.R. and H.C. N.W., W.G., D.K., T.H. and B.Y. analysed the data. N.C., A.W. and X.Z. grew the MnBi2Te4 single crystals. K.W. and T.T. grew the hBN single crystals. N.W., B.Y. and W.G. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Binghai Yan or Weibo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The linear conductivity of 4SL-MnBi2Te4 with opposite AFM states.

a,b, The AFM-I and AFM-II states are prepared by sweeping the magnetic field from −7 T to 0T or +7 T to 0 T, respectively. c,d, The linear longitudinal \({{V}}_{x}^{\omega }\) and transverse \({{V}}_{x}^{\omega }\) voltage as a function of current \({{I}}_{x}^{\omega }\) for AFM I and AFM II states, respectively. The solid line is a linear fit to the experimental data.

Source data

Extended Data Fig. 2 The fully compensated AFM order in 4SL-MnBi2Te4 device.

a, The magnetic field dependent longitudinal resistance Rxx of the 4SL-MnBi2Te4 device. b, The magnetic field dependent Hall resistance Ryx of the 4SL-MnBi2Te4 device. In zero magnetic field, the AFM order is fully compensated and the Hall resistance Ryx = 0.

Source data

Extended Data Table 1 Comparison of the nonlinear conductivity for MnBi2Te4 and other two-dimensional material systems

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–7. See contents page for details.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Kaplan, D., Zhang, Z. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023). https://doi.org/10.1038/s41586-023-06363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06363-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing