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An analog-AI chip for energy-efficient 
speech recognition and transcription

S. Ambrogio1 ✉, P. Narayanan1, A. Okazaki2, A. Fasoli1, C. Mackin1, K. Hosokawa2, A. Nomura2, 
T. Yasuda2, A. Chen1, A. Friz1, M. Ishii2, J. Luquin1, Y. Kohda2, N. Saulnier3, K. Brew3, S. Choi3, 
I. Ok3, T. Philip3, V. Chan3, C. Silvestre3, I. Ahsan3, V. Narayanan4, H. Tsai1 & G. W. Burr1

Models of artificial intelligence (AI) that have billions of parameters can achieve high 
accuracy across a range of tasks1,2, but they exacerbate the poor energy efficiency of 
conventional general-purpose processors, such as graphics processing units or 
central processing units. Analog in-memory computing (analog-AI)3–7 can provide 
better energy efficiency by performing matrix–vector multiplications in parallel on 
‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SWeq) 
accuracy on models that require many such tiles and efficient communication of 
neural-network activations between the tiles. Here we present an analog-AI chip that 
combines 35 million phase-change memory devices across 34 tiles, massively parallel 
inter-tile communication and analog, low-power peripheral circuitry that can achieve 
up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. 
We demonstrate fully end-to-end SWeq accuracy for a small keyword-spotting network 
and near-SWeq accuracy on the much larger MLPerf8 recurrent neural-network  
transducer (RNNT), with more than 45 million weights mapped onto more than 140 
million phase-change memory devices across five chips.

The past decade has seen AI techniques spread to a wide range of appli-
cation areas, from the recognition and classification of images and 
videos9 to the transcription and generation of speech and text10–16, all 
driven by a relentless progression towards deep neural network (DNN) 
models with ever more parameters. In particular, transformer1 and 
recurrent neural-network transducer (RNNT)12,13,16 models containing 
up to one billion parameters2 have produced a marked decrease in 
word error rate (WER) (and therefore much better accuracy) for the 
automated transcription of spoken English-language sentences, as 
shown in Fig. 1a for two widely used datasets, Librispeech17 and Switch-
Board18. Unfortunately, hardware (HW) performance has not kept pace, 
leading to longer training and inference times and greater energy con-
sumption19. Large networks are still trained and implemented using 
general-purpose processors such as graphics processing units and 
central processing units, leading to excessive energy consumption 
when vast amounts of data must move between memory and processor,  
a problem known as the von Neumann bottleneck.

Analog-AI HW avoids these inefficiencies by leveraging arrays of 
non-volatile memory (NVM) to perform the ‘multiply and accumu-
late computation’ (MAC) operations which dominate these workloads 
directly in the memory3–7. By moving only neuron-excitation data to 
the location of the weight data, where the computation is then per-
formed, this technology has the potential to reduce both the time 
and the energy required. These advantages are further enhanced for 
DNN models that have many large fully connected (FC) layers, such 
as the RNNT or transformer models used for state-of-the-art natural 
language processing (NLP). In conventional digital implementation, 
such layers require enormous movement of data but provide scant 

opportunity for amortization over subsequent computing. For analog 
AI, by contrast, such layers are efficiently mapped onto analog crossbar 
arrays and computed in parallel using a single integration step. Given 
the finite endurance and the slow, power-hungry programming of 
NVM devices, such analog-AI systems must be fully weight stationary, 
meaning that every weight must be preprogrammed before inference 
workload execution begins.

A highly heterogeneous and programmable accelerator architec-
ture for analog AI has been introduced20 for which system-level per-
formance assessments have predicted energy efficiencies 40–140 
times higher than those of cutting-edge graphics processing units. 
However, this simulation study required several design assump-
tions that have yet to be demonstrated in HW, two of which are 
directly addressed below. The first is the use of a dense and efficient 
circuit-switched 2D mesh to exchange massively parallel vectors of 
neuron-activation data over short distances. The second is the suc-
cessful implementation of DNN models that are large enough to  
be relevant for commercial use and are demonstrated at sufficiently 
high accuracy levels.

In this paper, we present experimental results using a 14-nm infer-
ence chip leveraging 34 large arrays of phase-change memory (PCM) 
devices4, digital to analog input, analog peripheral circuitry, analog to 
digital output and massively parallel-2D-mesh routing. Our chip does 
not include on-chip digital computing cores or static random access 
memory (SRAM) to support the auxiliary operations (and data staging)  
needed in an eventual, marketable product. However, we can use it 
to demonstrate the accuracy, performance and energy efficiency 
of analog AI on NLP inference tasks, either by implementing simple 
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operations such as rectified linear unit (ReLU) non-linear function 
directly in the analog domain or by performing small amounts of aux-
iliary computing off-chip.

To demonstrate the flexibility of the chip, we chose two neural-network 
models from the MLPerf standard benchmark8, a suite of industry- 
relevant use cases. We first targeted the tiny-model task of keyword- 
spotting network (KWS) on the Google speech-commands dataset. 
For this we used a HW-aware (HWA) trained network, retrained using 
a variety of techniques available in the open-source IBM analog HW 
acceleration kit (https://aihwkit.readthedocs.io/en/latest/) (Fig. 1b). 
We then implemented the MLPerf version of RNNT, a large data-center 
network, on Librispeech without any additional HWA retraining. This 
model has 45 million weights, which we implement using more than 
140 million PCM devices across five packaged chip modules, demon-
strating near-SWeq accuracy (ours is 98.1% of that exhibited by the base 
software (SW)-only model) and executing about 99% of the operations 
on the analog-AI tiles.

Chip architecture
A micrograph of the chip is shown in Fig. 1c, highlighting the 2D grid 
of 34 analog tiles, each of which has its own 512 × 2,048 PCM crossbar 

array. Tiles are grouped into six power domains, labelled as north, 
centre or south followed by west or east. Each power domain contains 
one input landing pad (ILP) (Fig. 1d) and one output landing pad (OLP), 
each associated with a large SRAM. The ILP receives digital input vec-
tors (each vector has 8-bits unsigned integer (UINT8) × 512 entries) 
from off-chip, converting these inputs into pulse-width-modulated 
(PWM) durations onto 512 wires situated in parallel at the edge of the 
2D mesh running over all the tiles4,20. Conversely, the OLP receives PWM 
durations on 512 wires, digitizing these durations back into UINT8 for 
off-chip data transport.

Analog-tile to analog-tile communication is performed using 
durations, eliminating the area, power and latency associated with 
analog-to-digital conversion at the tile periphery4 for situations in 
which integration on the rows of each destination tile can be performed 
synchronously with the readout of the columns of one or more source 
tiles, including FC layers with simple activation functions. When dura-
tion vectors are sent from a tile to the OLP, the chip is effectively imple-
menting a ramp-based analog-to-digital converter (ADC), except that 
the shared ramp circuits and dedicated comparators are located at the 
tiles and the digital counters are at the OLP. Digitization becomes a 
necessity for transformer attention and models that require internal 
data staging.
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Fig. 1 | Chip architecture. a, Speech recognition has improved markedly  
over the past 10 years, driving down the WER for both the Librispeech and 
SwitchBoard (SWB) datasets, thanks to substantial increases in model size and 
improved networks, such as RNNT or transformer. For comparison with our 
results, the MLPerf RNNT full-precision WER is shown for two Librispeech 
datasets (‘test-clean’ and ‘dev-clean’)8, along with this work’s WER, which was 
computed on Librispeech dev-clean. For model size: B, 1 billion; M, 1 million.  
b, Inference models are trained using popular frameworks such as PyTorch  
or TensorFlow. Further optimization for analog AI can be achieved with the  
IBM analog HW acceleration kit (https://aihwkit.readthedocs.io/en/latest/).  
c, Trained model weights are then used on a 14-nm chip with 34 analog tiles, two 
processing elements (PE, not used for this work) and six ILP–OLP pairs. Tiles are 
labelled as north (N), centre (C) or south (S) followed by west (W) or east (E).  
d, Each ILP converts 512 8-bit inputs into 512 element vectors of pulse-modulated 
durations, which are then routed to the analog tiles for integration using a fully 

parallel 2D mesh that allows multi-casting to multiple tiles. After MAC, the 
charge on the peripheral capacitors is converted into durations4 and sent 
either to other tiles, leading to new MACs, or to the OLP, where durations  
are reconverted into 8-bit representations for off-chip data-processing.  
e, Transmission Electron Microscopy (TEM) image of one PCM. f, Each tile 
contains a crossbar array with 512 × 2,048 PCMs, programmed using a parallel 
row-wise algorithm4. g, PCMs can be organized in a 4-PCM-per-weight 
configuration, with G+, g+ adding and G−, g− subtracting charge from the 
peripheral capacitor, with a significance factor F (which is 1 in this paper).  
h, Alternatively, they can have a 2-PCM-per-weight configuration, which 
achieves a higher density. By reading different input frames through weights 
WP1 or WP2, a single tile can map 1,024 × 512 weight layers. i, Finally, two adjacent 
tiles can share their banks of 512 peripheral capacitors, enabling integration in 
the analog domain across 2,048 input rows.

https://aihwkit.readthedocs.io/en/latest/
https://aihwkit.readthedocs.io/en/latest/


770 | Nature | Vol 620 | 24 August 2023

Article

PCM devices are integrated in the back-end wiring above 14-nm 
front-end circuitry (Fig. 1e) and can encode analog conductance states 
by tuning, with electrical pulses, the relative volume of crystalline-phase 
(highly conductive) and amorphous-phase (highly resistive) material 
at the narrow bottom electrode. To program PCM devices, a parallel 
programming scheme is used (Fig. 1f) so that all 512 weights in the same 
row are updated at the same time4.

Weights can be encoded using a variable number of PCM devices. 
Figure 1g shows a 4-PCM-per-weight configuration, where each of the 
four PCM devices contributes equally to the read current and thus to 
the charge stored on the peripheral capacitor. A second, denser scheme 
uses a 2-PCM-per-weight set-up (Fig. 1h), encoding one weight, WP1 = 
G+ - G−, on the first two PCM devices and a different weight, WP2 = g+ - g−, 
on the second pair of devices. In this way, two different input vectors 
can be multiplied with WP1 and WP2 in two separate time steps, on the 
same capacitor, allowing analog MAC across 1,024 rows. Finally, two 
analog tiles can share one bank of peripheral capacitors (Fig. 1i), further 
extending the analog integration up to 2,048 analog input rows across 
512 columns per pair of tiles.

All weight configurations, MAC operations and routing schemes are 
defined with a user-configurable local controller (LC) available on each 
tile (Fig. 2a). A local SRAM stores all the instructions defining the time 
sequence of several-hundred control signals, allowing for a highly flex-
ible test and simplifying design verification, with a small area penalty 
when compared with predefined-state machines.

The 2D mesh comprises 512 east–west wires and 512 north–south 
wires sitting over each tile, with a diagonal set of 512 metal vias to con-
nect each corresponding pair of wires. ‘Borderguard’ circuits at the 
four edges of each tile can block or propagate each duration signal 

using tri-state buffers, mask bits and digital logic. This allows com-
plex routing patterns to be established and changed when required by 
the LC, including a multi-cast of vectors to multiple destination tiles, 
and a concatenation of sub-vectors originating from different source 
tiles20 (Fig. 2c). Finally, Fig. 2d verifies that durations can be reliably 
transmitted across the entire chip, with a maximum error equal to 5 ns  
(3 ns for shorter durations).

KWS task
To demonstrate the performance of the chip in an end-to-end network, 
we implemented a multi-class KWS task21. MLPerf classifies KWS as a 
‘tiny’ inference model8 and proposes a convolutional-neural-network 
architecture trained on the Google Speech Commands dataset compris-
ing 12 keywords (Fig. 3a). For this implementation, we instead adopted 
an FC network22. Both networks require upstream digital preprocessing 
to convert incoming audio waveforms into suitable input data vectors 
using a feature-extraction algorithm21,22. The FC model achieves a clas-
sification accuracy of 86.75%, compared with 90% for the MLPerf con-
volutional neural network, but offers a simpler architecture and faster 
performance (several KWS open submissions to MLPerf use FC-type 
networks, sometimes reporting even lower accuracy around 82.5%)8. 
Because an FC network matches our chip topology and exploits our 
large tiles, our goal is to match the available SW accuracy of 86.75%.

To enable a fully end-to-end implementation on our chip, we first 
modified the audio-spectrum digital preprocessing to produce 1,960 
inputs and increased the size of each hidden layer from 128 to 512 for  
our tiles (in 4-PCM-per-weight mode). To make the network more resil-
ient to analog noise23–26, we retrained it while including weight and 
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Fig. 2 | Reconfigurable architecture and routing. a, For maximum test-time 
flexibility, each tile contains a user-programmable LC that defines all timing 
sequences. b, LC controls signal routing through the 2D mesh from ILP to the 
tile, MAC, output duration generation through ramp plus comparator circuitry 
and borderguard tile routing configuration. c, As an example, LC can implement 
2D-mesh concatenation such as merging the durations originating from the 
even columns on one tile with the durations coming from the odd columns of 

another tile. d, To test the communication, 1 million random input durations 
are multi-cast, in parallel, to all 6 OLPs. Durations randomly vary between 0 and 
50 ns (dark-blue lines) or between 0 and either 100, 150, 200 or 250 ns (lighter 
shades of blue) with 1-ns granularity. Cumulative distribution functions (CDFs) 
reveal that the communication error never exceeds 5 ns, demonstrating high 
transport accuracy.
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activation noise, weight clipping, L2 regularization and bias removal 
(https://aihwkit.readthedocs.io/en/latest/). We then pruned this trained 
network down to 1,024 inputs (Fig. 3b) to fit the first layer into a two-tile 
mapping configuration (Fig. 3c), using the shared-capacitor-bank 
approach shown in Fig. 1i. Our end-to-end implementation uses four 
tiles in total: two for the first weight layer and two for the next two 
weight layers.

To improve the MAC accuracy and compensate for asymmetries 
in the peripheral circuits, we introduce a MAC asymmetry balance 
(AB) method (Fig. 3d). Actual weights, W, are programmed on the first 
PCM pair, WP1, and opposite-signed weights, −W, are encoded on the 
second PCM pair, WP2. By first multiplying the actual input on WP1 = W 
and then −input on WP2 = −W, we computed the desired MAC (scaled  
by ×2) while cancelling out fixed asymmetries in the peripheral circuitry 
for current collection.

Each audio frame requires 2.4 μs in total, in the form of 8 time 
steps of 300 ns each (Fig. 3e); this is 7 times faster than the best-case 
latency currently reported by MLPerf8. Experimentally measured 
MAC-plus-Activation function (ReLU for layers L0 and L1, linear for 
Output) correlations with the expected SW result are shown in Fig. 3f 
for all three layers. The measured KWS accuracy is 86.14% (Fig. 3g), well 
within the MLPerf SWeq ‘iso-accuracy’ limit of 85.88% (defined as 99% 
of the accuracy of the original SW model).

RNNT
Although KWS represents an excellent benchmark for very small 
models, we can also use our chip to demonstrate much larger and 
more-complex networks. As an example, the NLP task of speech-to-text 
transcription enables applications such as agent assist, media con-
tent search, media subtitling, clinical documentation and dicta-
tion tools (https://aws.amazon.com/what-is/speech-to-text/). We 
therefore implemented the MLPerf Datacenter network RNNT as an 

industry-relevant workload demonstration. To further simplify model 
use, we programmed the MLPerf weights directly with no additional 
HWA retraining.

The MLPerf RNNT showcases all the important building blocks, such 
as a multilayer encoder (Enc), decoder (Dec) and joint subnetwork 
blocks (Fig. 4a). The network is slightly simplified with respect to 
state-of-the-art RNNTs; the long short-term memory (LSTM) blocks 
are unidirectional, rather than bidirectional, and the decoding  
scheme is greedy rather than beam-search, which increases the WER 
slightly but makes online continuous-streaming use much more  
straightforward27.

RNNT mapping on chip
As with KWS, digital preprocessing first converts raw audio queries 
into a sequence of suitable input data vectors. At each sequence 
time step, the encoder cascades data vectors through five successive 
LSTMs (Enc-LSTM0, 1, 2, 3, 4) and one FC layer (Enc-FC). At each LSTM, 
the local input vector for that layer is concatenated with a local ‘hid-
den’ vector, followed by vector–matrix multiplication through a very 
large FC weight layer, producing four intermediate sub-vectors. These 
sub-vectors are then processed and combined using a relatively small 
amount of vector–vector computing, generating an output vector 
that is sent forward to become the input to the next LSTM or FC layer 
for that same time step, and also recursively fed back to become its 
own hidden vector for the next time step. Time-stacking, performed 
immediately after preprocessing, as well as between Enc-LSTM1 and 
Enc-LSTM2 (Fig. 4), scales down the effective number of time steps in 
the local sequence by concatenating multiple arriving data vectors 
into one departing data vector.

The Dec block, which operates in parallel with the encoder, consists 
of one embedding FC layer (Dec-Emb), two LSTMs (Dec-LSTM0, 1) and 
one FC layer (Dec-FC). Finally, the joint layer sums the Enc and Dec 
signals, applies a ReLU activation function and selects the predicted 
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implementation uses four analog tiles. d, An AB method is used to increase 
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By inferencing the desired input x on WP1 and then −x on WP2, the MAC is 
collected twice (xw + (−x) × (−w)), cancelling out any fixed peripheral circuitry 
asymmetries and improving MAC accuracy. e, A timing diagram shows that a 

full frame is processed in 2.4 μs. Because the ReLU activation (implemented 
on-chip in the analog domain) generates positive-only outputs, the second 
layer requires only two integration steps, rather than the four needed in the 
first layer. f, Experimental activations after layers L0, L1 and output correlate 
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https://aws.amazon.com/what-is/speech-to-text/


772 | Nature | Vol 620 | 24 August 2023

Article

output letter (including the possibility of a ‘blank’ character) for that 
time step using a 512 × 29 FC layer with a greedy decoding scheme. The 
predicted output letter is both the model output and the next input 
to the Dec block. The joint block alternates between emitting blanks, 
at which point the next encoder output is consumed, and emitting 
letters, which then triggers Dec processing. As a result, the number of 
Dec iterations will not usually match the input sequence length seen 
by the encoder.

When large DNNs such as RNNT are implemented with reduced 
digital precision, optimal precision choices may vary across the net-
work28–30. Similarly, implementation in analog-AI HW also requires 
careful layer-specific choices to balance accuracy and performance. 

Although dense 2-PCM-per-weight mapping (Fig. 1h) can improve energy 
efficiency (increasing the number of operations per second per watt, 
OPS/W) or areal efficiency (the number of operations per mm2), higher 
accuracy can be achieved using techniques such as AB, in exchange for 
increased area, energy and/or time. Therefore, before mapping RNNT on 
HW, we need to find out which network layers are particularly sensitive 
to the presence of weight errors and other analog noise.

We perform this initial assessment in SW, not by adding random 
noise (on either weights or activations) and repeating ad nauseam to 
obtain stable results through Monte Carlo sampling, but by introduc-
ing increasingly stronger weight quantization on the whole, or just 
a portion, of the RNNT network (Fig. 4b). Any parts of the network 
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Fig. 4 | MLPerf RNNT network for speech transcription. a, MLPerf RNNT 
model, trained on the Librispeech dataset, comprises encoder (Enc), decoder 
(Dec) and joint blocks. The input signal is digitally preprocessed and stacked to 
generate the input of Enc-LSTM0 (chip 1) and Enc-LSTM1 (chip 2). The resulting 
output vectors are again time-stacked before feeding a 2,048-input Enc-LSTM2 
(chip 3), followed by two 1,024-input Enc-LSTM3,4 and an Enc-FC linear layer 
(chip 4). The resulting encoder output is then merged with the vectors received 
from the Dec (chip 5). Finally, a joint-FC calculates the next-letter probability (in 
SW), which feeds back to the Dec. This entails greedy decoding in which the 
highest probability selects the output letter. b, SW-based sensitivity analysis 
performed by progressively quantizing the FP32 MLPerf weights. c, The WER 
increases beyond the SWeq limit when weights are excessively quantized.  
d, There is a threshold nbits at which the WER is still SWeq for the full network, the 
full network without joint-FC quantization, and for each individual layer. While 
Dec-LSTM1 is the most resilient to noise, joint-FC exhibits significant 
sensitivity and is small in size, so it is not mapped in analog to preserve high 

accuracy. e, All the other layers are mapped to analog tiles (mapping details in 
Extended Data Figs. 5, 7). All arrows show the input signal routing and are 
operating at the same time, each performing a simultaneous multi-cast to all 
tiles that show the same-colour MAC arrow. Note that the borderguard circuits 
can enable duration data arriving at the west side of a tile to deliver durations 
onto the rows of that tile, and a completely different duration-vector passes 
over the centre of that tile on its routing wires at the same time. Small arrows 
indicate how MACs are aggregated in the analog domain across tile pairs. f, The 
output duration routing. Each arrow colour requires its own time slot: three for 
chips 1, 2, 3 and 4, and one for chip 5. Output routing from tiles to OLPs can 
involve implicit concatenation (chip 5). More details are given in the Methods. 
The joint block and all LSTM vector–vector operations are computed off-chip. 
g, More than 45 million weights are mapped using more than 140 million PCMs, 
with an average of 2.9 (3.1 with Wexp) PCMs per weight. Coloured bars show 
PCMs, white bars show weights.
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outside the portion being stress-tested are evaluated using the original 
32-bit floating point (FP32) precision. The resulting degradation in WER 
can be plotted as a function of the effective precision, nbits. Layers or 
entire network blocks that are less susceptible will still deliver a low 
WER even with aggressive quantization (small values of nbits), whereas 
highly sensitive blocks will exhibit a high WER even for small amounts 
of weight quantization.

Figure 4c shows this simulated WER as a function of nbits for various 
cases, using the 99% SWeq limit (an 8.378% WER) of the network base-
line (7.452% WER) to identify a threshold nbits (arrows). When weights 
across the full network are all quantized, WER is no longer SWeq once 
nbits < 5.4 (42 levels).

Repeating this process for each individual layer identifies the 
most-sensitive layers (those exhibiting a higher nbits threshold (Fig. 4d)), 
such as the joint-FC and Enc-LSTM0, followed by Enc-LSTM1. Given 
the small size (512 × 29 weights) but large WER impact of the joint-FC, 
we chose to implement this layer within the digital processing. Again, 
because the chip does not contain any explicit digital processing, this 
joint-FC, all vector–vector products and the activation functions are 
computed off-chip on a host machine. The OLPs (and ILPs) are used to 
send data from the chip(s) to the host (and back).

Now that we have identified which layers are most sensitive, we are 
ready to map the MLPerf weights onto 142 tiles distributed across 5 
chips. Because Enc-LSTM0 and Enc-LSTM1 are sensitive to noise, the AB 
method is used on these layers, together with a careful treatment of the 

first matrix, Wx, of Enc-LSTM0, which helps to improve MAC accuracy 
and decrease WER (see Methods for details). In summary, of a total of 
45,321,309 network weight and bias parameters, 45,261,568 are mapped 
into analog memory (99.9% of the weights). A single chip can hold only 
17,825,792 weights in a 2-PCMs-per-weight scheme, so we used 5 differ-
ent chips. Specific mapping details are shown in Fig. 4e,f. Coloured tiles 
encode weights and perform MAC operations; grey tiles are unused.

Figure 4e shows how input data reach each tile from an ILP, with fully 
parallel routing. After all the necessary integrations, duration vectors 
representing MAC results are sent from tiles to OLPs as shown in Fig. 4f. 
In total, more than 45 million weights are encoded using more than 
140 million PCM devices, with an average of around 3 PCM devices for 
each weight (Fig. 4g).

Accuracy results
Figure 5a shows the experimental WER after weight mapping and pro-
gramming for the full Librispeech validation dataset of 2,513 audio 
queries. Here a single layer of the RNNT network is mapped on a chip, 
and everything else is calculated in SW. It is worth noting that individual 
layers of the network are SWeq by themselves. As predicted in Fig. 4d, 
Enc-LSTM0 shows the largest WER, with other layers being more resil-
ient to noise. Finally, the full inference experiment on all five chips is 
shown in Fig. 5b. From left to right, each bar reports the overall WER 
obtained by implementing increasingly more layers on chip. The total 
WER is given by the last Dec bar, 9.475%, with an overall degradation of 
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Fig. 5 | Experimental WER using Librispeech on MLPerf RNNT. a, Single-layer 
WER. The graph shows an experimental sensitivity analysis obtained by 
implementing one layer on-chip and all the others in SW at FP32 precision.  
The most critical layer is Enc-LSTM0. b, Cumulative WER. Full RNNT inference 
using all five chips on the full Librispeech validation dataset. The bars from left 
to right show the cumulative WER obtained when implementing increasingly 
more layers on-chip. The full RNNT WER, using the original MLPerf weights, 
achieved across five chips (right-most bar) is 9.475%. c, After one week of PCM 
drift, the cumulative WER slightly increases to 9.894%, just 0.4% more than  
day-0 WER. d, To further improve the accuracy, a weight-expansion technique 
is introduced for Enc-LSTM0. Given a MAC Wx × x, the insertion of a random 
normal matrix M and its pseudoinverse pinv(M) leads to the same MAC output. 

However, now Wx2 = Wx × pinv(M) contains more rows N, with an increased 
signal-to-noise ratio. Whereas signal increases linearly with N, the aggregate 
noise across the larger number of rows increases sub-linearly ( N∝  if noise 
sources are independent Gaussians). e, Simulation results. When quantizing 
Enc-LSTM0 to nbits = 3.5 bits, the WER is 42%. Weight expansion greatly 
improves the resilience, even for only slightly expanded Wx2 matrices, with the 
WER reduced to 7.9%, well below SWeq. f, Similar accuracy benefits are observed 
experimentally when implementing weight expansion on Enc-LSTM0 on-chip, 
revealing stronger WER reduction with respect to weight averaging. M × x is 
digitally preprocessed. Wx2 expansion to 1,024 rows enables a 9.258% WER on 
the full RNNT, 1.81% from the SW baseline, 0.88% from SWeq.
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2.02% from the 7.452% SW baseline. For this experiment, we inference 
the full Librispeech validation dataset through chip 1 and save the out-
put results. These are then input into chip 2, and so on across all 5 chips. 
Even when repeated after more than 1 week of PCM drift31,without any 
recalibration or weight reprogramming, the RNNT WER has degraded 
by only 0.4% (Fig. 5c).

We observe that the layer-to-layer WER degradation in Fig. 5b is 
steeper than expected from simple aggregation of the single-layer WER 
degradations (Fig. 5a). Intuitively, Enc-LSTM0 and other early layers 
have a bigger cumulative impact owing to error propagation. We can 
further improve the WER of Enc-LSTM0 with a new weight-expansion 
method involving a fixed matrix M with normal random values, and 
its Moore-Penrose pseudo-inverse, pinv(M) (Fig. 5d). The resultant 
noise-averaging helps to improve the accuracy of the MAC operation 
and the overall resilience of the network layer, with no additional 
retraining required. On analog HW, as long as the number of tiles 
remains unchanged, the additional cost of using more or even all of 
the rows in each tile is almost negligible. However, more preprocessing 
is needed to implement M × x in digital, although it is much less than if 
the entire Enc-LSTM0 layer were implemented in digital.

Using our SW-based assessment method from Fig. 4c,d, Fig. 5e shows 
that quantizing the Enc-LSTM0 weights to 3.5 bits leads to an exces-
sive WER (42%). However, after weight expansion, the WER greatly 
decreases, even for a small Wx2 expansion, saturating at a SWeq value 
of 7.9% WER when Wx2 contains 1,024 rows. The same behaviour is 

observed in experiments (Fig. 5f), with the WER for on-chip Enc-LSTM0 
decreasing as weight expansion is increased up to a Wx2 containing 
1,024 rows, exceeding the improvement shown by simply programming 
multiple weight copies. Figure 5b shows that when the entire RNNT 
network is run on five chips, starting with expanded Wx2 on Enc-LSTM0, 
WER improves to 9.258%, which is 1.81% from the SW baseline, and only 
0.88% from the SWeq threshold.

Power and system performance
We also measured the full power consumption for every chip during 
inference operations. The chip has various power supplies. It uses 1.5 V 
to drive the row activation and column integration on the tiles during 
analog computation. All control and communication circuits, including 
ILP, OLP, LC and 2D mesh, are driven at 0.8 V. As shown in Fig. 6a, the 
1.5 V and 0.8 V supplies dominate power consumption. By contrast, 
the 1.8 V supply that drives the clock phase-locked loop (PLL) and the 
off-chip drivers and receivers, and some other analog voltage sources, 
have a negligible impact. The corresponding sustained TOPS/W val-
ues are reported in Fig. 6a. Chip 4 has the best power performance 
(12.40 TOPS/W) because it has the most on-chip weights. In general, 
the reported TOPS/W values correlate well with the number of weights 
encoded on-chip: chips 1 and 2 use an AB technique and have 4 PCMs 
per weight, whereas chip 4 uses a denser mapping of 2 PCMs per weight. 
Finally, the Dec chip, chip 5, has the lowest TOPS/W value because this 
chip implements only around 1.8 million weights across only 13 of the 
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Fig. 6 | MLPerf RNNT power and system performance. a, Measured power and 
TOPS/W are shown for each chip. TOPS/W (coloured bars) correlate with the 
number of weights used on each chip (white bars). D, duration; DAC, digital-to- 
analog converter; PLL, phase-locked loop. b, Reducing the maximum input 
duration leads to an improvement in TOPS/W with only a small amount of WER 
degradation (chip 4 is measured, other layers in SW at FP32). c, Energy efficiency 
at various levels: analog integration only (1.5 V power domain), full chip, all  
5 chips for RNNT (analog integration only and full chip), and full system level 
including estimated digital processing energy20. d, Simulated performance for 

an integrated system shows that the average processing time for each sample  
is 500 μs, more than 104 times faster than the input speech sentence, thus 
enabling real-time transcription. Total processing time = 1.29 s and total real 
audio = 4 h 20 min, so the real-time factor ≈ 8 × 10−5 ≪ 1. e, Number of operations 
performed on-chip versus off-chip in the RNNT experiment, with a 325:1 ratio 
for the original MLPerf weights (Wx) and 88:1 with weight expansion (Wx2) 
(Fig. 5d). f, Samples per second per watt and TOPS/W performance for 
comparison with MLPerf submissions, showing a 14-fold improvement for  
our system.
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34 tiles, yet the data communication is still extensive, requiring a large 
number of tiles and ILPs/OLPs to be active to implement the routing 
network (Fig. 4e,f).

Figure 6b shows that another 25% improvement in TOPS/W (from 12.4 
to 15.4 TOPS/W) for chip 4 can be obtained by halving the integration 
time, albeit with an additional 1% degradation in the WER. Figure 6c 
shows how the costs of data communication, incomplete tile usage 
and inefficient digital computing bring the large peak TOPS/W of the 
analog tile itself (20.0 TOPS/W) down to the final sustained value of 6.94 
TOPS/W. Given the actual chip processing times (1.5 μs for chip 5 and 
2.1 μs for the other four; see Methods), we can estimate the full process-
ing time for an overall analog–digital system (Fig. 6d). This includes the 
estimated computation time (and energy) if on-chip digital computing 
were added at the physical locations of the OLP–ILP pairs. Given the 
500-μs average processing time for each audio query, the real-time fac-
tor (the ratio between processing and real audio time) is only 8 × 10−5, 
well below the MLPerf real-time constraint of 1. Although the digital 
compute is inefficient, the enormous ratio between the number of 
analog and digital operations (Fig. 6e; 325-fold for conventional weight 
mapping and 88-fold with the weight-expansion technique, owing to 
the increased digital preprocessing) makes the analog-only and pro-
jected full-system energy efficiencies similar (Fig. 6c; 7.09 TOPS/W 
and 6.94 TOPS/W using conventional weight mapping). With weight 
expansion, an analog-AI system using the chips reported in this paper 
could achieve 546.6 samples per second per watt (6.704 TOPS/W) at 
3.57 W, a 14-fold improvement over the best energy-efficiency submit-
ted to MLPerf (Fig. 6f), at 9.258% WER.

Conclusions
In this paper we demonstrate the implementation of industry-relevant 
inference applications on analog-AI chips, specifically for speech 
recognition and transcription within the domain of NLP. We used a 
14-nm analog inference chip to demonstrate SWeq end-to-end KWS 
on the Google Speech dataset using a fully analog set-up and a novel 
AB technique. We then targeted the MLPerf RNNT on Librispeech, a 
data-center model with more than 45 million weights, mapped on more 
than 140 million PCM devices distributed over 5 different chip modules. 
By using a new weight-expansion method, we demonstrated a WER 
of 9.258% with an on-chip sustained performance that varies with tile 
usage, reaching a maximum of 12.4 TOPS/W and delivering an estimated 
system sustained performance of 6.7 TOPS/W.

These are, to our knowledge, the first demonstrations of commer-
cially relevant accuracy levels on a commercially relevant model com-
bining more than 140 analog-AI tiles, with neural-network activations 
being moved between those tiles with efficiency and massive paral-
lelism. Our work indicates that, when combined with time-, area- and 
energy-efficient implementation of the on-chip auxiliary compute20, 
the high energy efficiency and throughput delivered during matrix–
vector multiplication on individual analog-AI tiles can be extended to an 
entire analog-AI system, offering excellent sustained energy efficiency 
and throughput.
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Methods

Chip fabrication and testing
Our experimental results were measured on chips built from 300-mm 
wafers with a 14-nm complementary metal-oxide-semiconductor front 
end, fabricated at an external foundry. PCM devices were added in the 
‘back-end-of-line’ at the IBM Albany NanoTech Center. Mushroom-cell 
PCM devices were built with a ring heater with a diameter of approxi-
mately 35 nm and a height of around 50 nm (Fig. 1e) as the bottom 
electrode, a doped Ge2Sb2Te5 layer and a top electrode. Wafer char-
acterization before packaging was performed on both 1-resistor  
macros and 1,024 × 2,048 array diagnostic monitors with on-chip sense 
amplifiers. After selection of high-yield dies, the wafer was diced and 
packaged into testable modules at IBM Bromont, as shown in Extended 
Data Fig. 1a,b.

Experiments were run by mounting the module on a socket con-
nected to a custom-designed board driven by three Xilinx Virtex-7 
VC707 field-programmable gate arrays (FPGAs) (Extended Data Fig. 1c). 
Four Keysight E36312A power supplies were used to power up the 
boards and the chip. In addition to the 1.5 V, 0.8 V and 1.8 V supplies 
mentioned in the main text, a 3.0 V power supply was provided but 
only during PCM device programming (not during inference). Finally, 
a supply of 0.75 V precharged the peripheral capacitors and set the 
lower limit for the on-chip digital-to-analog converters (DACs) used in 
PCM programming, and 0.3 V set the PCM read voltage and the ramp 
start voltage. These supplies were measured and reported in Fig. 6a 
as ‘Other’ voltage supplies. The three FPGAs were connected through 
the custom board and controlled by an x86 machine with a Peripheral 
Component Interconnect Express connector. All experiments were run 
using Xilinx MicroBlaze Soft Processor code and x86 MATLAB software 
wrapper (Extended Data Fig. 1c).

The off-chip combined transfer bandwidth on our chip is 38.4 Gbps, 
with a total of 384 input–output pins capable of operating at 100 MHz. 
Extended Data Fig. 1d shows that routing precision, KWS and RNNT 
power measurements were run without any additional intermediate 
data being sent back to the x86 machine. The RNNT accuracy results 
used the x86 for vector–vector operations and tile calibration. To model 
such digital operations in terms of performance, we simulated a digital 
circuitry just outside the ILP–OLP, based on a foundry 14-nm process 
design kit to implement optimized digital pipelines, control logic and 
registers. A future chip will eventually include the digital circuitry close 
to the analog tiles20.

On-chip data conversion, analog periphery and 2D mesh routing
Inputs were encoded as 8-bit digital words stored on an SRAM within 
each ILP. Conversion of 512 such digital words to 512 PWM durations 
was performed using clock-driven counter circuitry within each ILP. 
Data were then retrieved from the chip using the OLP, which internally 
performed the conversion from time to digital using 512 counters plus 
falling-edge detectors (Extended Data Fig. 2a).

Each analog tile consists of 512 × 512 unit cells (Extended Data Fig. 2b), 
each containing four PCM devices. Circuitry can implement a signifi-
cance factor F > 1 but we adopted F = 1, meaning that G+/− and g+/− are 
the same, apart from intrinsic stochasticity. This enabled the imple-
mentation of 2-PCM-per-weight and AB methods, both requiring equal 
contribution from WP1 and WP2. Word lines and select lines were con-
trolled by the west circuitry, selecting whether two or four PCM devices 
were connected to the edge capacitor. During weight programming, 
signals VSIG1 and 2 were kept at ground. Only one of the four PCM 
devices was programmed each time, by selecting the word, select and 
return lines. Weight programming was done in an iterative row-wise 
fashion4. During inference, VSIG1 and 2 were biased at a read voltage, 
Vread, of 0.3 V, while signals RL1 and 2 were at ground.

Inference was achieved in two steps (Extended Data Fig. 2c). During 
the integration phase, PWM pulses activated in each row for a time 

proportional to the desired input magnitude (unlike ref. 32, these 
durations were not converted to analog voltages using DACs). Vread 
was forced by a per-column operational amplifier, which biased the 
entire bit line. These pulses were buffered along the row to maintain 
pulse-width integrity. Although IR drops did occur along columns, the 
wide wires stopped them being critical to degradation of MAC accuracy, 
especially when compared with other more-important factors such as 
peripheral circuit linearity and saturation effects. Current was then 
mirrored into a per-column capacitor, which could be tuned by the LC 
by connecting up to 8 parallel metal-oxide-semiconductor capacitors, 
where each capacitor was 50 fF (we typically chose 250 fF). The choices 
of capacitor size and range of tunability were based on the available 
column area, the expected current in the array, the integration time and 
the mirror ratios achievable. The summation over an entire 512-row tile 
was performed fully in analog, without the need for partial summation 
in the digital domain. In the wide-input case involving two vertically 
neighbouring tiles (Fig. 1i), summation over 1,024 rows (or even 2,048 in 
the two 2-PCM-per-weight case) was still fully performed in the analog 
domain, without any intermediate digitization. For layers that used 
wide input, the read operation during closed-loop tuning used this 
combined configuration, allowing an individual weight to experience 
and correct for the same non-idealities that it would experience in the 
eventual inference MAC. This provided significant mitigation from addi-
tional MAC error induced by combining tiles. Depending on the sign 
of the input, the current could be steered to either charge or discharge 
the capacitor. After current integration, the tile was disconnected and 
the output duration was generated. During this step, a tunable ramp 
circuit, shared among all columns, set a linear voltage ramp that was 
compared with the voltage on the 512 peripheral capacitors (Extended 
Data Fig. 2d). For each column, the output voltage started high, and 
when the comparator switched, the output duration ended, determin-
ing the duration of that particular output pulse, which is similar to the 
approaches in refs. 33,34. Finally, an AND port enabled or disabled 
the pulse output. With proper enable signal timings controlled from 
the LC, activation functions such as ReLU or hard sigmoid could be 
implemented on chip. The 512 durations were produced in parallel, 
exiting the tile on 512 individual wires. Area-efficient design choices 
(such as the use of a common ramp generator circuit shared across all 
the columns, the elimination of a conventional ADC and associated 
digital registers, as well as optimized full-custom layouts) enabled 
dedicated per-column circuitry at pitch, without the need for column 
multiplexers.

These generated durations left the tile and propagated towards 
the next tiles or the OLPs using the OUT-from-col path in Extended 
Data Fig. 2e. Per-column south–north routing circuitry allowed for 
full parallel duration processing, enabling either N–S or S–N connec-
tion (without entering the corresponding tile), collecting durations 
from the tile (OUT-from-col) or sending durations into the tile col-
umns (IN-to-col) as used during weight programming4. Per-row west–
east routing blocks enabled W–E or E–W duration propagation and 
IN-to-row communication, allowing durations to reach the rows inside 
an analog tile and/or to move across the tile to implement multi-casting 
(Extended Data Fig. 2f).

Local Controllers
A user-configurable LC on each tile (Fig. 2a) retrieved instructions from 
a local SRAM. Each very wide instruction word (128 bits) included a few 
mode bits, as well as the wait duration (in cycles of around 1 ns given 
the approximately 1-GHz local clock) before retrieving a next instruc-
tion. Although some mode-bit configurations allowed JUMP and LOOP 
statements, most specified which bank of tile control signals to drive. 
Most of the 128 bits thus represent the next state of the given subset 
of tile control signals. This approach allowed for highly flexible tests 
and simplified design verification, with a small area penalty compared 
with predefined-state machines.



For example, the LC could configure 2D mesh routing to enable 
input access to analog tiles through the west circuitry (Fig. 2b) and 
MAC integration on the peripheral capacitors. The LC then configured 
the ramp and comparator used to convert the voltage on the capaci-
tor into a PWM duration, avoiding energy-expensive ADCs at the tile 
periphery. Finally, the LC decided which direction (north, south, west 
or east) to send the generated durations, configuring the south 2D 
routing circuits4,33.

The LC also configured the ‘borderguard’ circuits at the four edges 
of each tile to enable various routing patterns. For example, Fig. 2c 
shows how durations from odd columns in the top tile could be merged 
together with durations from even columns from the bottom tile. This 
configuration was used on the RNNT Dec chip (Extended Data Fig. 7c).

Measurement of reliable transmission of duration vectors
Inputs were transformed into durations in the ILP circuitry. Durations 
spanned between 0 and 255 ns, encoded using 8-bit words. To verify the 
reliability of these communication paths across the entire chip (Fig. 2d), 
we repeatedly multi-cast 512 input PWM durations from the southwest 
ILP to all six OLPs at the same time. These durations were uniformly 
randomly distributed between 0 and 50 ns at 1 ns granularity (1 GHz 
clock), and CDFs of the error between measured and transmitted dura-
tion across 2,048 vectors (1 million samples) are shown in Fig. 2d. This 
experiment was repeated for distributions spanning from 0 to 100, 150, 
200 and 250 ns. The maximum error never exceeded 5 ns, with shorter 
durations exhibiting even smaller worst-case error (±3 ns), showing that 
durations can be accurately communicated across the chip. Although 
in this case errors were introduced by the double ILP–OLP conversion 
and unusually long paths, during conventional inference tasks, the 
MAC error was always dominated by the analog MAC.

KWS network training, pruning and calibration
KWS is used in a wide variety of devices, such as personal and home 
assistants, to perform actions only after specific audio keywords are 
spoken. Latency and accuracy are important attributes. When used in 
an ‘always-ON’ configuration, raw power is also an advantage. When 
gated by a much simpler two-class front end that can detect audio 
input of potential relevance and wake up the multi-class KWS system, 
energy per task becomes the relevant figure of merit.

The KWS network was trained using HWA techniques to make the 
network more resilient to analog memory noise and circuit-based 
non-idealities. We trained unitless weights on the interval (−1, 1) using 
weight clipping. In addition, we added normally distributed noise to 
these weights during each training mini-batch with a standard deviation 
of 0.02 (Extended Data Fig. 3a). We also added similarly distributed 
random noise with a standard deviation of 0.04 to output activations to 
mimic the imperfections expected from layer-to-layer activation trans-
mission. We find that this simple noise model fits our analog system 
well and provides effective HWA training. We performed an extensive 
hyper-parameter search and picked a base learning rate of 0.0005 with 
a batch size of 250 for training. We found that including bias parameters 
for this network offered little benefit and therefore eliminated them 
from the model. We used adaptive moment estimation as the optimizer 
along with a weight decay (that is, L2 regularization) of zero. Finally, 
we used cross-entropy loss as our loss metric. The dependence of HWA 
accuracy for injected noise on weights and activations during training 
is shown in Extended Data Fig. 3b.

The KWS network performed several preprocessing steps before 
feeding the data into the FC layers. Input data (keywords) represented 
1-second-interval voice recordings encoded as .wav files at a 16-kHz 
sampling rate. We computed the audio spectrogram, which is a standard 
way of representing audio information using the squared magnitudes of 
fast Fourier transforms taken at multiple time steps, using a window size 
of 30 ms and a stride of 20 ms. We then computed the Mel-frequency 
cepstral coefficients (MFCCs), which are a commonly used nonlinear 

transformation that accurately approximates the human perception 
of sound. We used 40 cepstral coefficients or bins per time slice. We 
also clipped the MFCCs to the range (−30, 30) to avoid any potential 
activation-rescaling problems going into our HW. This preprocessing 
resulted in a two-dimensional MFCC fingerprint for each keyword with 
dimensions of 49 × 40 (Extended Data Fig. 3c), and this is then flattened 
to give a 1,960-input vector. We also randomly shifted keywords by 
100 ms and introduced background noise into 80% (the majority) of 
the training samples to make keyword detection more realistic and 
resilient.

To reduce the input size further and fit a 1,024-input-wide layer, we 
pruned the input data on the basis of the average of the absolute values 
of the validation input (Extended Data Fig. 3d). Pixels with average input 
intensity below a certain threshold were pruned, reducing the overall 
size to 1,024. Interestingly, pruning led to an accuracy improvement, 
as shown in the summary table in Extended Data Fig. 3e. Although our 
analog tiles can compute MAC on up to 2,048-element-wide input vec-
tors, the AB method inherently uses both WP1 and WP2. Thus the maxi-
mum input size over which fully analog summation can be supported 
is reduced to 1,024.

Because the KWS network is fully on-chip, tile calibration needed 
to be performed in HW. A per-column slope and offset correction pro-
cedure was achieved in three steps. Weights were first programmed 
using the nominal target values. Next, 1,000 inputs taken from the 
validation dataset were used as input and the single-tile MAC results 
were collected to calculate the column-by-column slope scaling factors 
to be applied to the target weights. The tiles were then reprogrammed 
with the scaled weights. Finally, experimental MAC was shifted up or 
down by programming eight additional PCM bias rows available on each 
tile (Extended Data Fig. 3f). After tile calibration, the ReLU activation 
function was tuned using the same validation input and comparing 
the experimental result on validation data with the expected SW ReLU. 
The inference experiment was then performed on the test dataset. The 
calibration enabled compensation of column-to-column process varia-
tions and input-times-weight column dependencies (such as activation 
sparsity and residual weight leakage). As shown in the drift results on 
RNNT, tile weights typically showed good resilience to drift owing to 
the averaging effect. Bias weights required more-frequent updates, 
on the scale of days, to compensate for column drift, but this involved 
merely running a small inference workload and reprogramming the bias 
weights. Eventually, the tile weights also need to be re-programmed. 
Although we have not explored temperature-dependent conditions, we 
believe that the levels of PCM drift exhibited here would be sufficient to 
allow operation for a few days or even weeks, which is sufficient to keep 
model reprogramming for the purposes of PCM drift indistinguishable 
from model refresh for other purposes (such as resource balancing 
and model updates).

RNNT weights and network mapping
To encode the MLPerf RNNT weights, we used five chips. Iterative 
weight programming enabled accurate tuning of the conductances 
to match the target weights. Heat maps correlating the target and the 
measured chip-1 weights on each of the 32 tiles are shown for WP1 and 
WP2 in Extended Data Fig. 4a,b. The corresponding error for each tile, 
expressed as the fraction of the maximum weight, is shown in Extended 
Data Fig. 4c,d for WP1 and WP2. To compare the weight programming in 
the five chips used for the RNNT experiment, we calculated the CDF on 
the basis of the data shown in Extended Data Fig. 4c,d and extracted the 
spread between 1% and 99%. In this way, two data points were extracted 
for each tile, one for WP1 and one for WP2. The chip analog yield, meas-
ured as the fraction of weights with a programming error of less than 
20% of the maximum weight magnitude, is around 99% (Extended Data 
Fig. 4e). Chip 4 has a slightly lower yield because the corresponding 
maximum W, defined as the coefficient used to rescale weights from 
MLPerf (around [−1, 1]) to integers, is larger because more signal was 
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required, causing greater weight saturation. Extended Data Fig. 4e 
shows the spread distributions for each of the five chips.

The RNNT encoder weights were mapped using the first four 
chips, as shown in Extended Data Fig. 5a. The large Wx and Wh matri-
ces used for encoder LSTMs all show a size of 1,024 × 4,096 except 
for the conventional Enc-LSTM0 (Wx is 960 × 4,096) and Enc-LSTM2 
(Wx is 2,048 × 4,096). Enc-LSTM0, Enc-LSTM1 and the Wh matrix of 
Enc-LSTM2 implement AB. In Enc-LSTM0, Enc-LSTM1 and Enc-LSTM2, 
summation of Wx and Wh MACs was performed off-chip at the x86 host, 
whereas chip 4, implementing Enc-LSTM3 and Enc-LSTM4, performed 
this entire summation on-chip in analog. Furthermore, blocks 1(−1), 
9(−9) and 2(−2), 10(−10) of Enc-LSTM0 Wx and Enc-LSTM1 Wx, and 
blocks 1(9), 17(25) (WP1(WP2)) and 2(10), 18(26) were summed in digital 
after on-chip analog MAC. Finally, Enc-FC was implemented on chip 4. 
Any spot where tiles were connected by sharing the peripheral capaci-
tor in the analog domain (Fig. 1i) is highlighted with a dark-blue bar. 
We did not map biases in analog memory but instead incorporated 
them in the already existing off-chip digital compute, by combining 
them into the calibration offset with no additional cost. Thus these 
biases were always applied with FP32 precision. No network retrain-
ing was applied.

To provide input data and collect MAC results in a massively par-
allel fashion from or to the ILPs–OLPs, complex routing paths were 
programmed, leveraging the flexibility of the LCs (Extended Data 
Fig. 5b). In the RNNT encoder, after each MAC, the data needed to go 
through input–output for off-chip digital processing. Each full opera-
tion (including input, MAC, duration generation and output digitiza-
tion) took 2.1 μs. The input arrows show multi-cast in parallel to one 
or more analog tiles with MAC operations occurring on those tiles. 
Output MACs were provided to the OLPs in three time steps owing to 
the small number of OLPs.

RNNT experiments implemented MAC on-chip, whereas tile affine 
calibration (shift and scale) and LSTM vector–vector computations 
were performed in SW (MATLAB SW running on x86). In particular, 
the first Enc-LSTM0 Wx required careful input-signal management to 
maximize the signal-to-noise ratio, owing to the large sensitivity of the 
WER to any noise on its weights. Extended Data Fig. 6a shows that, in the 
case of Enc-LSTM0 Wx, the input data, which naturally exhibits a wide 
dynamic range, was first shifted to zero-mean, followed by normaliza-
tion to maximum input amplitude. The preprocessed input was then 
used for analog MAC. The MAC results were later denormalized back 
in SW, where the input mean contribution was added (which collapses 
to the product of one number, the mean value of the input image, and 
one vector, the sum of weights for every column) and the affine coef-
ficients for calibration were applied.

In the case of expanded weights (Extended Data Fig. 6b), the input 
first underwent MAC with the random matrix M (such a matrix has ran-
dom normal weights but is fixed across all inputs). Because the product 
of an input with a matrix with zero mean value generates an output with 
near-zero mean value, there was no need to apply the zero-mean shift, 
although normalization to maximum amplitude was still performed. 
After the analog on-chip MAC, the results are denormalized and the 
usual calibration was applied. For every other layer (Extended Data 
Fig. 6c) in the RNNT, the inputs were used directly as tile activations 
and the MAC was calibrated with the usual affine coefficients. All affine 
coefficients are calculated by comparing experimental and expected 
SW MAC using 2,000 input frames from the training dataset for each 
Enc–Dec layer. Data were linearly fitted to obtain the slope and offset 
coefficients.

Extended Data Fig. 6d shows a detailed description of all data-type 
conversions. All SW computations were performed in FP32. For trans-
mission to the chip, data were converted into INT9 (UINT8 plus sign) and 
UINT8 vectors were loaded into the ILP. Here, durations were generated 
and sent to the tiles where the analog MAC was performed, collecting an 
analog voltage on a peripheral capacitor. Once the UINT8 vectors were 

loaded into the ILP, ‘negative’ durations were sent during integration 
of the second or fourth time step, as shown in Extended Data Figs. 5b 
and 7d. Finally, charge integrated onto column-wise capacitors was 
converted by the peripheral circuitry into durations that were sent to 
other tiles or to the OLP, which converted them back into UINT8. Data 
were then sent off-chip and transformed back into FP32 during the 
calibration stage. Extended Data Fig. 6e shows a summary of the equa-
tions, highlighting that essentially all MACs were performed on-chip, 
whereas vector–vector, bias and nonlinear activations were computed 
in SW. The joint layer was in SW.

Extended Data Fig. 7 shows the details of Dec mapping and signal 
routing. To account for the Emb layer (Extended Data Fig. 7a), we first 
collapsed Emb and Dec-LSTM0 Wx layers into a single Emb × Wx matrix 
with size 28 × 1,280, which receives one-hot input vectors. This multi-
plication is perfectly equivalent in SW, but led to large weights in the 
Emb  ×  Wx matrix compared with Wh, as shown in the first set of CDFs, 
reporting the maximum weight for each column. Because MAC results 
from Emb  ×  Wx and Wh are summed directly in the analog domain with 
a shared capacitor, weight values cannot be arbitrarily scaled. To over-
come this problem, 9 copies of the 28 × 1,280 Emb × Wx matrix were 
programmed and the 28 inputs duplicated onto 9 × 28 rows, leading 
to a similar amount of signal with Wh. This allowed us to effectively 
distribute these large weights over 9 unit cells, while ensuring that 
the analog summation will aggregate both the Emb  × Wx and the Wh 
contributions with the correct scaling.

Dec weight mapping used AB (Extended Data Fig. 7b) and signal 
routing enabled parallel input and output of all signals (Extended Data 
Fig. 7c). Here, routing concatenation was used to efficiently combine 
the signal from two different tiles into the same OLP. The full input–
MAC–output processing time is 1.5 μs (Extended Data Fig. 7d).

Unlike the KWS experiment, the MLPerf repository mandates that 
inference be performed with the validation dataset. The RNNT MLPerf  
inference experiments shown in Fig. 5 were done by inputting the 
full validation dataset into the first chip, saving the output results 
on the x86 machine, swapping in the second chip and continuing 
the experiment, using the previously saved outputs as new inputs. 
This procedure was repeated for all five chips, ensuring a consistent 
example-by-example cascading, as in a fully integrated system. Map-
ping even-larger models, using a weight-stationary configuration, can 
be supported with improved memory density (including stacking of 
multiple layers of PCM in the back-end-of-line), multi-chip modules 
and even multi-module solutions, with careful neural-network par-
titioning to minimize inter-module communication that would be 
energy expensive.

RNNT MAC and end-to-end accuracy
Experimental MAC details are shown in Extended Data Fig. 8. The error 
distributions and MAC correlations are shown for every chip. In all 
figures, a dashed region highlights the main regions of interest for that 
MAC. For LSTM layers, the region of interest corresponds to the [−5, 5] 
range, because outside that range the ensuing sigmoid or tanh function 
can be expected to fully saturate (for example, the output will always  
be −1 or +1, being almost completely independent of any variations on the  
input). Similarly, the regions of interest for the FC layers are mostly the 
positive MACs because of the ReLU activation function. In this specific 
case, Enc-FC and Dec-FC are summed before ReLU, so slightly negative 
contributions could also matter. We plotted the regions of interest 
to be where MAC > −5. The reported standard deviation σ computes 
the error for SW MAC in [−5, 5] for LSTMs and [−5, inf] for FC layers. 
Comparison between the original Wx and the weight-expanded Wx2 for 
Enc-LSTM0 is also provided. Extended Data Fig. 9 shows examples of 
transcribed sentence output from the experiments in Fig. 5 that show an 
almost iso-accuracy WER. Transcription results are in good agreement 
between the MLPerf RNNT model implemented in analog HW and in 
SW, indicating that the effective bit-precision of our HW demonstration 



is nbits = 4.097 for 9.475% WER and nbits = 4.153 for 9.258% WER (weight 
expansion), on the basis of comparison with the full network (no joint 
FC) curve in Fig. 4c.

Performance simulation and power measurements
The proposed 5-chip RNNT implementation is not integrated with digi-
tal processing, but we can estimate the time needed to process the entire 
dataset by combining the MAC processing times and energies from the 
analog chips with the estimated digital processing times and energies 
that we tabulated previously in our architecture paper20. Extended 
Data Fig. 10a shows a timing simulation describing the execution of 
RNNT layers for processing all 2,513 input audio samples, accounting 
for all pipelining, time stacking, recurrence and Dec steps. We assume 
times of 2.1 μs and 1.5 μs for the Enc and Dec layers, respectively, which 
includes all duration generation, and a relatively conservative 300 ns 
for the digital processing of each layer. Given these assumptions, the 
entire dataset can be evaluated in 1.2877 s, corresponding to a rate of 
1,951.59 samples per second. Combined with the power measurements 
below, these numbers can be used to extrapolate the analog-AI RNNT 
system performance.

Power measurements for RNNT were done using a set of 32 exemplar 
input vectors that filled up the ILP SRAM to capacity. By overflowing 
the address pointer of the ILP, it is possible to repeat the same set of 
32 vectors ad infinitum. Together with JUMP instructions in the LCs 
resetting the program counters to the start of program execution, this 
allowed a real-time current measurement from the voltage supplies 
for the inference tasks. In these measurements, all 7 (or 5) phases of 
the Enc (or Dec), including 4 integration phases and 3 (or 1 for the Dec) 
duration generation phases were included. This accounted not just for 
the MAC integration, but also for the subsequent cost of generating, 
transporting and digitizing the MAC results. The measured powers 
are shown in Fig. 6a.

Using the energy and execution-time models from our architecture 
study20, the total digital energy (for all the tasks performed off-chip 
in SW to support the experiments shown in this paper) is estimated 
to be 0.11 J for nominal Enc-LSTM0 and 0.26 J for weight-expansion 
Enc-LSTM0. The total number of digital operations and a detailed 
breakdown are shown in Extended Data Fig. 10c,d.

Although several compute-in-memory or near-memory approaches 
based on SRAMs and digital compute35–38 have been presented in the 
literature, most of these do not address the energy and time costs 
of reloading weights, thus making direct side-by-side comparisons 
against NVM-based weight-stationary approaches difficult. How-
ever, several NVM compute-in-memory studies have focused on the 
macro-level32,34,39,40,41, without accounting for data transport, control 
or chip infrastructure (such as clocking) costs. They are also usually 
at a much smaller scale (sometimes less than 1 million parameters7) 
than the work here, making a fair assessment of both the accuracy of 
large models and the associated sustained TOPS/W values difficult.

We have instead compared our sustained power and performance 
values against other reported system numbers for the same RNNT 
task from MLPerf, as shown in Extended Data Fig. 10e. By weighting 
the sustained power measurements for individual chips with their 
corresponding activity factors from the timing simulations shown in 
Extended Data Fig. 10a, the total system energy and corresponding 
aggregate TOPS/W values for our system are calculated to be 4.44 J and 
6.94 TOPS/W, respectively (4.60 J and 6.70 TOPS/W for Wx2). Although 
our evaluations in Fig. 6 do not include some external components 
used in real systems, such as system buses and voltage regulators, this 
TOPS/W energy efficiency is still more than an order of magnitude 
better than the best published result for this task.

The relatively small number of digital operations in the network 
implies that considerable benefits may yet be obtained by improving 
the raw analog MAC energy efficiency (currently 20 TOPS/W). This 
could be enabled by shorter integration times, more-efficient analog 

opamps and/or lower-conductance devices. Instead, a substantial 
drop-off in energy efficiency, down to 12.4 TOPS/W for chip 4 (Fig. 6c), 
occurs as a result of the on-chip infrastructure, such as the landing pads, 
which need to be exercised at the end of each MAC. This highlights the 
need for on-chip digital compute cores, potentially in proximity to 
the same chip, and using the same local 2D mesh for data transport as 
described in our architecture study20.

MLPerf submissions for RNNT exhibit performance efficiencies 
ranging between 3.98 and 38.88 samples per second per watt, using 
system power that ranges from 300 to 3,500 W, assuming the use of 
large batches to maximize efficiency. Our work inherently assumes 
a mini-batch size of 1. Although we assume that additional samples 
are available to keep the pipeline full, our projections are effectively 
independent of mini-batch size. Under these conditions, an analog-AI 
system using the chips reported in this paper could achieve 546.6 sam-
ples per second per watt (6.704 TOPS/W) at 3.57 W, a 14-fold improve-
ment over the best energy-efficiency results submitted to MLPerf. 
Reduction in the total integration time through precision reduction, 
hybrid PWM40 or bit-serial schemes can improve both throughput and 
energy-efficiency, but these could suffer from error amplification in 
higher-significance positions. Future efforts will need to address their 
impact on MAC accuracy for commercially relevant large DNNs.
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Extended Data Fig. 1 | Analog in-memory computing chip and test platform. 
(a) Packaged modules used in the experiments. (b) Micrograph of the chip at H3 
metal level, showing all analog tiles and the corresponding area breakdown.  
(c) The test platform is based on a chip socket mounted on a custom board driven 
by 3 Xilinx Virtex-7 VC707 FPGAs. Power is supplied by four Keysight E36312A. 
The three FPGAs are connected through the board, and the overall system is 
controlled by an x86 machine using a PCIe connector. (d) For routing precision, 
end-to-end KWS, and RNNT power measurements, the chip is run without any 

need to send intermediate data back to an x86 machine during the experiment. 
KWS models are trained for chip deployment using HWA methods. For RNNT 
accuracy measurements, intermediate data moves between the chip and an 
x86 machine. To predict the RNNT performance, we assume digital circuitry 
would be integrated on the chip next to the ILP/OLP pair, leading to predictions 
that should be very close to a fully integrated chip in which both analog tiles 
and digital compute cores are tightly integrated20.
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Extended Data Fig. 2 | Analog circuits and routing configurations. (a) Input 
Landing Pad circuitry receives an 8-bit word, which is converted to a duration 
using a counter. Output Landing Pad circuitry receives one duration and 
converts it into an 8-bit word using 512 counters plus falling edge detectors.  
(b) Each tile has 512x512 unit cells, each consists of 4 PCM devices controlled by 
Word Lines and Select Lines driven by the tile West circuitry. During weight 
programming, Return Lines (RL) are driven at higher voltage (max 3V) and VSIG 
are grounded to enable PCM write. (c) During inference, in the integration phase, 
RL are grounded and one or both VSIG are biased at read voltage Vread = 0.3 V 
using a per-column operational amplifier. Current is then mirrored into a 
per-column capacitor. (d) For duration generation phase, capacitor voltage is 

compared against a shared and tunable ramp-voltage. The output of the 
comparator is a pulse with duration proportional to the voltage on the capacitor, 
gated by an EN signal using an AND gate. By properly tuning the timing of this 
EN signal with the Local Controller, activation functions such as ReLU or hard 
sigmoid can be implemented. (e) 512 durations are then sent into the parallel 2D 
mesh using a per-column South-North routing circuit. (This same circuit is  
also used to send pulses onto each column for PCM programming purposes). 
(f) Finally, West-East Routing enables durations to access another tile and/or to 
simply move across the tile. Since each borderguard can independently block 
or pass signals, complex routing patterns including multi-cast and even 
concatenation are supported.



Extended Data Fig. 3 | Keyword Spotting (KWS) Pre-processing and 
calibration. Hardware-aware (HWA) training was applied to improve model 
robustness against hardware imperfections, primarily due to programming 
errors. (a) Weight programming correlation for the HWA model. (b) Dependence 
of model accuracy on injected noise on weights and intermediate activations 
during training. (c) Mel-frequency cepstral coefficients (MFCC), representing 
the fingerprint for each keyword, are flattened and truncated before input to 
the fully-connected network. (d) The full input would require 1960 rows, however, 
to reduce the model to 1024-inputs, pruning is performed by removing all the 

inputs exhibiting a mean absolute validation input value lower than the 
indicated threshold. (e) The table shows a comparison of the KWS models and 
accuracies. (f) Since KWS is fully end-to-end on-chip, an on-chip calibration 
process is performed at the tile, leveraging 8 additional PCM bias rows to shift 
the MAC up/down to compensate for any intrinsic column-wise offsets. Slope 
of the MACs is compensated by re-scaling weights per-column. Calibration is 
performed using validation input data; inference results are reported for the 
test dataset.
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Extended Data Fig. 4 | Experimental MLPerf RNNT weight programming. 
Experimental correlation between target and programmed weights on chip-1 
over 32 tiles for both (a) WP1 and (b) WP2. (c),(d) The corresponding probability 
distribution functions (PDF) of errors, expressed as percentage of the maximum 
weight, reveal high-yield chips with very few erroneous weights. (e) Table 
showing the analog yield, or the fraction of weights with programming error 
within 20% of the maximum weight. After integration of the PDFs in (c,d), the 

corresponding cumulative distribution functions (CDFs) are computed and the 
1%-99% spread is collected, providing 2 data points (one for WP1 and one for WP2) 
for each tile. The plot shows the corresponding CDFs for each of the five chips 
used in RNNT experiments. To control the peripheral circuitry saturation, 
some tiles have weights mapped into a smaller conductance range (Max W 
equal to 80), leading to a different 1%-99% spread, e.g. the points with increased 
spread on chip-1 CDF in (e).



Extended Data Fig. 5 | MLPerf RNNT Encoder mapping and signal routing on 
chip. (a) RNNT Encoder LSTMs weights are represented by two large matrices, 
Wx which multiplies the LSTM input, x, and Wh which multiplies the LSTM 
recurrent signal, h. Depending on the sizes of x and h, a variable number of tiles 
is required. Both conventional and weight expansion mappings are shown for 
Enc-LSTM0. In addition, Enc-LSTM0, Enc-LSTM1 and the Wh of Enc-LSTM2 
implement Asymmetry Balance. Tiles connected with a dark blue line have 
shared capacitors, enabling 2048-wide analog MAC. In Enc-LSTM0, Enc-LSTM1 

and Enc-LSTM2, MACs from tiles 1,9 and 2,10 are summed in digital, while all the 
other pairs are summed on-chip in analog. (b) Every analog MAC on the encoder 
chips requires seven 300 ns time steps to process, including digitization of the 
output. During the first four steps, MAC operations are performed, providing 
input signals from ILPs as indicated in the figure. In cases where AB is used  
(Enc LSTM0, Enc LSTM1, Wh portion of Enc LSTM2), opposite-signed inputs are 
provided in two of the four MAC time steps. During the last three time steps, 
MAC results are sent out to the OLPs.
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Extended Data Fig. 6 | MLPerf RNNT Enc-LSTM0 input processing. Due to 
the large sensitivity of the first Encoder LSTM Wx matrix, input data is digitally 
pre-processed to increase the MAC signal-to-noise ratio. (a) Using the original 
MLPerf weights, input data is first shifted to zero-mean and normalized to a 
common maximum input amplitude. Then, on-chip MAC is performed, 
followed by MAC digital denormalization and addition of mean Input*ΣW.  
This last operation collapses to a simple single number (mean Input) times one 
4096-vector represented by the column-wise sum of weights, not requiring  
a full digital 1024*4096 MAC operation. Only after these steps the affine 
coefficients (slope and offset correction) are applied. (b) When using 
expanded weights, the mean removal is no longer needed since the random 
matrix M introduced in the main paper has zero mean, leading to naturally near 
zero-mean input values, thus simplifying input pre-processing. (c) All the other 
RNNT blocks (rest of Encoder and Decoder) only apply affine coefficients, 

without any normalization or mean removal. (d) Data-type conversion during 
the MLPerf RNNT inference: software computation is performed in FP32. 
Before access to the chip, data is converted into a pair of UINT8 vectors, one  
for each polarity of the incoming activations. This data is loaded on-chip in the 
ILP, then converted into time duration and used as MAC input (‘negative’ inputs 
are durations sent during the second and fourth integration steps, as shown in 
Extended Data Figs. 5b and 7d). MAC output is represented as analog voltage  
on a capacitor, then converted into time duration by the peripheral circuitry 
(details in Extended Data Fig. 2d). Finally, the OLP converts durations into 
UINT8. Data is sent off-chip and converted in FP32 during the calibration phase. 
(e) Overall view of the equations solved in the RNNT: essentially, all MACs are 
performed on chip, while all vector-vector operations, non-linear activations 
and biases are computed in software. The joint layer is implemented in 
software, as explained in Fig. 4.



Extended Data Fig. 7 | MLPerf RNNT Decoder mapping and signal routing 
on chip. Instead of processing Embedding Emb and Dec-LSTM0 Wx layers 
separately, we first compress in one single matrix the product Emb * Wx. At  
this point, the first Dec-LSTM0 shows Emb * Wx matrix with a (28*1280) size, 
contrasting with the (320*1280) Wh size to sum directly in analog. To balance 
signal magnitude, nine copies of Emb * (Wx/9) are programmed, achieving 

comparable weight absolute magnitudes. (b) Weight mapping and (c) signal 
routing implementing Asymmetry Balance. Routing from tiles to Output 
Landing Pads utilizes implicit vector concatenation on the 2D mesh, enabling 
more efficient data transport. (d) The processing of one full frame requires 5 
time steps of 300 ns each.
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Extended Data Fig. 8 | Experimental MLPerf RNNT MAC. (a) Error histogram 
and (b) correlation between experimental and target MAC are shown for every 
chip used during the RNNT inference experiment. On each correlation, white 
dotted lines highlight the main region of interest, since MACs are followed by 
sigmoid, tanh or ReLU which naturally filter out portions of MAC. The spread,  
σ, is calculated only within the highlighted Regions Of Interest (ROI). Data from 
both original Enc-LSTM0 and weight-expanded Enc-LSTM0 are reported, 

showing a better sigma for the weight expanded case. Enc-LSTM2, Enc-LSTM3, 
and Enc-LSTM4 show larger spread due to partial (Enc-LSTM2) or no (Enc-LSTM3, 
Enc-LSTM4) application of Asymmetry Balance. In addition, Enc-LSTM2 MAC is 
calculated on larger (3072 instead of 2048) inputs. Finally, decoder layers show 
larger σ, maybe caused by higher capacitor/Output Landing Pad saturation 
effects, which however have little impact on the overall WER, as revealed by the 
accuracy results in the main paper (Fig. 5a,b).



Extended Data Fig. 9 | Librispeech transcribed sentences. First ten 
transcribed sentences from the Librispeech validation dataset. The first line 
shows the reference sentence, the second line corresponds to the MLPerf 

baseline prediction (WER 7.452%), and the third line shows the sentences 
produced by our five-chips experiment including the weight expansion 
technique (WER 9.258%).
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Extended Data Fig. 10 | System performance estimation. To calculate 
processing time for RNNT on an integrated system as described in Fig. 6, (a) a 
simulator based on the MAC runtime on the actual chip and plausible digital 
processing is considered based on (b) specific timing assumptions stemming 
from our experiment and prior architectural work20. (c) Detailed breakdown of 

operations and energy across the 5 chips, including additional digital 
operations required to process activations from chips. (d) Total on-chip and 
off-chip number of operations and energy, including measured analog 
operations (this paper) or estimates for digital ops20. (e) Comparison with 
MLPerf submissions on RNNT shows a 14 × advantage in energy-efficiency.
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