Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Realizing spin squeezing with Rydberg interactions in an optical clock

Abstract

Neutral-atom arrays trapped in optical potentials are a powerful platform for studying quantum physics, combining precise single-particle control and detection with a range of tunable entangling interactions1,2,3. For example, these capabilities have been leveraged for state-of-the-art frequency metrology4,5 as well as microscopic studies of entangled many-particle states6,7,8,9,10,11. Here we combine these applications to realize spin squeezing—a widely studied operation for producing metrologically useful entanglement—in an optical atomic clock based on a programmable array of interacting optical qubits. In this demonstration of Rydberg-mediated squeezing with a neutral-atom optical clock, we generate states that have almost four decibels of metrological gain. In addition, we perform a synchronous frequency comparison between independent squeezed states and observe a fractional-frequency stability of 1.087(1) × 10−15 at one-second averaging time, which is 1.94(1) decibels below the standard quantum limit and reaches a fractional precision at the 10−17 level during a half-hour measurement. We further leverage the programmable control afforded by optical tweezer arrays to apply local phase shifts to explore spin squeezing in measurements that operate beyond the relative coherence time with the optical local oscillator. The realization of this spin-squeezing protocol in a programmable atom-array clock will enable a wide range of quantum-information-inspired techniques for optimal phase estimation and Heisenberg-limited optical atomic clocks12,13,14,15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin squeezing in a Rydberg-dressed array of 88Sr atoms.
Fig. 2: Characterization of spin squeezing and finite-range interactions.
Fig. 3: Atom–atom stability for CSSs and SSSs.
Fig. 4: Exploring metrology with SSSs in the limit of randomized atom-laser phase.

Similar content being viewed by others

Data availability

The experimental data presented in this article are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The code used for analysis and simulation in this work is available from the corresponding author upon reasonable request.

References

  1. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    ADS  PubMed  Google Scholar 

  2. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  CAS  PubMed  Google Scholar 

  3. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    CAS  Google Scholar 

  4. Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    ADS  CAS  PubMed  Google Scholar 

  5. Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS  Google Scholar 

  6. Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

    ADS  PubMed  Google Scholar 

  7. Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    ADS  CAS  PubMed  Google Scholar 

  8. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    ADS  CAS  PubMed  Google Scholar 

  9. Graham, T. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

    ADS  CAS  PubMed  Google Scholar 

  10. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, W.-Y. et al. Functional building blocks for scalable multipartite entanglement in optical lattices. Preprint at https://arxiv.org/abs/2210.02936 (2022).

  12. Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A 47, 424006 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  13. Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).

    ADS  CAS  PubMed  Google Scholar 

  14. Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS  Google Scholar 

  15. Kessler, E. M. et al. Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014).

    ADS  CAS  PubMed  Google Scholar 

  16. Pezzè, L. & Smerzi, A. Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol. Phys. Rev. Lett. 125, 210503 (2020).

    ADS  MathSciNet  PubMed  Google Scholar 

  17. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS  MathSciNet  Google Scholar 

  18. Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    ADS  CAS  PubMed  Google Scholar 

  19. Tse, M. et al. Quantum-enhanced Advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  CAS  Google Scholar 

  21. Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    ADS  CAS  PubMed  Google Scholar 

  22. Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

    ADS  CAS  PubMed  Google Scholar 

  23. Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    ADS  CAS  PubMed  Google Scholar 

  24. Zheng, X., Dolde, J., Lim, H. M. & Kolkowitz, S. A lab-based test of the gravitational redshift with a miniature clock network. Preprint at https://arxiv.org/abs/2207.07145 (2022).

  25. Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braverman, B. et al. Near-unitary spin squeezing in 171Yb. Phys. Rev. Lett. 122, 223203 (2019).

    ADS  CAS  PubMed  Google Scholar 

  27. Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

    ADS  CAS  PubMed  Google Scholar 

  28. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    ADS  PubMed  Google Scholar 

  29. Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).

    CAS  Google Scholar 

  30. Robinson, J. M. et al. Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit. Preprint at https://arxiv.org/abs/2211.08621 (2022).

  31. Bouchoule, I. & Mølmer, K. Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states. Phys. Rev. A 65, 041803 (2002).

    ADS  Google Scholar 

  32. Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    ADS  CAS  PubMed  Google Scholar 

  33. Jau, Y.-Y., Hankin, A., Keating, T., Deutsch, I. H. & Biedermann, G. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys. 12, 71–74 (2016).

    CAS  Google Scholar 

  34. Borish, V., Marković, O., Hines, J. A., Rajagopal, S. V. & Schleier-Smith, M. Transverse-field Ising dynamics in a Rydberg-dressed atomic gas. Phys. Rev. Lett. 124, 063601 (2020).

    ADS  CAS  PubMed  Google Scholar 

  35. Guardado-Sanchez, E. et al. Quench dynamics of a Fermi gas with strong nonlocal interactions. Phys. Rev. X 11, 021036 (2021).

    CAS  Google Scholar 

  36. Zeiher, J. et al. Coherent many-body spin dynamics in a long-range interacting Ising chain. Phys. Rev. X 7, 041063 (2017).

    Google Scholar 

  37. Van Damme, J., Zheng, X., Saffman, M., Vavilov, M. G. & Kolkowitz, S. Impacts of random filling on spin squeezing via Rydberg dressing in optical clocks. Phys. Rev. A 103, 023106 (2021).

    ADS  Google Scholar 

  38. Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Google Scholar 

  39. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    ADS  CAS  PubMed  Google Scholar 

  40. Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    ADS  CAS  PubMed  Google Scholar 

  41. Marti, G. E. et al. Imaging optical frequencies with 100μHz precision and 1.1μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    ADS  CAS  PubMed  Google Scholar 

  42. Young, A. W., Eckner, W. J., Schine, N., Childs, A. M. & Kaufman, A. M. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice. Science 377, 885–889 (2022).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  43. Stockton, J. K., Wu, X. & Kasevich, M. A. Bayesian estimation of differential interferometer phase. Phys. Rev. A 76, 033613 (2007).

    ADS  Google Scholar 

  44. Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    CAS  Google Scholar 

  45. McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    ADS  CAS  PubMed  Google Scholar 

  46. Henkel, N., Nath, R. & Pohl, T. Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose–Einstein condensates. Phys. Rev. Lett. 104, 195302 (2010).

    ADS  CAS  PubMed  Google Scholar 

  47. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    ADS  CAS  PubMed  Google Scholar 

  48. Young, J. T., Muleady, S. R., Perlin, M. A., Kaufman, A. M. & Rey, A. M. Enhancing spin squeezing using soft-core interactions. Phys. Rev. Res. 5, L012033 (2023).

    CAS  Google Scholar 

  49. Block, M. et al. A universal theory of spin squeezing. Preprint at https://arxiv.org/abs/2301.09636 (2023).

  50. Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    ADS  CAS  PubMed  Google Scholar 

  51. Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    ADS  CAS  PubMed  Google Scholar 

  52. Bowden, W., Vianello, A., Hill, I. R., Schioppo, M. & Hobson, R. Improving the Q factor of an optical atomic clock using quantum nondemolition measurement. Phys. Rev. X 10, 041052 (2020).

    CAS  Google Scholar 

  53. Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Preprint at https://arxiv.org/abs/2303.08053 (2023).

  54. Franke, J. et al. Quantum-enhanced sensing on an optical transition via emergent collective quantum correlations. Preprint at https://arxiv.org/abs/2303.10688 (2023).

  55. Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).

    Google Scholar 

  56. Kumar, A., Wu, T.-Y., Giraldo, F. & Weiss, D. S. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature 561, 83–87 (2018).

    ADS  CAS  PubMed  Google Scholar 

  57. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  CAS  PubMed  Google Scholar 

  58. Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  CAS  PubMed  Google Scholar 

  59. Young, A. W. et al. An atomic boson sampler. Preprint at https://arxiv.org/abs/2307.06936 (2023).

  60. Taichenachev, A. V. et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006).

    ADS  CAS  PubMed  Google Scholar 

  61. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    ADS  CAS  PubMed  Google Scholar 

  62. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS  CAS  Google Scholar 

  63. Carpenter, J. & Bithell, J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19, 1141–1164 (2000).

    CAS  PubMed  Google Scholar 

  64. Efron, B. & Stein, C. The jackknife estimate of variance. Ann. Stat. 9, 586–596 (1981).

    MathSciNet  MATH  Google Scholar 

  65. van den Worm, M., Sawyer, B. C., Bollinger, J. J. & Kastner, M. Relaxation timescales and decay of correlations in a long-range interacting quantum simulator. New J. Phys. 15, 083007 (2013).

    Google Scholar 

Download references

Acknowledgements

We acknowledge earlier contributions to the experiment from M. A. Norcia and N. Schine and discussions with S. Geller, R. B. Hutson, W. F. McGrew, S. R. Muleady, A. M. Rey, N. Schine, M. Schleier-Smith, J. K. Thompson, J. T. Young and P. Zoller. We thank S. Geller, S. R. Muleady, J. K. Thompson and P. Zoller for reading the paper and comments; and A. Aeppli, D. Kedar, K. Kim, B. Lewis, M. Miklos, Y. M. Tso, W. Warfield, L. Yan and Z. Yao for discussions and contributions to the clock laser system. This material is based on work supported by the Army Research Office (W911NF-19-1-0149 and W911NF-19-1-0223), Air Force Office for Scientific Research (FA9550-19-1-0275), National Science Foundation QLCI (OMA-2016244), US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator, and the National Institute of Standards and Technology. We also acknowledge funding from Lockheed Martin. W.J.E. acknowledges support from the NDSEG Fellowship; N.D.O. acknowledges support from the Alexander von Humboldt Foundation; and A.C. acknowledges support from the NSF Graduate Research Fellowship Program (grant number DGE2040434).

Author information

Authors and Affiliations

Authors

Contributions

W.J.E., N.D.O., A.C., A.W.Y. and A.M.K. built and operated the optical lattice and tweezer apparatus. The silicon-crystal stabilized clock laser was operated by W.R.M., J.M.R. and J.Y. All authors contributed to data analysis and development of the paper.

Corresponding author

Correspondence to Adam M. Kaufman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sebastian C. Carrasco, Michael Goerz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckner, W.J., Darkwah Oppong, N., Cao, A. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023). https://doi.org/10.1038/s41586-023-06360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06360-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing